Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 39, Issue 8, 15 June 2012
E S

ELSEVIER

Expert
Systems

with
Applications

An International
Journal

Editor-in-Chief
Jay Liebowitz

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Expert Systems with Applications 39 (2012) 7536-7545

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier.com/locate/eswa

Improving the security level of the FUSION@ multi-agent architecture

Cristian I. Pinzén?, Juan F. De PazP, Dante I. Tapia®, Javier Bajo “*, Juan M. Corchado®

2 Universidad Tecnologica de Panamd, Campus Metropolitano «Dr. Victor Levi Sasso», Via Ricardo J. Alfaro, P.0. Box 0819-07289 Panamd, Panama
b Departamento de Informdtica y Automdtica, Universidad de Salamanca, Plaza de la Merced, s/n, 37008 Salamanca, Spain
€Facultad de Informdtica, Universidad Pontificia de Salamanca, Compaiiia 5, 37002 Salamanca, Spain

ARTICLE INFO ABSTRACT

The use of architectures based on services and multi-agent systems has become an increasingly impor-
tant part of the solution set used for the development of distributed systems. Nevertheless, these models
pose a variety of problems with regards to security. This article presents the Adaptive Intrusion Detection
Multi-agent System (AIDeMaS), a mechanism that has been designed to detect and block malicious SOAP
messages within distributed systems built by service based architectures. AIDeMaS has been imple-
mented as part of FUSION@, a multi-agent architecture that facilitates the integration of distributed ser-
vices and applications to optimize the construction of highly-dynamic multi-agent systems. One of the
main features of AIDeMasS is that is employs case-based reasoning mechanisms, which provide it with
great learning and adaptation capabilities that can be used for classifying SOAP messages. This research
presents a case study that uses the ALZ-MAS system, a multi-agent system built around FUSION@, in

Keywords:

Service-oriented architectures
Multi-agent systems

Security

Case-based reasoning

order to confirm the effectiveness of AIDeMasS. The preliminary results are presented in this paper.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The last several years have witnessed a rapid growth in service
oriented architecture systems in such fields as e-commerce (He &
Leung, 2002), the government (Elsas, 2003), e-business (Chung,
2008), education (Vossen & Westerkamp, 2003), and health (Hori
& Ohashi, 2005), among others. Service oriented architectures pro-
vide benefits for distributed data handling, but their implementa-
tion has incited a surge in security related problems.

The security problems inherent in these environments are
rooted in the use of new and open standards that were developed
without taking security needs into account (Pulier & Taylor, 2005).
Different security specifications subsequently appeared for Web
Services, such as WS-Security (Nadalin, Kaler, Monzillo,
& Hallam-Baker, 2006), WS-SecurityPolicy (Della-Libera et al.,
2005), WS-Trust (Anderson et al., 2004a), WS-SecureConversation
(Anderson et al., 2004b), etc. However, all of these specifications
focus on the aspects of message integrity and confidentiality, and
user authentication and authorization. None of them directly
addresses a way to ensure the availability of web services that
can deal with the risk of external attacks. A common type of attack
at the service-oriented level of an architecture is the denial of
service (DoS) attack. The high level of occurrence of DoS attacks
is due to the fact that XML-encoded SOAP messages, which are

* Corresponding author. Tel.: +34 923 277100; fax: +34 923 277101.
E-mail addresses: cristian_ivanp@usal.es (C.I. Pinzén), fcofds@usal.es (J.F. De
Paz), dantetapia@usal.es (D.I. Tapia), jbajope@upsa.es (J. Bajo), corchado@usal.es
(J.M. Corchado).

0957-4174/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2012.01.127

used for communication, must be parsed in the server. This opens
the possibility of an attack if the messages themselves are not well
structured or if they include some type of malicious code.
Resources available in the server (memory and CPU cycles) of the
provider can be drastically reduced or exhausted while a malicious
SOAP message is being parsed. These attacks are critical in that
they compromise the availability of services and resources
(Gruschka & Luttenberger, 2006), rendering them inoperative for
legitimate users.

This paper presents the Adaptive Intrusion Detection Multi-
agent System (AIDeMaS), a novel mechanism for detecting and
preventing DoS attacks that has been integrated into FUSION@
(Flexible Users and Services Oriented multi-ageNt Architecture)
(Corchado, Tapia, & Bajo, 2009). FUSION@ proposes a new and
easier method to develop distributed intelligent ubiquitous
systems, where applications and services can communicate in a
distributed way with intelligent agents, even from mobile devices,
regardless of time and location restrictions. It is important to note
that FUSION@ did already include a security component within its
structure consisting of an agent specialized in evaluating all
incoming messages and determining their reliability. However,
the security method employed by this agent is limited in scope,
as the agent lacks the ability to evolve when dealing with either
new and more complex attacks or a variation in known attack
patterns, thus making available services vulnerable to attack. Given
the limitations that exist in the current security system in
FUSION@, the AlDeMaS system is now proposed as a model for
the detection and prevention of attacks. AIDeMasS has evolved from
previous research in SQL injection attacks (Bajo, Corchado, Pinzén,

C.I. Pinzon et al. / Expert Systems with Applications 39 (2012) 7536-7545 7537

Paz, & Pérez-Lancho, 2008; Pinz6n, De Paz, & Bajo, 2008) where a
multi-agent architecture SQLMAS was developed. AlDeMasS is
based on a group of agents specially designed to work together
intelligently and adaptively to solve the problem of the reliability
of SOAP messages sent in service requests. The core of AIDeMaS
is a classification mechanism that incorporates a two-phase strat-
egy to classify SOAP messages. The first phase applies an initial fil-
ter for detecting simple attacks without requiring an excessive
amount of resources. The second phase involves a more complex
process that ends up using a significantly higher amount of re-
sources. In this way, a two-phase strategy improves the overall re-
sponse time of the classification mechanism. Each of the phases
incorporates an intelligent agent that integrates a CBR engine with
advanced classification capabilities.

The idea of a CBR mechanism is to exploit the experience gained
from similar problems in the past and then adapt successful solu-
tions to the current problem. The CBR engine initiates what is
known as the CBR cycle, which is comprised of four stages (Aamodt
& Plaza, 1994). The approach presented in this paper proposes a
classifier agent for the first phase (Classifier F1 Agent) that incorpo-
rates a classification strategy based on a Naives Bayes classifier,
and a classifier agent for the second phase (Classifier F2 Agent) that
incorporates a neural network. Each of these classification strate-
gies is incorporated into the respective re-use stage of the CBR cy-
cle integrated into the corresponding agent. As a result, the system
can learn and adapt to the attacks and the changes in the tech-
niques used in the attacks. The model proposed in this study is
innovative, since proposes a new perspective to address the DoS
attacks problem in service oriented architectures. Additionally,
the specific use of FUSION@ allows for a notable improvement in
the security system initially presented. The model is not intended
to replace the existing security solutions, but to be established as
an additional layer to existing security measures, providing ad-
vanced knowledge that can support the decision making process
in those cases where the security and availability of the service
information are at risk.

The remainder of the paper is structured as follows: Section 2
presents a general description of the FUSION@ architecture. Sec-
tion 3 focuses on the limitations of the current security problems
found in FUSION@; Section 4 presents the new security mechanism
in detail. Section 5 describes a case study using an application that
incorporates FUSION@. Finally, the final results and conclusion are
presented in Section 6.

2. FUSION@ description

FUSION@ (Corchado et al., 2009) is based on agents with such
characteristics as autonomy, reasoning, reactivity, social abilities,
pro-activity, mobility, organization, etc. that allow them to cover
several needs for distributed environments. FUSION@ combines a
services-oriented approach with intelligent agents (Brena,
Aguirre, Carlos, Ramirez, & Leonardo, 2007) to obtain an innova-
tive architecture that facilitates ubiquitous computation and
communication, and high levels of human-system-environment
interaction. It also provides an advanced flexibility and custom-
ization to easily add, modify or remove applications or services
on demand, regardless of the programming language. Finally,
FUSION@ provides a flexible distribution of resources and facili-
tates the inclusion of new functionalities in highly dynamic envi-
ronments. It also provides the systems with a greater ability to
recover from errors and better flexibility to change their behav-
iour at execution time.

Because the architecture acts as an interpreter, users can run
applications and services programmed in virtually any language,
but they must follow a communication protocol that all applica-

tions and services must incorporate. Another important functional-
ity, which is the result of the agents’ inherent capabilities, is the
ability of the systems developed to utilize reasoning mechanisms
or learning techniques to handle services and applications accord-
ing to context characteristics, which can change dynamically over
time. Agents, applications and services can communicate in a dis-
tributed way, even from mobile devices. This makes it possible to
use resources regardless of their location. It also allows for agents,
applications, services or devices to start or stop separately, without
affecting the rest of resources, which endows the system with an
elevated adaptability and capacity for error recovery.

FUSION@ framework defines four basic blocks: (a) Applications
represent all the programs that can be used to exploit the system
functionalities. They can be executed locally or remotely. (b) Ser-
vices represent the activities that the architecture offers. (c) Agents
Platform is the core of the architecture and integrates a set of
agents, each one with special characteristics and behaviours. In
FUSION@, services are managed and coordinated by deliberative
BDI agents with distributed computation and coordination abili-
ties. (d) Communication Protocol allows applications and services
to communicate directly with the agents platform. The protocol
is completely open and independent of any programming lan-
guage, facilitating ubiquitous communication capabilities. This
protocol is based on SOAP specification to capture all messages
between the platform and the services and applications (Cerami,
2002). The communication among agents in the platform follows
the FIPA Agent Communication Language (ACL) specification.

Fig. 1 shows the basic schema of FUSION@, where all requests
and responses are handled by the agents in the platform. The
agents analyze all requests and invoke the specified services either
locally or remotely. Services process the requests and execute the
specified tasks. Then, services send back a response with the result
of the specific task.

FUSION@ does not include a service discovery mechanism, so
applications must use only the services listed in the platform. In
addition, all communication is handled by the platform, so there
is no way to interact directly between applications and services.
Moreover, the platform makes use of deliberative agents to select
the optimal option for performing a task, so users do not need to
find and specify the service to be invoked by the application. These
features have been introduced in FUSION@ to create secure com-
munication between applications and services. They also facilitate
the inclusion of new services that users can use regarding their
location and application.

FUSION@ is a modular multi-agent architecture, where services
and applications are managed and controlled by deliberative BDI
(Belief, Desire, Intention) agents (Pokahr, Braubach, & Lamersdorf,
2003; Bratman, Israel, & Pollack, 1988; Jennings & Wooldridge,
1995). Deliberative BDI agents are able to cooperate, propose solu-
tions on very dynamic environments, and face real problems, even
when they have a limited description of the problem and few re-
sources available. There are different kinds of agents in the archi-
tecture, each one with specific roles, capabilities and
characteristics. This fact facilitates the flexibility of the architecture
in incorporating new agents. However, there are pre-defined
agents which provide the basic functionalities of the architecture:

o CommApp agent. This agent is responsible for all communication
between applications and the platform. Applications send XML
messages to the agent requesting a service, then the agent cre-
ates a new thread to start communication by using sockets. The
agent sends all requests to the Admin Agent which processes
the request. The socket remains open until a response to the
specific request is sent back to the application using another
XML message. All messages are sent to Security Agent for their
structure and syntax to be analyzed.

7538

e

Q Development Language (Java / C / C++ / Pascal / Net, etc) J

C.I. Pinzon et al. / Expert Systems with Applications 39 (2012) 7536-7545

Y

Services Applications

Interface

3 3 z
= % = Agent
Con@%rv Cor@ﬁ\pp

Agent Agent

Supervisor
Agent Agent Agent

P ———

RETSINA
(KQML)

JADE
(FIPAACL)

Multiagent System Frameworks

Programming Language (Java / C / C++ / Prolog)

Fig. 1. FUSION@ basic schema.

e CommServ agent. Responsible for all communications between
services and the platform. Admin Agent signals to CommServ
Agent which service must be invoked. Then, CommServ Agent
creates a new thread with its respective socket and sends an
XML message to the service. The socket remains open until
the service sends back a response. All messages are sent to
Security Agent for their structure and syntax to be analyzed.
This agent also periodically checks the status of all services to
know if they are idle, busy, or crashed.
Directory agent. Manages the list of services that can be used by
the system. For security reasons (Lauro & Gian Luca, 2007), the
list of services is static and can only be modified manually;
however, services can be added, erased or modified dynami-
cally. The list contains the information of all trusted available
services. The name and description of the service, parameters
required, and the IP address of the computer where the service
is running are some of the information stored in the list of ser-
vices. However, there is dynamic information that is constantly
being modified: the service performance (average time to
respond to requests), the number of executions, and the quality
of the service. This last bit of data is very important for manag-
ing services.
Supervisor agent. This agent supervises the correct functioning
of the other agents in the system. Supervisor Agent periodically
verifies the status of all agents registered in the architecture by
sending ping messages. If there is no response, the Supervisor
agent kills the agent and creates another instance of that agent.
e Security agent. This agent analyzes the structure and syntax of
all incoming and outgoing XML messages. If a message is not
correct, the Security Agent informs the corresponding agent
(CommApp or CommServ) that the message cannot be deliv-

ered. This agent also directs the problem to the Directory Agent,
which modifies the QoS of the service where the message was
sent.

e Admin agent. Decides which agent must be called by taking the
QoS and user preferences into account. Users can explicitly
invoke a service, or can let the Admin Agent decide which ser-
vice is best to accomplish the requested task. If there are several
services that can resolve the task requested by an application,
the agent selects the optimal choice. An optimal choice has
higher QoS and better performance. Admin Agent has a routing
list to manage messages from all applications and services. This
agent also checks if services are working properly to ensure that
QoS is always current.

o Interface agent. This kind of agent was designed to be embedded
in user applications. Interface agents communicate directly
with the agents in FUSION@ so there is no need to employ the
communication protocol, rather the FIPA ACL specification.
The requests are sent directly to the Security Agent, which ana-
lyzes the requests and sends them to the Admin Agent. The rest
of the process follows the same guidelines for calling any
service.

FUSION@ is an open architecture that allows developers to
modify the structure of the agents previously described, so that
agents are not defined in a static manner. Developers can add
new agent types or extend the existing ones to conform to their
projects needs. However, most of the agents’ functionalities should
be modelled as services, releasing them from tasks that could be
performed by services.

Services represent all functionalities that the architecture offers
to users and uses itself. To add a new service, it is necessary to

C.I. Pinzon et al. / Expert Systems with Applications 39 (2012) 7536-7545 7539

manually store its information into the directory list managed by
the Directory Agent. Then, CommServ Agent sends a ping message
to the service. The service responds to the ping message and the
service is added to the platform. A service can be virtually any pro-
gram that performs a specific task and shares its resources with the
platform. These programs can provide methods to access data
bases, manage connections, analyze data, get information from
external devices (e.g., sensors, readers, screens, etc.), publish infor-
mation, or even make use of other services. Developers are free to
use any programming language. The only requirement is that they
must follow the communication protocol based on transactions of
XML (SOAP) messages.

The following section review the limitations of the current secu-
rity issue configured in FUSION@.

3. Security problems in FUSION@

Security is considered an important element within the
FUSION@ architecture because of the significance of the informa-
tion that is exchanged at the service level. As a result FUSION@
incorporates a security mechanism that validates all incoming
messages dealing with service requests. The initial strategy of
FUSION@ is based on incorporating a “Security” agent, which is
responsible for carrying out security-related tasks within the archi-
tecture. The strategy is centered on the role of the Security agent
and its attempt to protect services that are facing potential attacks
hidden within service requests. When a service request (embedded
within a SOAP message) is sent through the available application
interfaces, the CommApp agent receives the SOAP message and re-
sends it to the Security agent for evaluation. The Security agent
carries out a structure and content analysis of the SOAP message
and determines its reliability.

The security mechanism contained within the Security agent is
simple and efficient for known attacks, although it presents a series
of limitations when it comes to protecting the architecture and ser-
vices during a more complex attack. The basic analyzing mecha-
nism evaluates the structure and content of the messages so that
messages containing certain inconsistencies are rejected. The main
problem with this security mechanism is rooted in the fact that the
majority of the attacks made against service based environments
use complex techniques that are difficult to detect with a simple
XML code review found in the SOAP message.

One example of a complex attack directed at service based envi-
ronments is the denial of service attack. DoS attacks may occur be-
cause XML messages must be parsed in the server, which opens the
possibility of an attack if the messages themselves are not well
structured or if they include some type of malicious code. Resources
available in the server (memory and CPU cycles) of the provider can
be drastically reduced or exhausted while a malicious SOAP mes-
sage is being parsed. This attack is successfully carried out when
it manages to severely compromise legitimate user access to ser-
vices and resources. DoS Attacks usually occur when the SOAP mes-
sage either comes from a malicious user or is intercepted during its
transmission by a malicious node that introduces different kinds of
attacks. The following list contains descriptions of some known
types of attacks that can result in a DoS attack, as noted in Loh,
Yau, Wong, and Ho (2006), Yee, Shin, and Rao (2007) and Jensen,
Gruschka, Herkenhoner, and Luttenberger (2007).

e Oversize payload: Reduces or eliminates the availability of a ser-
vice when a message with a large payload is parsed within the
server.

e Coercive parsing: An XML parser can analyze a complex format
and lead to an attack because the memory and processing
resources are being used up.

e Injection XML: The structure of a XML document is modified
with a malicious code.

e SOAP header attack: Some SOAP message headers are overwrit-
ten while they are passing through different nodes before arriv-
ing at their destination.

e Replay attack: Sent messages are completely valid, but they are
sent en masse over short periods of time in order to overload
the service.

Given the existence of complicated techniques such as DoS, the
level of protection provided by the Security agent within the
FUSION@ architecture can be considered somewhat weak and lack-
ing in adaptation capability. Because the attack techniques tend to
evolve quickly, it is likely that the Security agent’s strategy is inca-
pable of automatically adapting to the changes in attack patterns.
As a result, the available services within the architecture can be af-
fected by some type of attack, remaining blocked by the applica-
tions and the users who request them.

In summary, the initial security mechanism incorporated with-
in FUSION@ presents the following limitations:

o It utilizes a mechanism that focuses on evaluating SOAP mes-
sages, which can bottleneck response time during an instance
of high service requests and negatively affect the architecture’s
performance.

e The security mechanism strategy is limited with regards to ana-
lyzing the structure and content of SOAP messages. This strat-
egy can only detect and block a limited number of known
attacks, and cannot handle attacks that are more complicated
in nature.

o Finally, the security mechanism is incapable of adapting to new
attack patterns. This limitation prevents the security mecha-
nism from confronting new attacks or fast-paced changes in
known attack patterns.

4. Improved the security role in FUSION@ with AIDeMaS

The security feature in the FUSION@ architecture has been re-
garded as an important component since its initial design. How-
ever, the initial security mechanism incorporated in FUSION@
presents a series of limitations when facing certain types of more
complicated attacks. Given these limitations and the importance
of protecting information at the architecture level, the AIDeMaS
system was proposed as an extension of the existing security
mechanism.

One very important limitation of the initial security mechanism
is the inability of the Security agent to adapt to the quickly chang-
ing attack patterns or to detect unknown attacks, which can se-
verely compromise its ability to detect and block attacks. In
order to overcome these limitations, AIDeMasS includes adaptation
and learning capabilities based on novel algorithms. Additionally,
the strategy used for carrying out tasks that involve the evaluation
of SOAP messages within AIDeMasS has been proposed from a dis-
tributed perspective. The result is an original security mechanism
that is more robust, dynamic and flexible than what was initially
configured in the FUSION@ architecture. AIDeMaS is based on the
incorporation of a new security block composed of a set of agents
with special capabilities. The new proposed mechanism is based on
our previous research in SQL injection attacks (Bajo et al., 2008;
Pinzoén et al., 2008) which developed a multi-agent SQLMAS archi-
tecture. In this way, some resources are reused and the knowledge
acquired from previous work is adapted in order to provide an evo-
lution of the mechanism proposed.

Fig. 2 presents the integration of AlDeMas in the FUSION@
architecture. As shown in Fig. 2, AIDeMaS is comprised of the

7540

C.I. Pinzon et al. / Expert Systems with Applications 39 (2012) 7536-7545

(Development Language (Java / C/ C++ / Pascal / .Net, etc.)

)

L —
I \
| (Services j (Applications &_) I
| T Interface |
| R vy 4 Agent I
| &'--\x” SOAP SoAP I
| SOAP (f‘, Traffic Agent :
I = 7
8 [JL 3 e |
v Q \ I
I gl
| Com S ; CommApp |
I Agent |
| Classifier
Classifier |
| Supsrvisor Ei Aosnis F2 Agents |
| Agent |
I I@) Admin |
[Agent
I Directory |
| |
) |
l 4 |/
\‘_‘—g_ —-—— == RETSINA [E5 T
i {FIPA ACL) (KQmL) i
i
i e A H
i\ r: Core Agents / Message Transport Protocols b
_________________________________ ’j
e Agent Frameworks/Platforms ,

Programming Language (Java / C / C++ / Prolog)

Fig. 2. FUSION@ basic schema with AIDeMaS incorporated.

Security and Admin agent, both of which were already included in
the FUSION@ architecture, as well as the Traffic agent and two oth-
ers that will function as classifiers: Classifier agent F1 and Classifier
agent F2. AlDeMaS was designed as a two phased classification
mechanism for classifying SOAP messages, as explained by Pinzén
et al. (2008) and Bajo et al. (2008). The first phase applies the initial
filter for detecting simple attacks without requiring an excessive
amount of resources. The second phase involves a more complex
process which ends up using a significantly higher amount of re-
sources. This two-phased strategy improves the overall response
time of the classification mechanism, facilitating a quick classifica-
tion of any incoming SOAP messages that were thought to contain
significant features during the first phase. The second phase is exe-
cuted only for those SOAP messages with complex characteristics
identified as suspicious during the first phase and requiring a more
detailed evaluation. Each of the phases incorporates a CBR-BDI
(Laza, Pavén, & Corchado, 2003) agent with reasoning, learning
and adaptation capabilities.

The following section provides a detailed description of the
characteristics and tasks related to each of the agents that consti-
tute the AIDeMaS platform.

o Traffic agent: This agent has a type of sensor feature that allows
it to identify and capture SOAP messages that have been sent
from external applications and that request a particular type
of service. The agent captures the messages and redirects them
to the Security agent for evaluation.

e Security agent: This agent carries out tasks similar to those
assigned with the original FUSION@ security mechanism. The

agent is in charge of receiving SOAP message that contain ser-

vice requests. It performs a quick analysis of the message, and

the data obtained are sent to the agent at the first phase of
the classification mechanism. With cases that are considered

suspicious, the Security agent submits the XML message to a

more comprehensive syntactic analysis in order to obtain the

necessary data for carrying out the second phase of the classifi-
cation mechanism. There can be more than one Security agent,
depending on the amount of workload.

Classifier F1 agent: This is one of the key agents in the

classification process. These agents initiate a classification by

incorporating a CBR engine that in turn incorporates a Naives

Bayes strategy in the re-use phase. The main goal of this initial

phase is to carry out an effective classification, but without

requiring an excessive amount of resources. There can be more
than one Classifier F1 agent depending on the amount of
workload.

Classifier F2 agent: This agent completes the classification mech-

anism. In order to initiate this phase, it is necessary to have pre-

viously started a syntactic analysis on the SOAP message to
extract the required data. Once the data have been extracted
from the message, a CBR mechanism is initiated by using a Mul-
tilayer Perceptron (MLP) neural network in the re-use phase.

There can be more than one Classifier F2 agent, depending on

the amount of workload.

e Admin agent: In addition to the functions already mentioned in
the FUSION@ architecture, this agent is responsible for oversee-
ing the correct functioning of the classification process and for
coordinating the distribution of tasks.

C.I. Pinzon et al./ Expert Systems with Applications 39 (2012) 7536-7545 7541

4.1. First phase of the mechanism of classification - classifier F1

The main goal of this initial phase is to carry out an effective
classification, but without requiring an excessive amount of re-
sources and time. The initial phase incorporates a Naive Bayes clas-
sifier, mainly due to its low computational costs. As a CBR strategy
is used, it is necessary to define the case structure used by the Clas-
sifier F1 agents. The fields of the case are obtained from the head-
ers of the packages of the HTTP/TCP-IP transport protocol. Table 1
shows the fields taken into consideration to describe the problem.

4.1.1. Retrieve

During this stage, those cases associated with the requested
web service are recovered from the memory of cases. It is neces-
sary to recover the cases for the service and the subnet mask:
Clmffs 7{C]lm€C/C]17CTH>11 C]m*CrH]m} (1)
where ¢; represents the case j and x one of the properties shown in
Tables 1 and 2. In (1), ¢;; represents the case j, service i; ¢j., service j,
mask m. f; represents the function used to carry out the cases selec-
tion. If ¢, = ¢ or #c;, the number of elements of the set is better

than a threshold, 25 by default, then the cases are selected taking
only into account the service.

4.1.2. Reuse

Once the cases in the C.;;, memory have been recovered, the Na-
ive Bayes (Duda & Hart, 1973) classification is applied in order to
estimate the probability that the new case will belong to classes
a, g in the classification of requests. In order to carry out this task,
various types of data were considered, since it is necessary to work
with either continuous variables or a many different categories,
meaning that the Bayes classifier cannot be applied as originally
defined. If it had been, the final probability for each of the classes
would be zero, due to the fact that some of the variables have a
variety of different values.

Table 1

Problem description first phase - classifier F1 agent.
Fields Type Variable
IDService Int i
Subnet mask String m
SizeMessage Int s
NTimeRouting Int n
LengthSOAPAction Int 1
TFMessageSent Int w

Table 2

Case description second phase - classifier F2 agent.
Fields Type Variable
IDService Int i
MaskSubnet String m
SizeMessage Int s
NTimeRouting Int n
LengthSOAPAction Int l
MustUnderstandTrue Boolean u
NumberHeaderBlock Int h
NElementsBody Int b
NestingDepthElements Int d
NXMLTagRepeated Int t
NLeafNodesBody Int f
NAttributesDeclared Int a
CPUTimeParsing Int c
SizeKbMemoryParser Int k

n — X _ ,d. t
P, = P(X H{ o = aj - a) a iscrete "
i=1 < @|X =a) a;continue
f[{ =ajc=g) adiscrete 5
-1 LP(A; > ailc =g) a;continue

where X ={a,1} a and g represent attack and legal and ag; € {s, n, [, w,
P x"}. The attributes are defined in Table 1. n represents the num-
ber of attributes of the case.

4.1.3. Revise

The revise phase considers the different probabilities calculated
during the previous phase. Depending on the probability of
whether the requests will be attack or suspicious, the results and
the corresponding classification are examined. This process is car-
ried out in the following manner:

If % > U, — attack
1

Py
IffTa > U, — legal
Otherwise — suspicious

If the classification is determined to be suspicious, the second phase
of the classification mechanism is initiated.

4.1.4. Retain

Ultimately, a case is only stored if the probability P, o P, is less
than a predetermined threshold. This is because the high probabil-
ity of attack or legal means that the case is similar to other cases
previously stored in the case base. This allows the growth of the
case memory to be kept at a minimum.

4.2. Second phase of the mechanism of classification - classifier F2
agent

The second phase of the classification mechanism is carried out
by the Classifier F2 agents. Because they are CBR-BDI agents, it is
necessary to provide a case description. The fields are extracted
from the SOAP message and provide the case description for the
Classifier F2 agents. Table 2 presents the fields used in describing
the problem for the CBR in this layer.

Applying the nomenclature shown in the table above, each case
description is given by the following tuple:

Cc= (lv m,s,n, 17 u, hv b7 d’ t7f7 a,c, k7 P/C-im~,xpvxr) (4)

For each incoming message received by the agent that requires
classification, we will consider both the class that the agent pre-
dicts and the class to which the message actually belongs. x” rep-
resents the class predicted by the Classifier F2 agents belonging
to the group. x” € X = {a, |, u}; a, | and u represent attack, legal and
undefined, respectively; and x" is the class to which the attack
actually belongs; P/c.;y, is the solution provided by the neural net-
work MLP associated to service i and subnet mask m.

The reasoning memory used by the agent is defined by the fol-
lowing expression: P={py,...,p,} and is implemented by means
of a MLP neural network. Each P; is a reasoning memory related
to a group of cases that depend on the service and subnet mask
of the client. The Multilayer Perceptron (MLP) is the most widely
applied and researched artificial neural network (ANN) model.
MLP networks implement mappings from input space to output
space and are normally applied to supervised learning tasks (Galla-
gher & Downs, 2003). The Sigmoidal function was selected as the
MLP activation function, with a range of values in the interval
[0,1]. It is used to detect if the SOAP message is classified as an at-
tack or not. The value O represents a legal message (non-attack)

7542 C.I. Pinzon et al. / Expert Systems with Applications 39 (2012) 7536-7545

and 1 a malicious message (attack). The sigmoidal activation func-
tion is given by

1
14 e

fx) =

The CBR mechanism executes the following phases:

()

4.2.1. Retrieve

Retrieves the cases that are most similar to the current problem,
considering both the type of service to which the message belongs
and the subnet mask that contains the message.

e Expression (3) is used to select cases from the case memory
based on the type of service and the subnet mask.

Cim=f5(C) = {Cj S C/Cj.i =Cni1i, CGm = Cnim} (6)

e Once the similar cases have been recovered, the neural network
MLP P/c.;;, associated to service i and subnet mask m is then
recovered. If no cases are retrieved or the number of cases is
lower than the threshold, that is 25, the neural network associ-
ated to the service P/c.; is reused.

4.2.2. Reuse

The classification of the message begins in this phase, based on
the subnet mask and the recovered cases. It is only necessary to re-
train the neural network when it has not had previous training. The
entries for the neural network correspond to the case elements s, n,
Lu, h, b, d,t¢f a,c k Because the neurons exiting from the hidden
layer of the neural network contain sigmoidal neurons with values
between [0, 1], the incoming variables are redefined so that their
range falls between [0.2-0.8]. This transformation is necessary be-
cause the network does not deal with values that fall outside of this
range. The outgoing values are similarly limited to the range of
[0.2,0.8] with the value 0.2 corresponding to a non-attack and
the value 0.8 corresponding to an attack. The training for the net-
work is carried out by the error Backpropagation Algorithm (LeCun,
Bottou, Orr, & Miiller, 1998). The weights and biases for the neu-
rons at the exit layer are updated by following equations:
wi(E+1) = wiy () +n(di =y (1 = ypviy)

HWE(E) — wh(E = 1)) 7)
Op(t+1) = 9”()+n(d; =y (1= Yp¥
R(OR(0) — 05(t — 1) (8)
The neurons at the intermediate layer are updated by following

a procedure similar to the previous case using the following
equations:

WE(E+ 1) =wh(t) +n(1 -y)y}

M
X(Z di —y0) (1 =YR)ypwig)x] + p(w ()_Wﬁ(t—])> 9)
k=

R(t+1)= n(=y)yy

M
<kz (A~ Y2) (1= YR)yhwg) + (0P () — "J"’“‘”) 1o

—_

where wﬁj represents the weight that joins neuron j from the inter-
mediate layer with neuron k from the exit layer, t the moment of
time and p the pattern in question. d}, represents the desired value,
¥4 the value obtained for neuron k from the exit layer, y}? the value
obtained for neuron j from the intermediate layer, # the learning
rate and ¢ the momentum. 0} represents the bia value k from the
exit layer. The variables for the intermediate layer are defined anal-
ogously, keeping in mind that i represents the neuron from the

entrance level, j is the neuron from the intermediate level, M is
the number of neurons from the exit layer.

When a previously trained network is already available, the
message classification process is carried out in the revise phase.
If a previously trained network is not available, the training is car-
ried out following the entire procedure beginning with the cases
related to the service and subnet mask, as shown in Eq. (11).

pr = MLP'(Cim) (11)

4.2.3. Revise

This phase reviews the classification performed in the previous
phase. The value obtained by exiting the network y = P¢(c,,1) may
yield the following situations:

e If y > py then it is considered an attack.

e Otherwise, if y < u,, then the message is considered a non-
attack or legal.

e Otherwise, the message is marked as suspicious and is filtered
for subsequent revision by a human expert. To facilitate the
revision, an analysis of the neural network sensibility is shown
so that the relevance of the entrances can be determined with
respect to the predicted value.

4.2.4. Retain

If the result of the classification is suspicious or if the adminis-
trator identifies the classification as erroneous, then the network P/
c.im Tepeats the training by incorporating a new case and following
the BackPropagation training algorithm. Only the neural network
associated to the service P/c.; is trained.

Py = MLP'(Ciim U Cns1) (12)

The next section describes a case study developed to evaluate
the AIDeMasS prototype presented in this paper.

5. Case study: prevention of attacks in geriatric environments

A case study was used to evaluate the efficacy of the integration
of AlDeMaS within the FUSION@ architecture. The ALZ-MAS 2.0
multi-agent system was implemented through FUSION@ and used
to construct a tool for dependent environments (Corchado et al.,
2009). ALZ-MAS 2.0 is an improved version of the existing ALZ-
MAS (ALZheimer Multi-Agent System) solution (Corchado, Bajo,
de Paz, & Tapia, 2007), a multi-agent system aimed at enhancing
the assistance and health care for Alzheimer patients living in geri-
atric residences. The main functionalities in this system include
reasoning and planning mechanisms for scheduling the activities
of the medical staff that are embedded into deliberative BDI agents.
With the use of FUSION@ in constructing ALZ-MAS 2.0, the main
components of the original ALZ-MAS are modeled as distributed
and independent services, releasing the agents from high demand-
ing computational processes such as the planning mechanism for
the nurses’ daily tasks, etc. The agents’ functionalities in ALZ-
MAS 2.0 have been separated and modeled as services. However,
all functionalities are the same in both approaches.

In order to evaluate AlDeMaS, several external applications
available in the ALZ-MAS 2.0 multi-agent system were used. Three
specific services available in ALZ-MAS 2.0 were selected for exter-
nal users. Table 3 lists these services in detail.

The selection of the services shown in Table 3 is based on the
fact that the services are available to all users via the internet
and are accessible from any mobile device, which can cause them
to be vulnerable to different mechanism of DoS attacks. In the case
of the ObtainListDoctors service, there are no entry parameters from
the user interface, since it is an internal service that simply

C.I. Pinzon et al./ Expert Systems with Applications 39 (2012) 7536-7545 7543

Table 3

External services available for the users in ALZ-MAS 2.0.
Input Parameter Type
RequestTreamentPatient(): Consult a treatment for a patient via Internet
IdPatient Int
Start_Time_Treatment Date
Start_Date_Treatment Date
End_Time_Treatment Date
End_Date_Treatment Date
RequestScheduleDoctor(): Consult the agenda of a doctor via Internet
IdDoctor Int
Date_Schedule Date
Time_Schedule Date
RequestAppointment(): Request an appointment with the doctor via Internet
IdDoctor Int
PatientName String
Date_Appointment Date
Time_Appointment Date
Descripcién String

ObtainListDoctors(): Obtain a list of available doctors

provides the list of available doctors to the RequestScheduleDoctor
and RequestAppointment services and, were therefore not consid-
ered during the execution of the tests.

These characteristics were used to establish a controlled testing
environment. The experiments were carried out in two stages; the
first stage was to obtain the test data used for training the classifi-
ers, and the second stage was to evaluate the classification mech-
anism within the FUSION@ architecture. In order to obtain the test
data in the first stage, the Traffic agent was configured to capture
the incoming SOAP messages without redirecting them to the ser-
vices. In order to send the SOAP messages, 5 points (nodes) were
established, from which various requests for selected services were
executed. Each of these nodes belonged to a different network, i.e.,
each node connected to the internet using a different IP and sub-
network mask. In the first stage, each node was configured with
10 requests (SOAP messages) to be sent to each of the three se-
lected services. Each node sent a total of 30 requests so that the to-
tal number of requests made by the five nodes to the three services
was equal to 150 requests. The 30 requests sent by each node,
including legal and malicious (incorrectly formed messages), were
distributed as presented in Table 4. For the second stage of testing,
the number of nodes and services was the same as in the first stage,
but the number of requests was configured at five requests per
node. At this stage, once the requests were captured by the Traffic
agent, they were sent to AIDeMasS to be evaluated and classified. A
total of 75 requests (legal and malicious) were sent to AIDeMas for
evaluation. The distribution of the test data is presented in Table 4.

Table 4
Distribution of requests between the nodes and services for the two stages.

Stage 1 - Data retrieval Stage 2 - Test

Node Legal Malicious Service Node Legal Malicious Service
Node1 9 1 1 Node1 5 0 1
Node1 10 0 2 Node1 5 0 2
Node1 8 2 3 Node1 4 1 3
Node2 6 4 1 Node2 2 3 1
Node2 8 2 2 Node2 3 2 2
Node 2 1 9 3 Node 2 1 4 3
Node3 5 5 1 Node3 3 2 1
Node 3 4 6 2 Node3 2 3 2
Node3 3 7 3 Node 3 3 2 3
Node4 9 1 1 Node 4 4 1 1
Node4 9 1 2 Node 4 5 0 2
Node 4 8 2 3 Node 4 4 1 3
Node 5 4 6 1 Node 5 2 3 1
Node 5 3 7 2 Node 5 3 2 2
Node5 1 9 3 Node5 1 4 3

To conclude the description of the case study, some technical
aspects of the equipment used to conduct the tests will now be
provided. These aspects are an influential factor in the results ob-
tained, since the performance of the system is a critical factor
when assessing this type of approach. The prototype, and more
specifically the classification mechanism, was tested using two
standard PC connected via a 100Mbps Ethernet network, using a
physical switch that was in turn connected to the local network
where the FUSION@ Architecture was installed to capture the SOAP
messages sent by the nodes. Each PC used by the classifiers was an
HP Pavilion Intel Core 2 Duo E7200 with 4GB RAM. The tasks for
the classification mechanism were distributed between the two
PCs.

The following section presents the results and conclusions ob-
tained during the case study tests.

6. Results and conclusions

The AlDeMaS security system incorporated in the FUSION@
architecture that was presented in this research study was evalu-
ated with the data obtained in the case study outlined in Section
5. The objectives of the evaluation of the results were to confirm
the correct functioning of the security system and to confirm the
increase in the efficacy of the FUSION@ architecture in the detec-
tion and prevention of attacks that are hidden in service requests
embedded with SOAP messages. This section will now evaluate,
first of all, the functioning of the classification mechanism pro-
posed in AlDeMasS. Secondly, the impact of the integration of the
AlDeMaS within the FUSION@ architecture, as used in its online
mode, is evaluated. Finally, we will present the conclusions from
the evaluation of the results obtained by AlDeMas in a test case
scenario.

In order to evaluate the initial prototype developed within the
framework of this research project, we first analyzed the data ob-
tained in the first stage of the case study presented in Section 5.
This allowed us to perform an offline analysis to evaluate the clas-
sification ability of AIDeMasS. To do so, we recovered the 150 values
from the first stage of the classification mechanism so that each of
the requests could be classified. In this first phase, 149 of the cases
were used to train the classifier. The classifier was then applied to
the remaining case. This was done in order to facilitate the testing
phase and eliminate the need to manually generate too many at-
tacks since testing the system requires a balance to be maintained
between legal queries and attacks. The second phase of the classi-
fication mechanism was carried out similarly to the first phase, ex-
cept for the crossvalidation that was performed on 10% of the data.
The remaining data were used to train the neural network. The re-
sults obtained for the 150 cases are shown in Table 5, which lists
each of the phases for the classification mechanisms, their corre-
sponding classifier, the total number of messages classified for
each type of attack (Legal, Attack, Suspicious), the number of real
messages, and the number of incorrect classifications.

Fig. 3 shows the results obtained in the first stage of the classi-
fication mechanism (Bayes classifier). Each of the stacked bars rep-
resents one of the messages and is composed of segments. The first

Table 5
Results obtained for the 150 messages evaluated.
Classifier Classification Messages Erroneous
First stage - N. Bayes Attack 52 5 False positive

First stage — N. Bayes Legal 55 2 False negative

First stage - N. Bayes Suspicious 43
Second stage - ANN Attack 16 4
Second stage - ANN Legal 25 0
Second stage - ANN Suspicious 2

7544 C.I. Pinzon et al. / Expert Systems with Applications 39 (2012) 7536-7545

0.9

os

0.7

0.6

0.5

0.3

0.2

01

o

= Real Attack
= Real Legal
B Attack
= Legal

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 S8 61 64 67 70 73 76 79 82 8BS 88 91 94 97 100103106109112115118121124127130133136139142145148

Fig. 3. Naive Bayes classification - first phase.

segment shows the probability that the service request is legal. The
second segment shows the probability that the service request is
malicious and contains an attack. Finally, the last segment repre-
sents whether the column is attack or legal. In the center portion
of Fig. 3 there is an area that contains the suspicious requests. If
the stacked bars for a legal and attack request connect in this area,
then the message is considered suspicious. If the bars are located
outside of this area, then the request is considered to be the type
represented by the highest bar. In the upper portion of Fig. 3, there
is a green colored segment if the original query was legal and violet
if it was not. Looking at Fig. 3 it is possible to determine the re-
quests that were correctly classified: if the request is legal, the blue
vertical bar should exceed the value of 0.6 for the classification to
be correct, otherwise the classification would be erroneous. When
classifying the attack queries, the requests that were considered at-
tacks are those where the blue segment does not exceed a value of
0.4, and the requests that were considered suspicious are those
that come together in the shaded area in the center. If the results
presented in Fig. 3 and Table 5 are analyzed, it is possible to con-
clude that the classification mechanism is very precise, given that
there are only 7 errors in the first phase and 4 in the second phase
of the classification mechanism. These results are particularly valu-
able if one considers that CBR systems function optimally when
they incorporate cases into their memory, and that the experi-
ments in this instance were performed with a limited number of
cases.

In order to further evaluate the impact of AlDeMaS in the
FUSION@ architecture, an online analysis was performed during
the second phase of the case study. It is important to note that
the security mechanism initially incorporated in FUSION@ was
incapable of detecting the attack patterns used in the case study.
In order to perform the online analysis, each of the cases was ana-

Table 6
Results obtained for the 75 new messages evaluated.
Classifier Classification Messages Erroneous
First stage — N. Bayes Attack 20 3 False positive

First stage - N. Bayes Legal 36 1 False negative

First stage — N. Bayes Suspicious 19
Second stage - ANN Attack 12 2
Second stage - ANN Legal 6 0
Second stage - ANN Suspicious 1

lyzed in the order received so that as they arrived they were clas-
sified and introduced into the system. This allowed the number of
cases in the memory of cases to increase while previous cases were
being analyzed. At the end of the study, the final number of cases in
the memory was 203, since 22 of the new cases studied were very
similar to previous cases and were not stored so as to avoid an
excessive increase in the memory of cases. The results obtained
are shown in Table 6, which presents a striking similarity to those
in Table 5.

An analysis of the evolution of the online classifier demon-
strates that if we begin with the 150 cases in the first stage of
the case study, and if each new message is classified with regards
to the other messages, then it is possible to obtain an evolution of
the error rate that corresponds to the increase in the case memory.
In Fig. 4, where the x-axis indicates the number of cases introduced
and the y-axis indicates the error, it is possible to appreciate how
the error rate decreases as the number of cases increases. Fig. 4
also demonstrates the evolution of the average difference between
the value for legal and attack. The average difference between both
output values was initially 0.54, while the final value obtained is
0.77. This makes it possible to reduce the number of suspicious ser-
vice requests and to make a classification with a lower level of
uncertainty. In order to calculate these values, the output values
from the neural network as well as the Bayes classifier were re-
scaled to take values in the interval 0.1-0.9 so that both methods
could be compared as the iterations were applied.

09 4
08
0.7
06 A
05 A

== Mean distance

04 ;
=== Proportion errors

03 4
0.2 4

01 M

L L]

1 4 710131619222528313437404346495255586164677073

Fig. 4. Error rate evolution related to the number of messages.

C.I. Pinzon et al./ Expert Systems with Applications 39 (2012) 7536-7545 7545

6.00E-01

5.00E-01

4.00E-01

3.00E-01 B Mean time

Time\ms

2.00E-01 EEL

1.00E-01

0.00E+00

Naive Bayes N. Network

Fig. 5. Mean execution and worst case estimated time (WCET) of Naive Bayes and
ANN.

Finally, this paper evaluates the average execution time and the
worst case estimated obtained during the experiments for both the
Naive Bayes and the ANN techniques. These two indicators are
shown in Fig. 5. As can be seen in Fig. 5, the average execution time
for the Naive Bayes classifier is notably lower than the average exe-
cution time obtained for the artificial neural network. It is also pos-
sible to observe the worst case estimated time for both techniques,
and how the Naive Bayes classifier provides a too much better
performance for the worst situation.

The AlIDeMaS presented in this paper proposes a new
perspective for detecting and blocking attacks in web service envi-
ronments. Specifically, the use of FUSION@ improves the function-
ality of the mechanism that was previously installed. The results
are promising and allow us to conclude that AIDeMaS can be con-
sidered as a solid alternative to prevent and detect DoS attacks in
service environments. However, there is still much work to do,
especially with regards to checking the validity of our architecture
in heterogeneous real environments. These are our next challenges.

Acknowledgements

This work has been partially supported by the MICINN project
TIN 2009-13839-C03-03

References

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: foundational issues,
methodological variations, and system approaches. Al Communications, 7(1),
39-59.

Anderson, S., Bohren, J., Boubez, T., Chanliau, M., Della, G., Dixon, B., (2004) Web
Services Trust Language (WS-Trust). http://www.ibm.com/developerworks/
library/specification/ws-trust/. Accessed 18 April 2009.

Anderson, S., Bohren,]J., Boubez, T., Chanliau, M., Della-Libera, G., Dixon, B., (2004)
Web Services Secure Conversation Language (WS-SecureConversation) Version
1.1. http://www.msdn.microsoft.com/ws/2004/04/ws-secure-conversation/.
Accessed 18 April 2009.

Bajo, J., Corchado, J. M., Pinzén, C., Paz, Y. D., & Pérez-Lancho, B. (2008). SCMAS: A
Distributed Hierarchical Multi-Agent Architecture for Blocking Attacks to
Databases. International Journal of Innovative Computing, Information and
Control.

Bratman, M. E., Israel, D.]J., & Pollack, M. E. (1988). Plans and resource-bounded
practical reasoning. Computational Intelligence, 4(3), 349-355.

Brena, R. F., Aguirre, J. L., Carlos, C., Ramirez, E. H., & Leonardo, G. (2007). Knowledge
and information distribution leveraged by intelligent agents. Knowledge and
Information Systems, 12(2), 203-227.

Cerami, E., (2002). Web Services Essentials Distributed Applications with XML-RPC,
SOAP, UDDI & WSDL. First Edition O'Reilly & Associates 2002.

Chung, J-Y. (2008) Emerging view of service-oriented computing and applications.
In 12th International Conference on Computer Supported Cooperative Work in
Design (pp. 3-3).

Corchado,]. M., Bajo,]., de Paz, Y., & Tapia, D. L. (2007). Intelligent environment for
monitoring Alzheimer patients, agent technology for health care. Decision
Support Systems, 44(2), 382-396.

Corchado, J. M., Tapia, D., & Bajo, J. (2009). A Multi-Agent Architecture for
Distributed Services and Applications. International Journal of Ambient
Computing and Intelligence - IJACIL, 15-26.

Della-Libera, G., Gudgin, M., Hallam-Baker, P., Hondo, M., Granqvist, H., Kaler, C.,
Maruyama, H., McIntosh, M., Nadalin, A., Nagaratnam, N., Philpott, R.,
Prafullchandra, H., Shewchuk,], Walter, D., Zolfonoon, R., (2005) Web
services security policy language Version 1.0 (WS-SecurityPolicy). http://
www.specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf.
Accessed 20 April 2009.

Duda, R. O., & Hart, P. E. (1973). Pattern Classification and Scene Analysis. New York:
John Willey and Sons.

Elsas, A. (2003). Integration of e-Government and e-Commerce with Web Services.
Electronic Government (Vol. 2739/2003). Heidelberg, Berlin: Springer.

Gallagher, M., & Downs, T. (2003). Visualization of learning in multilayer perceptron
networks using principal component analysis. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 33(1), 28-34.

Gruschka, N., & Luttenberger, N. (2006). Protecting Web Services from DoS Attacks by
SOAP Message Validation. Security and Privacy in Dynamic Environments (Vol.
201/2006). Boston: Springer.

He, M., & Leung, H.-f. (2002). Agents in E-commerce: state of the art. Knowledge and
Information Systems, 4(3), 257-282.

Hori, M., & Ohashi, M. (2005). Applying XML Web Services into Health Care
Management, 38th Annual Hawaii International Conference on System
Sciences, 2005 - HICSS ‘05, IEEE Computer Society, Vol. 6: pp. 155-155.

Jennings, N. R, & Wooldridge, M. (1995). Applying agent technology. Applied
Artificial Intelligence, 9(4), 357-369.

Jensen, M., Gruschka, N., Herkenhoner, R., Luttenberger, N., (2007) SOA and Web
Services: New Technologies, New Standards - New Attacks, Fifth European
Conference on Web Services, pp. 35-44.

Lauro, S., & Gian Luca, F. (2007). Knowledge representation for ambient security.
Expert Systems, 24(5), 321-333.

Laza, R., Pavén, R., Corchado, J. M., (2003) A Reasoning Model for CBR_BDI Agents
Using an Adaptable Fuzzy Inference System, 10th Conference of the Spanish
Association for Artificial Intelligence - CAEPIA-TTIAO3, Springer, Vol. 3040: pp.
96-106.

LeCun, Y., Bottou, L., Orr, G. B., & Miiller, K. R. (1998). Efficient BackProp, Neural
Networks: Tricks of the Trade. Vol. 1524/1998. Berlin | Heidelberg: Springer.
Loh, Y-S., Yau, W-C., Wong, C-T., Ho, W-C., (2006) Design and Implementation of an
XML Firewall, International Conference on Computational Intelligence and

Security, Vol. 2: pp. 1147-1150.

Nadalin, A., Kaler, C., Monzillo, R., Hallam-Baker, P., (2006) Web Services Security:
SOAP Message Security 1.1 (WS-Security 2004). http://www.oasis-open.org/
committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.
Accessed 21 April 2009.

Pinzén, C., De Paz, Y., & Bajo, J. (2008). A Multiagent Based Strategy for Detecting
Attacks in Databases in a Distributed Mode. International Symposium on
Distributed Computing and Artificial Intelligence - DCAI2008 (Vol. 50). Berlin |
Heidelberg: Spring.

Pokahr, A., Braubach, L., & Lamersdorf, W. (2003). Jadex: Implementing a BDI-
Infrastructure for JADE Agents, EXP - in search of innovation (special issue on
JADE) 3(3), 76-85.

Pulier, E., & Taylor, H. (2005). Understanding Enterprise SOA. Greenwich, CT, USA:
Manning Publications Co.

Vossen, G., & Westerkamp, P. (2003). E-Learning as a Web Service, Database
Engineering and Applications Symposium, International IEEE Computer Society.
0242.

Yee, C. G., Shin, W. H., Rao, G. S. V. R. K., (2007) An Adaptive Intrusion Detection and
Prevention (ID/IP) Framework for Web Services, International Conference on
Convergence Information Technology (ICCIT ‘07), IEEE Computer Society, pp.
528-534.

