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This paper describes an approach that uses multi-label classification methods for search tagged learning
objects (LOs) by Learning Object Metadata (LOM), specifically the model offers a methodology that illus-
trates the task of multi-label mapping of LOs into types queries through an emergent multi-label space,
and that can improve the first choice of learners or teachers. In order to build the model, the paper also
proposes and preliminarily investigates the use of multi-label classification algorithm using only the LO
features. As many LOs include textual material that can be indexed, and such indexes can also be used to
filter the objects by matching them against user-provided keywords, we then did experiments using web
classification with text features to compare the accuracy with the results from metadata (LO feature).
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1. Introduction

The concept of reusable learning objects has evolved into a cen-
tral component within the current context of e-learning. Chiappe,
Segovia, and Rincon (2007) recently described a learning object
(LO) as a digital, self-contained and reusable entity with a clearly
instructional content, containing at least three internal and editable
components: content, learning activities, and elements of context.
Additionally, LOs should have an external information structure,
the metadata, which can facilitate its identification, storage and
retrieval. Given this definition, it is possible to arrive at a certain con-
sensus regarding LOs: they must be a minimal content unit (self-
contained) that intends to teach something (instructional purpose)
and can be reused (reusability) on different platforms without any
compatibility problems.

A study by Bauer and Stefan (2008) pointed out that for admin-
istration and exchange of LOs, meaningful metadata are required.
Typically, learning material is not limited to text, but includes mul-
timedia content, such as images, audio and video. Metadata not
only describe the content, but also refer to e.g. didactical methods,
domain of usage and relationships to other LOs (Motelet, Baloian, &
Pino, 2006). ‘‘The feasibility of the LO paradigm strongly depends
on having efficient mechanisms for retrieving relevant LOs for each
application context. This can be achieved by tagging LOs with
metadata, which will allow for cataloging and classifying them’’
(Sierra & Fernández-Valmayor, 2008).

Currently, web sites have introduced a number of innovative
techniques, known as Web 2.0 that allows its users to interact with
ll rights reserved.
others to exchange content, in contrast to non-interactive Web
sites where users are limited to passive viewing information. These
techniques have changed the way people create, share and orga-
nize information on the Web, encouraging the active involvement
of end users. The advent of Web technologies allowing for large
numbers of users to participate in content production, sometimes
termed ‘‘collective intelligence’’ by OReilly (2008) emerging from
the contribution of many has been discussed as a promising
phenomenon that requires further investigation. The gaining,
recovering and classification of LOs for each application context
can be achieved by tagging LOs with metadata: the annotation of
LOs could be moved from few authors to a potentially much larger
number of users with what has come to be called ‘‘collaborative
tagging’’ (Bauer & Stefan, 2008).

This paper describes an approach that uses multi-label classifi-
cation methods for searching LOs tagged by Learning Object Meta-
data (LOM) (IEEE-LTSC, 2002), specifically the model offers a
methodology that illustrates the task of multi-label mapping of
LOs into types queries through an emergent multi-label space,
and that can improve the first choice of learners or teachers. In
order to build a model to classify and catalog the LOs in types que-
ries, the paper also proposes and preliminarily investigates the use
of multi-label classification algorithm using only the LO features.
As many LOs include textual material that can be indexed, and
such indexes can also be used to filter the objects by matching
them against user-provided keywords, we then did experiments
using web classification with text features to compare the accuracy
with the results from metadata (LO feature).

This paper is structured as follows: Section 2 explains the main
concepts and characteristics that establish LOs as the fundamental
base within the current context of web-based e-learning. In
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Section 3, we present the tagging for LOs. Section 4 provides some
background information on the problem of multi-label classifica-
tion, the details of the dataset used in this paper and experimental
results comparing the two multi-label classification algorithms. In
Sections 5 and 6 we present the results of experiments on two
datasets: using web classification with text features and metadata
(LO feature), to compare the accuracy of the results. We conclude
with Section 7, which explains some of the more relevant aspects
and Section 8 the future work.
2. Current context of e-learning

Existing LO standards and specifications focus on facilitating the
search, evaluation, acquisition, and reuse of LOs so that they can be
shared and exchanged across different learning systems. The most
notable standards used for LOs with metadata are: DublinCore
(DCMI, 2007) and, most importantly, the IEEE-LOM (IEEE-LTSC,
2002). Since 2002, the Learning Object Metadata (LOM) has been
the standard for specifying the syntaxes and semantics of LOM. It
uses a hierarchical structure that is commonly coded in XML, and
includes element names, definitions, data types, taxonomies,
vocabularies, and field lengths. LOM are focused on the minimal
set of attributes needed to allow these LOs to be managed. Though
the predefined metadata schemas are very valuable for enabling
interoperability, they have several shortcomings that hinder their
practical application, e.g. creators can be lost in huge and gen-
eral-purpose catalogs of metadata, particular domain aspects that
are not adequately addressed, etc. (Sierra & Fernández-Valmayor,
2008).

LOs are placed inside learning object repositories (LOR), in an
attempt to facilitate their reusability so that they can be more eas-
ily stored and retrieved. The LOR are highly heterogeneous, each
one with a different storage system, query methods, etc. As noted
in Brinker, Fürkranz, and Hüllermeier (2006) the search for LOs is a
challenging task of e-learning. The continual research in search
systems, the ability to create standardized and interoperability
processes that can be applied to recovering LOs has made it possi-
ble to formalize search and retrieval processes for LOs in different
repositories. However, it is difficult to obtain a semantic interpre-
tation of the content of these LOs.

Semantics are gaining importance in the context of e-learning,
in which the conceptual structure of LO content is an essential part
of learning material. Losing conceptual information content
implies the inability to integrate the concepts to learning, which
is very important in order to understand any topic in a particular
area. The LOR initiative in its current state does not provide such
semantics, it only provides descriptions for the resources and says
nothing about how to present resources to users in a conceptually
clear way. It is necessary to provide semantic information for the
user and to use ontologies that highlight the LO structure.

In addition, LOs must also provide educational information that
specifies the type of cognitive activities in which students will be
involved and the teaching–learning strategies associated with
LOs, so that domain concepts can be transferred effectively to
student.

Goarany, Kulczycki, and Blake (2010) considers the tag cloud as
a lightweight form of ontology that can be used to index services
and consequently retrieve services that match a user query, thus
we thought these can be used in a pedagogical meaning in retriev-
ing LOs. The tag-based clustering technique is proposed for estab-
lishing a similarity between services based on similarities between
their tag clouds. To achieve the LO clustering, each object must be
tagged with descriptive metadata or information about that
resource in order to be easily located and later retrieved from
repositories. The problem is that there are no easy or automated
ways of tagging these objects. LOs are tagged according to personal
criteria that have been considered most appropriate by the editor
or teacher. Furthermore, repositories have a lack of basic character-
istics that are expected of any general search engine, such as clas-
sification tasks, sorting results, the use of different filtering
techniques (such as the collaborative technique), the automated
management of repositories and the extraction of statistics that
serve to improve the global query process.
3. Using tagging for LOs

A tag is simply a word you use to describe a Web resource; tags
are the most popular terms with which the user describes these
resources. Therefore tags promise to be a unique source of infor-
mation about the similarity between resources, a common form
of navigation and organization of these resources. The tagging is
made from the emergence of social software applications such as
Delicious and Flickr. A study by Begelman et al. (2006) pointed
out that tagging is a great collaboration tool. Tagging seems to be
the natural way for people to classify objects as well as an attrac-
tive way to discover new material. A lot of current systems for
information discovery, make use of this technology for automatic
classification of Web resources. Though the amount of data that
are used on the Web is abundant, these usually are not labeled.
This is a major obstacle to learning methods. Additionally, most
learning systems that are used on the Web are more interested
in user preferences than in Web content. According to Hassan-
Montero and Herrero-Solana (2006) ‘‘tagging is not only an indi-
vidual process of categorization, but implicitly it is also a social
process of indexing, a social process of knowledge construction’’.

The tendency towards lightweight, easily accessible mechanism
for ontology and metadata creation is best evidenced by the recent
appearance of folksonomies (Mika, 2005). Users share their re-
sources with their tags, generating an aggregated tag-index so-
called folksonomy (also named social tagging mechanism). The
Folksonomy term, coined by Thomas Vander Wal in AIfIA mailing
list, is a one-word neologism that comes from the words taxonomy
and folk. Its basic element of information is a (user, resource, [key-
word]) triple (Cattuto, Loreto, & Pietronero, 2007). The idea of
folksonomy for the LOs, is to allow the users to describe a set of ob-
jects with a set of keywords of their own. In a folksonomy, the
users invent tags, in the form of keywords, or reuse tags invented
by others, to tag these materials (Mathes, 2004). A LO can be asso-
ciated with tagged keywords selected by many users, which pro-
vide enriched semantic features for LO classification. All these
tags reflect the semantics of the LO. According to Sierra and
Fernández-Valmayor (2008) the cataloging mechanism emerges
as a consequence of the collaborative behavior of a community of
users. But the folksonomies, from the perspective of knowledge
representation, have noise, the set of tags lack of consistency and
accuracy. The folksonomies are ambiguous and does not constitute
a shared vocabulary, due to the different uses made by users of the
tags, which have no explicit semantics.

Bauer et al. indicates one alternative solution to reduce the
noise in the set of tags by the systematic separation of generic tags.
Upon the assumption that erroneous tags are specific tags and
hence not part of the generally accepted set of tags, separation
can improve the overall quality of tags. By applying taxonomies,
ontologies or stemming algorithms, the problems of homonyms,
synonyms or plural words can be overcome. Those mechanisms
can be applied as part of an automatically triggered cleaning or
separation process. But Bauer et al. also pointed that a major con-
cern that has been voiced against this solution is that untrained
people cannot achieve the metadata quality that professionally
trained staff reach. However, Surowiecki argues for the superiority



8880 V.F. López et al. / Expert Systems with Applications 39 (2012) 8878–8884
of the wisdom of the crowds which is conceptualized as collective
intelligence, i.e. the ideas of many people bring in a wider variety
compared to one single person (Surowiecki, 2004). Specifically,
for generating metadata a broad spectrum of descriptions is valu-
able, because the community of users of LOs represents the poten-
tial LO seekers as well as several application contexts in which the
LOs are used. Particularly, associations between LOs, topics and
application areas represent the extra value derived from group
intelligence (Weiss, 2005). Typically, users can post free-text
descriptions to Web resources and additionally they can select
from a list of most frequently used descriptions. Thus, more gener-
ic tags used by many people can be distinguished from specific tags
used by a few people (Golder & Huberman, 2005).

Generally, the first group is more interesting for organizations,
because they represent the common agreement within the respec-
tive community and can be used to describe resources, here LOs, on
an institutional rather than an individual level. In that sense, the
number of top-ranked tags can be interpreted as a measure of
the semantic breadth of a resource (Cattuto et al., 2007). But in
order to be useful, it is necessary that the tags converge to a stable
set of generic tags. The idea is to apply a certain threshold as a
criterion for separation in order to filter the set of generic tags to
be used for annotating LOs. A LO can be associated with tagged
keywords selected by many users, which provide enriched seman-
tic features for LO classification. All these tags reflect the semantics
of the LO.

Therefore, the tagging constitutes in principle a way of address-
ing the shortcomings of predefined metadata schemas and a hybrid
solution between the semantic and syntactical approaches used in
the Web.

To solve the problems described, researchers have begun to
seek the underlying structure folksonomies that are statistically
analyzed using tag clouds, tag networks or tag clusters (Rollett,
Lux, Strohmaier, Dosinger, & Tochtermann, 2007). Clusters tags
may suggest how to identify implicit definitions of concepts within
a folksonomy, may be a starting point for automating the extrac-
tion of unstructured formal vocabulary that could be used to
improve recovery of tagged items and help users in the choice of
labels to be used. Begelman et al. (2006) pointed out that ‘‘if we
could automatically and dynamically cluster tags without putting
more burden on the user, we could provide a much stronger ser-
vice. Searching, subscribing and exploring would be much more
effective’’.

The explosive growth of type different LO, especially non-
textual LO, has made the problem of LO classification increasingly
challenging, as such objects often suffer from a lack of easy-
extractable features with semantic information, because there
are no interconnections between them, neither training examples
with category labels. In addition, many LOs have a limited text
description while other objects are unlabeled or have a lot of label
associated. It is therefore desirable to find a way to deal with all
these deficiencies of the LOs to improve the recovering and classi-
fication of LOs. In this paper we did research on social tags and
multi-label classification with the aim of overcoming the above
difficulties of LO.
4. Multi-label classification

In this research what is intended to be demonstrated is that
multi-label classification can be applied to the organization of
LOs to illustrate the idea of using collaborative tagging in finding
a LO between learning materials of different heterogeneous LOR.
According to Tsoumakas, Katakis, and Vlahavas (2010) the learning
from multi-label data has attracted recently significant attention,
motivated by an increasing number of new applications, to name
a few typical like: social network (Mika, 2005; Wu, Zhang, & Yu,
2006), text categorization (McCallum, 1999; Schapire & Singer,
2000; Yang, 1999), semantic annotation of images (Boutell, Luo,
Shen, & Brown, 2004; Zhang & Zhou, 2007), music categorization
into emotions (Li & Ogihara, 2003; Trohidis, Tsoumakas, Kalliris,
& Vlahavas, 2008) and bioinformatic (Diplaris, Tsoumakas, Mitkas,
& Vlahavas, 2005; Roth & Fischer, 2006; Zhang & Zhou, 2006).

In Katakis, Tsoumakas, and Vlahavas (2008) it is indicated that
traditional single-label classification is concerned with learning
from a set of examples that are associated with a single label k
from a set of disjoint labels L, jLj 6 1. If jLj = 2, then the learning
task is called binary classification (or filtering in the case of textual
and web data), while if jLjP 2, then it is called multi-class classifi-
cation. In multi-label classification, the examples are associated
with a set of labels Y # L.

There are two major tasks in supervised learning from multi-label
data: multi-label classification (MLC) and label ranking (LR). We would
like to implement methods that are able to mine both an ordering
and a bipartition of the set of labels from multi-label data. Such a task
has been recently called multi-label ranking (MLR) (Brinker et al.,
2006) and poses a very interesting and useful generalization of
MLC and LR.

Multi-label classification methods can be categorized into two
different groups: (i) problem transformation methods, and (ii) algo-
rithm adaptation methods (Tsoumakas & Katakis, 2007). The first
group of methods are algorithm independent. They transform the
multi-label classification task into one or more single-label classi-
fication, regression or label ranking tasks. The second group of
methods extend specific learning algorithms in order to handle
multi-label data directly.

4.1. Multi-label classification algorithms

We took into account, the resulting view in Trohidis, Tsouma-
kas, Kalliris, Vlahavas, and Multilabel (2008), to compare classifica-
tion algorithms: binary relevance (BR), label powerset (LP), random
k-labelsets (RAKEL) (Tsoumakas & Vlahavas, 2007) and multi-label
k-nearest neighbor (MLkNN) (Zhang & Zhou, 2007; http://lamda.
nju.edu.cn/datacode/MLkNN.htm; Tsoumakas & Vlahavas, 2007).

We used a machine learning method for performing an empirical
evaluation of both algorithms RAKEL and MLkNN based on one mul-
ti-label data set of LOs. We also experimented with machine learn-
ing, in building a multi-label model using a training data set of LOs
and then applying it to a new (unlabeled) data set, in order to obtain
predictions and for new instances classification.

Multilabel classifiers such as RAKEL could be used for the auto-
mated classification of LO collections in multiple types queries
(classes). We have used search for locating LOs by keyword based
upon the metadata’ contents. Such querying capability would be
useful for LO selection in various LOR in the implementation of
LO retrieval systems.

The RAKEL algorithm was selected, as a recent method that has
been shown to be more effective than the first two (Trohidis et al.,
2008). The RAKEL method constructs an ensemble of LP classifiers.
This way RAKEL manages to take label correlations into account,
while avoiding LP’s problems. A ranking of the labels is produced
by averaging the zero one predictions of each model per considered
label. Thresholding is then used to produce a bipartition as well.

MLkNN was selected, as a recent high-performance representa-
tive of problem adaptation methods that is based on k Nearest
Neighbors (kNN) lazy learning algorithm.

4.2. Experimental work

The LO dataset was taken after making 60 queries to different
repositories because according to Ternier et al. (2008) the access

http://lamda.nju.edu.cn/datacode/MLkNN.htm


Table 1
Performance results of each compared algorithm (mean ± std. deviation).

Evaluation criterion RAKEL algorithm MLkNN algorithm

Classification accuracy 0.1862 ± 0.1056 0.0948 ± 0.1056
Hamming loss 0.078 ± 0.0156 0.0864 ± 0.0150
One-error 0.5180 ± 0.0888 0.7029 ± 0.1094
Coverage 10.4075 ± 2.4644 22.0614 ± 2.7271
Ranking loss 0.1766 ± 0.0639 0.4187 ± 0,0519
Average precision 0.5581 ± 0.0738 0.3550 ± 0.0524
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LOs can take advantage of queries upon metadata for selecting the
objects that are most suited to the needs of learners or teachers.

4.2.1. Data set
Here we present the experimental results for a LO dataset,

which contains 253 LO examples, annotated with one or more
out of the 38 labels corresponding to types queries identified by
teachers and pupils as necessary to support their learning discov-
ery activities, such as Programming languages, Algorithm con-
struction, etc. Each LO is described with 1442 features extracted
from the Learning Object Metadata (LOM). Here is a description
of LO.arff data file which was used in the experiments:

Repository: where data was obtained.
Query: used for data obtaining.
Hash: code of learning object.

The remaining fields are counters of the elements of the IEEE LOM
(IEEE-LTSC, 2002), which is if you have an element of the General
Category. There is a description of these items here (http://man-
date.cdlr.strath.ac.uk/graphics/diagrams/IMSMD_Bestv1p3pd2.gif).
The data set format (number of labels, number of features, order of
attributes, etc.) must conform to the format of the training data set
based on the model that was used.

We used the RAKEL classifier from the Java Library for Multi-
Label Learning (MULAN) (Tsoumakas, Vilcek, Spyromitros, & Vlaha-
vas, 2011), to obtain the predictions of a trained model for a data
set with unlabeled instances. For the experiments we followed
the directive that is available on-line in open-source MULAN
system, which consists of three parts:

1. We load the multi-label data set that was going to be used for
training the model. The training data was provided for the LO,
in two text files required by Mulan for the specification of a
multi-label data set: an XML file specifying the names of the
labels (LO.xml), and an ARFF file specifying the actual data
(LO.arff).

2. We created an instance of the learning algorithm that we
wanted to train, in order to build a model and obtain predic-
tions. We created an instance of the RAKEL algorithm.
RAKEL is actually a meta algorithm and can accept any multi-
label learner as a parameter, but is typically used in conjunction
with the LP algorithm. It accepts a single-label classifier as a
parameter. We used the C4.5 algorithm from Weka for this pur-
pose (J48).
RAKEL has three parameters that need to be selected prior to
training the algorithm: (a) the subset size, (b) the number of
models and (c) the threshold for the final output. We used an
internal 10-fold cross-validation on the training set, in order
to automatically select these parameters. The subset size was
varied from 2 to 5, the number of models from 1 to 100 and
the threshold from 0.1 to 0.9 with a 0.1 step. 10 different
10-fold cross-validation experiments were run for evaluation.
The results that follow are averages over these 100 runs of
the different algorithms. The number of neighbors in MLkNN
was set to 10.

3. We trained the classifier using the LO dataset that we loaded
with different LOR (Lornet and Merlot). Two different 10-fold
cross-validation experiments were run for evaluation. The
results that follow are averages over these 100 runs of both
algorithms.

For the empirical evaluation of both algorithms we used the
CrossValidate method of the Evaluator class of Mulan. This returns
a MultipleEvaluation object, which was printed to see the results in
terms of applicable evaluation measures available in Mulan. To
obtain predictions we loaded the unlabeled data instances. The
learner returns an instance of MultiLabelOutput class as a result
of prediction. The results of the learner output contain bipartition
of labels, label confidences and rankings as predicted for given
instances.
4.2.2. Experimental result
According to Tsoumakas, Katakis, and Vlahavas (2009) the eval-

uation of methods that learn from multi-label data requires differ-
ent measures than those used in the case of single-label data. There
are various measures that have been proposed for the evaluation of
bipartitions and rankings with respect to the multi-label data.

Given a multi-label test set Z = {(zi,Zi)k1 < =i <=n}, based on the
study (Zhang, 2009), the following popular multi-label evaluation
metrics can be utilized:

1. Hamming loss.
2. One-error.
3. Coverage.
4. Ranking loss.
5. Average precision.

where z is the test instance (z 2 X), X = Rd is the input space and Z
predicted label set for z (Z # L).

According to Zhang (2009) Hamming loss evaluates how many
times an instance-label pair is misclassified; One-error evaluates
how many times the top-ranked label is not in the set of proper
labels of the instance; Coverage evaluates how many steps are
needed, on average, to move down the label list in order to cover
all the proper labels of the instance; Ranking loss evaluates the
average fraction of label pairs that are reversely ordered for the
instance; Average precision evaluates the average fraction of labels
ranked above a particular label l 2 Z which actually are in Z. Note
that for the first four metrics, the smaller the metric value the bet-
ter the performance. While for Average precision, the bigger the
metric value the better the performance.

We then performed experiments using theses measures to com-
pare both algorithms. Results are displayed in Table 1 which shows
the predictive performance of both competing multilabel classifi-
cation algorithms using these measures. In the case of RAKEL algo-
rithm all metrics significantly outperform the MLkNN algorithm.
Experimental results indicate that not only is the RAKEL algorithm
more efficient in training and testing than MLkNN, but that it also
improves predictive accuracy. Table 1 shows the Classification
Accuracy or Subset Accuracy of both algorithms. We notice that
RAKEL dominates the MLkNN algorithm in this measure.

The results demonstrate that the RAKEL algorithm can be used
to better the classification of LOs in types queries based upon the
metadata contents. Fig. 1 shows how RAKEL separates the LOs
according to their keywords for labeling the LO in types queries.
In addition, Fig. 1 shows the number of examples annotated with
each label. We noticed that based on the ease of predictions we
can rank the labels in the following descending order: L2, L3, L5,
L6, L7, L8, L9, L11, . . . , L38.

http://mandate.cdlr.strath.ac.uk/graphics/diagrams/IMSMD_Bestv1p3pd2.gif
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Fig. 1. Number of examples annotated with each label.

Fig. 2. The ranking for Grammar LO.
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Using an instance of the RAKEL algorithm it has been possible to
make both an ordering and a bipartition of the set of labels from
multi-label data to the MLR task. Fig. 2 shows an example of the
ranking for Grammar LO.
5. Initial experiments of web classification using text features

5.1. Data set

The data set for the initial experimental study contained 1000
examples from two repositories: Lornet and Merlot. For each
example, the title and description were used to extract the text fea-
tures for the classification, and the class labels came from the key-
word field.
Table 2
Performance results.

Class RAKEL MLkNN

Classification accuracy 0.9000 ± 0.1000 0.4000 ± 0.1183
Hamming loss 0.0056 ± 0.0056 0.0333 ± 0.0066
One-error 0.0800 ± 0,0872 0.1700 ± 0.1345
Coverage 0.9300 ± 1.1261 0.7100 ± 0.7778
Ranking loss 0.0547 ± 0.0662 0.0418 ± 0.0458
Average precision 0.9273 ± 0.0793 0.8822 ± 0.0992
5.2. Text feature extraction

From the title and description of the 1000 examples, we
extracted 997 terms (features) after removing stop words and
stemming, which are two widely used text preprocessing methods
in text mining and information retrieval. We used the toolkit of
Mallet (http://mallet.cs.umass.edu/download.php) to process the
data. After the preprocessing, we obtained an example-term
matrix, and each element of the matrix represents the term count
which means how many times a term appears in an example. In
order to prevent a bias towards longer documents, we normalized
the count to term frequency to measure the importance of a term.
5.3. Classification

We used the support vector machine (SVM) with linear kernel as
the classifier to conduct the classification. In order to fairly measure
the performance, we used 10-fold cross validation to examine the
results. In 10-fold cross validation, the 1000 examples were ran-
domly partitioned into 10 subsamples. Of the K subsamples, a single
subsample was retained as the validation data for testing the model,
and the remaining 9 subsamples were used as training data. The
cross-validation process was then repeated 10 times, with each of
the 10 subsamples used exactly once as the validation data. The 10
results from the folds then can be averaged (or otherwise combined)
to produce a single estimation. The advantage of this method over
repeated random sub-sampling is that all observations are used
for both training and validation, and each observation is used for val-
idation exactly once. The average accuracy for the classification
using the 1000 examples is 36%. From the 1000 examples, the fol-
lowing examples are correctly classified: 10, 11, 12, 13, 14, 15, 19,
21, 26, 27, 30, 31, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52,
53, 61, 62, 63, 65, 68, 70, 78, 81, 82, and 84. (The examples are or-
dered based on the same order in the DatasetLOEngR.arff data file.)

6. Initial experiments of LO classification using LO feature
extraction

6.1. Data set

For the experiment, we used the same metadata (LO features)
like in Section 5.1 on the same 1000 examples to perform classifi-
cation using MULAN to compare the accuracy with the results from
pure text features.

6.2. Classification

Table 2 shows the experiment’s classification results using the
LO features, which indicate that the RAKEL algorithm is more effi-
cient than MLkNN in four measures (Accuracy, Hamming Loss,
One-Error, Average Precision). Furthermore, the MLkNN algorithm
significantly outperforms RAKEL in terms of Coverage and Ranking
Loss. The RAKEL algorithm is substantially superior to MLkNN in
Classification Accuracy.

6.3. Observations and discussion

When we looked at the data, we found that the nature of the
data made the prediction task very challenging. We do see some
potential hierarchies in the examples. For instance, we can use
the keywords of the queries as the first layer labels, and the key-
words of these examples can be constructed as the sub-class labels
of the first layer. However, the hierarchical structure of current
examples is not very clear. If we can select some examples whose
keywords contain clear hierarchy information (hopefully more
than 3 layers), then we can perform hierarchical classification/clus-
tering on the data.

http://mallet.cs.umass.edu/download.php
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7. Conclusions

The search and classification of services for educational content,
and specifically LOs, presented in this report constitute the core of
the development of distributed, open computer-based educational
systems. For this reason, the research in this area has been so
active in recent years.

We also tried to utilize a multi-label classification algorithm in
order to build a model to classify and catalog the LOs in types queries.

The RAKEL algorithm was very effective; it significantly outper-
forms all the other compared algorithms in terms of Accuracy,
Hamming Loss, One-Error, Ranking Loss, Average Precision. It
was also proposed for LOs ranking.

When we compared the use classification with text features
with the results from metadata (LO feature), based on classification
accuracy, the multi-label classification algorithms with LO fea-
tures, on the same 1000 examples are substantially superior to
web classification with text features. The average accuracy for
the classification is 36% using text features with respect to the
results using metadata (LO feature). The RAKEL algorithm has a
classification accuracy of approximately 90%.

The web classification with text features will be a good alterna-
tive because many LOs include textual material that can be indexed,
and such indexes can also be used to filter the objects by matching
them against user-provided keywords or tagging. The sorting sys-
tem proposed is also very convenient, given that the LOM standard
does not define a minimal set of fields that a LO must have; this
makes it difficult to evaluate if a LO has a sufficient quality. Using
the feedback provided by the users, from the daily use of the appli-
cation, the multi-classifier goes through a learning process, which
allows it to continually improve its results. Multi-label classifiers
such as RAKEL could be used for the automated annotation of large
LOR collections with multiple LO. This in turn would support the
implementation of LO information retrieval systems that query
LO collections by tags. Such a querying capability would be useful
for LO selection in various applications. These LOs will be processed
according to certain classification criteria that have been personal-
ized and are considered most appropriate for the user.

Therefore this model offers a methodology that illustrates the
task of multi-label mapping of LOs into types queries through an
emergent multi-label space, and that can learn objects ranking tasks
to select learning materials establishing a ranking system for the LOs.
8. Future work

For future work we want to experiment with:

1. From a data collection point of view:
� Obtain more examples with, relatively, a fewer number of

labels. And try to see if we can obtain data with multi-labels
if applicable.

� Obtain more external text information, such as tags and
comments.

� If we can find some examples whose keywords are of hierar-
chical structures, that would be better.

2. Combining these two kinds of features in various ways, for
example, combining features, optimization-based integration.
If hierarchical structures can be constructed, there are also
some methods to ensemble hierarchical clusters.
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