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Abstract

In this study, we propose to evaluate the potential of Raman spectroscopy
(RS) to assess renal tumours at surgery. Different classes of raman renal
spectra acquired during a 5 months clinical protocol are discriminated using
Support Vector Machines classifiers. The influence on the classification scores
of various preprocessing steps generally involved in RS are also investigated
and evaluated in the particular context of renal tumour characterization.
Encouraging results show the interest of RS to evaluate kidney cancer and
suggest the potential of this technique as a surgical assistance during partial
nephrectomy.
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1. Introduction

The natural course of cancer is hardly predictable. This is particularly
true for renal cell carcinoma (RCC) where 40% of affected individuals will
die from their disease [1]. A better understanding of molecular pathways has
led to the development of multiple targeted therapies with significant clinical
benefits [2]. However, response to treatment is only seen in a minority of
patients and side effects are frequent and cumbersome. In an effort to better
appraise the evolution of RCC in a specific patient, a prognostic role has
been suggested for various biomarkers, mostly genes and proteins [3]. Some
of these biomarkers have been integrated to predictive models but since they
hold many imperfections, they are not used in clinical practice. There is
therefore a clear need for new predictive tools and/or different conceptual
approaches to address RCC, and more generally cancer [4, 5].

In this direction, several publications have recently presented optical spec-
troscopy techniques to assess renal tumours. Parekh et al used a combina-
tion of reflective and fluorescent spectroscopy, and noted that optical char-
acteristics could differentiate between benign and malignant renal tissues [6].
The team from the University of Texas Southwestern University successively
showed that optical reflectance spectroscopy could accurately discriminate
normal from tumoural renal tissue [7] and benign from malignant renal tu-
mours at surgery [8].

Another optical spectroscopy approach that is not used, to our knowl-
edge, to evaluate kidney cancer, is the Raman Spectroscopy (RS). Unlike
reflectance or fluorescent spectroscopies, RS is based on the molecular in-

elastic scattering of light [10]: when photons interact with a molecule, the



transmission of their energy raises the molecule’s vibrational state. When the
molecule returns to its background level, a photon is emitted at a different
wavelength from the incident light. This change in wavelength is known as
the Raman effect or Raman shift. All Raman shifts generated by the inter-
action of light with tissue provide a Raman spectrum that is directly related
to the molecular composition of the tissue.

Promising results have been reported with RS in the evaluation of uro-
logical tumours. RS has been shown to identify in vitro malignant changes
in the urothelium [13] and prostate biopsy cores [12]. In another study, RS
could recognize with high accuracy benign prostatic tissue (benign prostatic
hyperplasia and prostatitis) from prostate cancer [9]. Nevertheless, RS in-
terest to evaluate kidney cancer still have not been studied until now to our
knowledge.

In this study, we therefore propose to investigate the potential of RS to
specifically evaluate normal and tumoural renal tissue on surgically removed
specimen. More precisely, the discriminant potential of RS will be hereafter
shown in different situations of renal raman spectra classification that may
have a surgical interest.

A brief description of the data acquisition protocol and an overview of
the different groups of renal spectra that should be discriminated are thus
first presented in section 2. The global methodology of classification is then
described in section 3. Finally, classification scores are presented for various
scenarios in section 4 where the interest of RS to evaluate kidney cancer is

also shown and discussed.



2. Data Acquisition

2.1. Specimens

After approval by our institutional review board, Raman spectra were
prospectively collected in consecutive kidney specimen removed due to sus-
picion of cancer. Between June and November 2009, 43 operations were
performed, including 31 radical nephrectomies and 12 partial nephrectomies.
The surgery was completed through an open access in 22 patients and la-
paroscopically in 21 patients. Seven patients were excluded from the study
based on final histology results: four with urothelial carcinoma, one with
liposarcoma, one with a multicystic non malignant lesion and one with in-
flammatory cyst. Immediately after extraction, the specimen were stored
on ice and transferred to the pathology department. Raman spectra were

acquired within 15 minutes after extraction.

2.2. Instrumentation

A Raman spectroscopic system was used to acquire immediate Raman
spectra from kidney specimen removed at surgery. The system comprised
three components: 1) a high-powered near-infrared laser (Invictus NIR laser,
Kaiser Optical Systems, Ann Arbor, Michigan, USA) that minimizes fluo-
rescence, 2) a fibre optics MR, probe with a 10x non-contact objective, and
3) a RXN1 Raman analyzer (Kaiser Optical Systems, Ann Arbor, Michigan,
USA) to receive reflected and scattered light.

2.3. Raman measurements

After longitudinal section of the specimen, Raman spectra were acquired

by placing the MR probe at several standardized locations on the surface and
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on the section of normal and tumoural tissue. Four Raman measures were
made: two inside the tumour section and two on the normal parenchyma
section. Two spectra were recorded on each spot. The laser beam was set at
a power of 50mW and a wavelength of 785nm, and focused on a 0.5mm spot
on the surface of the sample. The acquisition period for Raman spectra was
30s, with a 0.3cm ™! spectral resolution over a 150 — 3400cm~—! Raman shift

range.

2.4. Dataset

A total dataset (D) of 267 Raman signals (10834 points) acquired using
the protocol described before was finally obtained (see Figure 1. Each signal
was manually labeled thanks to anatomical pathology analysis and affected

to one or several predefined hierarchical groups as described in table 1.

Total dataset (D): 267

Tumoral (T): 154

Malignant (M): 152
Normal (N): 113

Benign (B): 2 || Low-Grade (LG): 61 || High-Grade (HG): 91

Clear-Cell (CC): 117 | Other Types (OT): 35

Table 1: Raman signals dataset and groups hierarchy description.

3. Method

3.1. Overview

To evaluate the interest of RS in kidney cancer, 4 main problems of su-

pervised classification are addressed in this study. More precisely, in order
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Figure 1: Example of raman spectra acquired on renal tissue: i) at the top, a raw re-
nal spectrum and ii) at the bottom, a normalized spectrum after the autofluorescence

background removal.




to decide if the molecular information present in RS signal may be useful for
the kidney cancer analysis, this study aims at evaluating the potential of RS
to differentiate between: i) Normal Spectra (N) and Tumoural Spectra (T),
ii) Low-Grade Spectra (LG) and High-Grade Spectra (HG), iii) Clear Cell
Spectra (CC) and Other Types (OT), and iv) High-Grade Spectra (HG) and
Not High-Grade Spectra (D - HG). Note that the other interesting problem of
discrimination between malignant and benign spectra can not be addressed
here because of the critical size of the benign group. Those 4 contexts of dis-
crimination may obviously have a clinical interest, especially in a perspective
of surgical assistance where the surgeon could have information about the
tumour nature by a simple raman acquisition.

Each situation of renal spectra classification is handled by means of a
common three-stage methodology involving a tunable preprocessing step, an
appropriate supervised classifier, and a strategy to evaluate the quality of

discrimination.

3.2. Preprocessing

Normalization. In a first time, to ensure comparability between spectra, a
normalization step is performed by dividing each spectral point by the area

of the total intensity of the spectrum [17].

Autofluorescence Background Remowal. The kidney is of course highly
vascularized and is mainly made of water as almost all the other organs. This
high level of water therefore implies a very high level of autofluorescence in
the raman signal that can mask the raman signal itself. This autofluorescence

background is thus usually artificially removed from the original signal using



multiple iterated polynomial regression [15] or PCA to identify dominant non
Raman-signal [14] for example. Nevertheless, removing this background may
be critical for two reasons: i) as the autofluorescence background can not be
physically modeled, artificially removing the background with empirical tech-
niques may induce errors in the spectra which could bias the classification
scores and, ii) the autofluorescence background itself may contain some infor-
mation which could be useful for the classification step. Two preprocessing
strategies are therefore considered here: i) one strategy with no background
removal, ii) another where the background is removed using a fifth order

Modified Multi-Polynomial Fitting [15].

Spectral Band Selection. Studies from the literature generally only con-
sider a sub-band of the whole spectrum for the analysis which is typically
enclosed between 800 and 1600cm ™" [16]. However the Raman spectroscopic
system used during the acquisition gives access to a larger spectral band
150 — 3400cm~t. To take advantage of this latter point, three options are
proposed for the spectral band selection stage: i) keep only the standard
band 800 — 1600cm ™, ii) keep only the second level band 1600 — 3400cm ™!
or iii) keep the total spectral band 150 — 3400cm .

Multi-Scale Filtering. Finally, considering the huge size of the normalized
signals (more than 10000 points), a lower resolution signal may be computed
for each spectrum by the mean of a wavelet decomposition [18] to help the
classification stage. Such a transform may also remove high-frequency com-
ponents from the signal (and especially potential noise and artefacts), may

allow for selecting certain signal sub-bands for the analysis, and lets the



possibility to take advantage of the whole spectral extent at a lower tem-
poral resolution. On the other hand, filtering may remove some important
discriminant information. Two configurations are thus considered for this
preprocessing step: i) one configuration with no filtering, ii) another one al-
lowing wavelet filtering, using two possible wavelets, namely Daubechies 3
and 6, and where the i approximation (i possibly varying from 1 to 14) is
preserved.

The preprocessing stage is thus a highly tunable step. The influence of
each free parameter on the classification may be critical and will be studied

in section 4.

3.3. Classifier

The preprocessed spectra are then given to a supervised classifier for
learning and testing. In this prospective study, a Support Vector Machine
(SVM) associated to a SMO solver [19] has been chosen for the classification
step. SVM is well known for its numerical efficiency as well as its good ca-
pacity of generalization. To avoid any hyper-parameter setup, a linear kernel
is first used to learn the different groups and to elaborate a classification

strategy.

3.4. Fvaluation

To obtain a classification accuracy and thus, to evaluate the potential
of RS in kidney cancer, a leave-one-out cross validation technique [17] is
used: all spectra excepted one are used for the machine training, and the
remaining spectrum is reserved for the testing step. The process is repeated

with alternation of the testing spectrum for each signal of the population of



interest. A cross-validation score of good classification, a sensitivity and a
specificity of the classification model are thus finally obtain by considering
each cross-validation step and make it possible to evaluate the performance

of a classification strategy based on RS signals.

4. Results

In this section, the previous methodology is applied to solve the four
problems of classification considered in the study and described at the begin-
ning of section 3. Various relevant configurations of the preprocessing stage
are especially tested to investigate how RS should be useful in the context
of kidney cancer characterization and how a classification strategy could be

optimized.

4.1. Autofluorescence Background Removal

In this first part the influence of fluorescence background removal is stud-
ied. Two configurations of the classification procedure are compared and
described in table 2. In a first test, the classification procedure is launched
on the standard spectral band comprised between 800 and 1600cm ™! with
no background removal and no wavelet filtering. In the second configuration,
the background is artificially removed with a fifth order Modified Multi-
Polynomial Fitting algorithm [15].

Results of both tests are described in table 3. For each context of clas-
sification, better results in terms of score, sensitivity and specificity are ob-
served when the background is not removed. The shape of the autofluo-
rescence background seems therefore to clearly influence the classification

performances. On the contrary, a classification strategy only based on the
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Configuration #1 | #2
Spectral Band (cm™!) || 800 — 1600
Background Removal || No | Yes

Wavelet filtering No

Table 2: Influence of the fluorescence background removal: Preprocessing setup description

for the different scenarios.

“pure” raman signal (without any autofluorescence content) would not give

satisfying result in the context of our study, except perhaps for the char-

acterization of clear cell tumours. Keeping the background content in the

context of RS kidney tumour analysis appears therefore as a critical point

for a discriminant analysis. The important quantity of water in the kidney

or the vascularization degree variation between the different classes of kidney

tissues may explain those differences.

Problem N/T LG/HG CC/O0T HG/D-HG
Configuration | #1 #2 #1 #2 #1 #2 #1 #2

Score (%) 77.53 | 65.92 || 77.63 | 64.47 || 89.47 | 81.58 || 81.27 | 71.54
Sensitivity (%) | 76.11 | 63.72 || 80.22 | 65.93 || 92.31 | 86.32 || 86.36 | 79.55
Specificity (%) | 78.57 | 67.53 || 73.77 | 62.30 || 80.00 | 65.71 || 71.43 | 56.04

Table 3: Influence of the fluorescence background removal: Results.

4.2. Band Selection

Another point that we would like to consider in this study concerns the

choice of an optimal spectral band of interest for a discriminant analysis. To
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evaluate the influence of this parameter, three scenarios with three different
preprocessing configurations are compared and described in table 4. In each
case a different spectral band is used for the classification procedure (the last

scenario involves the complete spectral band).

Configuration #1 #2 #3

Spectral Band (¢cm™1) | 800 — 1600 | 1600 — 3400 | 150 — 3400

Background Removal No

Wavelet filtering No

Table 4: Influence of the spectral band selection: Preprocessing setup description for the

different scenarios.

Results of both simulations are presented in tables 5 and 6. The standard
band comprised between 800 and 1600cm ! seems to be more interesting than
the second band in almost all classification problems except for the specific
case of discrimination between low-grade and high-grade tumours where the
second band (comprised between 1600 and 3400cm ™) could have a practical
interest. Nevertheless, it clearly appears that taking advantage of the whole
spectral content remains the best alternative to efficiently separate the dif-
ferent classes of renal tissue with the proposed methodology. In that case,
very encouraging results are obtained to discriminate all kind of tissues with
a lowest score of classification of almost 80% for the classification of normal
vs. tumoral tissues. Very interesting scores are even obtained to recognize
clear cell tumours from the other types of cancer (around 94% of good classi-
fication). In most cases, one can also observe good specificity and sensitivity

values which highlight the nice behaviour of the proposed classifier. One can
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nevertheless observe the quite unbalanced behaviour between sensitivity and
specificity when trying to differentiate high-grade and “not high-grade” tis-
sues. However, from a general point of view, those results clearly demonstrate

the potential of RS to analyze renal tumoral tissues.

Problem N/T LG/HG
Configuration #1 #2 #3 #1 #2 #3

Score (%) 77.53 | 73.41 | 79.78 || 77.63 | 81.58 | 83.55
Sensitivity (%) | 76.11 | 74.34 | 79.65 || 80.22 | 82.42 | 85.71
Specificity (%) | 78.57 | 72.73 | 79.87 || 73.77 | 80.33 | 80.33

Table 5: Influence of the spectral band selection: Results (Part 1).

Problem CC/OT HG/D-HG
Configuration | #1 #2 #3 #1 #2 #3

Score (%) 89.47 | 84.21 | 94.74 || 81.27 | 79.78 | 82.40
Sensitivity (%) | 92.31 | 85.47 | 95.73 | 86.36 | 85.80 | 87.50
Specificity (%) | 80.00 | 80.00 | 91.43 || 71.43 | 68.13 | 72.53

Table 6: Influence of the spectral band selection: Results (Part 2).

4.3. Influence of Wavelet Filtering

In this last section, the influence of wavelet filtering on the discrimination
capabilities of raman signals is studied. As previously mentioned in section
3, a wavelet transform may help for a better classification by reducing the

signal size and filtering the spectral content. To study the interest of such a
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transform on the classification scores, a wavelet transform is applied to each
raman spectra during the preprocessing step. Two different wavelets are used

and several levels of decomposition are tested as described in table 7.

Configuration #1 #2
Spectral Band (cm™1) 150 — 3400
Background Removal No

Wavelet filtering Daubechies 3 | Daubechies 6

Table 7: Influence of a wavelet transform: Preprocessing setup description for the different

scenarios.

Figure 2 presents the influence of this preprocessing step on the classi-
fication score for the four classification problems. More finely, for each sce-
nario, the classification score obtained after a wavelet transform with the two
considered wavelets is presented with respect to the level of decomposition.
Several remarks can be pointed out when analyzing figure 2. First, using
a lower resolution of the signal may really improve the classification results,
especially when discriminating normal and tumoral spectra: an improvement
of 5% of good classification can be observed when using the 8 approxima-
tion. In such a case, the low-frequency content of the signal seems to be
the most discriminant and confirms the fact that the low-frequency autoflu-
orescence background has an important role in the classification procedure.
Moreover, in the other classification situations (High-Grade vs Low-Grade,
Clear Cell vs. Other Types and High-Grade vs. Not High Grade), using a
lower resolution (until level 4) may not really affect the classification score: an

instrument with a lower precision and thus, with a lower cost, could therefore
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Figure 2: Influence of a wavelet transform: Classification score after a Daubechies 3

(circle) and a Daubechies 6 (cross) wavelet transform with respect to different level of

decomposition (1 to 14)

be used successfully to realize the same task. Finally, no concrete difference

can be really found in the classification score between a Daubechies 3 or 6

wavelet transforms. The shape of the wavelet seems therefore not to have a

determinant role in such a preprocessing step.
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5. Conclusion and Perspectives

In conclusion, in this preliminary study, a classification procedure based
on a SVM classifier has been proposed to show how RS could robustly differ-
entiate various classes of renal and tumoural tissues. The study has especially
shown how RS could efficiently discriminate between normal and tumoural
tissues but also, how RS could even help to identify various grades and types
of cancer. Moreover, this work has highlighted how the fluorescence back-
ground as well as a larger spectral band of analysis could be used to improve
the classification score in the context of renal spectral discrimination. The
combination of RS with the proposed tunable classification procedure could
therefore be pictured as an “optical biopsy tool” that has several possible ap-
plications in clinical urology and that could help the pathologist to improve
diagnostic accuracy.

However, several points still remain to be improved in the future. First,
the study was done on ex-vivo specimen, and the impact of in-vivo parame-
ters might have been underestimated. For this reason, there is a need for in
vivo studies with, of course, a refinement of the protocol and of the equip-
ment to be used in the sterile environment of the operating room. Second,
our population of benign lesions was too limited to demonstrate any differ-
ence between benign and malignant renal tumours and larger studies need
now to be undertaken to correlate optical profiles to the outcome of kidney
cancer. Finally, and concerning the classification methodology itself, a deep
analysis of several points can be now conducted (configuration of the support
vector machine with an alternative kernel choice for example) to optimize the

efficiency of the classification.
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