Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 39, Issue 9, July 2012
E p—

ELSEVIER

Expert
Systems

with
Applications

An International
Journal

Editor-in-Chief
Jay Liebowitz

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Expert Systems with Applications 39 (2012) 7887-7894

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

An International
Joumal

journal homepage: www.elsevier.com/locate/eswa

Temporal bounded reasoning in a dynamic case based planning agent
for industrial environments

Marti Navarro?, Juan F. De Paz”*, Vicente Julidn?, Sara Rodriguez®, Javier Bajo®, Juan M. Corchado®

2 Departamento de Sistemas Informdticos y Computacion, Universidad Politécnica de Valencia, Camino de la Vera s/n, Valencia 46002, Spain
b Departamento Informdtica y Automdtica Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain

ARTICLE INFO ABSTRACT

This paper presents a planning model integrated within a TB-CBP-BDI real-time intelligent agent that
provides special abilities for planning in a predictable time, which makes its use especially appropriate
in systems where certain temporal constraints must be satisfied. The proposed TB-CBP-BDI real-time
agent is the core of a multi-agent system that manages security issues in industrial environments, where
time constraints are a key factor. The proposed planning model facilitates the automatic temporal
bounded reorganization of tasks to provide the system with adaptation abilities to the changes that occur
in the environment. The planning mechanism focuses on optimizing industrial and manufacturing pro-
cesses, specifically the tasks performed by the available security entities in these environments. Addition-
ally, several Ambient Intelligence technologies such as QR-CODES, GPS, Wi-Fi and HSDPA are used to

Keywords:

Multiagent systems
Temporal bounded reasoning
Case-based reasoning
Ambient intelligence

develop the intelligent environment that was tested and analyzed in this study.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few years, the use of artificial intelligence tech-
niques to control industrial processes has become increasingly
relevant (Saenz et al., 2008). However, there are some aspects that
still need to be improved, especially those related to the efficiency
of techniques and technologies used to monitor security activities.
The implementation of time control systems has had a positive
influence on productivity in industrial environments (Zheng, Wang,
& Xue, 2009), since the workers optimize their potential and en-
hance the processes on which they collaborate. Remote monitoring
is becoming increasingly common in industrial scenarios, where re-
cent studies (Inology, 2005) reveal that at least 3% of the workday is
lost, allowing supervisors to observe the behavior of remote work-
ers and the status of the facilities. Multi-agent systems (MAS) (Part-
alas, Feneris, & Vlahavas, 2008; Wooldridge & Jennings, 1995;
Zheng et al., 2009) have been recently explored as supervisor sys-
tems, with the flexibility to be implemented in a wide variety of de-
vices and scenarios, including industrial and manufacturing
environments. Moreover, the application of this paradigm seems

* Corresponding author. Address: Faculty of Computer Sciences, Univ. Salamanca,
Plaza de la Merced s/n, 37008 Salamanca, Spain. Tel.: +34 923 294400; fax: +34 923
294514.

E-mail addresses: mnavarro@dsic.upv.es (M. Navarro), fcofds@usal.es (J.F. De Paz),
vinglada@dsic.upv.es (V. Julidn), srg@usal.es (S. Rodriguez), jbajope@usal.es (J. Bajo),
corchado@usal.es (J.M. Corchado).

0957-4174/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2012.01.119

to be especially appropriate for solving complex problems which
require intelligent and temporal bounded responses, as is the case
with some typical industrial or manufacturing scenarios (Stankovic,
1998; Zheng et al., 2009). In these kinds of scenarios, the execution
of a task after its temporal deadline is completely useless or de-
creases the quality of the solution; consequently tasks should be
designed as a real-time problem. MAS are explored in this article
because they can incorporate flexibility and distribution in real-
time problems. From a formal point of view, a real-time system
(RTS) is a system in which the correctness of the system depends
not only on the logical result of computation, but also on the time
at which the results are produced (Carrascosa, Bajo, Julian, Corch-
ado, & Botti, 2008; Stankovic, 1998). A typical RTS is commonly
known to be made up of a set of tasks characterized by a deadline,
a period that indicates how often the task is executed, a worst-case
execution time, and an assigned priority (Stankovic, 1998). These
restrictions in the system’s functionality affect the features of an
agent that needs to be modeled as a RTS. The main problem is that
if the tasks executed by the agent are not temporal bounded in the
correct way, it is not possible to guarantee that the tasks will be
completed before a given deadline. As scheduling a plan composed
of these tasks is impossible, the reasoning process of agents that
must work in real-time environments must therefore be temporal
bounded. Agents in environments of this kind are typically referred
to as real-time agents (RTA) (Julian & Botti, 2004; Sdenz et al., 2008).
A RTA will be able to determine whether it has enough time to
deliberate and to take into account the temporal cost of its cognitive
reasoning process when it plans the execution of new tasks. If RTAs

7888 M. Navarro et al./Expert Systems with Applications 39 (2012) 7887-7894

are applied to monitor security related activities, it would be
possible to make critical decisions that can affect the planning of
activities in a real-time way.

This paper focuses on the problem of monitoring security
guards and mobile robots, and task planning in industrial scenar-
ios. It proposes an innovative MAS that incorporates a special type
of intelligent real-time agent characterized by an internal structure
that integrates a CBP-BDI (Corchado & Laza, 2003; Glez-Bedia &
Corchado, 2002) (Case-Based Planning) (Glez-Bedia & Corchado,
2002; Spalazzi, 2001) (Beliefs, Desires, Intentions) (Bratman,
1987) model. This type of agent provides advanced reasoning abil-
ities and resolves new problems by making use of past experiences.
Moreover, the CBP system proposed in this study incorporates a
sub-symbolic model, based on artificial neural networks (ANN),
for resolving problems at a low level of detail, which allows ad-
vanced prediction capability. The main characteristic of the new
agent presented in this paper is its capability to solve problems
with temporal constraints. The temporal bounded version of the
CBP-BDI agent presented in this paper incorporates a modified cy-
cle of a classic CBR process that employs past experiences to re-
solve new time bounded problems.

Although the MAS proposed in this research was used to devel-
op a functional demonstrator initially designed to schedule and
supervise routes for security guards and mobile robots working
in industrial environments, it can be easily extended to be applied
in other industrial areas, which require temporal constraints. The
work presented in this paper is an extension of a previously exist-
ing system. The previous system was aimed at monitoring workers,
but did not take temporal constraints into account (De Paz,
Rodriguez, Bajo, & Corchado, 2009). In addressing this point, we
will focus on presenting a new temporal bounded mechanism, its
capability for re-planning routes while complying with the tempo-
ral restrictions that are inherent to real time agents, and how this
mechanism can improve overall system performance. The tracking
system includes technologies for monitoring the surveillance
routes based on QR-CODES and GPS.

Section 2 provides a detailed explanation of the new Temporal
Bounded CBP model proposed in this work and its integration with-
in a BDI agent model. Section 3 presents the multiagent system
specifically designed to monitor industrial scenarios; Section 4 de-
scribes a case study in industrial scenarios; and finally, Section 5
reports the results and conclusions obtained after testing the pro-
posed approach.

2. Temporal bounded case-based planning mechanism

The problem of generating plans or, more specifically, routes in
industrial environments is a highly dynamic problem that requires
intelligent systems with great capacity for learning and adaptation.
The case-based reasoning (CBR) systems are based on a paradigm
where past experiences are used to resolve new problems
(Kolodner, 1993). This makes them very appropriate to be used in
changing environments, since they are able to adapt themselves to
changes in the environment using memories. However, the CBR par-
adigm does not take temporal restrictions into account and, if we
want to use CBR techniques as a reasoning mechanism in real-time
agents, it is necessary to adapt these techniques so that they can be
executed guaranteeing real-time constraints. In these situations,
CBR phases must be temporal bounded to ensure that solutions
are produced on time. For this reason, the system proposed in this
paper uses a Temporal-Bounded CBR (TB-CBR), which is a modifica-
tion of the classic CBR cycle, in order to adapt it to real-time domains.
This approach will allow for a more efficient execution of time man-
agement, according to the real-time agent’s goals, and it facilitates
the dynamic addition of new deliberative capabilities in agents.

More specifically, our model employs a temporal-bounded CBP
approach as a deliberative engine for an agent. CBP (Bajo, De Paz,
De Paz, & Corchado, 2009; Corchado & Laza, 2003) is a variation
of CBR, which consists of the idea of planning as remembering
(Glez-Bedia & Corchado, 2002). In CBP, the solution proposed to
solve a given problem is a plan; this solution is generated by taking
into account the plans applied to solve similar problems in the
past. The problems and their corresponding plans are stored in a
memory of plans. In addition to a specific problem with a specific
solution, further information about how the plans have been de-
rived is also stored.

It should be noted that the TB-CBP engine is integrated within the
BDI deliberative model of an agent. This makes it possible to inte-
grate both the symbolic and sub-symbolic models so that the BDI-
based agents can decide what action to take at any given moment
according to their objectives. The BDI model is used to formalize
the problem, after which the reasoning cycle of the CBP is integrated
with the BDI model in order to calculate the final solution according
to past experiences. The terminology used for a BDI agent model
(Bratman, 1987; Corchado & Laza, 2003) is as follows:

e The environment or world M and the changes that are produced
within it, are represented as a set of variables that influence a
problem faced by the agent

M={11,72,...,7Ts} with s<oo (1)

e The beliefs are vectors of some (or all) of the attributes of the
world using a set of concrete values

B={b/bi = {¥},Th,....Ti}n<s VieNyyCM (2

o Astate of the world e; € E is represented for the agent by a set of
beliefs that are true at a specific moment in time t. Let
E = {ej};.y set of status of the world. If we fix the value of ¢ then

e;:{blitvbll2t7"-bit}reNgB Vj,t (3)

o The desires are the applications between the state of the current
world and another that it is trying to reach
d: el:; - f (4)
e Intentions are the way that the agent’s knowledge is used in
order to reach its objectives. A desire is attainable if the applica-
tion i exists, as defined through n beliefs:

n)
i:BxBx---XBXE — (5)
(by,by,bueg) — €
e We define an agent action as the mechanism that provokes
changes in the world making it change the state,

a:E E 6
J € :) aj(e;)=e; ()
e Agent plan is the name we give to a sequence of actions that,
from a current state eg, define the path of states through which

the agent passes in order to reach the other world state.
pn:E— E (7)

€ — Pn(eg)=en

Dn(eo)=en=an(en_1)=+--=(Ano---0ay)(€0)p,=0no---00;

With respect to a CBP system, it can be defined as a system with
the following components:

e A case base set (B). A case base B € f8 is a finite indexed set of
cases. A case base is defined as a tuple where ({c1,c2,...,cn},t).
{c1,c2, ...,cn} are the cases that compose the case base and ¢t
is the finite set of characteristics that allow cases to be indexed.

M. Navarro et al./Expert Systems with Applications 39 (2012) 7887-7894 7889

e A case (c) represents a past experience. A case can be repre-
sented as a sequence of states from the environment: c = {ini-
tial_state, {action_x[intermediate_state|}+, final_state}. Each
state is represented through a set of attributes that define the
environment where the CBP system is placed. The states are
divided into three groups:

- Set of initial states {st;}, which represent the description of
the problem to be solved.

- Set of intermediate states {Stiner i}, Which describe the differ-
ent states the environment has gone through before the final
state is achieved.

- Set of final states {sts, ;}, which represent the description
of the environment when the initial goals have been reached.

Moreover, a case contains actions (act), which represent the set
of actions applied to each one of the states. The cycle of the CBP sys-
tem is defined through the phases shown in Table 1. In this table, it
is possible to appreciate how, in the retrieve phase, cases
cl,c2,...,ck, which have a problem description most similar to
the current problem stn, are obtained from the case memory B. This
is done employing a metric A. In the reuse phase an initial solution
is obtained ({act_ni, {stinter_ni}x} +, stfinal_n) from the previously
retrieved cases and the problem description. In the revise phase
the validity of the proposed solution is evaluated; finally, in the
learning phase, the system can learn a new experience.

The way to integrate a CBP system in a BDI agent basically con-
sists of defining a correspondence between the concept of case and
the concepts managed by a BDI agent (beliefs, desires and inten-
tions). Consequently, when a BDI agent needs to solve a new prob-
lem, it will use its beliefs, desires and intentions to build the new
solutions. In this kind of system, these previous desires as well as
the related beliefs and intentions, are stored as cases according
to the following correspondence:

Case (Problem, Solution, Result)

Problem: initial_state

Solution: sequence of (action,
[intermediate_state])

Result: final_state

BDI Agent

Belief: state
Intention: sequence of
(action)

Desire: set of
(final_state)

A belief is a state that can be initial (represents the problem that
must be solved), intermediate (represents an intermediate state of
the problem, problem that is passed before reaching the final state)
or final (represents the obtained result starting from the initial state
and executing a set of actions). Each belief has a set of attributes that
describe it. A desire is a set of final states and, depending on the
problem, can be formed by one or more final states that the agent
wants to achieve. An intention is considered an ordered set of ac-
tions. Actions are operations that can be executed over a specific
state. Each action is defined through a name and a set of arguments.
With respect to the characteristics of the system, it may be neces-
sary to add some additional beliefs to obtain a correct execution
of the agent. These additional beliefs are actually indexes that allow
the case memory to be organized. Moreover, similarity functions
are added to determine the equality degree between two states.

Table 1
Cycle of a CBP system.

Retrieve (c1,c2,...,ck, A) — Retrieve (stn,B) with ck = {stk,
{act_ki{stinter_ki}x}+, stfin_k}, k>0 and i>0

Reuse (stn,{act_ni,{stinter_ni}x}+, stfinal_n) — Reuse (stn,(c1,c2,...,ck),A)

Revision (stn,{act_ni,{stinter_ni}«}+, stfinal_n) — Revision (stfin_n)

Retain (stn,{act_ni,{stinter_ni}x}+, stfinal_n,B) «— Learning (cn,B)

This CBP system, which is integrated as a reasoning mechanism
into a BDI agent, must be adapted, as previously stated, for its cor-
rect execution in real-time environments. Specifically, it is neces-
sary to redefine the CBP cycle as a TB-CBP. In the TB-CBP
proposed in this study, two main stages are defined: the learning
stage, which consists of the revise and retain phases of the CBP cy-
cle; and the deliberative stage, which includes the retrieve and re-
use phases. The execution of both stages will be time scheduled.
Therefore, the real-time agent has the ability to choose between
either assigning more time to the deliberative stage or keeping
more time for the learning stage, thus making agents more sensi-
tive to updates. These new stages must be designed as an anytime
algorithm (Dean and Boddy, 1988), where the process is iterative
and each iteration is time-bounded and may improve the final re-
sponse. The anytime behavior of the TB-CBP is achieved through
the use of two loop control sequences. The loop condition is built
using the enoughTime function, which determines if a new iteration
is possible according to the total time that the TB-CBP has to com-
plete each stage. The first phase of the algorithm executes the
learning stage. This stage is executed only if the agent has the solu-
tions from previous executions stored in the solutionQueue. The
solutions are stored just after the end of the deliberative stage.
The deliberative stage is only launched if the agent has a problem
to solve in the problemQueue. This configuration allows the agent
to launch the TB-CBP in order to only learn (no solution is needed
and the agent has enough time to reason about previous decisions),
only deliberate (there are no previous solutions to consider and
there is a new problem to solve) or both. The following algorithm
presents this adaptation of the CBP cycle:

The TB-CBP cycle starts at the learning stage, where it checks to
see if there are previous cases waiting to be revised and possibly
stored in the case-base. In our model, the plans provided at the
end of the deliberative stage will be stored in a solution list while
feedback about their utility is received. When each new TB-CBP
cycle begins, this list is accessed. If there is enough time, the learn-
ing stage is implemented for those cases whose solution feedback
has been recently received. If the list is empty, this process is
omitted.

The next stage to be implemented is the deliberative stage. The
retrieval algorithm is used to search the case-base and retrieve a
case that is similar to the current case (i.e. one that characterizes
the problem to be solved). Each time a similar case is found, it is
sent to the reuse phase where it is transformed into a suitable plan
for the current problem by using a Reuse algorithm. Therefore, at
the end of each iteration of the deliberative stage, the TB-CBP
method is able to provide a plan for the problem at hand, although
this plan can be improved in subsequent iterations if the delibera-
tive stage has enough time to perform them.

This section has presented an adaptation of the CBP cycle to be
predictable and, consequently, ready for its employment in real-
time environments. The next sections illustrate the proposal
through the design of a MAS for industrial environments including
agents with the proposed TB-CBP reasoning capability and, more-
over, its application in a real case study.

3. Multiagent architecture for industrial environments

A multi-agent system was developed to provide control over the
activities performed by the staff and robots responsible for oversee-
ing the industrial environments. The agents in the system calculate
the surveillance routes for the security guard robots according to
the working shifts, the distance to be covered in the facilities, and
the security guards and robots available. The system has the ability
to re-plan the routes automatically according to the security
personnel available. GPS and QR-CODES are key technologies in this

7890 M. Navarro et al./Expert Systems with Applications 39 (2012) 7887-7894

development. The system structure is defined by five different
kinds of agents (De Paz et al., 2009):

o Planner Agent. Automatically generates the surveillance routes
that are sent to the Manager Agent to distribute them among
the security guards and robots.

e Guard Agent. Is associated to each Robot or mobile device.
Manages the QR-CODES reader. Communicates with
Controller Agents to check the completion of the assigned sur-
veillance routes, to obtain new routes, and also to send the
GPS position tags and QR-CODES information via Wi-Fi or
HSDPA.

e Manager Agent. Controls the other agents in the system. Man-
ages the connection and disconnection of Guard Agents to
determine the number of security guards and mobile robots
available. The information is sent to the Planner Agent to gener-
ate new surveillance routes.

e Controller Agent. Checks the control points to monitor security
guards’ activities.

e Advisor Agent. Administers the communication with the super-
visors (person). Receives an incident report from the Manager
Agent and decides if it is sent to the supervisor. Incidents can
be sent via Wi-Fi, SMS or HSDPA.

3.1. Planner Agent

The most important agent in the system is the Planner Agent,
which incorporates the TB-CBP-BDI model. The Planner Agent is
modeled as a real-time agent to ensure that the plans made by
the TB-CBP-BDI reasoning model are carried out within the speci-
fied time. This agent can be used for different purposes in industrial
environments. In this case study we focused on the tasks performed
by the security guards and mobile robots, but the proposed system
could be easily extended to different types of workers. In order to
adapt the TB-CBP-BDI model to the problem of security in industrial
spaces, the environment equation (1) was defined through the fol-
lowing variables: security guards, coordinates for every control
point, initial time, start time, deadline and service time. The current
state (3) is obtained through the number of available security
guards, their corresponding control points at that moment, and
the time. The desires (4) are represented as the surveillance route
that covers all the control points in the least amount of time given
the temporal constraints. The intentions (5) are given for the neural
networks that establish the sequence of states through which the
system passes in order to reach the final state in which the surveil-
lance routes have been successfully completed. Eqgs. (9) and (10)
show the structure for a plan (7).

The planning is carried out by two methods: the first is a simple
method that obtains very quick, albeit low quality, results; the sec-
ond uses a neural network based on the Kohonen Network (Leung,
Jin, & Xu, 2004). This method needs more time to obtain results
that vary in quality according to the time spent calculating them.
Each of the phases of the TB-CBP-BDI planner is explained in detail
in the following sub-sections:

3.1.1. Learning stage (revise and retain)

When the security guards complete their rounds they provide a
report indicating whether the route was completed correctly. The
route is considered as successfully completed when it was finished
on time. This information is stored in the Solution Queue.

At the beginning of the learning stage, the system must confirm
if there are solutions in the Solution Queue. If there is still time to
continue carrying out this stage, the analysisResult function will be
applied to every solution found in the SolutionQueue. If this analysis
indicates a positive assessment, then the complete plan is stored by
the retainResult function. This plan contains the sequence of states

and the corresponding belief value for each of them, i.e., the
sequence of control points and their corresponding times. The num-
ber of replannings carried out determines the quality of the route.
The information stored in the memory of plans follows the expres-
sions (9) and (10).

If the problem includes temporal restrictions, this information
is added to the rest of the plan information. The plan will therefore
contain the following information:

(T ={x1,a1,8i,€;,t;) /% = (X1, Xp),i=1...n},8) (8)

where x; position (x,y) of every control point, g; arrival Time, s; ini-
tial time, e; final time, t; service time.

Both the analysisResult and the retainResult functions have a
fixed asymptotic cost O(1) and as a result, the execution time asso-
ciated with each of the functions is predictable.

3.1.2. Retrieve

In this phase the most similar plans resolved in the past,
including all the control points indicated in the new problem, are
recovered. The following record gives the information from the
plan:

(T={t}.g) i=1...n 9)

ti = (X, i) /X = (X1, Xi2)

where x; the control point i that will be visited, (xj;,X;2) the
coordinates of point i and g the number of security guards, a;
arrival time. The initial state corresponds to the state in which
the tasks are unsorted, and the final state contains all tasks sorted.
The route r; is recovered following Eq. (10) by means of the search
function:

r={R}i=1...g where r,CT.rinrj=¢ Vi#j j=1...g
(10)

where R is the variable case shown in Algorithm 1. The search func-

tion retrieves the plans that contain the same control points, and se-

lects the distribution that provides the minimum number of
replanning actions.

Algorithm 1: Temporal-bounded CBP.

Input : tmaz
Output:

2.1 (tiearning detiberative) «—— timeManager (tmaz)

2.2 if solutionQueuve # () then

2.3 while enoughTime (tnou,trevise-tretain ticarning) and
solutionQueue # 0 do

2.4 (stn, {actni, { stinterni }* }+, 8t finat,) —— pop (solutionQueue)
2.5 {adequate «—

Revision (stfin,,(Stn, {actni, {stinter,i }*}+, stpinat,))) Strevise
2.6 if adequate then

2.7 | {Learning((stn, {actni, {stinter,i }* 1+, 8tpinas,), B) } Stretoin
2.8 end

2.9 end

2.10 end

2.11 if problemQueue # @ then
2.12 problem «— pop (problemQueue)

2.13 bestSolution = ()

2.14 repeat

2.15 {(c1,¢2,...,ck, A) «—— push(Retrieve(st, B))}Stretricve
2.16 {(stn, {actni, {stinterni }* 1+, Stfinat,) ——

Reuse (sty,(c1, 02, ..., k), A)

2.17 bestSolution ——

bestSolution((sty, {actn;, {stinter, i 14 }+, $tpinai,,), bestSolution)
}Sf,“..

2.18 until ﬁ61101151’1'1'11116(tnow'treu’wve-‘fre’us'e~tt:(elz'b\-zav‘are'ue) 3
2.19 solutionQueue «—— push (bestSolution)

2.20 return bestSolution

2.21 end

M. Navarro et al./Expert Systems with Applications 39 (2012) 7887-7894 7891

The time that the search function allocates for recovering the
cases is limited by its asymptotic temporal cost O(n), where n is
the number of cases stored in the database.

3.1.3. Reuse

In this phase, the retrieved routes are represented as cases and
adapted to the temporal restrictions stated in the problem descrip-
tion. The process is carried out according to Algorithm 2.

Algorithm 2: Algorithm for the adaptSolution function.

Input : cases, problem
Qutput: solution

2.1 if cases = () then

2.2 ‘ cases —— obtainSet (problem)

2.3 end

2.4 solutionLight «— lightPlanner (cases)

2.5 while enoughTime ({now, (tdetiberative — tretrieve)) do
2.6 | solutionHeavy «— HeavyPlanner (cases)

2.7 end

2.8 solution — HighQuality (solutionHeavy,solutionLight)

2.9 return solution

In the first step, when no data has been retrieved in the recovery
phase, Algorithm 2 uses the obtainSet function to generate a distri-
bution of the control points that the security should visit. To do so,
we use the k-means learning algorithm (Jennings & Wooldridge,
1998) to calculate the optimal routes and assign them to the
available security guards. The inputs of the algorithm are
Xi = (Xi1,X2) i=1,...,N, where i represents the control point
coordinates, N the number of control points in the route, and wy;
is the position of the centroid k in the output layer that connects
with the neuron j in the input layer. Once the input and output
are established, the modified k-means algorithm is carried out to
create a new allocation:

e Establish the number k of initial groups.

o Initiate the k initial patterns. wj; = x;;.

o For each of the patterns, establish the nearest neuron of the out-
put layer and associate the pattern with it. The Euclidean dis-
tance is used. Qp represents the set of input patterns
associated with the neuron of the output layer k.

Q= {xi/d(w,X;) <d(w,, X;) Yk #r}d(w,, X;) = [|[w, — Xi]|(11)

e Calculate the new centroids of the neurons of the hidden layer
as the average of the input associated patterns.

1 .
Wi =0 > x5 with X €Q, (12)

e Repeat from step 3 until the modification of the centroids are
less than o or until the maximum number of iterations is
reached. It is necessary to establish a maximum number of
iterations in order to shorten the maximum execution time.

S Awe = 3 wilt) — wilt - 1) < (13)

Once the points have been distributed among the different
routes r;, the TB-CBP-BDI starts spreading the control points among
the available security guards.

There are exit methods that can calculate optimal routes, includ-
ing but not limited to: genetic algorithms (GAs) (Rosenkrantz,
Stearns, & Lewis, 1977), integer lineal programming (Dantzig,
Fulkerson, & Johnson, 1954), Lin Kernighan Heuristic (LKH) (Lin &
Kernighan, 1973), self-organizing maps (SOM) (Kohonen, 2001)
neural network. However, it is difficult to take time restrictions into

account in these heuristics, as only the GAs and SOM are easily
adaptable to this situation. In this study, the optimal route for each
guard is calculated using a modified SOM neural network, although
a comparative study with the GAs remains pending.

In order to obtain a solution within the specified time t;eyse, dif-
ferent procedures were used to generate the plan. The first proce-
dure (lightPlanner) can generate a low quality, predictable solution
in low execution time, while the second (heavyPlanner) uses a SOM
adapted to the AnyTime approach to generate priori solutions of
superior quality (depending on the processing time of the method).
Both systems employ automatic planning and select the best qual-
ity plan once the process is complete or the available time has ex-
pired. The quality is measured according to the final distance. The
following section describes both processes.

3.1.4. lightPlanner

The algorithm used to calculate the route is very basic. It simply
puts the control points in order according to the arrival time and
then selects each of the points that are closest to the last control
point visited, much like the nearest neighbor algorithm. The algo-
rithm has an asymptotic cost of O(nlogn) because the data must
have already been put in order. As a result, the execution time
can be reduced if the number of existing points is fixed.

3.1.5. heavyPlanner

The heavyPlanner function is a modified SOM that can calculate
the routes that must satisfy certain temporal restrictions and must
be calculated in a limited amount of time. The SOM has two layers:
IN and OUT. The IN layer has two neurons, corresponding to the
physical control point coordinates. The OUT layer has the same
number of control points on each route (Martin et al., 2005). Given
Xi = (Xi1,X2) i=1,...,N the i control point coordinates and
ni = (ny,np) i=1,...,N the i neuron coordinates on %?, and N
the number of control points in the route. The weight actualization
formula is defined by the following equation:

Wii(t + 1) = Wi (t) + n(6)g(k, h,) (xi(t) — wia(t)) (14)

where wy; is the weight that connects the IN layer i neuron with the
OUT layer k neuron, t represents the interaction, #(t) the learning
rate decreasing with the number of iterations in order to stabilize
the learning; and g(k,h,t) the neighborhood function, which depends
on three parameters: the winning neuron, the current neuron and
the interaction. A decreasing neighborhood function is determined
by the number of interactions and the winning neuron distance.
To resolve optimization problems according to the temporal restric-
tions, it is necessary to modify the definition of the neighboring
function. The restrictions that must be considered are: service time
(the time needed by a security guard to check a control point), and
the initial time and final time, which indicate the interval of time
that the guard needs to arrive at the destination and check the con-
trol point. If the security guard arrives before the start time then he
will wait. The coordinates have been scaled so that the distance
travelled is also a unit. This is because it is necessary for the units
to be comparable to the input layer of the ANN. The information
available to the input layer will be: coordinates, start time, end time
and service time.

The modification of the values corresponding to the weights of
the links between neurons will be made in the same manner as
with the previously explained network (14), defining a new neigh-
borhood function. Moreover, a new distance function will be de-
fined. It will be called temporal distance, and it replaces the
previously used Euclidean distance in the neighborhood function.
In order to establish the arrival time at the control point, it is nec-
essary to take into account the space per time unit that a security
guard employs in traveling from one control point to another. The
new function defined is:

7892 M. Navarro et al./Expert Systems with Applications 39 (2012) 7887-7894

dt,‘j = dt(X,',Xj) = Max{f,j + t;, bj} (15)
where t; is the accumulated time to arrive to control point i plus the
service time, b; the start time, f;; the distance between neurons i and
J-

Therefore the neighborhood function will be:

_ Jk*h\> dfer k- hit
g(k,h,t)_Exp< N7z) Ma(d;,) 2 N (16)

df — { \/ (M —)" + (o —mo)” si Ge—diae <dyy (47,
0 eoc

where /. and f are determined empirically. The value of /. is set to 1
by default, and the values of g are set between 5 and 50, t is the cur-
rent interaction. Exp[x] = e*, N is the number of control points, f; is
the distance between two points i and j, n; coordinate j of the neu-
ron i,d; = d*(x;,%;) = fj + s with s; being the service time for the
control point j, and ¢, being the closing time of the neuron k.

The use of the new distance dfi, allows the neurons to be
swapped with their neighbors if the temporal restrictions have
not been met. However, this method does not guarantee that the
system can achieve a valid solution.

The learning rate depends on the number of interactions, as can
be seen in the following equation:

n(t) = Exp {—“ ﬂiN] (18)

The neurons activation function is the identity. Having initially
considered a high neighborhood radius, the weights modifications
affect the nearest neurons. Reducing the neighborhood radius, the
number of neurons affected decreases, until just the winning
neuron is affected.

The process concludes when one of the following conditions is
satisfied: there is only one neuron associated with each control
point, or the maximum processing time allowed was reached with-
out having obtained a complete solution. In the latter case, the
points are reviewed in order and are associated to the nearest
neuron. To determine the optimal route, the i neuron is associated
with the i + 1 neuron, from i=1,2,...,N, covering all the neurons
vectors. Finally, the order of the routes is validated and the order
of the neurons is exchanged in case they do not meet the defined
time intervals.

treuse = tobtained + tlightPlanner + theuvyPlanner (19)

where t,pineq is the execution time obtained from obtainedSet, which
can have two values: 0 if there is a previous plan or cost O(n) if it must
perform a distribution. tjign¢pianner Will have cost O(n « logn), where in
both cases n are the control points. The temporal cost of executing
heavyPlanner (tpeqvypianner) Will be variable, located within the interval
0 < theavyl’lanner < (treuse - (tobtained + tliglltl’lanner))~

4. Case study: monitoring surveillance routes in a industrial
scenario

In order to evaluate the multi-agent system proposed in Section
3, a case study in a real scenario was developed to provide security
in an industrial environment in the Castilla y Le6n region of Spain.
In this scenario, it is necessary to establish surveillance routes in or-
der to guarantee security, especially during the night. Security was
provided by means of security guards that complete static routes
and check the safety of the environment. However, the routes were
static and most of the times were not completed by the security
guards. In order to resolve these problems, a multiagent system
was developed to generate dynamic routes and checkpoints, and

ensure the completion of the surveillance. Moreover, the proposed
solution incorporates mobile robots that can automatically monitor
certain areas when the security guards are not available.

This section presents an example of an execution of the multi-
agent system, which serves to illustrate the generation and
completion of plans, as well as the information shown to security
guards on their mobile devices. Different tools were used to develop
the case study, including real-time operating systems to control the
surveillance robots. The application for the mobile devices was
implemented using android, but it can be easily extended to other
operating systems. Android was chosen because of its particular
capabilities to integrate the surveillance facility within existing
technologies and applications. The Google maps library was used
to represent the surveillance environments, providing on-line up-
date capability and an easy adaptation to alternative environments.
Moreover, the Google zxing project was used to manage the codes
in android devices. The barcode scanner was used to implement
the code’s reader.

The scenario was tested with nine security guards and two
mobile robots. The mobile robots are used in areas of difficult
accessibility and require real-time control. There were 39 check-
points in total. The process begins with the generation of routes
and the assignment for each security guard. As can be seen in
Fig. 1a, and b, security guard 1 receives a schedule containing his
personal route. The guard can see a map with the assigned route
and the checkpoints that need to be visited, and the imposed tem-
poral restrictions. From the point of view of the guard, the route is
composed of a series of stages that need to be completed.

As shown in Fig. 2a-c, once the security guard achieves a check-
point, he uses the QR-CODES or GPS available on his mobile device
to inform the multiagent system about his actions. Fig. 2a shows
the option selected by the security guard to assess the checkpoints.
Fig. 2b shows an example of a QR-CODE scan after pushing the
check point button in Fig. 1a. Once the code has been scanned,
the Security Guard agent interprets the text registered in the QR-
CODE and this information is sent to the Manager Agent. As shown
in Fig. 2¢, the information shown to the security guard consists of
the name of the control point together with the id of the check-
point. The Planner Agent can then check the status of the execution
of the plans (routes) and make decisions accordingly. If there is a
delay or an incident, the Planner Agent can perform an automatic
re-planning of the assigned tasks.

= 00:15 /A J €

3 W 5 G al = 00:15
Survillance

— [2] Control Point 2
_-,f,.! [3] Control Point 3
00:44 - *ikk

[4] Control Point 4
00:54 - 01:16

[5] Control Point 5
01:14 - *¥k k%

® [6] Control Point 7
01:22 - *s%

[7] Control Point 8
k% _02:01

[8] Control Point 6
02:14 - 02:29

Check point

Replanning settings Quit

Fig. 1. (a) Calculated route and (b) list of checkpoint and their corresponding
temporal constraints.

M. Navarro et al./Expert Systems with Applications 39 (2012) 7887-7894 7893
w . T .a1=00:16
T
2 @ Information Control Point
GPS B
Control Point 2
QR-CODE
Fig. 2. (a) Selection of the tracking mechanism, (b) example of scanning of a checkpoint, and (c) information obtained from the checkpoint.
Table 2
Execution times for the different system functions.
Functions Asintotic 20 30 40 50 60
Cost X wcet X wcet X wcet X wcet X wcet
analysesResult o(1) >1 1 >1 1 >1 1 >1 1 >1 1
retainResult 0o(1) 201 307 224 307 217 307 232 307 224 307
Search O(n) 271 473 268 473 283 473 265 473 221 473
adaptSolution
obtainSet 0o(m) 0.006 0.02 0.008 0.02 0.010 0.03 0.011 0.03 0.013 0.03
lightPlanner O(mlogm) 0.001 0.1 0.002 0.01 0.003 0.01 0.003 0.015 0.004 0.015
heavyPlanner - 1114 2416 4490 7322 11242
Table 3
Route followed by a security guard under 10 time restrictions.
C.P. Position Distance Arrival LT. End time S.T.
0 (400-500) 206 0 0 33,900 0
20 (200-550) 50 206 630 7030 10
22 (200-500) 36 690 1580 7980 10
24 (230-520) 50 1626 170 6570 10
27 (280-520) 28 1686 120 6520 20
29 (300-500) 50 1734 100 6500 10
30 (250-500) 120 1794 150 6550 10
6 (160-420) 63 1925 2570 8970 20
32 (100-400) 20 2653 3530 9930 30
33 (80-400) 54 3580 4450 10,850 40 Fig. 3. Route calculated from Table 3.
31 (100-350) 50 4544 5410 11,810 20
35 (50-350) 58 5480 6360 12,760 10 obstacles from 15cm to 7m in length. The P3-AT’s powerful
37 (20-400) 20 6428 7310 13,710 20 motors and its four knobby wheels can reach speeds of .8 m per
38 (0-400) 50 7350 8230 14,630 30 d and load of I h dated
39 (0-450) 50 8310 9180 15,580 20 second and carry a payload of up to 12 kg. The P3-AT was up ate
36 (50-450) 30 9250 10,130 16,530 10 with an indoor PTZ camera system and a speech and audio package
34 (80-450) 108 10170 11,060 17,460 20 that permit it to capture information from the environment.
;2 Egg‘ggg; 3; };g? g'g;g 12'228 ?8 The main function of the mobile robots is to navigate by follow-
3 (140-660) 305 13132 14030 20430 10 ing Fhe r‘oute proposed I?y the Planner Agent. While the robot is
1502 14345 moving it can capture images and sounds from the road. The

There are a number of zones that the human guards are unable
to access due to a variety of reasons such as a narrow roads, low
roofs, dangerous areas, etc. Mobile robots were therefore used to
navigate through these difficult zones. The mobile robot model se-
lected in this study to carry out this function is the Pioneer P3-AT.
This model offers an interesting embedded computer option,
which allows for the possibility of onboard vision processing, in
addition to Ethernet-based communications, laser, DGPS, and other
autonomous functions. The P3-AT carries up to three hot swappa-
ble batteries, and optional eight forward and eight rear sonar sense

obtained information will be analyzed by an expert to determine
whether any anomaly in the environment exists.

The next section presents the results and conclusions obtained
after having tested the proposed multiagent system in different
scenarios.

5. Results and conclusions

The system presented in this paper was implemented and tested
in experimental and controlled scenarios and under real time
restrictions. The tests included various simulations with varying
configurations of the control points and a fixed number of security

7894 M. Navarro et al./Expert Systems with Applications 39 (2012) 7887-7894

guards. This allowed us to compare the behavior of each of the algo-
rithms and to estimate the execution time. Table 2 shows the re-
sults obtained for the different configurations, with the case
memory limited to 50 plans. Each of the different functions was
executed 1000 times with the following results: where n is the
number of elements in the data base, m is the number of control
points. All of the times are given in nanoseconds, except for those
in the adaptSolution, which are milliseconds.

In a first step, the operation of the sub-symbolic model applied
in the reuse phase of TB-CBP-BDI was checked. The model was
implemented through sub-symbolic ANNs. Table 3 represents the
plans scheduled by the neural network after the checkpoints had
been divided. Table 3 gives a description of a sample surveillance
route for a security guard. It also identifies the control point (CP)
to visit, the location of the control point (coordinates), the distance
between the current and the next control point, the accumulated
time from the initial control point, the start time (IT), which repre-
sents the earliest time to check the control point (i.e., the control
point can’t be checked prior to this time), the end time (FT), which
represents the maximum time allowed for the arrival, and finally
the service time (ST). The default upper limit is comprised of half
of the working shift, 14,400 (4 = 3600). To simplify the results,
we established that the speed at which the guards move is 1 m/s.
The final distance obtained is 1502 m. The result obtained by light-
Planner prior to applying heavyPlanner was 2237 m. Fig. 3 provides
a graphical representation of the route calculated by heavyPlanner.

For all of the tests performed, the real time agent was capable of
finding a plan within the deadline assigned for the task. This time
fluctuated within a range of values that included the minimum
time required to execute the TB-CBP-BDI algorithm, in which the
heavyPlanner function is not executed, and a value greater than
the maximum execution time provided by the heavyPlanner. Lesser
times are disregarded because the execution time would be greater
than the imposed time restrictions.

It is possible to determine the number of security guards needed
to cover an entire area with routes so that human resources are
optimized. In addition, the system provides the supervisors with
relevant information to monitor the worker$ activities, and to
detect incidents in the surveillance routes automatically and in real
time. The system presented in this study can be easily adapted to
other categories of workers and other scenarios with similar char-
acteristics. In this way, we believe that our approach can be very
useful in industrial and manufacturing scenarios, where scheduling
work shifts and accomplishing tasks are critical factors for improv-
ing the performance of the overall system. This approach may be a
very appropriate application for environments where automatic
re-planning is required and temporal constraints, such as robotic
systems, reconfigurable factories or virtual organizations, are
imposed. That is our next challenge.

Acknowledgments

This development was supported by the JCYL SA071A08 project.
The Spanish government (TIN2009-13839-C03), FEDER and CON-
SOLIDER-INGENIO (2010 CSD2007-00022).

References

Bajo,]J., De Paz,]. F., De Paz, Y., & Corchado, J. M. (2009). Integrating case-based
planning and RPTW neural networks to construct an intelligent environment
for health care. Expert Systems with Applications, 36(3-2), 5844-5858.

Bratman, M. (1987). Intention, plans and practical reason. Center for the Study of
Language and Inf.

Carrascosa, C., Bajo,]., Julian, V., Corchado, J. M., & Botti, V. (2008). Hybrid multi-
agent architecture as a real-time problem-solving model. Expert Systems with
Applications, 34(1), 2-17.

Corchado, J. M., & Laza, R. (2003). Constructing deliberative agents with case-based
reasoning technology. International jJournal of Intelligent Systems, 18(12),
1227-1241.

Dantzig, G. B., Fulkerson, D. R., & Johnson, S. M. (1954). Solution of a large-scale
traveling-salesman problem. Operations Research, 2, 393-410.

De Paz, J. F.,, Rodriguez, S., Bajo, J., & Corchado,]. M. (2009). Mathematical model for
dynamic case based planning. International Journal of Computer Mathematics, 86,
1719-1730.

Dean, T., & Boddy, M. (1988). An analysis of time-dependent planning. In
Proceedings of the 7th national conference on artificial intelligence (pp. 49-54).

Glez-Bedia, M., & Corchado, J. M. (2002). A planning strategy based on variational
calculus for deliberative agents. Computing and Information Systems Journal,
10(1), 2-14.

Inology (2005). Press note, June 9th. Available from: <http://www.control
detiempos.com/sala_de_prensa.htm#absentismo>.

Jennings, N., & Wooldridge, M. (1998). Applications of intelligent agents. Queen Mary
& Westfield College: University of London.

Julian, V., & Botti, V. (2004). Developing real-time multi-agent systems. Integrated
Computer-Aided Engineering, 11, 135-149.

Kohonen, T. (2001). Self-organising maps. Springer-Verlag.

Kolodner,]J. (1993). Case-based reasoning. New York: Morgan Kaufmann.

Leung, K. S., Jin, H. D., & Xu, Z. B. (2004). An expanding self-organizing neural
network for the traveling salesman problem. Neurocomputing, 62, 267-292.
Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-

salesman problem. Operations Research, 21, 498-516.

Martin, Q., Santos, M. T., & Paz, de Y. (2005). Operations research: Resolute problems
and exercises. Pearson.

Partalas, 1., Feneris, I., & Vlahavas, 1. (2008). A hybrid multiagent reinforcement
learning approach using strategies and fusion. International Journal of Artificial
Intelligence Tools, 17(5), 945-962.

Rosenkrantz, D. E., Stearns, R. E., & Lewis, P. M. (1977). An analysis of several
heuristics for the traveling salesman problem. SIAM Journal on Computing, 6(3),
563-581.

Saenz, E., Aztiria, A., Garcia, C.,, Arana, N., Izaguirre, A., & Fillatreau, P. (2008).
Forming processes control by means of artificial intelligence techniques.
Robotics and Computer-Integrated Manufacturing, 24(6), 773-779.

Spalazzi, L. (2001). A survey on case-based planning. Artificial Intelligence Review, 16,
3-36.

Stankovic, J. A. (1998). Misconceptions about real-time computing: A serious
problem for next-generation systems. IEEE Computer, 21(10), 10-19.

Wooldridge, M., & Jennings, N. R. (1995). Agent theories, architectures, and
languages: A survey. Intelligent Agents, 1-22.

Zheng, Y., Wang, J., & Xue, J. (2009). A team based supply chain management
agent architecture. International Journal of Artificial Intelligence Tools, 18(6),
801-827.

