
 

Similarity measure models and algorithms for hierarchical cases 
 

Dianshuang Wu, Jie Lu, Guangquan Zhang 

Decision Systems & e-Service Intelligence (DeSI) Lab 
Centre for Quantum Computation & Intelligent Systems (QCIS) 

Faculty of Engineering and Information Technology, University of Technology, Sydney, P.O. Box 123, 
Broadway, NSW 2007, Australia 

 
Corresponding author: Jie Lu, Tel. : +61 02 95141838   
E-mail: sd_wds@hotmail.com (D. Wu), jielu@it.uts.edu.au (J. Lu), zhangg@it.uts.edu.au (G. Zhang) 

 

Abstract  

Many business situations such as events, products and services, are often described in a 

hierarchical structure. When we use case-based reasoning (CBR) techniques to support business 

decision-making, we require a hierarchical-CBR technique which can effectively compare and 

measure similarity between two hierarchical cases. This study first defines hierarchical case trees 

(HC-trees) and discusses related features. It then develops a similarity evaluation model which 

takes into account all the information on nodes’ structures, concepts, weights, and values in order 

to comprehensively compare two hierarchical case trees. A similarity measure algorithm is 

proposed which includes a node concept correspondence degree computation algorithm and a 

maximum correspondence tree mapping construction algorithm, for HC-trees. We provide two 

illustrative examples to demonstrate the effectiveness of the proposed hierarchical case similarity 

evaluation model and algorithms, and possible applications in CBR systems. 

Keywords: Hierarchical similarity, Hierarchical cases, Tree similarity measuring, Case-based 

reasoning 
1. Introduction 

Case-based reasoning (CBR) is the process of solving new problems based on the solutions 

for similar past problems (Aamodt & Plaza, 1994). CBR provides a powerful learning ability to 

use past experiences as a basis for dealing with new problems, and facilitates the knowledge 

acquisition process by reducing the time required to elicit solutions from experts. It is represented 

by a four-step (4Rs) cycle: retrieve, reuse, revise and retain (Aamodt & Plaza, 1994). In the first 

‘R’ stage, when a new problem is input, CBR retrieves the most similar case from the case base. 

mailto:sd_wds@hotmail.com
mailto:jielu@it.uts.edu.au
mailto:zhangg@it.uts.edu.au


 

Obviously, designing an effective case similarity evaluation method to identify the most similar 

cases is a key issue in CBR. Many models and algorithms have been developed to measure 

similarity between two cases, which are described in a set of attributes (Falkman, 2000). However, 

in practice, some cases can only be described by hierarchical tree structures. Therefore, we need to 

explore effective similarity measures for hierarchical cases in order to apply CBR systems.  

Fig. 1 shows an example of an avian flu case describing the infection situation of birds in an 

area at a given time (Zhang, Lu & Zhang 2009). Obviously, it is a hierarchical case and viewed as 

a tree structure. This tree case has seven nodes called “wild birds”, “farm poultry”,…, “water bird” 

and “no water bird”. The “water bird” node indicates that 40% of water birds were infected. From 

its edge, we can see 70% of farm poultry are water birds. Similarly, there are 60% of birds in the 

farm poultry area. 

A bird flu case

Wild birds Farm poultry

Long distance 
migratory

Short distance 
migratory

0.4 0.6

0.60.4
Water bird No water bird

0.7 0.3

(0.3) (0.4)
(0.4) (0.4)

 

Fig.1. A hierarchical case: bird flu   

From this example, we can summarize the following features of tree cases: (1) every node is 

associated with a concept; (2) all concepts represented by nodes of a tree case, construct a 

hierarchical structure. Nodes at different depths represent concepts with different abstraction 

levels. The child nodes can be viewed as a refinement of the concept expressed by their parent 

node; (3) all leaves of a tree case are assigned values. Other nodes’ values can be assessed by 

aggregating their children’s; (4) every node is assigned a “weight” to represent its importance 

relative to its parent node. As different cases may arise from different sources at different times, 

the tree structures, nodes’ concepts, weights and values in different trees are probably not all the 

same. To evaluate the similarity between these tree-structured hierarchical cases, all the 

information should be considered. 

The research in this paper is related to work on tree similarity measure and structured case 

similarity measure. Tree structured data are used in many fields, such as e-business (Bhavsar, 

Boley, & Yang, 2004), bioinformatics (Tran, Nguyen, & Hoang, 2007), XML Schema matching 

(Jeong, Lee, Cho, & Lee, 2008), document classification and organization (Rahman & Chow, 



 

2010) and case-based reasoning (Ricci & Senter, 1998). The similarity measure of tree structured 

data is essential for many applications. One widely used tree similarity measure is tree edit 

distance (Zhang, 1993; Kailing, Kriegel, Schonauer, & Seidl, 2004), in which edit operations 

including insertion, deletion and re-labeling with costs are defined, and the least cost of a 

sequence of edit operations needed to transform one tree to another is used as the similarity 

measure between the two trees (Bille, 2005). The main difference between various tree edit 

distance algorithms lies in the set of allowed edit operations and their related cost definitions 

(Yang, Kalnis, & Tung, 2005). In (Xue, Wang, Ghenniwa, & Shen, 2009), the conceptual 

similarity measure between labels was introduced in the cost of edit operations to compare 

concept trees of ontology. Another kind of tree similarity measure is based on a maximum 

common sub-tree (MCS) or sub-tree isomorphism between two trees (Akutsu & Halldorsson, 

2000). This method uses the size of MCS between two trees, or metrics defined by MCS as the 

similarity measure. In (Torsello, Hidovic, & Pelillo, 2004), four novel distance measures for 

attributed trees based on the notion of a maximum similarity sub-tree isomorphism were proposed. 

In (Lin, Wang, McClean, & Liu, 2008), the number of all common embedded sub-trees between 

two trees was used as the measure of similarity. The methods mentioned above mostly deal with 

node-labeled trees. In (Bhavsar, Boley, & Yang, 2004), node-labeled, arc-labeled, arc-weighted 

trees were used as product/service descriptions to represent the hierarchical relationship between 

the attributes. To compare these trees, a recursive algorithm to perform a top-down traversal of 

trees and the bottom-up computation of similarity was designed. However, their trees had to 

conform to the same standard schema, i.e. the trees should have the same structure and use the 

same labels, though some sub-trees were allowed to be missing (Yang, Sarker, Bhavsar, & Boley, 

2005). As trees for hierarchical cases in our research are different to previous ones, we need to 

develop a new similarity measure method for them. 

Structured case similarity measure in the literature is usually based on the maximal common 

sub-graph or sub-graph isomorphism (Burke, MacCarthy, Petrovic, & Qu, 2000; Sanders, Kettler, 

& Hendler, 1997). In (Ricci & Senter, 1998), the similarity measure on tree structured cases, 

taking into account both the tree structures and node labels’ semantics, was researched. A sub-tree 

isomorphism with the minimum semantic distance was constructed and the minimum semantic 

distance was used as the similarity measure. This research is closely related to ours. However, the 



 

positions of corresponding nodes are not restricted in their sub-tree isomorphism, and this is not 

suitable for our hierarchical cases, because nodes at different depths represent concepts at different 

abstraction levels. Also, nodes’ values are not involved in their similarity measure. 

In this paper, we present a comprehensive similarity evaluation model considering all the 

information on nodes’ structures, concepts, weights and values to compare tree structured 

hierarchical cases. To express the concept correspondence between nodes in different trees, the 

concept correspondence degree is defined. A maximum correspondence tree mapping based on 

nodes’ structures and concepts is constructed to identify the corresponding nodes between two 

trees. Based on the mapping, the values of corresponding nodes are compared. Finally, the 

similarity measure of trees is evaluated by aggregating both the conceptual and value similarities.  

This paper is organized as follows. In Section 2 we describe the features of hierarchical case 

trees by mathematical formulas. Section 3 presents a similarity evaluation model to compare any 

two hierarchical case trees. A set of algorithms to compute the similarity between hierarchical 

cases is provided in Section 4. Section 5 presents two examples to demonstrate the effectiveness 

of the proposed hierarchical case similarity evaluation model and algorithms, and possible 

applications in CBR systems. It also compares the proposed HC-tree similarity model with other 

approaches. Section 6 concludes the paper and discusses tasks for our further study. 

2. Hierarchical case trees 

A tree is defined as a directed graph ),( EVT =  where the underlying undirected graph has 

no cycles and there is a distinguished root node in V , denoted by )(Troot , so that for all nodes 

Vv∈ , there is a path in T  from )(Troot  to node v  (Valiente, 2002). In real applications, 

the definition can be extended to represent practical objects. To express the concepts, values and 

weights associated with the nodes of hierarchical cases and the hierarchical relationships between 

nodes, the original tree structure is enriched and a hierarchical case tree (HC-tree) is defined. 

Definition 2.1: HC-tree. An HC-tree is a structure ),,,,( RWAEVT = , in which V  is a 

finite set of nodes, E  is a binary relation on V  where each pair Evu ∈),(  represents the 

parent-child relationship between two nodes Vvu ∈, , A  is a set of attributes assigned to each 

node in V , W  is a function to assign each node a weight to represent its degree of importance 



 

to its siblings, thereby satisfying the sum of the weights of all the children of one node is 1, and 

R  is a function to assign a value to every leaf node to describe the degree of its relevant attribute. 

Two features of the HC-tree should be highlighted. First, all nodes in the HC-tree represent 

concept meanings, which are obtained from the attributes. As a hierarchical structure, the concept 

of one node depends, not only on the attribute itself, but also its children’s. Therefore, nodes at 

different depths represent concepts at different abstraction levels, and nodes at higher layers 

represent more significant concepts than lower nodes. Secondly, every node in the HC-tree has a 

value. The leaves’ values are indicated by R , and the internal nodes’ values can be computed by 

aggregating their children’s. 

resident 
bird

v1

v2

0.5 0.5

T1 A bird flu case

v3
migratory 

bird

(0.8)

long distance 
migratory

0.50.5

(0.7)(0.3)

v4 v5

short distance 
migratory

long distance 
migratory

short distance 
migratory

0.60.4

(0.2)

u1

u2

0.4 0.6

T2 A bird flu case

wild birds
farm poultry

water bird no water bird

0.7 0.3

(0.3)
(0.3) (0.3)

u3

u6 u7u4 u5

  
Fig.2. Two examples of HC-trees 

Two examples of HC-trees, both describing the situation of bird flu, are illustrated in Fig. 2. 

The labels beside the nodes represent their attributes. The number beside the edge is the weight 

of the child. The number under each leaf represents its value. In 1T , “A bird flu case” is 

described by two aspects, “migratory bird” and “resident bird”, with both taking the same weight. 

Similarly, “migratory bird” is described by two sub-aspects, “long distance migratory” and “short 

distance migratory”. From “long distance migratory”, we can see that 30% of birds were infected. 

As 1T  and 2T  are from different sources, their structures and nodes’ weights are different. 

Their attribute terms are also not identical. 

To evaluate the conceptual correspondence between attributes in different HC-trees, a 

conceptual similarity measure between attributes is introduced as in (Xue, Wang, Ghenniwa, & 

Shen, 2009). 

Definition 2.2: Attribute Conceptual Similarity Measure. An attribute conceptual similarity 



 

measure 
21,AAsc  is a set of mappings from two attribute sets 1A , 2A  used in different HC-trees 

to the set [0, 1], ]1,0[: 21, 21
→× AAsc AA , in which each mapping denotes the conceptual 

similarity between two attributes. For convenience, the sub-script 21, AA  is omitted so that there 

is no confusion. For 11 Aa ∈  and 22 Aa ∈ , we say 1a  and 2a  are similar if 0),( 21 >aasc , 

and the larger ),( 21 aasc  is, the more similar the two attributes are.  

Conceptual similarity between two attributes can be given by domain experts or calculated 

based on linguistic analysis methods. As an example, we define the conceptual similarity between 

the attributes of 1T  and 2T  in Fig. 2 as follows:  

sc(migratory bird, wild birds)=0.7,    sc(migratory bird, farm poultry)=0.1, 

sc(resident bird, wild birds)=0.6,     sc(resident bird, farm poultry)=0.8, 

sc(resident bird, water bird)=0.4,     sc(resident bird, no water bird)=0.4, 

sc(long distance migratory, water bird)=0.1,  sc(long distance migratory, no water bird)=0.2, 

sc(short distance migratory, water bird)=0.2, sc(short distance migratory, no water bird)=0.2. 

 

3. A similarity evaluation model for HC-trees 

A similarity evaluation model for HC-trees is proposed in this section. In the model, 

maximum correspondence tree mapping is constructed to identify the corresponding node pairs of 

two HC-trees based on nodes’ structures and concepts, and the conceptual similarity between two 

HC-trees is evaluated. Based on the mapping, the value similarity between two HC-trees is 

evaluated, and the final similarity measure between two HC-trees is assessed as a weighted sum of 

their conceptual and value similarities. 

3.1 Maximum correspondence tree mapping 

To identify two corresponding nodes in different HC-trees, both their structures and concepts 

should be considered.  

There are two structural restrictions. First, as nodes at different depths represent concepts at 

different abstraction levels, it is reasonable to assume that the corresponding nodes in the mapping 

should be at the same depth. Therefore, the roots of two HC-trees should be in the mapping. 

Secondly, as the children nodes can be viewed as a refinement of the concept expressed by the 



 

parent node, two separate sub-trees in one tree should be mapped to two separate sub-trees in 

another.  

In addition to satisfying structural restrictions, it is important that the corresponding nodes 

have a high conceptual similarity degree. To express the concept correspondence between two 

nodes in two HC-trees respectively, the following definition is introduced: 

Definition 3.1: Node Concept Correspondence Degree. Let 1V  and 2V  be node sets of 1T  

and 2T  respectively. A node concept correspondence degree cord  is a set of mappings from 

1V  and 2V  to the set [0, 1], ]1,0[: 21 →×VVcord , in which each mapping denotes the 

concept correspondence between two nodes of two HC-trees.  

cord  is symmetric, i.e. for 1Vv∈  and 2Vu∈  we have ),( uvcord = ),( vucord . 

Let v  and u  be two nodes of 1T  and 2T  respectively. There are three cases: (1) both v  

and u  are leaves, (2) v  is a leaf and u  is an internal node, (3) both v  and u  are internal 

nodes. In the first case, as nodes’ concepts are derived from the attributes assigned to them, the 

concept correspondence degree between v  and u  can be defined as the conceptual similarity of 

their attributes. In the other two cases, as the internal node’s concept is also affected by its children, 

the children’s concepts should be considered in the definition. Thus, they should be defined 

recursively. The definitions of cord  for the three cases are presented respectively as follows: 

Definition 3.2: Concept Correspondence Degree between Two Leaves. Let v  and u  be 

two leaves of 1T  and 2T  respectively. The concept correspondence degree between v  and u , 

),( uvcord  is defined as:  

).,.(),( auavscuvcord =                        (3.1) 

where av.  and au.  represent attributes of v  and u  respectively.  

For example, 4v  and 6u  are two leaves of 1T  and 2T  respectively in Fig. 2. The 

attribute of 4v  is “long distance migratory” and of 6u  is “water bird”. The concept 

correspondence degree between 4v  and 6u  is defined by sc(long distance migratory, water 

bird), and ),( 64 uvcord =0.1.  



 

Definition 3.3: Concept Correspondence Degree between a Leaf and an Internal Node. Let 

v  be a leaf of 1T , u  be an internal node of 2T , and },...,,{)( 21 quuuuC = be u ’s children 

set. The concept correspondence degree between v  and u , ),( uvcord  is defined as: 

∑
=

⋅⋅−+⋅=
q

i
ii uvcordwauavscuvcord

1
2 ),()1().,.(),( aa            (3.2) 

where α  is the influence factor of the parent node and iw2  is the weight of iu .  

For example, 3v  is a leaf node of 1T  and 3u  is an internal node of 2T  in Fig. 2. The 

concept correspondence degree between 3v  and 3u  is computed by the formula 

)),(3.0),(7.0()1().,.(),( 73633333 uvcorduvcordauavscuvcord ⋅+⋅⋅−+⋅= aa . In the 

formula, ).,.( 33 auavsc is 0.8. ),( 63 uvcord  and ),( 73 uvcord  can be computed by Definition 

3.2, and ),( 63 uvcord =0.4 and ),( 73 uvcord =0.4. If α  is 0.5, we can achieve 

),( 33 uvcord =0.6. 

Definition 3.4: Concept Correspondence Degree between Two Internal Nodes. Let v  and 

u  be two internal nodes of 1T  and 2T  respectively, and },...,,{)( 21 pvvvvC =  and 

},...,,{)( 21 quuuuC =  be v  and u ’s children sets, respectively. Let ),(, EVG uv =  denote 

the bipartite graph induced by v  and u , which is constructed as follows: )()( uCvCV ∪= , 

)}(),(:),{( uCtvCstsE ∈∈= . The weights of edges are defined as ),(, tscordweight ts = . 

uvMWM ,  is the maximum weighted bipartite matching of uvG , . Then, the correspondence 

degree between v  and u , ),( uvcord is defined as: 

),()(
2
1)1().,.(),(

,),(
21 ji

MWMuv
ji uvcordwwauavscuvcord

uvji

∑
∈

⋅+⋅−+⋅= aa   (3.3) 

where iw1  is the weight of iv  in 1T  and jw2  is the weight of ju  in 2T . 

In Definition 3.4, the maximum weighted bipartite matching uvMWM ,  identifies the most 

correspondence node pairs amongst v  and u ’s children. The contribution of their children can 



 

therefore be fully considered when evaluating their concept correspondence degree.  

For example, 2v  and 3u  are two internal nodes of 1T  and 2T  respectively in Fig. 2. To 

compute their concept correspondence degree, a bipartite graph 
32 ,uvG is constructed as Fig. 3 (a), 

in which the numbers beside the edges represent their weights. The maximum weighted bipartite 

matching of 
32 ,uvG is illustrated in Fig. 3 (b). Then, The concept correspondence degree between 

2v  and 3u  is computed by the formula ),( 32 uvcord = 

).,.( 32 auavsc⋅a + )),()2)7.05.0((),()2)3.05.0((()1( 6574 uvcorduvcord ⋅++⋅+⋅−α . 

In the formula, ).,.( 32 auavsc is 0.1. ),( 74 uvcord  and ),( 65 uvcord  are computed by 

Definition 3.2, and ),( 74 uvcord =0.2 and ),( 65 uvcord =0.2. Let α  be 0.5, so that we 

achieve ),( 33 uvcord =0.15. 

u6

u7

v4

v5

0.1
0.2

0.2
0.2

   

u6

u7

v4

v5

0.2

0.2

 

(a)        (b) 

Fig.3. A bipartite graph
32 ,uvG and its maximum weighted bipartite matching 

With the above definitions, the concept correspondence degree of any node pair between two 

HC-trees can be evaluated. The maximum correspondence tree mapping considering both the 

structural restrictions and nodes’ concept correspondence is defined as follows. 

Definition 3.5: Maximum Correspondence Tree Mapping. Let 1V  and 2V  be node sets of 

HC-trees 1T  and 2T , respectively. A mapping 21 VVM ×⊆  is a maximum correspondence 

tree mapping if it satisfies the following conditions: 

1. 2121 uuvv =⇔=  for any pair ),( 11 uv , Muv ∈),( 22  

2. MTrootTroot ∈))(),(( 21  

3. Muparentvparent ∈))(),(( for all non-root nodes 1Vv∈  and 2Vu∈  with 



 

Muv ∈),(  

4. 0),( >uvcord  for all nodes 1Vv∈  and 2Vu∈  with Muv ∈),(  

5. MMWM uv ⊂,  for all nodes 1Vv∈  and 2Vu∈  with Muv ∈),( , where 

uvMWM ,  is the maximum weighted bipartite matching of bipartite graph uvG ,  constructed of 

v  andu ’s children with edges weighted by their children’s concept correspondence degree.  

In the above Definition 3.5, the first condition ensures that the mapping is a one-to-one 

mapping. Conditions 2 and 3 ensure the mapping satisfies the structural restrictions. The last two 

conditions represent the conceptual restrictions. Condition 5 ensures that most correspondence 

node pairs are in the mapping. As an example, the maximum correspondence tree mapping 

between 1T  and 2T  in Fig. 2 is illustrated in Fig. 4, in which corresponding nodes are 

connected by dashes. The construction process of the mapping will be described in Section 5.1. 

resident 
bird

v1

v2

0.5 0.5

T1
A bird flu case

v3
migratory 

bird

(0.8)

long distance 
migratory

0.50.5

(0.7)(0.3)

v4 v5

short distance 
migratory

long distance 
migratory

short distance 
migratory

0.60.4

(0.2)

u1

u2

0.4 0.6

T2 A bird flu case

wild birds
farm poultry

water bird no water bird

0.7 0.3

(0.3)
(0.3) (0.3)

u3

u6 u7u4 u5

 

Fig.4. Maximum correspondence tree mapping between 1T and 2T  

From the recursive definitions of node concept correspondence degree, it is obvious that 

))(),(( 21 TrootTrootcord  is computed by aggregating the cord  of all corresponding node 

pairs, which reflects the conceptual similarity between two HC-trees. We can define the 

conceptual similarity between two HC-trees as follows: 

Definition 3.6: Conceptual Similarity between HC-trees. Let 1T  and 2T  be two HC-trees. 

The conceptual similarity between 1T  and 2T , ),( 21 TTsct  is defined as 



 

),( 21 TTsct = ))(),(( 21 TrootTrootcord . 

Taking 1T and 2T in Fig. 2 as an example, their conceptual similarity, ),( 21 TTsct  is 

computed as ),( 11 uvcord . 

3.2 Value similarity between HC-trees 

Based on the maximum correspondence tree mapping M , the values of two HC-trees can 

be compared. 

The value similarity between two corresponding nodes in M  is evaluated first. As only leaf 

nodes are assigned values in HC-trees initially, for any Muv ∈),( , there are two cases: (1) v  is 

a leaf node, or none of v ’s children are in M , (2) some of v ’s children are in M . We provide 

the computation formulas of the value similarity between v  and u , ),( uvsvM  for the two 

cases respectively.  

For case 1, ),( uvsvM  is computed as: 

))(),((),( uvaluevvaluesuvsvM =                      (3.4) 

where )(vvalue  denotes v ’s value and )(⋅s  denotes a value similarity measure.  

If v  is a leaf node, )(vvalue  is assigned initially. Otherwise, it is computed by 

aggregating its children’s values. )(⋅s  can be defined according to the specific applications. For 

example, let two attributes’ values be 1a  and 2a , and their value range be r ; then their 

similarity measure can be defined as raaaas 2121 1),( −−= . In the example in Fig. 4, as 

values of nodes are all within [0, 1], the similarity between two values is calculated as one minus 

the distance between them. For 3v  and 3u  in Fig. 4, )( 3vvalue  is assigned initially as 0.8, 

and )( 3uvalue  can be computed as 0.3. The value similarity between 3v  and 3u  is then 

computed as 0.5. 

In case 2, let pvvv ,...,, 21  be v ’s children and quuu ,...,, 21  be u ’s children. ),( uvsvM  

is computed as: 



 

),()(
2
1),( 21

),(
jiMji

Muv
M uvsvwwuvsv

ji

⋅+= ∑
∈

                (3.5) 

where iw1  is the weight of iv  in 1T  and jw2  is the weight of ju  in 2T . 

Take 2v  and 2u  in Fig. 4 as an example. Their value similarity is computed as 

),( 22 uvsvM = ),()2)4.05.0(( 44 uvsvM⋅+ + ),()2)6.05.0(( 55 uvsvM⋅+ . In the formula, 

),( 44 uvsvM  and ),( 55 uvsvM  can be calculated by Formula (3.4), and ),( 22 uvsvM =0.725. 

With Formula (3.4) and (3.5), the value similarity between any corresponding nodes in M  

can be computed. As the recursive characteristic of Formula (3.5), the value similarity between the 

roots of two HC-trees is computed by aggregating the value similarity of all corresponding node 

pairs, which represents the value similarity of the two HC-trees. Therefore, we define the value 

similarity between two HC-trees as follows. 

Definition 3.7: Value Similarity between HC-trees. Let 1T  and 2T  be two HC-trees, and 

M  be their maximum correspondence tree mapping. The value similarity between 1T  and 2T , 

),( 21 TTsvt  is defined as ),( 21 TTsvt = ))(),(( 21 TrootTrootsvM . 

Taking 1T and 2T in Fig. 4 as an example, their value similarity, ),( 21 TTsvt  is computed as 

),( 11 uvsvM . 

3.3 Similarity measure of HC-trees 

Based on the conceptual similarity and value similarity of two HC-trees, the similarity 

measure of HC-trees is defined as follows. 

Definition 3.8: Similarity Measure of HC-trees. The similarity between 1T  and 2T  is 

defined as: 

),(),(),( 21221121 TTsvtTTsctTTsim ⋅+⋅= αα                 (3.6) 

where 21 αα + =1. 

In this definition, both the concepts and values of two HC-trees are comprehensively 

considered. 1α  and 2α  are weights of the two parts, which can be defined according to the 



 

specific applications.  

4. Similarity measurement algorithms for HC-trees 

Algorithms to compute the similarity between two HC-trees are presented in this section. The 

flowchart in Fig. 5 shows the entire process. 

 

Fig.5. Flowchart to compute the similarity between two HC-trees 

We can see from Fig.5 that ),( 21 TTsct  is firstly computed by calling 

)),(),(( 21 BTrootTrootcord , where B  is a node set list which is indexed by the nodes in 1T . 

All the maximum weighted bipartite matching solutions during computing 

))(),(( 21 TrootTrootcord  are recorded in B . The maximum correspondence tree mapping 

M  is then constructed based on B  by calling ),,( 21 TTBapConstructM . ),( 21 TTsvt  is 

computed based on M . Finally, the similarity of 1T  and 2T  is returned by aggregating their 

conceptual and value similarities. The algorithm is illustrated as follows. 

Start 

Call )),(),(( 21 BTrootTrootcord  to compute ),( 21 TTsct , 

record the maximum weighted bipartite matching solutions in B  

Initialization 

Call ),,( 21 TTBapConstructM  to construct the maximum 

correspondence tree mapping M  between 1T and 2T  

Compute ),( 21 TTsvt based on M  

),(),(),( 21221121 TTsvtTTsctTTsim ⋅+⋅= αα  

End 



 

Algorithm 1. Similarity measure algorithm for HC-trees 

similarity( 1T , 2T ) 

input: two trees 1T  and 2T  

output: similarity between 1T  and 2T  

1 for all Vv∈   

 Φ←)(vB  

2 )),(),(( 21 BTrootTrootcordsct ←  

3 ←M ),,( 21 TTBapConstructM  

4 ))(),(( 21 TrootTrootsvsvt M←  

5 return svtsct ⋅+⋅ 21 αα  

The algorithm of concept correspondence degree computation function ),,( Buvcord  is 

illustrated by algorithm 2 as follows. 

Algorithm 2. Node concept correspondence degree computation algorithm 

),,( Buvcord  

input: two nodes v  and u  

output: concept correspondence degree between v  and u  

1 if both v  and u  are leaves 

2  return ).,.( auavsc  

3 else if u is an internal node, and quuu ,...,, 21 be u ’s children, 

4  return ∑ =
⋅⋅−+⋅

q

i ii Buvcordwauavsc
1 2 ),,()1().,.( aa  

5 else ←)(vC v ’s children pvvv ,...,, 21  

6  ←)(uC u ’s children quuu ,...,, 21  

7  for i=1 to p 

8   for j=1 to q 



 

9    ),,( Buvcordc jiij ←  

10  ←m )),()(( cuCvCchingComputeMat ∪  

11  for each muv lk ∈),( , if 0>klc   

12   }{)()( lkk uvBvB ∪←  

13  return klmuv lk cwwauavsc
lk

∑ ∈
⋅+⋅−+⋅

),( 21 )2)(()1().,.( aa  

A recursive process follows from the definition of concept correspondence degree. The most 

important part in the procedure are lines 5-13, where both v  and u  are internal nodes. A 

bipartite graph is constructed, taking their children as nodes, and the correspondence degrees 

between their children as the weights of edges. Function )(⋅chingComputeMat  (Jungnickel, 

2008) returns the maximum weighted bipartite matching, which identifies most correspondence 

node pairs among v  and u ’s children. The matches are recorded in B , which are local 

maximum correspondence matches. For one node in 1T , there may be more than one node 

matching it during the computation process. However, as proved in (Valiente, 2002), there is a 

unique maximum correspondence tree mapping 21 VVM ×⊆  so that BM ⊆ . Given B , the 

corresponding maximum correspondence tree mapping M can be reconstructed as follows: Set 

))(( 1TrootM  to )( 2Troot  and, for all nodes 1Vv∈  in pre-order, set )(vM  to the unique 

node u  with Buv ∈),(  and Buparentvparent ∈))(),(( . The reconstruction procedure is 

illustrated by algorithm 3 (Valiente, 2002). 

Algorithm 3. Maximum correspondence tree mapping construction algorithm 

),,( 21 TTBapConstructM  

input: node set list B , two HC-trees 1T  and 2T  

output: maximum correspondence tree mapping M from 1T to 2T   

1 )())(( 21 TrootTrootM ←  

2 list )(_ 1TtraversalpreorderL ←  

3 for all Lv∈  

http://find.lib.uts.edu.au/search.do?N=4294340440
http://find.lib.uts.edu.au/search.do?N=4294340440


 

4  if v  is nonroot and Φ≠)(vB  

5   for all )(vBu∈  

6    if )())(( uparentvparentM ==  

7     uvM ←)(  

8     break 

9 return M 

5. Two illustrative examples and comparison with other approaches  

The proposed HC-tree similarity model and algorithms are to be used in CBR systems, such 

as CBR-based warning systems (Zhang, Lu & Zhang 2009), CBR-based recommender systems 

(Lu et al 2010) and web mining systems (Wang, Lu & Zhang, 2007). To show the effectiveness of 

our model, two examples are provided in this section. In the first example, the process of 

computing the similarity between two HC-trees in Fig. 2 is presented to show the behavior of the 

proposed algorithms in Section 4. In the second example, our similarity model is used in the 

retrieve stage of a simple CBR system to demonstrate the effectiveness of the model. The 

proposed model is then compared with other tree similarity evaluation methods. 

5.1 Similarity measure computation between two HC-trees 

The similarity between 1T  and 2T  in Fig. 2 is computed by the proposed similarity 

measurement algorithms as follows.  

First, the conceptual similarity between 1T  and 2T , ),( 21 TTsct  is computed by calling 

),,( 11 Buvcord . Let the coefficient α  be 0.5, ),( 21 TTsct  is computed as 0.856. During the 

recursive computation process, many maximum weighted bipartite matching problems are 

resolved, and the solutions are recorded in B : }{)( 22 uvB = , }{)( 33 uvB = , },{)( 744 uuvB = , 

},{)( 655 uuvB = . 

Secondly, given B , the maximum correspondence tree mapping M  between 1T  and 2T  

is constructed by calling ),,( 21 TTBapConstructM : }{)( 11 uvM = , }{)( 22 uvM = , 

}{)( 33 uvM = , }{)( 44 uvM = , }{)( 55 uvM = . The mapping is illustrated in Fig. 4. 



 

Based on the mapping M , the value similarity between 1T  and 2T , ),( 21 TTsvt  is 

evaluated by computing ),( 11 uvsvM . The computation uses Formulas 3.4 and 3.5 to achieve 

),( 21 TTsvt  as 0.6. 

Finally, let the weights 1α  and 2α  be both 0.5; the final similarity measurement between 

1T  and 2T , ),( 21 TTsim  is computed by ),(5.0),(5.0 2121 TTsvtTTsct ⋅+⋅ =0.73. 

5.2 Similar cases retrieval 

The proposed similarity model is used to retrieve similar cases in a CBR system in the 

following example. 

R

A B C

D E F G

0.4
0.4 0.2

0.4
0.4

0.2 0.5

(0.6) (0.2) (0.4) (0.3)

(0.3)

T1

0.5
H
(0.3)

r

a b c

d e f

0.5 0.4 0.1

0.6 0.4 0.5

(0.7) (0.1) (0.2)

(0.6)

Ta

0.5
g
(0.3)

R

A B C

E F G

0.4
0.4 0.2

0.4
0.4

0.2 0.5

(0.1) (0.8) (0.9) (0.8)

(0.4)

T2

0.5
H
(0.9)

D

R’

A’ B’ C’

D’ E’ F’ G’

0.4
0.4 0.2

0.4
0.4

0.2 0.5

(0.6) (0.2) (0.4) (0.3)

(0.3)

T3

0.5
H’

(0.3)

R

A B C

D E F G

0.3
0.2 0.5

0.1
0.3

0.6 0.5

(0.6) (0.2) (0.4) (0.3)

(0.3)

T4

0.5
H
(0.3)

R

A JC

D E F K

0.4 0.40.2

0.4
0.4

0.2 0.5

(0.6) (0.2) (0.4) (0.3)

(0.3)

T5

0.5
H
(0.3)  

Fig.6. A new case aT  and five existing cases in a case base 

As illustrated in Fig. 6, HC-tree aT  represents a new problem to be resolved and 1T ,…, 

5T  represent five solved problems in a case base. The conceptual similarity between their 

attributes is defined as follows: sc(r,R)=0.7, sc(a,A)=0.9, sc(a,B)=0.6, sc(b,A)=0.5, sc(b,B)=0.8, 

sc(d,D)=1, sc(d,E)=0.5, sc(d,G)=0.4, sc(e,D)=0.5, sc(e,E)=0.9, sc(e,H)=0.4, sc(f,F)=1, 

sc(f,H)=0.6, sc(f,G)=0.7, sc(g,G)=0.9, sc(g,H)=0.7, sc(r,R’)=0.6, sc(a,A’)=0.7, sc(a,B’)=0.6, 

sc(b,A’)=0.5, sc(b,B’)=0.7, sc(d,D’)=0.9, sc(d,E’)=0.4, sc(d,G’)=0.3, sc(e,D’)=0.4, sc(e,E’)=0.8, 

sc(e,H’)=0.3, sc(f,F’)=0.7, sc(f,H’)=0.6, sc(f,G’)=0.6, sc(g,G’)=0.7, sc(g,H’)=0.6. 

To retrieve the most similar cases to aT , the similarities between aT  and cases in the case 

base are evaluated using the similarity model proposed in this paper. Let the coefficients α , 1α  



 

and 2α  be all 0.5 in the model, and the similarity between two values be calculated as one minus 

the distance between them. The results are illustrated in Table 1. As can be seen in Table 1, 1T  is 

most similar to aT , so 1T  is retrieved. 

Table 1 Similarity between aT  and cases in the case base 

 
1T  2T  3T  4T  5T  

),( ia TTsct  
0.703 0.703 0.600 0.623 0.548 

),( ia TTsvt  
0.745 0.304 0.745 0.537 0.365 

),( ia TTsim  
0.724 0.504 0.672 0.580 0.456 

As seen from Fig. 6, 2T  and 1T  are the same except for their values. Therefore, the 

conceptual similarity ),( 1TTsct a  and ),( 2TTsct a  are equal. However, as 1T ’s values are 

much closer to aT ’s than 2T ’s, ),( 1TTsvt a  is larger than ),( 2TTsvt a , which makes 1T  

more similar to aT  than 2T . 3T  and 1T  are different in terms of attributes. The concepts of 

1T ’s attributes are more similar to aT ’s than 3T ’s, which makes 1T  more similar to aT  than 

3T . 4T  and 1T  have different attribute weights. The weights of nodes corresponding to aT  in 

4T  are smaller than those in 1T , which makes 4T  less similar to aT  than 1T .  

The example shows that our similarity model takes into account all the information on nodes’ 

structures, concepts, weights and values and it can be used to retrieve the most similar cases 

effectively in CBR systems. 

5.3 Comparison with other approaches 

From the above examples, it can be seen that the proposed similarity evaluation model for 

HC-trees has five features: (1) it considers nodes’ conceptual similarities; (2) it considers the 

hierarchical relations between concepts; (3) it compares corresponding nodes’ values; (4) it 

considers the influence of nodes’ weights; (5) it considers the semantics of nodes’ structures. We 

compare our method with other tree similarity evaluation methods for these five aspects. We take 



 

into account the methods of Ricci, & Senter’s (1998), Xue, Wang, Ghenniwa, & Shen’s (2009) and 

Bhavsar, Boley, & Yang’s (2004), as they can represent different types of methods, respectively. 

The comparison results are illustrated in Table 2, where “√” represents that the method has the 

related feature. Table 2 demonstrates that none of the earlier methods can compare the tree 

structured data as comprehensively as our method.  

However, these features are essential to evaluate the similarity between complex tree 

structured hierarchical cases. As different HC-trees usually have different structures and attribute 

terms, the corresponding nodes between two HC-trees must be identified by evaluating their 

conceptual similarity. As attributes in hierarchical cases construct a hierarchical structure, the 

hierarchical relations between concepts and the semantics of nodes’ structures must be considered. 

Nodes’ values and relevant weights are essential to describe the case, so they must be compared 

when comparing two cases. With the above five features, the HC-trees can be compared 

comprehensively and accurately, and the most similar cases can be retrieved. Therefore, the 

proposed HC-tree similarity evaluation model is extremely suitable for retrieval of similar cases in 

CBR systems. 

Table 2 Comparison between our proposed method and other methods 

Method  Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 

Our method √ √ √ √ √ 

Ricci’s method  √   √  

Xue’s method √    √ 

Bhavsar’s method √   √ √ 

 

6. Conclusion and future work 

This paper defines the hierarchical case trees (HC-trees) to represent hierarchical cases. A 

similarity evaluation model to compare HC-trees is proposed and the related algorithms are 

presented. The concept correspondence degree between nodes is defined in the model and the 

conceptual similarity between trees is evaluated; a maximum correspondence tree mapping based 

on nodes’ structures and concepts is proposed to identify the corresponding nodes of two trees; the 

value similarity between two trees is computed based on the mapping; the final similarity measure 



 

between two trees is evaluated by aggregating their conceptual and value similarities. Two 

illustrative examples show that our method is highly effective for use in CBR systems.  

Our future research includes (1) to define fuzzy-HC-trees and a fuzzy similarity evaluation 

model based on our previous study (Lu, Zhang, Ruan & Wu, 2007) and propose related algorithms 

in order to improve inference accuracy in CBR systems; (2) to develop software based on the 

proposed similarity evaluation model for integration into real CBR systems, such as our BizSeeker 

recommender system (Lu et al. 2010) helping measuring similarity between two business on their 

product trees and our CBR-based avian influenza risk early warning (Zhang, Lu & Zhang, 2009). 

 

Acknowledgements 

The work presented in this paper was supported by the Australian Research Council (ARC) 

under Discovery Project DP0880739 and the China Scholarship Council. 

 

References 
Aamodt, A., & Plaza, E. (1994). Case-based reasoning: foundational issues, methodological 

variations, and system approaches. AI Communication, 7(1), 39-59. 
Akutsu, T. & Halldorsson, M.M. (2000). On the approximation of largest common subtrees and 

largest common point sets. Theoretical Computer Science, 233, 33-50. 
Bhavsar, V.C. Boley, H. & Yang, L. (2004). A weighted-tree similarity algorithm for multi-agent 

systems in e-business environments. Computational Intelligence, 20(4), 584-602. 
Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical Computer 

Science, 337(1-3), 217-239. 
Burke, E. MacCarthy, B. Petrovic, S. & Qu, R. (2000). Structured cases in case-based 

reasoning--re-using and adapting cases for time-tabling problems. Knowledge-Based Systems, 
13(2-3), 159-165. 

Falkman, G. (2000). Similarity measures for structured representations: a definitional approach. In 
E. Blanzieri, & L. Portinale (Eds.), Advances in Case-Based Reasoning: 5th European 
Workshop, EWCBR 2000, Trento, Italy, September 6-9, 2000 Proceedings. Lecture Notes in 
Artificial Intelligence, 1898, 380-392. Springer-Verlag Berlin Heidelberg. 

Jeong, B. Lee, D. Cho, H. & Lee, J. (2008). A novel method for measuring semantic similarity for 
XML schema matching. Expert Systems with Applications, 34(3), 1651-1658. 

Jungnickel, D. (2008). Graphs, networks, and algorithms, Berlin: Springer, 419-430. 
Kailing, K. Kriegel, H.P. Schonauer, S. & Seidl, T. (2004). Efficient similarity search for 

hierarchical data in large databases. In E. Bertino et al. (Eds.), Advances in Database 
Technology -EDBT 2004: 9th International Conference on Extending Database Technology, 
Heraklion, Crete, Greece, March 14-18, 2004 Proceedings. Lecture Notes in Computer 
Science, 2992, 676-693. Springer-Verlag Berlin Heidelberg. 

Lin, Z. Wang, H. McClean, S. & Liu, C. (2008). All common embedded subtrees for measuring 

http://find.lib.uts.edu.au/search.do?N=4294340440


 

tree similarity. 2008 International Symposium on Computational Intelligence and Design, 1, 
29-32. 

Lu, J., Zhang, G., Ruan, D. and Wu, F. (2007). Multi-objective group decision making: methods, 
software and applications with fuzzy set techniques, Imperial College Press, London. 

Lu J., Shambour, Q., Xu, Y., Lin, Q. and Zhang, G. (2010). A hybrid semantic recommendation 
system for personalized government-to-business e-services, Internet Research (Acceptance 
date: 30 January 2010). 

Rahman, M. & Chow, T.W. (2010). Content-based hierarchical document organization using 
multi-layer hybrid network and tree-structured features. Expert Systems with Applications, 
37(4), 2874-2881. 

Ricci, F., & Senter, L. (1998). Structured cases, trees and efficient retrieval. In B. Smyth, & P. 
Cunningham (Eds.), Advances in Case-Based Reasoning: 4th European Workshop, 
EWCBR-98, Dublin, Ireland, September 23-25, 1998 Proceedings. Lecture Notes in Artificial 
Intelligence, 1488, 88-99. Springer-Verlag, Berlin Heidelberg New York.   

Sanders, K.E. Kettler, B.P. & Hendler, J.A. (1997). The case for graph-structured representations. 
In D.B. Leake, & E. Plaza (Eds.), Case-based Reasoning Research and Development: Second 
International Conference on Case-Based Reasoning, ICCBR-97 Providence, RI, USA, July 
25–27, 1997 Proceedings. Lecture Notes in Artificial Intelligence, 1266, 245-254. Springer 
Berlin Heidelberg. 

Torsello, A. Hidovic, D. & Pelillo, M. (2004). Four metrics for efficiently comparing attributed 
trees. 17th International Conference on Pattern Recognition (ICPR'04), 2, 467-470. 

Tran, T. Nguyen, C.C. & Hoang, N.M. (2007). Management and analysis of DNA microarray data 
by using weighted trees. Journal of Global Optimization, 39(4), 623-645. 

Valiente, G. (2002). Algorithms on trees and graphs, New York: Springer, 16-22, 206-224. 
Wang, C., Lu, J. and Zhang, G. (2007), Mining key information of web pages: a method and its 

application, Expert Systems with Applications.  Vol. 33, 425-433 
Xue, Y. Wang, C. Ghenniwa, H.H. & Shen, W. (2009). A new tree similarity measuring method 

and its application to ontology comparison. Journal of Universal Computer Science, 15(9), 
1766-1781. 

Yang, L. Sarker, B.K. Bhavsar, V.C. & Boley, H. (2005). A weighted-tree simplicity algorithm for 
similarity matching of partial product descriptions. Proceedings of ISCA 14th International 
Conference on Intelligent and Adaptive Systems and Software Engineering, 55-60. 

Yang, R. Kalnis, P. & Tung, A. (2005). Similarity evaluation on tree-structured data. Proceedings 
of the 2005 ACM SIGMOD international conference on Management of data, 754-765. 

Zhang, J., Lu, J. and Zhang, G. (2009), Case-based reasoning in avian influenza risk early warning, 
The Second Conference on Risk Analysis and Crisis Response (RACR), October, 2009, 
Beijing, China. Atlantis Press, scientific publishing Paris France, 246-251  

Zhang, K. (1993). A new editing based distance between unordered labeled trees. In A. Apostolico 
et al. (Eds.), Combinatorial Pattern Matching: 4th Annual Symposium, CPM 93, Padova, 
Italy, June 2-4, 1993 Proceedings. Lecture Notes in Computer Science, 684, 254-265. 
Springer-Verlag London, UK. 

 


