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Abstract

The delineation of functional economic areas, or market areas, is a problem of large practical relevance, since the delineation of
functional sets such as Economic Areas in the US, Travel-to-Work Areas in the United Kingdom, and their counterparts in other
OECD countries are the basis of many statistical operations and policy making decisions at local levels. This is a combinatorial
optimisation problem defined as the partition of a given set of indivisible spatial units (covering a territory) into regions characterised
by being (a) self-contained and (b) cohesive, in terms of spatial interaction data (flows, relationships). Usually, each region must
reach a minimum size and self-containment level, and must be continuous. Although this type of problems has been typically solved
through greedy methods, a recent strand of the literature in this field has been concerned with the use of evolutionary algorithms
with ad hoc operators. Although these algorithms have proved to be successful in improving the results of some of the more widely
applied official procedures, they are so time consuming that cannot be applied directly to solve real-world problems. In this paper
we propose a new set of group-based mutation operators featuring general operations over disjoint groups, tailored to tackle with
that problem so that all the constraints are respected during the operation to improve efficiency. A comparative analysis of our
results with those from previous approaches shows that our algorithm systematically improves them in terms of both quality and
processing time, something of crucial relevance since it allows dealing with most large, real-world problems in reasonable time.

Keywords: functional areas, local market, evolutionary algorithm, grouping problem, regionalisation, combinatorial optimisation

1. Introduction for different stakeholders when analysing social and economic
phenomena at urban and regional levels, and are used by the au-

A functional economic area (also termed market area or func- ¢ orities to define, implement and monitor many different poli-
tional region among others) in Geography and Economics i ¢jeg. The examples include planning the amount of land ded-
a geographical space where a given economic market (hous- jcated for housing or different economic activities in a certain
ing, labour, leisure, transportation, communications, public ser- place, deciding which unemployment policies apply on each
vices, etc.) operates [5]. That is, a set of suppliers and deman- 55 or establishing investment priorities and predicting devel-

ders (agents) of a given prOd‘.JCt are 1ocat.ed in thaF area and  gpment requirements in passengers and freight transportation.
trade among them for a certain product, ideally without any  The quality of this wide range of uses, and that of the analyses

%nteractio'n with other agents lqcated in differept ma}rket areas,  which stem from them, depends on the accuracy in delineating
i.e. functional areas must be highly self-contained in terms of  1)e houndaries of these market areas.

connections between suppliers and demanders. Moreover, in
its ideal definition, any supplier should be able to trade with
any demander in its market, and viceversa. In other words, the
ideal market area is characterised by a high level of internal co-
hesion among its suppliers and demanders, and a high degree
of self containment with regards other areas. As it is obvious
both conditions limit each other (i.e. most countries are highly
self-contained in terms of housing and labour markets, but a
country of average size can hardly be considered as a single
market, since many local and regional factors influence hous-
ing and labour markets performance). Functional areas delin-
eations are very relevant in different contexts. They are crucial

Particular cases of flow-based functional areas used for of-
ficial, business and academic purposes in diverse countries are
the Economic Areas defined by the US Bureau of Economic
Analysis (BEA) [21]; housing market areas [1, 40]; and func-
tional transportation areas of passengers [25] and or freight
transport [27]. The larger family of functional areas is however
constituted by the different approaches to the concept of Local
Labour Market Areas (LLMAs) such as the UK Travel-to-Work
Areas (TTWAS), French zones d ‘emploi or Italian sistemi locali
del lavoro, among others (see [3] for a survey of these proce-
dures).

One particularity of these sets of functional areas is that they
are based on the application of different procedures of aggre-
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country. Examples of these aggregation procedures are Intra-
max [28] and the more complex TTWAs method [6]. In [39] the
author compares the results from Intramax and TTWAs meth-
ods for the case of Australia in 2001, and concludes that none
of these methods seems to exhibit robust local properties (at
a detail level of basic spatial units) with respect to a criterion
of closure (self-containment) as defined by a revised unbiased
form of the membership function used by Feng in [11]. These
findings lead the author to conclude that other techniques as
evolutionary algorithms could be a promising approach for the
LLMAs delimitation. This is in fact the path followed by a
number of works which have recently approached this class of
problems through the use of evolutionary algorithms. This is
the case of [14], where the authors propose an evolutionary al-
gorithm in which multiple tailored operators are used to tackle
with the LLMAs delimitation problem. Although the results
outperform those from traditional methods in quality the proce-
dure cannot be used directly to solve in reasonable time large
size problems typical in this context.

In this paper we aim at adding to this strand of the litera-
ture by presenting an evolutionary algorithm able to solve the
biggest real-world problems with high standards of quality. We
have designed a new set of heuristic grouping operators that (a)
features most of the general operations over disjoint sets and
(b) takes into consideration the constraints during their process.
The generality of the operators is aimed to ensure a high ver-
satility of the search process, and the consideration of the re-
strictions inside the operators tries to avoid producing invalid
solutions to improve efficiency. Specially, the inclusion of the
contiguity restriction allows to greatly reduce the possible al-
locations of each BSU, inducing a strong shrink of the search
space without constraining the likelihood of reaching the opti-
mal solution. Our results improve previous approaches both in
quality and CPU time, as it is illustrated in the last sections of
the paper.

The rest of the paper is structured as follows. Next sec-
tion puts what we call the functional areas delineation problem
(FADP) in the context of constrained combinatorial optimisa-
tion problems, analogous to those of graph partitioning prob-
lems; then focuses on one particular case of functional areas
delineation, that of LLMAs, reviewing both the official methods
traditionally used and the recent evolutionary approach; as well
as the use of grouping genetic algorithms specifically designed
for grouping problems; and the incorporation of knowledge into
the operators for improving convergence and performance. Sec-
tion 3 sets the frame for the formulation of the LLMAs delim-
itation problem through the specification of the constraints and
fitness functions that will be used. In section 4 we describe the
evolutionary algorithm and our proposal of multiple grouping
operators tailored to tackle with the problem. Section 5 presents
a comparison of the outcomes obtained when a real-world case
study of the LLMA delimitation problem is approached through
different procedures including our proposal. As stated before,
the results clearly show that our method outperforms those from
recent works. Finally, the last section summarises our conclu-
sions and future work agenda.

2. Background

Finding clean boundaries which isolate one market’s consti-
tuting BSUs from others’ is seldom possible in real-world func-
tional areas delimitation exercises, and any division implies the
segregation of some suppliers from some of their actual deman-
ders. Moreover, an a priori known ideal number of markets
hardly ever exists. This combination of factors implies that the
expert conducting a delineation of local markets tries to iden-
tify as many markets as possible, so that they are small enough
to allow a high cohesion among its elements; but all the efforts
have also to be made so that the boundaries cut off as few con-
nections between suppliers and demanders as possible, usually
constraining the results by a set of criteria fixed a priori and a
set of parameter values which are typically adjusted over trial
and error.

The delineation of market areas can be undertaken as a com-
binatorial optimisation problem, which we call Functional Area
Delimitation Problem (FADP), where the basic spatial units
(wards, districts, counties, municipalities, census areas, etc.
which are considered as indivisible) are connected in terms of
flows of workers/goods/services with other units and with them-
selves (very frequently the supplier and demander in one spe-
cific exchange are located in the same BSU). The aim is to find
the better partition of these basic elements so that each group
(functional area) has weak or no connections with other groups
(high self-containment) while the elements of the group (the
constituent BSUs) are greatly inter-connected between them
(high cohesion).

2.1. Related problems

One possible approach to this problem is considering the
BSUs as nodes of a graph, and the flows of products among
them as its directed weighted edges, where the aim is to group
the nodes into K disjoint and non-empty sets in such a way
that some given objective functions are optimised subject to a
set of given constraints. This formulation resembles that of the
graph partitioning problem or GPP. See for example [12] for
a survey and [8] for an application of EAs and a short review
of different objectives and constraints. Important objectives or
constraints are usually edge-cutting (also termed coupling, to
be minimised, equivalent to maximising self-containment) as
well as size/load balancing (that resembles the minimum size
constraint in some FADPs) and subgraphs’ shape compactness
(somehow similar to cohesion). Therefore we can consider the
FADP as a kind of general GPP. Nevertheless, methods de-
signed for GPP are not directly applicable in this context since
the fitness functions and restrictions differs, as do the kind of in-
teraction data and the structure of the networks that they form.
As it is well known, GPP has been shown to be NP-complete for
K > 2. The number of partitions of a set of n elements into non-
empty disjoint groups follows the equation of the Bell’s number
[34], B,; real world problems of delineation of labour or hous-
ing markets can have tens of thousands of elements leading to
astronomical numbers. Hence, exact methods, like linear and
integer programming, are only computationally possible for a
very limited number of nodes.



2.2. Local labour market areas

For the rest of the paper, we will focus on a particular case
of functional regionalisation, LLMAs, where the suppliers are
those working or seeking work, the demanders are employers,
and the product exchanged is the labour force. This class of
geographical entities serve in different countries as the territo-
rial framework for designing, implementing and monitoring ef-
fective labour market policies and statistical operations at sub-
national levels. As pointed out before, the success of these key
policies crucially depends on the adequacy of the LLMAs de-
lineation. According to Eurostat [9] an appropriate procedure
of delineation of such areas over a given territory should have
several features: the resulting LLMAs geography should con-
sist of disjoint areas exhaustively covering the territory; each
of these LLMAs should be characterised by a high degree of
self-containment in terms of travel-to-work (i.e. most workers
in a specific LLMA must live in that area and most of the LL-
MAs employed residents should also work locally), relatively
homogeneous in population size (exceeding a minimum size
constraint, for instance) and geographical contiguity. A pref-
erence for detail is also a common principle guiding this type
of functional delineations [30]. This is related with the desir-
ability of identifying LLMAs which are small enough to al-
low the residents of each LLMA to change from one job to
another within that LLMA without this implying a change of
the place of residence (i.e. daily travel-to-work should be pos-
sible and reasonable between any pair residence-job, following
the market definition). All these requisites are coherent with
the above stated main requisites of a functional economic area:
self-containment and internal cohesion, with the aggregation of
minimum size and contiguity constraints, and the fact that none
of the basic spatial units should remain unassigned to a LLMA
at the end of the process.

One of the more widely and successfully used official pro-
cedures for the delineation of LLMAs is that of UK Travel-
to-Work Areas (TTWAs) (fully described in [6]), that is a so-
phistication of the older Intramax method [28], that is in turn
a greedy hierarchical aggregation procedure that focuses on
the relative strength of interactions among spatial units. The
TTWASs method has been applied with minor changes in other
countries [2, 18, 32, 38]. A new version of the TTWA’s method
[30] that significantly simplifies the procedure has been used
recently to delineate the new set of TTWAs stemming from the
last Census data (in [4] this same procedure is applied for the
delineation of LLMAs in Spain). In its new formulation the
number of stages and parameters decreases from five stages
and more than ten parameters to only one stage and four pa-
rameters respectively (four parameters that fix the thresholds
for minimum size and self-containment). This regionalisation
method can be defined as a greedy aggregative algorithm that
departs from the consideration of total division (one basic spa-
tial unit, one market), and iterates one single step in which the
current worst (in terms of minimum self-containment and size)
group is dismembered into its constituent BSUs, that are then
independently merged with the groups with which each of them
shares the maximum interaction, stopping when all the defined
LLMAs meet both the self-containment and size requirements.

Interaction is measured using an index proposed in [6]. As other
greedy aggregative methods this procedure allows reaching ad-
equate solutions with little CPU time, but a real direct optimisa-
tion approach is not used (in fact, this type of procedures have
finding the first feasible solution as its termination condition).
Accordingly, the output (the set of LLMASs) of such procedures
is just one among many other good solutions that could be ex-
pected to be quite far from the optimal one. As mentioned in the
Introduction, in [39] the author compares the results from In-
tramax and TTWAs methods for the case of Australia, and con-
cludes that neither method appear to exhibit robust local proper-
ties, with respect to a criterion of closure (self-containment), as
defined by the revised specification of the modularity function
presented in [11]. The author finally concludes that evolution-
ary computation could be a promising approach for the LLMAs
delimitation.

2.3. Evolutionary computation approach

In the last years there have been some contributions aimed
at tackling with the delineation of LLMAs through evolution-
ary computation as a combinatorial optimisation problem. An
evolutionary algorithm which improved the solutions from the
TTWA method was presented in [13]. This procedure in-
cluded seventeen ad hoc operators whose performance was
more deeply analysed in [14]. The authors stated that the multi-
ple constraints which are part of the problem cause the num-
ber of valid solutions —those that meet the constraints— to
be extraordinarily small with regards to total size of the search
space, so standard genetic operators hardly ever produce valid
solutions, something that led them to design the many tailored
operators proposed. Despite the design of ad hoc genetic oper-
ators, a high percentage of the individuals generated were not
valid, causing a poor performance of the algorithm in terms of
time required. A version of the same method with the incor-
poration of memetic techniques (a routine for repairing invalid
solutions, and a local optimisation function) was presented in
[15]. This proposal improved the results in [13] slightly but
involved a significant increase of computational time. Three
adaptive version of the same (non memetic) method were in-
troduced in [16], seeking a better use of the multiple operators
whose behaviour and performance varies over time, and with
the size of the problem. Although this algorithm produced a
significant speedup in the early stages of the evolution it does
not improve the quality of the final solution.

All these works approach the delineation problem through
the maximisation of markets’ internal interaction in terms of
travel-to-work flows, using a generalisation of the index pro-
posed in [6], subject to the restrictions of minimum self-
containment and size thresholds, with the aim of identifying
as many independent markets as possible. Moreover, following
the established practice, the procedures do not take into account
the information about spatial adjacency among the spatial units
during their operation, although according to the needs of the
final users and the recommendations by Eurostat [9] the final
set of LLMAs made available to potential users and notably to
public authorities must consist of LLMAs which are internally
continuous in geographical terms. It is not then guaranteed that



the final set of LLMAs is composed of markets whose con-
stituent BSUs are geographically connected (in [6] and [30],
for example, contiguity is achieved in a posterior step and not
included in the two versions of the TTWAs algorithm). The rea-
son why contiguity is not considered during these algorithms
operation is somehow inherited from the greedy methods used
in LLMAs official procedures of delineation. As pointed out in
[3], methods which require an explicit contiguity constraint at
every stage of the analysis will inevitably tend to fall well short
of providing an optimal form of boundary definition. In [4] a
greedy procedure aimed at fixing the discontinuities that could
arise when applying the TTWAs method (or any other method
not including the contiguity constraint) is presented showing
that the final (continuous) solution is frequently substantially
different from the (not always continuous) algorithm output.
Thus, if the final map of LLMAs must consist of geographically
continuous markets then it is worth considering the inclusion
of such restriction during the optimisation procedure, so that it
can be assessed against other alternatives, instead of applying a
final (ex-algorithm) procedure to solve them, a strategy which
sometimes can offer aggregations which are farther from the op-
timum. This is in any case especially true when an evolutionary
computation alternative is considered, since the inclusion of a
contiguity constraint is obviously less harmful for the quality of
the results when the number of alternative groupings considered
is enormous. Moreover, the potential restriction associated to
the consideration of contiguity during the regionalisation pro-
cedure is substantially reduced when the method employed is a
search technique and the focus is moved from individual BSU
interactions to groups of them. This issue will be discussed later
with more detail.

2.3.1. Grouping problem approach

In [10] is extensively discussed the nature of the grouping
problems (reviewing the GPP, quite similar to the FADP as
have been said previously). Among negative interactions that
the representation of the solution and the dynamics of the op-
erators employed can exert over the evolutionary process in a
grouping problem, [10] lists (a) redundancy in the representa-
tion, i.e. the existence of many genetic representations for the
same solution, that enlarges the search space compared to the
solution space —and therefore reduces the performance of the
algorithm—; (b) context insensitivity in the reproduction oper-
ators, what causes the loss of the meaning of the schemata with
respect to the problem in the process of recombination; and (c)
the schema disruption, i.e. the destruction of good schemata
(groups), more frequent as groups’ size increases, when apply-
ing standard crossover operators over object-oriented (or item-
based) representations. Falkenauer proposed a group-based
representation where the crossover is applied over the groups
instead of the elements, with a final problem-dependent repair
procedure for fixing the feasibility of broken groups. He also
suggested three possible mutation operators for grouping prob-
lems, all of them problem dependant: creation of a new group,
deletion of a group, and shuffie of some elements among their
groups. This kind of evolutionary computation techniques are
called grouping genetic algorithms (GGAs).

Several partitioning problems have been addressed with
GGAs based on the proposal of Falkenauer, achieving good re-
sults compared with item-based genetic algorithms (GA) and
other search procedures. In most of these applications only
one mutation operator is used: In [26] and [31] random groups
are removed and a reconstruction subroutine (repair) is applied
to reassign their elements to the remaining groups and to cre-
ate new groups if necessary, as it is done by Falkenauer in
[10] solving a bin packing problem. In [36] random elements
are removed from their groups and reassigned to the remain-
ing groups, or to new groups if necessary. Similarly, in [29]
a group-based differential mutation is used to remove the el-
ements of an individual that have the same encoding as other
given individual from its groups, and then reassign the free el-
ements through a repair heuristic. In [19] and [20] there are
no mutation operators, instead local-search operators are used
(that can be seen as a mutation operator embedded in a search
technique), respectively a hill climbing technique and a Tabu
Search, where in both of them an informed operator tries to
swap elements between groups.

Other partitioning problems have been solved employing
evolutionary algorithms with group-based operators working
over standard encodings different from that of the GGAs, that
can also be considered as GGAs since they are solving grouping
problems with group-oriented operators. In previously cited [§]
a generic GPP is solved with group-based crossover and muta-
tion (in this case, random swaps of elements from a group to
another).

This has motivated the present work to exploit the potential-
ity of the GGA approach to solve the FADP.

2.3.2. Knowledge incorporation into the operators

Standard genetic operators are random and blind to the prob-
lem (the phenotype), i.e. they just change alleles of the geno-
type to random values among a set or interval of possible val-
ues. It is the natural selection what contributes intelligence to
the search process. If we know or suppose that some possible
values for certain allele are better than the others, then we can
limit the possible choices of the genetic operators and expect
improved results. Limiting too much the (random) behaviour
of the search operators could lead to the inability to reach the
optimal solution, but producing as few invalid solutions as pos-
sible would be a reasonable strategy to increase the efficiency
and efficacy of an evolutionary algorithm for hard combinato-
rial problems as FADP. Therefore, our aim is to reduce the av-
erage number of infeasible solutions per generation while still
allowing a robust exploration of the search space. Other authors
have done this before, as in [35], where knowledge-based op-
erators are used to drastically reduce the number of infeasible
solutions produce by mutation. If we also incorporate knowl-
edge about the objective functions into the operators so that the
more promising changes (in terms of quality apart from fea-
sibility) have more probabilities to happen, it is expectable to
improve the convergence rate to the optimal solution [41]. In
[33] several random mutations are performed over a surrogate
model of the fitness function and the best one is chosen for ef-
fective application, greatly improving results over pure random



mutations.

Also memetic techniques where the evolutionary algorithm
(EA) is hybridised with repair and local-search techniques can
be seen as a way of incorporating knowledge into the evolution-
ary process. For example, [24] explores the use of self-adapting
local search heuristics in a memetic algorithm outperforming
the equivalent GA. In [37] a GA that also includes a local-
search (downhill simplex) operator and a knowledge-based op-
erator is proposed.

With that motivation, in this paper we present a new set of
grouping genetic operators featuring general unary, binary and
n-ary grouping operations over disjoint sets, provided with sim-
ple heuristics designed under three premises: (a) being able to
produce any possible solution to ensure exploration, (b) giving
preference to promising solutions so as to improve exploitation
and (c) avoiding to produce invalid solutions (in terms of min-
imum self-containment, minimum size and geographical conti-
guity) to increase efficiency.

3. Local labour market delimitation problem statement

As stated in the Introduction, the problem consists of the
grouping of basic spatial units (BSU) —such as districts, mu-
nicipalities or counties— into functional areas (in this case LL-
MAs) so that the proportion of workers that cross their bound-
aries in their travel to work is low, while the number of defined
areas is maximised.

LetS = {s1,52,...,5y}) be aset of N = |S| BSUs (the terri-
tory to be divided into LLMAs) and Wi,.s; the number of com-
muters from BSU s; to BSU s, that is, the number of residents
in s; that work in s; (thus, W, g, is the amount of people who
simultaneously live and work in BSU s;). The objective is to
obtain the set of markets M = {M, M,,..., Mg} (where K is
unknown a priori), so as M; # 0,YM; € M; \|J, M; = S and
M;nNM;=0,Vi,je[1,K],i# j, 1<K <N), that maximises
fitness function f(M), which is fully explained in section 3.2.

3.1. Interaction index

To assess the degree of interaction between a pair of mar-
kets (that can consist of a single BSU) we use the interaction
index proposed in [14], a generalisation of the index used in
the TTWA’s method [6]. Let the interaction index between two
markets /1(M;, M ;) be defined as:

WM,,M,- WM,-,M,- WM,,M, WM,-.M,-

I(M;, M) = X -+ — X (@))]

R; Jj R; J;
— ——— —— —
PEM; m; Ply;u; PEy. m Py m;
where
Wuom, = Z Wi.s; 2
Vs, €M Vs;eM;

is the number of commuters residing in the set of BSUs be-
longing to M, that works in any of the BSUs belonging to
M;; Ry = Wu,,s the number of workers residing in Mj; and
Ji = Ws 1um,) the number of jobs in M.

Factor PEy, u; is the fraction of the employed population
residing in M; and working in M; and PJy, u, is the portion of
jobs in M; that are held by workers residing in (coming from)
M;.

This function is similar to a gravitational measure of attrac-
tion, that takes into account the relative size of the markets
to weight the flows between them, so that interaction between
small interdependent markets don’t get eclipsed by the relations
between large ones, that tend to have high absolute values but
relatively low importance.

3.2. Fitness function

This interaction index can be the base for different fitness
functions. For comparison against previous works in this exer-
cise we have tested our method with:

J(M) = card(M) x Z H({si}, M" = {s:}) 3

Vs;eS

Where M' is the market to which s; belongs. For each BSU, the
interaction index between that BSU —considered as a mono-
BSU market— and the rest of its market (the result of subtract-
ing that BSU from the market to which it belongs). The inclu-
sion of the number of markets as a factor seeks to reaching the
highest possible number of independent markets —this is one
of the criteria usually applied in practical exercises [3].

We must notice that markets consisting of only one BSU get
a null interaction index, but these markets should have a posi-
tive value if they are cohesive (and we can assume that any mu-
nicipality is cohesive) and self-contained. Therefore that value
is approximated by assigning each singleton market the accu-
mulated interaction index of all the multi-BSU markets divided
by the number of BSUs they embrace, prior to the product by
card(M).

3.3. Constraints

In order to consider a given solution M as valid, each mar-
ket M; € M must fulfil two requirements of minimum size
in terms of employed population (84 > 1) and minimum self-
containment (0 < 8; < 1).

o = “
s 8)
where

is the minimum between supply-side and demand-side self-
containment levels. That is, both the proportion of the occu-
pied working locally, and the proportion of jobs filled by local
workers must exceed a given threshold.

Very urbanised environments in real world are characterised
by the intensity and complexity of the network of commuting
flows, something which makes it difficult to identify isolated
groups of BSU in such environments, resulting in huge mar-
kets that despite being very self-contained are too big to allow



daily trips to work between any pair of BSUs in the market (that
is, the market has a low cohesion and could be too far from
the definition of the ideal market, where any supplier can trade
with any demander). To facilitate the identification of more
and smaller separate LLMAs in such environments a trade-off
between both constraints (self-containment and minimum size)
was introduced similarly to [6], but using the formulation pro-
posed by Casado-Diaz [3]. According to this proposal, the min-
imum self-containment requirement is linearly relaxed from (3,
to 81 (0 < B < B < 1) for population’s sizes from S, to §;
(1 £ B4 < B3). For each market in a given solution, this trade-
off is evaluated as follows:

mse() = B2 + 2B (s - o) )

Ba—ps3

So, when a market does not fulfil all this three constraints
—eqs. 4, 5 and 7—, the solution containing it is considered
invalid.

We have also included the requisite of geographic contiguity
of the LLMAs over an adjacency matrix A (NxN, where cell
A;;jis 1if BSUs i and j are geographically adjacent, and O oth-
erwise), so that any BSU of a valid LLMA should be reachable
from any other BSU of that LLMA without crossing its geo-
graphic boundaries, that is, for each pair of BSUs in a given
LLMA there must be at least one path of finite length through
the edges of the adjacency matrix that connects those BSUs.

In the formulation presented in [16] the authors included a
similar requisite expressed in terms of functional connectivity
or functional neighbourhood (instead of geographic contigu-
ity) through the largest outgoing/incoming commuting flows of
each BSU (so that two BSUs are contiguous if the are connected
by one of those flows). The aim was to focus the search on the
more promising solutions, and to induce some degree of conti-
guity in the solutions produced without explicitly incorporating
that information. Although that constraint is either considered
in the cited widely-used TTWAs method, it is enforced in the
final solution by means of expert guided or automatic adjust-
ments that repair the discontinuous markets trying to maintain
the feasibility of the rest of the markets. As we mentioned in
section 2, we consider that in the context of an optimisation-
based procedure all the hard constraints should be taken into
account during the main optimisation process in order to im-
prove the results. Therefore, we haven’t included the functional
neighbourhood requisite in this work, since the geographic con-
tiguity implies some degree of functional neighbourhood and
focuses the search on what should be good solutions as well.
Producing solutions that always meet the geographic contiguity
let us to skip the final correction that usually means a loss in
fitness [4]. The results shown later support this decision.

4. Grouping evolutionary algorithm with multiple group-
based operators

As stated in section 1, we have decided to use a grouping
evolutionary algorithm (GEA), an evolutionary approach with
group based operators working over an encoding able to rep-
resent the partitions of a set, in this case LLMA delimitations.

Falkenauer proposed to employ one crossover and three muta-
tion operators (creation, destruction and alteration of groups),
to be tailored for the particular problem to be solved. In most
GGA applications cited in section 2 only one mutation operator
is used. In [14] the authors stated that eliminating any of the
many operators proposed from the problem results in a reduc-
tion of quality of the solutions or the algorithms’ performance,
something that is in contradiction with Falkenauer’s proposal of
using three general operators. Keeping that in mind, we have
designed one crossover and nine different group-based mutation
operations, in an attempt to cover all the more general opera-
tions in one-to-one, one-to-many and many-to-many relations
between disjoint groups:

1. partition through a greedy heuristic (see section 4.2) of a
union of two related groups;

2. creation of a new group by taking a border element of a
random group and assigning elements to it from the adja-
cent groups, until the criteria is met or it is not possible to
continue (creates a new group and modifies one or more);

3. dismembering of a group and assignation of its elements to
related, adjacent groups (eliminates one group and modi-
fies one or more);

4. exclusion of elements from a group and reassignment to
related, adjacent groups (modifies two or more groups);

5. inclusion in a group of related, adjacent elements from sur-
rounding groups, the inverse of expulsion, (modifies two
Or more groups);

6. segregation of a subset of elements from a group and
reassignment to a related, adjacent group (modifies two
groups);

7. annexation by one group of a subset of elements from an-
other related, adjacent group, the inverse of segregation
(modifies two groups);

8. random reassignments of border elements in random
groups to related, adjacent groups (modifies many groups);
and

9. exchange of elements between two related, adjacent
groups (modifies two groups).

In the previous and next descriptions, two markets/BSUs are
considered related if they have a value higher than O in eq.1 (i.e.
there is some interaction between them), and two markets are
adjacent if any of the BSUs in one market is adjacent to any of
the BSUs in the other. Also border BSUs are those in a market
that are adjacent to different markets. In the rest of the paper
we refer to groups as markets (general case of LLMASs) and to
elements as BSUs.

4.1. Chromosome representation

The chromosomes of the individuals in the population repre-
sent feasible solutions, that is, partitions of S that constitute a
regionalisation of the territory into LLMAs. Contrarily to the
strategy followed in several GGA applications cited in section
2, we have decided to use a variation of group-number encod-
ing [22], where each individual is represented by a vector of
N components, each of which corresponds to a BSU of S and



s1 s2 s3 s4 s5 56 s7 s8 59 s10
Chromosome: | 1|2 [1[3[2]2|1[4]4][2]

|V|1={$1,S3,$7} M2={52,$5,56,$10} |V|3={S4} |V|3={58,59}

Figure 1: Representation of individuals

takes the value of the identifier of the market the BSU belongs
to (Fig. 1). This representation ensures the absence of over-
lapping and therefore this constraint has not to be evaluated.
As Falkenauer explains in [10], the standard group-number en-
coding suffers from very high redundancy (see section 2.3.1)
while GGA representation suffers from low redundancy (in the
group-part, as stated later in this section). We solve the redun-
dancy issue by re-codifying any new individual so that the mar-
ket identifiers increase sequentially in the vector of BSUs, in
such a way that the group-identifier of the first BSU in the vec-
tor (s1) is always 1, the next BSU in the vector not belonging to
market 1 receives the group identifier 2, the market of the next
BSU in the vector not belonging to an already numbered market
will receive the next group number (last+1). Therefore, vectors
12346, 13121 or 32123 would be recoded to the equivalent rep-
resentations 12345, 12131 and 12321, respectively. This way
we ensure that equal solutions (phenotype) will have equal rep-
resentations (chromosome), having no redundancy at all (for a
given sequence of the BSUs), thus allowing to easily identify
new solutions already present in the population, so that they
can be discarded without evaluating them, and assuring that the
search space is not bigger than the solution’s space.

It must be noticed that the maximum group-identifier in a
chromosome is also the number of markets in that solution.
This implies that our representation is easily transformed into
that of the GGAs (e.g. 12131 would be 12131]123), and that
both representations gain the benefits of the group-oriented
encoding of the GGAs. Besides, our representation suffers
from less redundancy than that of GGAs, as what would be
our group-part of the chromosome in the GGA (12131|123) is
unique for a given partition. Moreover, our encoding in its basic
form has a fixed length (the number of BSUs), what simplifies
the programming of the operators. But in the implementation
some values of the markets (such as the number of constitut-
ing BSUs, the sums of incoming and outgoing flows, the con-
tributed fitness value, and so on) can be included in the data
structure containing the chromosome in order to accelerate the
execution of the algorithm —mainly the evaluation of solutions
which have been modified only partially. Since the number of
markets in a solution changes during the evolution this would
imply a variable-length representation, but in practice it can be
implemented transparently to the operators.

4.2. Stochastic hierarchical agglomeration

For the creation of the initial population —a collection of
randomly distributed start points for the search process— we
use a stochastic hierarchical agglomerative algorithm (SHA)
that, starting from a given partition of a set, iteratively chooses
a market of low degree of validity and another related, adjacent

market and merges them, until all the markets considered meet
the constraints of the problem. It is used also as a subroutine
in three of the mutation operators as well as repair procedure in
the crossover operator. The procedure is as follows:

1. Calculate the degree of validity (eq.8) of all the markets.

2. Terminate successfully if all the markets are valid.

3. Select, by 3-way tournament over the degree of validity, a
market G with low validity.

4. Select a market H adjacent to G, with probability propor-
tional to the relation (eq.1) to G.

5. Merge markets G and H and go to step 2.

The degree of validity of each market ranges from 0.0* to 1 (to
be valid it must score 1.0), and it is calculated as follows:
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4.3. Evolutionary algorithm

validity(M;) = min(

The structure of the multi-operator evolutionary algorithm
for the FADP follows the next steps:

1. Initialise population with N, individuals with positive
evaluation, generated by applying SHA over the whole set
of BSUs of the problem taking them as mono-BSU mar-
kets.

2. Order population by fitness.

3. Apply genetic operators (see section 4.4) until N, new
valid individuals have been produced.

4. Order population by fitness.

5. Select next generation’s population by ranking with
elitism for the best.

6. Adapt the probabilities of application of the operators (op-
tional, not used in this work).

7. Go to step 3 if termination condition is not met.

The parameter N, controls how many new individuals are gen-
erated in each generation.

4.4. Application of operators

For clarity, we describe separately the way the operators are
applied to generate new individuals.

1. Select by fitness-ranking a parent from the current popula-
tion.

2. Select an operator.

3. If the operator is a crossover, select by fitness ranking a
second different parent.

4. Create a new individual as a copy of the (first) parent.

Apply the selected operator to the new individual.

6. If the operator terminates successfully, the resulting indi-

vidual is evaluated; otherwise its fitness will be set to 0
(invalid).

d

Notice that, contrarily to genetic algorithms, the crossover and
mutation operators are treated equally in a single stage, so that
N, mutations and no crossovers (or viceversa) could be applied
in a given generation.



4.5. Group-based operators

We have tried to allow the algorithm to perform any possible
unary and binary operation that could be applied over sets of
non overlapping markets, such as division of a market, union
of two markets, simultaneous interchange of BSUs between
two markets, etc., covering also 1-to-many and many-to-many
relations. This has led us to design nine mutation operators.
We have also designed a grouping crossover to work over the
group-number encoding representation, following the common
structure of a crossover in a GGA, as described in [10] and used
in many GGA applications [8, 19, 20, 26, 29, 31]. This operator
chooses markets from one parent to copy over the other parent
and then uses a repair heuristic (in our case the SHA routine).

As stated in section 2, in order to accelerate the convergence
to the optimum we have designed all the operators so that they
never try changes that violate any hard constraint —for exam-
ple, the union operator will never merge non-adjacent markets,
or contiguity constraint would not be respected except with ma-
jor, disruptive fixing operations—, unless it is possible to solve
that violation with low computational effort before finishing the
operation —for example, the creation of a new market from a
BSU acting as a seed that absorbs adjacent BSUs from other
markets could imply making some steps through invalid solu-
tions before getting to a valid (and probably better) state, al-
though it could also lead to invalid solutions if the process gets
stuck—. Therefore, not all invalid changes are forbidden, as
some risky changes could lead to valid and valuable solutions,
and some operations can still produce invalid individuals. In our
implementation, when an operator can not find a valid change,
it returns an unsuccessful state and the result is not evaluated.
Moreover, some operators always return successful state when
producing repeated individuals (not allowed in the population),
but these are detected in a stage previous to the evaluation and
considered as invalid.

For further improvement of the performance, we also pro-
vide the operators with stochastic heuristics of the form of
“select by 3-way tournament a market (or BSU) of high (or
low) <attribute>”, “select a market (or BSU) of high (or low)
<relationship> with market/BSU” or combinations of these,
that try to bias the search process towards the more promis-
ing areas while still allowing any possible change. In the cur-
rent problem, <attribute> can be minimum self-containment
(eq.5), degree of validity (eq.8) and size (in terms of flows),
and <relationship> is interaction (eq.1). We have used (a) 3-
way tournament selection when choosing among all the mar-
kets or BSUs because it is fast when dealing with large num-
bers, and (b) selection with relationship-proportional probabil-
ity when trying to identify markets or BSUs which are related to
another, since the number of BSUs or markets related to a given
one will often be small, even less than three, and in such cases
3-way tournament would always select the best option where
we prefer stochastic behaviour. Obviously, these heuristics are
problem-dependant, and other attributes or relationships would
be of interest in other problems.

The descriptions and motivations of the proposed operators
follows. Fig. 2 depicts the possible effects of some of the oper-
ators.

4.5.1. Mutation R: re-partition of the BSUs of two related, ad-
Jacent markets.

This operator takes two related, adjacent markets, merges
them, and then tries to find a new partition of the BSUs of the
BSUs that form the merged market using a greedy algorithm, in
this case SHA (see 4.2). The description is as follows:

1. Select by 3-way tournament a market M; with low self-
containment.

2. Select a market M adjacent to M;, with probability pro-
portional to the attraction to M;. If not found, terminate
unsuccessfully.

3. Merge markets M; and M; into M;.

4. Dismember M; into its constituent BSUs and apply SHA
restricted to them.

5. Terminate successfully.

Note that SHA is applied restricted to the BSUs of that form the
merged market, what means that none of the rest of the markets
in the solution will absorb any of those BSUs and therefore
none of them changes after this operation.

This operator would be the fusion of two more elemental op-
erations: the union of two related groups, and the partition of a
group. In fact, we implemented those union and partition mu-
tations (U and P), but our preliminary experimentation showed
that using mutation R made it pointless their inclusion, since it
offered better performance without them. The reason is quite
obvious after an insightful analysis of the tests. Unions always
produce valid individuals but few of them survive for the next
generation because of the fitness loss, as unions only exert a
positive influence on the evolution when the individuals they
produced manage to survive until being selected for another
operation (as division) that takes advantage of the big size of
the market that results from the merger to find a better partition.
In the case of the partition mutation, the problem is that they
never produce a valid individual when the population is close
to the optimal values and most markets are close to their min-
imum constraints’ thresholds so they can not be divided. This
mutation R takes the advantage of the unions to greatly increase
the percentage of valid and useful individuals produced by the
division operator, being a good provider of fitness improvement
during all the stages of the evolution.

4.5.2. Mutation I: inclusion into a market of adjacent, related
BSUs.

This operator tries to increase the size of a market with low
self-containment by widening it through the inclusion of some
of the unnecessary adjacent BSUs in the surrounding markets
with which it shares higher interaction (it is the opposite to the
mutation E). A BSU is considered unnecessary to its current
market if it can be extracted without causing the market to break
any constraint, i.e. if they are unnecessary for the their markets’
validity.

1. Select by 3-way tournament a market M; with low self-

containment.

2. Choose a random number r between 1 and 10% of the av-
erage number of BSUs per market.



3. Repeat r times:
Select, with probability proportional to the attraction,
a BSU s; adjacent to M; and belonging to a market M
different to M;.
Change s; from M; to M; if both markets continue
being valid.
4. Terminate successfully if there has been any change, oth-
erwise terminate unsuccessfully,

4.5.3. Mutation E: exclusion from a market of border BSUs
with high external attraction.

This operator tries to reduce the size of a big market by
choosing some border BSUs with lower interaction to the rest
of the market and reassigning them to other related, adjacent
markets. Its process is inverse to that of mutation /.

1. Select by 3-way tournament a market M; of big size.

2. Choose a random number r between 1 and 20% of the
amount of BSUs in M; (¥).
3. Repeat r times:
Select by 3-way tournament a BSU s; from M; with
low self-containment in M; and adjacent to other markets.
Select, with probability proportional to the attraction
to s;, a market M; adjacent to s;.
Change s; from M; to M; if both markets continue
being valid.
4. Terminate successfully if there has been any change, oth-
erwise terminate unsuccessfully.

(*) Self-containment of a BSU in its market is measured as the
proportion of incoming and outgoing flows of that BSU that
respectively came from or go to BSUs in the same market (in-
cluding itself).

4.5.4. Mutation D: dismembering of a market and assignation
of its constituent BSUs to the adjacent markets.

This operators uses the same mechanism than mutation E,
but finishing when the market disappears. Although the ef-
fect of this is similar to the one produced by the union oper-
ator —the number of markets decreases by one—, it is more
flexible since it allows to reassign the BSUs to different mar-
kets, more related to them, resulting in lower fitness decreases
or even small fitness improvements.

1. Select by 3-way tournament a market M; with low self-
containment.

2. Select by 3-way tournament a BSU s; of M; with low self-
containment in M; and adjacent to other markets.

3. Select, with probability proportional to the attraction to s;,
a market M; adjacent to s;.

4. Change s; from M; to M; if M continues being valid after
the change, otherwise terminate unsuccessfully.

5. Go to 2 if there are BSUs left in M;, otherwise terminate
successfully.

4.5.5. Mutation N: creation of a new market using a border
BSU as seed.

This operator chooses an unnecessary, border BSU in a mar-
ket of low self-containment, creates a new market from that
BSU, and then tries to absorb other adjacent BSUs from sur-
rounding markets (if unnecessary in their original markets) un-
til the new market becomes valid, or there are no more avail-
able BSUs to absorb, or a certain size has been reached without
qualifying as a valid market. To avoid parametrization of this
threshold size (that can be done anyway), we choose at random
three markets in the current individual and take the median size
(we also call it 3-way tournament).

1. Select by 3-way tournament a market M; with low self-
containment.

2. Select by 3-way tournament an unnecessary, border BSUs
s; of M; with low self-containment in its market. If it is not
possible to found a BSU meeting this requisites, terminate
unsuccessfully.

3. Create a new market M; conformed by s;; if M| is a valid
market, terminate successfully.

4. Select by 3-way tournament a market M, with average size
(median of three).

5. If size of M; is bigger than size of M., terminate unsuc-
cessfully.

6. Select s, among the BSUs adjacent to M, with probability
proportional to the percentage of attraction to M.

7. Change si from its market M to M if M, continues being
valid after the change, otherwise terminate unsuccessfully.

8. Goto5.

The termination condition in step 5 is aimed at avoiding in-
efficient behaviour of the operator, caused when it is possible
to find many small BSUs that can be absorbed from surround-
ing markets without significantly increasing (or even decreas-
ing) its self-containment, despite of reaching a big size, giving
place sometimes to markets of branched (undesirable) shapes
and wasting a big amount of processing time. Therefore, it is
advisable to find some trigger that stops the process when there
are few chances of reaching a good solution, for example an up-
per threshold in size. We decided to use a stochastic procedure
also here, instead of some statistics or fine tuning. Median and
mode of the sizes of the markets in the individual could be also
good references. The average size of markets is not suitable
since there can be large BSUs (megalopolis) with sizes several
orders of magnitude bigger than the smaller ones, biasing too
much that statistic.

4.5.6. Mutation S: segregation of a subset of BSUs from a mar-
ket and reassignment to another one.
This operators moves a set of BSUs from a big market to an
adjacent market with high interaction.

1. Select by 3-way tournament a market M; of big size.

2. Select by 3-way tournament a BSU s; of M; with low self-
containment in M; and adjacent to other markets. If not
found then terminate unsuccessfully.



Figure 2: Examples of application of some operators. The maps depict different solutions of a (fictional) FADP, where the thin lines delimitate the BSUs, the thick
lines delimitate the frontiers between markets, i.e. the partition, and the numbers are the group identifiers.

3.

4.

Select a market M adjacent to s;, with probability propor-
tional to the percentage of attraction to s;.

Change s; from M; to M; if both markets continue being
valid after the change; otherwise terminate unsuccessfully.

. Select by 3-way tournament another BSU s; of M; with

high attraction to M; and adjacent to it.

. Change s; from M; to M; if both markets continue being

valid after the change and then go to 5; otherwise terminate
successfully.

4.5.7. Mutation A: annexation to a market of a subset of adja-

cent BSUs belonging to another market.

This operators behaves as the inverse process of mutation S'.
As it is a one-to-one operator it could result in some redundancy
(the annexation by M; of part of M; would be the same as the
segregation of part of M; and reassignment to M;). However,
their behaviour is not totally equivalent, since the way the mar-
kets are selected differs in each mutation, and preliminary tests
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showed small loss in performance when disabling one of those
operators.

1.

Select by 3-way tournament a market M; with low self-
containment.

Select a market M; adjacent to M;, with probability pro-
portional to the attraction to M;. If not found terminate
unsuccessfully.

Select by 3-way tournament a BSU s; from M; with high
interaction with M; and adjacent to it. If not found, termi-
nate unsuccessfully.

Change s; from M; to M; if both markets continue being
valid after the change; otherwise terminate unsuccessfully.
Select by 3-way tournament another BSU s; of M; con
high attraction a M; and adjacent to it.

Change s; from M; to M; if both markets continue being
valid after the change and go to 5; otherwise terminate
successfully.



4.5.8. Mutation X: exchange of two BSUs between two mar-
kets.

This operator chooses two related markets and tries to simul-
taneously move one BSU from each market to the other. This
operator can be useful at points in which the simultaneity of the
changes is mandatory to avoid generating an invalid market.

1. Select by 3-way tournament a market M; with low self-
containment.

2. Select, with probability proportional to the attraction to
M;, a market M; adjacent to M;. If not found, terminate
unsuccessfully.

3. Select by 3-way tournament a BSU s; of M; adjacent to
M with high interaction with it. If not found, terminate
unsuccessfully.

. Change s; from M; to M;. If M; is not continuous any more
terminate unsuccessfully.

5. Select by 3-way tournament a BSU s; of M; with high
interaction with M; and adjacent to it, different from the
previously exchanged s;.

6. Change s; from M; to M;. If M; is not continuous any
more terminate unsuccessfully.

7. Terminate successfully if M; and M; are valid; otherwise
terminate unsuccessfully.

The first prototypes of this operator were more complex, and
tried to interchange simultaneously more than one BSU from
each market, but that way it was difficult to find valid or un-
repeated solutions (very often the BSUs reassigned from one
market to the other are the ones more likely to be selected and
moved back). We therefore opted for this simpler version.

4.5.9. Mutation M: random changes.

This operator chooses at random border BSUs with low inter-
action in their markets and tries to move them to other related,
adjacent markets. This is the only many-to-many operator that
we have included, and the closer to the concept of standard mu-
tation in genetic algorithms.

1. Choose a random number r between 1 and 2% of the num-
ber of BSUs.
2. Repeat r times:
Choose by 3-way tournament a border BSU s; with
low interaction with its market M;.
Select a market M; adjacent to s;, with probability
proportional to the attraction to s;.
Change s; from M; to M; if both markets continue
being valid.
3. If there has been any effective change terminate success-
fully; otherwise terminate unsuccessfully.

4.5.10. Crossover.

We have designed a grouping crossover operator to work
over the group-number encoding, based on the standard group-
ing crossover described by Falkenauer. A random selection of
the markets of one parent is copied over the other, changing
the codification so that none of the copied markets’ shares their
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code number with any of those already present in the other par-
ent. The integrity of the copied markets is preserved while the
markets of the other parent sharing BSUs with the copied mar-
kets can became invalid in terms of size, self-containment or
contiguity (in this last case getting fragmented). We then apply
SHA to all the individual, so that invalid fragments of markets
are assigned to related, adjacent markets until all of them are
valid. This procedure can also change the copied markets, ini-
tially preserved, if any of them absorbs invalid fragments.

1. Copy all the information of the first parent into the child.

2. Choose a random number r with uniform distribution be-
tween 1 and 66% of the amount of markets in the second
parent.

3. Select at random r markets from the second parent and

copy them into the child, changing the codification so that

none of that markets share their code with any market in

the offspring.

Check that all the markets are continuous and divide into

its continuous parts those markets that are not continuous.

5. Apply SHA over all the markets of the child (repair of bro-
ken markets of the first parent).

6. Terminate successfully.

5. Results

We have tested our proposal against the method and results
presented in [16], the latest evolutionary proposal for this prob-
lem. We use two cases of real territories: first the Region of Va-
lencia, in Spain, with 541 BSUs and daily travel-to-work data
derived from the Spanish Census of Population [17], which was
the real-world case study analysed in the experimentation sec-
tion of the cited paper; and second the whole case of the Span-
ish municipalities from the same census, with 8104 BSUs. The
second case allows testing how the new method deals with big-
ger problem sizes, typical in real-world, something what was
not feasible with previous EAs in the literature —our imple-
mentation of the EA proposed in [16] needed several minutes
for each operation, with an estimation of millions of operations
to converge—. For both study cases we have used the same
parameters of the LLMA delimitation problem: 8; = 70%,
B2 =75%, 53 = 20000 and B3 = 3500 (these were the threshold
values used in [3, 6, 14, 16]).

To allow comparison with relevant official procedures we
have included also the results of applying the UK travel-to-work
areas delineation method [6] and its update [30], using the same
parameter values.

In each case we have built a square matrix of origin-
destination commuting flows, where each cell represents W, g,
(the number of residents of s; that works in ). For this kind of
problem those matrices are always sparse (most cells have value
zero), therefore memory usage and complexity of the operators
can be greatly reduced if only non-null flows are coded.

5.1. Region of Valencia (Spain)
Parameters of the GGA were set in these values: size popu-
lation N, = 10 and new offspring per generation N, = 1. The



Table 1: Comparison of results for Region of Valencia

Fitness = Number

Method value  of LLMAs
1986’s TTWA [6] | | 143.10 50
2008’s TTWA [30] | | 136.05 49
EA Max | 192.78 63
[16] Mean | 183.27 59.84

o | 370 1.81
Adaptive EA Max | 190.48 62
[16] Mean | 184.73 60.44

o | 370 1.72
GEA Max | 200.78 65
tmax = 3min Mean | 193.61 62.79
100 runs o 2.09 0.81
GEA Max | 200.42 65
tax = 10min Mean | 195.57 63.43
100 runs o 1.96 0.75
GEA Max | 203.45 67
tax = 30min Mean | 198.18 64.37
70 runs o 2.62 0.91

probabilities of application of the operators were uniform (as
noted previously, crossover and mutations are evenly treated
in a single phase). The condition of termination is maximum
elapsed time f,,,, = 1800s. These are the same EA parameters
employed in [16]. We present results also for #,,,, = 180s and
tmax = 600s, from independent runs of the algorithm. All the
tests over the Region of Valencia have been run in a PC with
CPU AMD Athlon IT x2 2GHz and 2GB of RAM. The charac-
teristics of the computers used by the authors of [16] were not
published.

The new set of operators dramatically improves the results
obtained in [16] (Table 1), even when the process is allowed to
run for only 10% of the time given to previous EAs. It must be
noted that the solutions provided by the TTWA’s methods and
the previous EAs are usually non contiguous, another positive
aspect of our new grouping operators.

Fig. 3 plots the fitness evolution over generations for the first
650k generations (164.5 s. on average). Plotting over seconds
causes little changes to these curves. The figure shows that the
new operators produce an evolution quite faster both in terms
of absolute increase of fitness per generation (needing less gen-
erations to reach a better solution) and relative generations to
converge (on average, the new method needed 10k generations
to get 95% of its maximum final fitness, and 165k generations
to reach 99% of that value; the referenced method needed 51k
and 250k generations respectively), and the final solution are
better in any statistic (the average fitness value with runs of 3
minutes is higher than the best solution presented in [16] with
runs of 30 minutes, and our best solution has a fitness 5,5%
higher than that).

The previous EAs against which we compare our results [16]
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Figure 3: Fitness per generations (thousands)

did not employ informed solutions in the initial population,
causing that all the evolutions started in the minimum possi-
ble fitness value (all the territory of the problem as a market),
that for the Region of Valencia was 0.27. In this exercise we
have successfully used the stochastic agglomerative algorithm
to produce valid solutions in the initial population, starting from
fitness around 145. This can be noticed in Fig. 3. Thus, the new
method skips a part of the initial evolution that the previous
one was bound to calculate, something that could be consid-
ered as an advantage for our method biasing the comparison.
This can however be discarded since the result of applying the
SHA heuristic over a whole territory is precisely one of those
informed solutions with which we seed the initial population,
and it is the only applicable operator when there is only one
market. Time consumed by the generation of the initial popula-
tion is taken into account in the results of both methods.

Our implementation of the algorithms described in [16] gave
quite similar results to those published in that paper, although
slightly worse (what can be consequence of a slower machine)
but not statistically significant. The average number of genera-
tions performed in 30 minutes with that implementation was 7.2
millions, while the method presented in this paper performed on
average 7.1 millions of generations in the same time. Therefore,
it seems that our operators are not on average faster, in terms of
operations per second, than those of the previous EAs. So we
can credit merit for the great increase in performance not to a
reduction of complexity due to the introduction of the spatial
contiguity constraint into the mutations mechanics, but to the
increase of the percentage of valid (and useful) individuals by
the operators, and also to the way these mutations operate, indi-
vidually and in cooperation with the rest of them, consistently
being able to perform a better exploration and exploitation of
the search space.

From Table 1 it is also clear that our proposal manages to
identify a larger number of LLMAs, something considered as
desirable in the policy-making context as stated in section 2.2.

Table 2 summarises some statistics about the operators: the
first two columns shows valid non-repeated individuals and in-
dividuals that improve their (best) parent as a percentage of total
applications of the respective operator; third column displays



Table 2: Operators’ statistics, Region of Valencia

Valid Impr. Accum. CPU
Oper. indiv. indiv. fitness t. (s)
cross. 59,66% 28,71% 24,17% 22,29%
mut.R | 64,74% 442%  40,54% 16,54%
mut.N 1,23% 091% 10,80% 13,66%
mut.D | 84,44% 0,18% 1,13% 10,83%
mut.E | 48,17% 2,05% 3,18% 4,25%
mut.I 69,58% 3,85% 731% 14,47%
mut.S | 45,23% 1,80% 3,17% 4,26%
mut.A | 26,88% 1,36% 2,82% 3,70%
mut.M | 90,82% 3,49% 5,67% 7,64%
mut.X 4,65% 0,48% 1,20%  2,35%

the accumulated increase in fitness over (best) parent as a per-
centage of total accumulated fitness achieved by all the opera-
tors; and the last column shows CPU time as a percentage of
total time employed by all the operators. Compared to the same
statistics about the operators in [16] it seems clear that our new
operators produce a much higher percentage of valid individu-
als, and individuals that improve their parent’s fitness. This is
consequent with the results obtained and the discussion above.

5.2. Whole territory of Spain

In this case the parameters were set as in the previous case
study except for the finalisation time, set to #,,,, = 16/ (a higher
value for a much bigger problem).

The set of operators we propose in this paper is able to pro-
duce very good results in reasonable time when applied to large
problems, as is the case of Spain’s territory (Table 3), something
that was impractical making use of the proposals described in
the previous EA in literature —in our tests with the implemen-
tation of the algorithms in [16] with the case of Spain, it only
managed to complete 7 mutations and obtain 2 feasible solu-
tions after one hour of computation, while our method gener-
ated more than half a million individuals in the same time.

Regarding the operators performance in this case, table 4
shows the same statistics about the operators in the tests con-
ducted over the case study of Spain. There are noticeable differ-
ences in performance compared to the statistics obtained work-
ing with the Region of Valencia, for example the fitness per sec-
ond (accumulated fitness over CPU time) contributed by the op-
erator R is much lesser here, while mutation I greatly improves
in that aspect. Differences in the performance of the operators
can be noticed when comparing the statistics at different stages
of the evolution in the same problem. All this is expectable
given the huge difference in size of the two problems and that
the complexities of the different operators depends differently
on the number or markets in the solution and/or the number of
BSUs within markets, and also because a bigger problem will
probably need more search steps to achieve the optimal value
or the stagnation.
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Table 3: Comparison of results for Spain

Fitness Number
value of LLMAs
TTWA 1986’s method | | 14304.93 462
TTWA 2008’s method | | 13547.21 458
GEA Best | 23286.45 659
tmax = 16R Mean | 23036.15 657
5 runs o 137.03 2.0
Table 4: Operators’ statistics, Spain

Valid Impr. Accum. CPU

Oper. indiv. indiv. fitness t. (s)
Cross. 67,46% 31,78%  46,70% 40,61%
mut.R | 69,51% 1,25%  1539% 16,42%
mut.N 0,22% 0,10% 3,20% 4,62%
mut.D | 83,50% 0,03% 0,58% 10,01%
mut.E | 4847% 0,95% 5,20% 3,85%
mut.I 75,83% 2,07% 11,23% 5,46%
mut.S | 47,66% 0,74% 4,44% 3,92%
mut.A | 3391% 0,52% 3,61% 2,68%
mutM | 9941% 0,51% 748%  10,95%
mut.X | 10,74% 0,27% 2,16%  1,47%

6. Conclusions and current works

The delineation of functional areas is a very relevant problem
in the domains of Economics and Geography, among others.
Setting appropriate boundaries between highly self-contained
and cohesive sets of basic spatial units largely influences the
quality of policy making at local levels in fields such as housing,
transportation or labour markets.

Being inspired by previous works that tackled the Local
Labour Market Areas (LLMAs, a typical kind of functional ar-
eas) delimitation through a multi-operator evolutionary algo-
rithm [14, 16], we have presented a new set of group-based op-
erators carefully designed to deal with that and other related
problems. Among our design principles, opposed to the inspir-
ing work, we have included: to produce as few infeasible solu-
tions as possible to narrow the search, to incorporate stochastic
(but not optimum) knowledge into all the operators to further
accelerate convergence, and to consider any constraint of the
problem into the operators as well as in the whole optimiza-
tion process. All of these three principles were discarded by the
authors of the inspiring work as it is arguable that their appli-
cation could lead to an insufficient exploration of the search
space, what could systematically avoid reaching optimal so-
lutions. However, the results contradict these initial concerns
since they outperform the best solutions from previous evolu-
tionary algorithms applied to the problem of LLMA delimita-
tion, in terms of both fitness of the better solution and average
fitness. Moreover, the experimentation showed that the speed
of the new method is at least one order of magnitude higher
in the case study of Region of Valencia (541 BSUs), and much
faster in the case of Spain (8108 BSUs) where the previous EAs



were unable to solve in reasonable time. These results prove
that introducing the contiguity requirement has not negatively
constrained the search ability of the new operators.

We have also considered the possibility of allowing invalid
solutions to remain in the population and mate with valid par-
ents, but that would imply major changes in the general method
and in the operators themselves, since all of them are designed
under the premise that any market in a solution a priori meets
the constraints —and doing so allows the procedure to save
many costly checks of constraints and fitness. Moreover, in-
valid solutions (always in terms of constraints fulfilment) could
have higher fitness than valid ones, leading to a stagnation in a
population full of good-but-invalid solutions, if they are not pe-
nalised somehow. So the adequacy of that idea deserves a more
extensive consideration.

The contiguity constraint introduced in the new set of oper-
ators seems to play an important role in the speed up, since it
naturally introduces the concept of contiguity in the behaviour
of the operators, allowing to consider only adjacent markets
or BSUs in the operations when selecting them instead of the
whole set of them or the functional neighbours (a BSU tends to
have many more flows than adjacent neighbours). We thought
that this would reduce the complexity of many subroutines fre-
quently used in the method, noticeably accelerating the number
of operations per second in comparison to the same operators
without the constraint, but the experimentation showed that it
has had slight impact on that aspect when dealing with small
size problems (Region of Valencia case). Thus the main boost
in performance in those cases is due to the higher percentage of
valid solutions produced by the operators. In the case of Spain
the operators of our proposal were much faster than those of
earlier EAs, so we can not discard the impact of the contiguity
constraint in the method’s complexity.

We were reluctant to include that requirement in the oper-
ators, because it is not used in the greedy TTWA’s method
[6, 30], and because the previous EAs and the TTWA’s method
were able to produce almost continuous solutions without in-
cluding the information on adjacency. However, the results
prove that our reluctance here was wrong. Moreover, the result-
ing regionalisations made by this new method are continuous
without the need of applying a final procedure to fix disconti-
nuities [4] that could make part of the effort of producing a good
but discontinuous solution useless. The inclusion of this con-
straint seems to have resulted in only good effects, considerable
narrowing the search space without excluding good solutions or
hindering the exploration.

In the cited EAs with which we compare our proposal, some
operators produced totally random changes while other made
optimal ones (optimal in the local search of the operator, but
not necessarily leading to the global optimal solution) and some
other were informed (probability proportional to some attribute
or relationship), and all of them were on the whole more ad hoc,
specialised in the particular problem itself. In this work all the
operators have been made informed (but still stochastic), and it
has been tried to exhaustively cover all the possible operations
that could facilitate the search in the exploration or the exploita-
tion in a GPP context, even those that intuitively seemed less
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adequate for our particular problem. So maybe performance of
the method is also higher due to a more versatile search strat-
egy, but still could happen that smaller subsets of the presented
operators perform better in the reported problem. Nevertheless,
a proper study of the specific performance of each operator is
out of the scope of this paper.

The new operators presented, although being designed for the
problem of LLMAs delimitation are directly applicable to the
delimitation of other functional areas as HMAs [1] and FTAs
[25] subject to the availability of interaction matrices (such as
commuting, migrations, freight and passengers flows or con-
nections, movements of mobile phones between cells, etc.).
The proposed operators are simple and general, and the whole
EA is able to deal with large instances of FADPs. Therefore,
a good approach to many other graph and network partition-
ing problems —such as sparse matrix product, load balancing,
timetabling, vehicle routing problem, etc.— could be the adap-
tation of the presented method by choosing proper fitness func-
tion and constraints, and adjusting the heuristics in the operators
and the repair/construct routine.

We are currently adapting the algorithm to work in parallel
with island and cellular models, in order to enhance the global
search procedure of a single run as well as to improve the par-
alellisation. This could lead to a significant improvement in
quality and variance of the results, specially in large instances.

We are working as well on an adaptive version that will take
advantage of the fact that each operator is more helpful in spe-
cific stages of the search, or under certain conditions of the indi-
vidual(s) over which the operator is applied. As happened with
the EA presented in [16], the data about the variable efficiency
of the operators point to a possible increase of performance of
the whole method by fine-tuning or more likely (self-)adapting
the probabilities of application of each operator depending on
its outcome or the stage of the evolution, so that each operator
is used when its contribution to the optimisation process can be
higher.

Finally, a multiobjective version of the procedure will be
worthy of consideration, since its ability to present a set of
variate good solutions (the Pareto front) could facilitate or even
allow to skip the parameter settings of the FADP by the practi-
tioners. Alternative fitness functions could assess cohesiveness,
geographic compactness and/or size homogeneity.
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