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In this paper, a fuzzy adaptive variable-structure controller is investigated for a class of uncertain multi-
input multi-output (MIMO) chaotic systems with both sector nonlinearities and dead-zones. A suitable
adaptive fuzzy system is used to reasonably approximate the uncertain functions. A Lyapunov approach
is employed to derive the parameter adaptation laws and prove the boundedness of all signals of the
closed-loop system as well as the exponential convergence of the closed-loop errors to an adjustable
region. The proposed controller can be applied to the systems with or without sector nonlinearities

and/or dead-zones in the input. The effectiveness of the proposed fuzzy adaptive controller is illustrated
throughout simulation results.

1. Introduction

Chaotic system is a very complex dynamical nonlinear system
and its response exhibits some specific features such as excessive
sensitivity to initial conditions, broad Fourier transform spectrumes,
and irregular identities of the motion in phase plane (Chen & Ueta,
1999; Vanecek & Celikovsky, 1996). Chaos control problem was
firstly considered by Ott, Grebogi, and Yorke (1990). Since then,
it has been extensively investigated in the past two decades (Chen
& Dong, 1998). Several (linear and nonlinear) control techniques
have been successfully applied for the control of chaotic systems
(for synchronisation, tracking, or stabilisation purposes) such that:
PID control (Ghezi & Peccardi, 1997), adaptive feedback control
(Feki, 2003; Hua, Guan, & Shi, 2005), observer-based control
(Boulkroune, Chekireb, Tadjine, & Bouatmane, 2006; Boulkroune,
Chekireb, Tadjine, & M’'Saad, 2006; Boulkroune, Chekireb, Tadjine,
& Bouatmane, 2007), sliding-mode control (Ablay, 2009; Nazzal &
Natsheh, 2007; Yau, Chen, & Chen, 2000), adaptive backstepping
control (Ge & Wang, 2000; Wang & Ge, 2001), adaptive fuzzy con-
trol (Boulkroune et al., 2006; Chang, 2001; Liu & Zheng, 2009;
Poursamad & Markazi, 2009; Roopaei & Jahromi, 2008; Roopaei,
Jahromi, & Jafari, 2009), adaptive neural control (Ge & Wang,
2002), etc. A key assumption in all previous control schemes
(Ablay, 2009; Boulkroune, Chekireb, Tadjine, & Bouatmane, 2006;
Boulkroune, Chekireb, Tadjine, & M’Saad, 2006; Boulkroune et al.,
2007; Chang, 2001; Feki, 2003; Ghezi and Peccardi, 1997; Ge and
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Wang, 2000, 2002; Hua et al., 2005; Liu and Zheng, 2009; Nazzal
and Natsheh, 2007; Poursamad and Markazi, 2009; Roopaei and
Jahromi, 2008; Roopaei et al.,, 2009; Wang and Ge, 2001; Yau
et al., 2000) is that the chaotic system has linear inputs.

The control problem of uncertain nonlinear (chaotic or non-
chaotic) systems with nonlinear inputs has received a great interest
because of the input nonlinearities, such as saturation, backlash,
dead-zones, and so on, naturally originate from physical limita-
tions in system realization (Boulkroune, M’Saad, Tadjine, & Farza,
2008; Hsu, Wang, & Lin, 2004). It is worth mentioning that the
existence of input nonlinearities may leads to notable performance
degradations or even instability of the control system. It is thereby
more advisable to take into account the effects of the input nonlin-
earities in the control design as well as the stability analysis. Re-
cently, some control schemes have been proposed (Chang, 2007;
Chiang, Hung, Yan, Yang, & Chang, 2007; Hung, Yan, & Liao,
2008; Yan, Shyu, & Lin, 2005) for a class of chaotic systems with in-
put sector nonlinearities and/or dead-zones. However, these underly-
ing results suffer from some fundamental limitations. Firstly, the
class considered of the chaotic systems is relatively simple (i.e.
the chaotic systems considered in these works is not of type
MIMO). Secondly, the so-called gain reduction tolerances of the in-
put nonlinearities and upper bounds of the model uncertainties
are required to be known or partially known.

Motived by works in Yan et al. (2005), Chiang et al. (2007),
Chang (2007) and Hung et al. (2008), one aims at designing a fuzzy
adaptive variable-structure controller for a class of uncertain cha-
otic MIMO systems containing both sector nonlinearities and dead-
zones. Bearing in mind the available results (Chang, 2007; Chiang
et al,, 2007; Hung et al., 2008; Yan et al., 2005), the main contribu-
tions of this paper are:



e The class considered of the chaotic systems is MIMO.

e The knowledge of gain reduction tolerances of the nonlinear
dead-zones is not necessary in the controller design.

e The upper bounds of the uncertainties (i.e. nonlinear functions)
are assumed to be unknown and estimated by using adaptive
fuzzy systems.

2. Notation, problem statement and preliminaries

Consider the following class of uncertain chaotic MIMO systems
described by:

y(lm =fi(x)+ i(gljd)j(Uj)) + di(8),
=

: (1)
p
¥ = o0 + (i) + (1)
Jj=
h — [y v (rn-1) : 11" ¢ R is th 1
Werex—{l’]y}’huw}’] 7"'7yp7yp7"~7yp ER 1s the overa

state vector which is assumed to be available for measurement and,
u=[uy,...,u,]" € RP is the control input vector, y = [yy,..., y,]" € R
is the output vector, and fi(x), i=1,...,p are unknown continuous
nonlinear functions, gy i, j=1,...,p are unknown constant con-
trol-gains, @(u)=[®(uy), Po(us),.. .,¢p(up)]T is a nonlinear input
function vector satisfying some properties which will be given later,
and dt) are unknown external disturbances.
Let us denote

y(r) — I:y(lrl) B .yI(er)] T7 F(X) _ [fl (X) - .fp(X)]T,

g - 8
D(t) = [di(t)...dy(t)]", G=
Em - &y

Then, the system (1) can be rewritten in the following compact
form:

Y =F(x) + Gb(u) + D(t), (2)

where F(.), @(.), D(.) € R and G(.) € RP*P,
Now, we make the following reasonable assumptions.

Assumption 1 The desired trajectory vector x; = {xgp...,xgp,
. i—1 .
ygf)....,yglf)],wherexd,-: {yd,-,yd,-,...,yg )} Vi=1,...,p,issup-

posed to be continuous, bounded and available for measurement.
Then, x; € Q,, C R, with Q,, is a known compact set.

Assumption 2

(a) Without loss of generality, we assume that the unknown
control-gains matrix G is symmetric and positive-definite.
As a result, there exists an unknown positive constant oy,
such that: G > glp, with Ip is the p x p identity matrix.

(b) The disturbance dj(t) is bounded as follows: |d;(t)| <
d;, Vi=1,...,p, with d; is unknown positive constant.

Remark 1

(a) The model (2) can be used to describe a large class of MIMO
or SISO (chaotic or non chaotic) nonlinear dynamical sys-
tems namely:

e Robotic systems: e.g. single-link robot, two-link robotic
manipulator used in Kar and Behera (2009),

e Induction motors (Youcef & Wahba, 2009),

e Some mechanical systems: e.g. mass-spring-damper sys-
tem in Chen, Lin, and Chen (2008),

e Chaotic systems: e.g. Chua’s circuit (Chang, 2001), Uni-
fied chaotic system (Lii, Chen, Cheng, & Celikovssky,
2002; Ablay, 2009), Arneodo chaotic system (Hua et al.,
2005), gyro system (Roopaei et al., 2009), Genesio chaotic
system, Rossler system, Duffing and Holmes system, and
many others.

(b) Assumption 2a is not restrictive, as it is satisfied by many
physical systems. Note that this assumption is frequent in
the literature devoted to adaptive (fuzzy or neural) control
of MIMO systems. Also, it guarantees the controllability of
the system (1).

(c) Note that the fundamental results of this paper can be
adapted, with few modifications, to the case where G is sym-
metric and negative-definite.

The objective of this paper is to design a control law u such as
the output vector y follows the specified desired trajectory
Ya=[Watr-- .,ydp]T € RP, with all involved signals in the closed-loop
system remain bounded.

Let us define the tracking error by

e =Y1 —Ya
: 3)
€ =Yy Yap
and the filtered tracking error as
S=1[S1,...,Sy" (4)
with
d ri-1

Si:{aﬁ-}v,} e, for 4 >0, Vi=1,...,p (5)
Then, we can write (5) as follows
Si=2 e (r = 1A% 4 4 (i — 1) el (6)

withi=1,...,p.

Notice that if we choose 4;> 0, withi=1,...,p, then the roots of
the polynomial Hi(s) = /™" + (i — 1) 2s + -+ (ri — 1) s 2+
s'i-1 related to the characteristic equation of S;=0 are all in the
open left-half plane.

The relation (6) can be rewritten in the following compact form

Si=C'E (7)
with

Ei= e el eﬁ’f*”]T, 8)
cr= [;;H (=172 (= 1) 1]. 9)

Consequently, the vector S takes the form:

S =CE, (10)
where
T _ g T AT T
C 7dlag[C1 o Cp](pm, (11)
T
[T T T
E= [El E .. Ep](m). (12)

And the dynamic of S; is described by:

Si=ClEi+e'™, and i=1,...,p, (13)

n



where C,; is given by

Ch= 04 (ry = 1) 0.5(r — 1)(ri = 2)22(ri — 1)24). (14)
The dynamic of S can be written in the following compact form
S=CE+e®, (15)
where
T = diag [CL L CZP] - (16)
T
e = e/ e”) - e (17)
with
e =y —y{, (18)
T
where y = M’IJ y<2rz) y;}rp)} is previously defined, and
T
= yE vy (19)
From (18), we can write (15) as follows
S=CIE+ym —y. (20)

Thereafter, (20) will be used in the development of the proposed
controller and the stability analysis.

2.1. Description of the fuzzy logic system

The basic configuration of a fuzzy logic system consists of a
fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference engine and
a defuzzifier, as shown in Fig. 1. The fuzzy inference engine uses
the fuzzy IF-THEN rules to perform a mapping from an input
vector x = [x1,X2,...,X,] € R" to an outputf €R.

The ith fuzzy rule is written as

R?: if x,is A\ and ... andx, is A} then f is f', (21)

where AQ,A;, ..., and A; are fuzzy sets and f is the fuzzy singleton
for the output in the ith rule. By using the singleton fuzzifier, prod-
uct inference, and center-average defuzzifier, the output of the fuz-
zy system can be expressed as follows:

SIS (}H y m))

f(&) = ) = 011&(&)7 (22)

o (}H oy %)

where p,:(x;) is the degree of membership of x; to AJ' m is the num-
ber of fuzzy rules, 6" = [f,f2,...,f"] is the adjustable parameter vec-
tor (composed of consequent parameters), and " = [y, /2,...,y™],
with

(M)
S (I )

is the fuzzy basis function (FBF). Throughout the paper, it is assumed
that the FBFs are selected so that there is always at least one active
rule (Wang, 1994), i.e. 3", (H;:MA} (Xj)) > 0.

It is worth noting that the fuzzy system (22) is commonly used
in control applications. Following the universal approximation re-
sults (Wang, 1994), the fuzzy system (22) is able to approximate
any nonlinear smooth function f{x) on a compact operating space
to an arbitrary degree of accuracy. Of particular importance, it is
assumed that the structure of the fuzzy system (i.e. the pertinent
inputs, the number of membership functions for each input and
the number of rules) and the membership function parameters
are properly specified beforehand. The consequent parameters,
i.e. 0, are determined by adaptation algorithms.

V' (x) (23)

Fuzzy Rules Base I
- f)
[Fomie e

H &

Fuzzy Inference
Engine

Fig. 1. The basic configuration of a fuzzy logic system.

2.2. Input nonlinearity

The mathematical model of the input nonlinearity @;(u;) is de-
scribed by

G (W) (Ui — Uiy), Ui > Uiy,
Di(u;)) =< 0, —Ui_ < Ui < Uiy, (24)
i (W) (W +uin), U < Ui,

where ¢.(u;) >0 and ¢;_(u;) >0 are nonlinear functions of u;, and
u; > 0, u;_ > 0 are constants.

The input nonlinearity @;(u;) satisfies the following important
properties:
(ui — uiy ) Pi(wy)
(ui + i) Pi(uy)

1+(ui - ui+)27 Ui > Uiy,

: U < —Uj_, (25)

m
2
m;(u +ui)”,

AR\

where m;, and m;_ are constants called “gain reduction tolerances”.
Let us denote #; = min {m;, ,m;_}.

In order to study the characteristics of this input nonlinearity in
the control problems, the following assumptions are made:

Assumption 3

(a) The gain reduction tolerances, m;, and m; , are unknown.
Therefore, #; is also unknown.

(b) The explicit mathematical expression of @;(u;) is uncertain,
except the properties (25) and constants u;. and u;_ (which
are assumed to be known).

Remark 2

(1) It is clear from (24) and (25) that for u; =u;_ =0, the input
nonlinearity @;(u;) is reduced to the special sector nonlinear
function. Hence, the considered MIMO system with the
input nonlinearities (24) is a more general form.

(2) Note that the model (24) has also been used in Yan et al.
(2005), Chiang et al. (2007), Chang (2007) and Hung et al.
(2008). Compared to our contribution, these papers have
the following limitations:

e The considered class of chaotic systems is a simple SISO
system with sector nonlinearities and/or dead-zones.

o The gain reduction tolerances m;, and m;_ or their mini-
mum #; = min {m;,,m;_} are assumed to be known.

e The upper bounds of uncertainties are required to be
known.

3. Design of the fuzzy adaptive controller

In this section, a fuzzy adaptive variable-structure control
scheme is developed for the class of unknown chaotic MIMO sys-
tems described by (2).



By substituting (2) into (20
S =CIE + F(x) + G®(u) + D(t) -y (26)
G~ ! and Dy(t) = G 'D(t), we have

®(u) + Dy (t). (27)

), the dynamics of S become

Posing G; =
GiS = Gy [CZE —y0 4 F(x)] +

To facilitate the stability analysis and control design, we rewrite the
dynamics of S as follows

GiS = Gi[CTE~ ¥ + F()] + ®() + Dy(t)

= o(x, v) + @(u) + Dg(t), (28)
where (X, v) = [ (%, 9), 02(X, V), . . ., 0p(%, V)]” = Gi[ v+ F(X)] and
v=CE-y.

Assumption 4. There exists an unknown continuous positive
function @;(x) such that:

low(x, v)| < nou(x), Vxe Qy CR.

where 7 = min{#;}.

Remark 3. Assumption 4 is not restrictive for the following
reasons:

e The upper bound #a;(x) is assumed to be unknown.
e Since v is a function of (x,x4), X4 € L. and o;(x, v) is a continuous
function, therefore such a function (i.e. &;(x)) always exists.

The unknown continuous nonlinear function @;(x) can be
approximated, on a compact set ,, by the fuzzy systems (22) as
follows:

%i(X, 0) = 0] Y (x), (29)

where i(x) is the FBF vector, which is fixed a priori by the designer,
and 0; is the adjustable parameter vector of the fuzzy system.
Let us define

6; = argmin [sup |z (%) — oti(x, oi)|] (30)
0; XeQy
as the optimal values of 0;.

Note that the optimal values of 0; are artificial constant quantities
introduced only for analysis purposes, and their values are not
needed when implementing the controller.

Define

0 =0, — 0;
as the parameter estimation error, and
&i(x) = ai(x) — (X, 0;) 31)

is the fuzzy approximation error, where &; (x,07) = 0Ty (x).

As in the literature (Boulkroune et al., 2006; Boulkroune et al.,
2008; Boulkroune, Tadjine, M’saad, & Farza, 2008; Boulkroune,
M’Saad, Tadjine, & Farza, 2010; Chang, 2001; Liu & Zheng, 2009;
Roopaei & Jahromi, 2008; Roopaei et al., 2009; Poursamad &
Markazi, 2009; Wang, 1994; Youcef & Wahba, 2009), we assume
that the used fuzzy systems do not violate the universal approxi-
mator property on the compact set €2,, which is assumed large
enough so that the input vector of the fuzzy system remains in
Q, under closed-loop control system. So it is reasonable to assume
that the fuzzy approximation error is bounded for all x € Q,, i.e.

lei(X)| < &, VxeQ,

where &; is an unknown constant.

From the above analysis, we have
(X, 0:) — 8i(X) = (%, 0;) — % (x, 07) + %i(x, 07) — &i(x),
= oi(X, 0;) — (X, 0}) — &(x),
= 01 y;(x) — &(x). (32)

To meet the control objective, a suitable fuzzy adaptive variable-
structure controller is proposed as follows:

—p;(t)sign(S;) —ui_, S >0,
u =<0, Si=0, (33)
—p;(t)sign(S;) +ui., Si <0,
with p;(t) = koi + kui|Si| + 0T y;(x), Vi=1,...,p and
koi = ~7oiorkor + 7lSil.  koi(0) > O, (34)
b = =700+ PlSI 0, 05(0) > 0, (35)

where Yo, Y14, Goi» 013, k1i > 0 are design constants, and ko; and 0; are
the online estimates of the uncertain terms kj; = & +dy and 0,
respectively. Note that ag,' are unknown positive constants which
satisfy: S0, dglSi| = |S"Dg(t)/1]-

Remark 4. With ko;(0) > 0 and 6,(0) > 0, it follows from adaptive
laws (34) and (35) that their respective solutions satisfy kq; (t) > 0
and 6,(t) = 0, for t > 0.

Multiplying (28) by ST and using Assumption 4, we have

1

L + ESTDg(t)

L1 1

~87GS = =STa(x, v) + ~STd(u

S G5 =y ( ),1 (u)

zp] Sila(x) +— log d(u) + lsTD (t) (36)
R n- e

i=1

From (32) and (36), we get

1o S<Z|S,|oc, %)+ L au) + LDy (0)
n - n n

p

<=3 Il - Z|S|@% +Z|5|k01

=

©3 IsioTvix >+%ST¢<u>, (37)
i=1

where 0; = 0; — 0; and ko; = koi — ki = koi — & — dgi.

Theorem 1. Consider the system (2) and suppose that Assumptions
1-4 are satisfied. Then, the control law defined by (33)-(35)
guarantees the following properties:

o All signals in the closed loop system are uniformly ultimately
bounded.

e The solution of the closed-loop error system exponentially con-
verges to an adjustable region.

Proof of Theorem 1. Let us consider the following Lyapunov func-
tion candidate:

1 1 P 1 1 Pl
V= —S GiS+= — = — 070, 38
2> 2 ; Yo 2 ; P %)
Its time derivative is given by
= fsTc S+ Z ko,ko, + Z 070, (39)

with G] =0.
We can easily show from (3
for S; < 0. Thus, we get from (2

3)that u; < —u;_for S;> 0 and u; > u;.
5) and (33), that for S; >0



(Ui + u ) Di(w;) = —p;(t)sign(S) @i (w;) = m;_pi(t) > npi(t)  (40)

and for S;<0
(Ui — U ) @i(ui) = —p;(t)sign(Si) Pi(ui) >
Then, for S;<0 and S; > 0, we have

m, pi(t) = npi (D). (41)

—pi(t)sign(S)@i(ui) = npi (o). (42)
From (42) and using the facts 52 > 0 and S;sign(S;) = | Si|, we have
— pi(OS;sign(S) ®i(u;) > npi(HS; = np (IS, (43)
Finally for all S; (i.e. for S;< 0, S; =0 and S; > 0), we have

Sidi(wi) < —np;(0)[Sil- (44)

Using the expressions (34), (35), (44) and (37), (39) becomes

p ] p p -
Z |Si|Koi + Z 1Si107 i (x) ﬁ > Sibi(us) = > aoikoikoi
i=1 i=1
p . p , p
= 0ubf6: <Y ISilkoi + Z ISil 0 Yi(x) + Y —pi(t)ISi
i-1 i-1 i1 i-1
p - p .
> Goikoikoi = Y 610 ;
=1 i=1
, & . p .
=—> kuSi - ZO'OikOikOi - Z 107 0;. (45)
- i=1 i-1
We can easily verify that
= 0 O0i ;
— Ooikoikoi < —ﬁké, +— 0' %
~ o' .
- 010} 0; < ——||el|| +5 110

Using the previous inequalities, (45) becomes

Vg—zp:knsz Zp:ﬁo,k%i_zp:%”&” -&-Z:O-O'k*2 ZJ“
P -

i=1 i=1

0*

(46)

Since G > agol, (recall that the matrix G is symmetric and positive-
definite), than

TGS =5"GiS < 1 ISI1%. (47)
Og0
From (46) and (47), we have
—uvV +m, (48)
where 1= Y, %k’ + P 2|07

u= min{mim{ZnO'gokn}, mim{yo,«ao,«}, miin{yl,«al,«}}.

Multiplying (48) by e yields

d i
i (Ve™) < me (49)
Integrating (49) over [0,t], we have
T T
o<Vt <—+(VO ——)e’”‘. 50
() m 0) m (50)

Therefore, all signals of the closed-loop system, i.e. ko;, 0;, S;, E and x,
are uniformly ultimately bounded. Then, u; is also bounded.
From (38), V(0) can be determined as follows

1 1< 1 K 2 1<&
V<0>:ﬁ5< +§;% (koi(0) — ko) +5;
< L (0(0) - )7 (6:(0) - ). (51)

Since G, is symmetric and positive-definite (i.e. it exists an unknown
positive constant o4y, such that: Gy > d4l,), from (50) and (38), we

have
i< (2 (v 5)e) "

Then, the solution of S; exponentially converges to a bounded region
1/2
Qs = {SiHSi\ (2’7 ”) } This ends the proof of the theorem. O

Og1 1

Remark 5 If &;(u;))=u; (or when un=u;_ =0, and ¢u(u;)=
¢i_(u;) = 1), i.e. there are no both dead-zones and sector nonlinear
ities in the input function, we can show that the proposed control-
ler remains still applicable to such MIMO chaotic systems.

Remark 6

(1) In the case where u;. = u;_ = ujg, (33) is reduced to the follow-
ing expression:

—(pi(t) + io)sign(S;), (52)

where p;(t) = koi + kii|Si| + 07 ;(x).

(2) To eliminate the chattering effect caused by the discontinu-
ous control term in (33) and (52), the function sign(.) must
be replaced by any equivalent smooth function such as: tanh
(.), arctan(.), Sat(.). . .etc.

4. Simulation results

In this section, simulation studies are carried out to show the
effectiveness of the proposed adaptive fuzzy controller. For this
end, we consider the tracking control problem of the uncertain uni-
fied-chaotic system. This unified-chaotic system introduced by Lii
et al. (2002) is described by the following dynamics (Ablay, 2009):

= (2500 + 10)(X; — x1),
= (28 — 350)x1 + (290 — 1)x2 — X1X3, (53)

).(3 = X1X2 — (8 + (')6)9(3/37
where x;, Xp, X3 are state variables and « €[0,1] is the system
parameter. When o € [0,0.8[, system (53) is called the generalized
Lorenz chaotic system (Lorenz, 1963). When « = 0.8, system (53)
is called the Li chaotic system (Lii & Chen, 2002), and when
o €]0.8,1], system (53) is called the generalized Chen chaotic sys-
tem (Chen & Ueta, 1999). It is worth noting that the unified chaotic
system can be seen in atmospheric sciences, laser devices, and other
systems related to convection (Ablay, 2009).

The unified-chaotic system with control inputs and external-
disturbances is described by:

= (250( + 10)()(2 —X1) + @1(”1) + d](t),
Xy = (28 — 350())(1 + (290( — 1)X2 — X1X3 + D, (UQ) + dz(f), (54)
)’(3 = X1X3 — (8 + OC)X3/3 + @3(”3) +d3(t),

where @;(u;), i=
nonlinearities.

Let y =x=[x1, X2, X3]", u=[uy, uy, us]’, @ (u)=[D1(uy), Po(u),
@5(u3)]Y, and D(t) =[d(t), dx(t), ds(t)]". Then, the system (eq.
(54)) can be expressed as follows:

1, 2, 3, are the models of the inevitable input

¥ =F(x) + G®(u) + D(t), (55)



(a) 2 (b) 4
- 5 e
2 or 2
X X
: ¢ o
-2 -2
0 2 4 6 0 2 4 6
time (s) time (s)
() 2 (d) 50
Xy ﬁ
o i)
g 2
3 I :
s O c :
5 S -100 |
-1 ~150 |
0 2 4 6 0 2 4 6
time (s) time (s)

Fig. 2. Simulation results (with o = 0.8). (a) Tracking of x1: x; (solid line) and x4, (dotted line). (b) Tracking of x: x> (solid line) and x4, (dotted line). (¢) Tracking of x3: x5 (solid
line) and xg43 (dotted line). (d) Control input signals applied at t = 0s: u; (solid line), u, (dotted line) and u5 (dashed line).
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Fig. 3. Simulation results (with o= 1). (a) Tracking of x;: x; (solid line) and x4, (dotted line). (b) Tracking of x,: x> (solid line) and x4, (dotted line). (¢) Tracking of x5: x5 (solid
line) and xg43 (dotted line). (d) Control input signals applied at t = 0s: u; (solid line), u, (dotted line) and u5 (dashed line).

where But, the input nonlinearity @,(u,) is supposed to be:
(25004 10) (%2 — X1) 100 (uz —5)(1 = 0.3sin(uy)), U >5,

F(x) =1 (28 =350)%; + (290t — 1)x, —x1%3 |, G=[0 1 0|, D,y(up) =40, -5<u; <5,
X1X; — (8 + 00)X3/3 001 (u2 +5)(0.8 — 0.3 cos(uz)), Uz < -5,

It is worth noting that the system model (i.e. F(x),G, @ (u) and D(t))
The input nonlinearities, @;(u;), for i=1, 3, are described by: is assumed to be unknown by the controller, except some structural
properties such as:

)(1 —0.3sin(w)), u > 2,
2<u <2 e The symmetry and the sign of G,
S e o The properties (25) of ®@{(u;) and the knowledge of u;, and u;_, with

(U,‘ -2
@,‘(U,‘) = 07
(u; +2)(0.8 — 0.3 cos(uy)), U < —2, i(=1,2.3).



In fact, the model (54) is only required here for simulation
purposes.

The initial conditions of the system are taken as
x(0) = [x1(0),%5(0),x3(0)]" = [1,3,2]". The desired trajectories are se-
lected as X4 = X42 = Xgq3 = sin (2.4t). The external disturbances are
selected as follows: dq(t) = dy(t) = d5(t) = sin (t).

The adaptive fuzzy systems, 07 ;(x), withi = 1, 2, 3, have the vec-
tor x = [x1,X2,x3]" as input. For each entry variable of these fuzzy sys-
tems, as in Boulkroune et al. (2008), we define three triangular
membership functions uniformly distributed on the intervals
[—2,2]. The design parameters are chosen as follows: g1 = Y03 =
30, Y02 =80, y11=712=713=4000, 001 = 0p2 = 03 = 0.001, o,
=012=013= 00005, /11 = /12 = /13 = 2, k]] = k]z = k13 =2. The initial
conditions are selected as: Kko1(0) = ko2(0) = ko3(0) =0, 04;(0) = 0;
(0)=03(0)=0,j=1,...,27.

Note that, in all simulations, the discontinuous function sign(S;)
has been replaced by a smooth function tanh (kgS;), with ks; = 20,
i=1,2,3.

According to the value of «, we will consider two simulation
cases:

e o = 0.8, the proposed controller is applied to Lii chaotic system,
e o =1, the proposed controller is applied to the generalized Chen
chaotic system.

(a) Case 1 (when « = 0.8) The simulation results of the proposed
controller applied at time t =0 s are shown in Fig. 2. These
simulation results clearly show that the tracking perfor-
mance is nice. Consequently the effects due to system uncer-
tainties, unavoidable input nonlinearities (dead-zone and
sector nonlinearity) and bounded external disturbances in
Lii chaotic system can be efficiently diminished by the pro-
posed fuzzy adaptive control scheme. From this figure, we
can also see the boundedness of the control signals.

(b) Case 2 (when o = 1) The simulation results of this case are
shown in Fig. 3. From these simulation results, we can see
that the states (xq,X,x3) quickly converge to respective
desired trajectories (x41,X42,X43) by activation of control sig-
nals at time t=0s.

5. Conclusion

In this paper, a fuzzy adaptive variable-structure controller for a
class of MIMO unknown chaotic systems subject to actuator sector
nonlinearities and dead-zones has been proposed. An adaptive fuz-
zy system has been used to reasonably approximate the upper
bounds of the uncertainties. Of fundamental interest, it has been
proven by using a Lyapunov approach that the proposed control
system is stable and its underlying tracking error converges expo-
nentially to an adjustable region. Simulation results have been gi-
ven to emphasize the effectiveness of the proposed controller.
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