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The following article proposes the implementation of a system based on neural networks of CounterProp-
agation type and intelligent agents for analysis and assessment of the risk of flood caused by rain, in addi-
tion to the implementation of agents in mobile devices for the presentation of alerts. Because as is known,
natural phenomena have always existed, but in recent years as a result of global warming we have seen
that floods are becoming more frequent, which has forced the creation of specialized agencies and intel-
ligent mechanisms to prevent the loss of human lives due to these phenomena.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction the new meteorological values caused by climate change. On the
The Early Warning System (EWS) is the first line of defence for
the most vulnerable population against large-scale natural catas-
trophes. This is the main reason for the development of this appli-
cation Taranis, which uses artificial intelligence in a hydroelectric
structure to provide a better source of information, when the data
of the threats are already known. With this type of system, if cor-
rective measures were taken in time, these catastrophes could be
avoided. If theses preventive measures are not adopted flooding
will occur, as was the case in the Dominican Republic caused by
the tropical storm Olga in 2007, which was based on an outdated
operations manual and limited to a specific period of time for
storms, without taking climate change into account and not taking
the decision to empty the reservoir in time, which caused the
floods in Santiago de los Caballeros in December 2007.

The greatest deficiency in the current EWS is the mechanisms to
alert the public in a rapid, accurate and efficient manner. It is no
use having the best prediction system if there are not any mecha-
nisms to alert the population in case of emergency. At the present
time warning mechanisms on a large scale are carried out through
short text messages to mobile phones. The most representative of
this practice is the United States and Japan. In addition, Chile has
recently begun the implementation of this technology.

In this article we present a tool that has as its objective to use
the capacity of the neural network (NN) pattern recognition, to
predict the volume of precipitation expected at any given time,
information that would be used to create models to predict floods
and provide information to manage the hydroelectric reservoir
in an effective manner to prevent material damage. Another
advantage of NNs used by this system is the ability to adapt to
ll rights reserved.
other hand, the system provides an alternative means of communi-
cation and issuance of massive alerts, through the use of intelligent
agents, which is prepared to handle earthquake, tsunami and wild-
fire alerts, although the current system focuses on alerting against
flooding.

1.1. Early warning systems

The EWS is a tool that consists of a set of mechanisms and pro-
cedures for the detection of hazards, monitoring of indicators,
communication of alerts and alarms and evacuation of vulnerable
populations to safe areas (Lyon & Fletcher, 2001).

The EWS is made up of institutions that are responsible for
assessing natural phenomena through the instrumentation and
broadcasting of alerts to ensure that the institutions of civil society
are responsible for communicating to the civilian population of the
possibility of such an extreme phenomenon occurring and proceed
with the evacuation or procedures to mitigate the losses.

The EWS requires technical knowledge about the threat, what
the causes are and the risks faced by society. This involves knowing
the temporal and spatial behaviour of such phenomena through
the modelling of physical quantities and the development of proce-
dures to make the forecasts that are applied as part of the EWS. In
this context, one looks for precursor signals that may relate to the
likely magnitude of the event.

The issue of the EWS is one of the most commented on today.
International agencies and other developed countries have been
trying to prevent disasters and not only limit themselves to help
once they have happened. We have knowledge of floods since
the beginning of civilization, but as a result of climate change these
are becoming increasingly frequent and aggressive, a situation
which has led to the main organizations for international coopera-
tion to search for alternatives to preserve life and property. This is
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Fig. 1. CPN architecture.
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the reason why the area of Central America and the Caribbean cur-
rently have 19 EWS against floods of a centralized type and 26 of a
decentralized or community type, and the number continues to
rise.

EWS requires 4 basic components (ISDR, 2006), these are:

1. Knowledge of the risks,
2. Technical monitoring and alert service,
3. Communication and dissemination of the alerts,
4. The ability of community responses.

The community EWS as well as the centralized one possess a
great deficiency in the general structure. While the forecasts have
improved the way information is structured to meet requirements,
it turns out to be very expensive and the most of the cases do not
have the 4 elements that an EWS should have.

These systems are implemented with fixed data structures and
do not have the capacity to use new technological advances; on the
other hand, the platforms are closed which increases the costs of
implementation and maintenance; another factor that elevates
the cost is that of communication platforms which are based on
radio.

Another deficiency that the EWS has is that these systems are
mostly used against the threat of flooding, while these countries
have at least 3 other different risks, such as: tsunamis, earthquakes
and volcanic eruptions. Likewise, they do not have mechanisms to
alert the entire population of an area or region at the same time;
the alerts and warnings are directly implemented by relief
agencies.

On the other hand, the ability to integrate of different data
sources is limited. In most cases they are based on forecasts of for-
eign agencies, mainly due to the scepticism meteorological organi-
zations have of the countries concerned in the Central American
area and the Caribbean.

The knowledge of the risk and technical monitoring are the two
basic components of an EWS, for which Taranis use NN to predict
floods, and management of hydroelectric dams. It also offers intel-
ligent mechanisms for communication and dissemination of mass
alerts through agents, which are also supposed to control the read-
ing of the hydrometeorological stations, with which the third
structural of this type of system requirement is met and, likewise,
through the knowledge of the level of risk of each community to
evaluate the main requirements for each case. With the communi-
cation mechanism previously mentioned, you will obtain better
control of the evacuation operations.

2. Neural networks

NNs applied to solve a variety of problems, according to Free-
man and Skapura (1992), is a system of parallel processors con-
nected to each other in the form of directed graph. Schematically
each neuron of the network is represented as a node. These con-
nections provide a hierarchical structure that attempts to emulate
the physiology of the brain, searching for new models of processing
to solve specific problems in the real world. What is important in
the development of the technique of the NN is the useful behaviour
to be learned, recognized and applied between objects and frames
of objects in the real world. In this way, the NNs are used as a tool
to resolve difficult problems.

Several types of NNs are used to solve prediction problems.
These NNs models use supervised learning algorithms. As exam-
ples the BackPropagation model (BP), Radial Basic Function (RBF)
and the CounterPropagation network (CPN) can be cited (Rong-
Kwei & Tzu-Chiang, 2005). These models are used because in most
cases recognizing patterns is required to identify when these facts
or phenomena will occur again before they happen.
The CPN was introduced by Hecht Nielsen (1987) and presents
two types, full and forward-only. The CPN was developed to pro-
vide an efficient method of approximation for a function y = f(x).
The full CPN works best only when there is an inverse function
f�1. Forward-only, designed to achieve an approximation to
y = f(x) when f�1 is not required. The architecture of the forward-
only consists of three layers: input, hidden (Grossberg, 1987;
Kohonen, 1990). The input layer with n nodes stores the input val-
ues, the Kohonen layer (hidden) with p cluster calculates the sim-
ilarity between the input values and the Grossberg layer with m
nodes calculates the output and computes the weighted sum of
the output of the Kohonen layer (Chang & Chen, 2001).

The CPNs have a learning hybrid between the self-organizing
map (SOM) (Kohonen, 1990) and the feed forward neural network
(FFNN) supervised learning network (Lippmann, 1987), and this
hidden layer is trained using the INSTAR algorithm and the FFNN
is trained using OUSTAR algorithm. The Fig. 1 shows the architec-
ture of the CPN network.

The operation of the learning of the layers, is as follows: the in-
put layer data must be normalized or scaled to fit the calculations,
and this is achieved with the following equation:

I ¼ x
kxk ¼

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j¼1x2

j

q ð1Þ

where I is the weight for each input x. Then, each element of the
hidden layer is calculated as:

Neta ¼ I �W

Neta ¼ kIk � kWkcosðHÞ
Neta ¼ cosðHÞ

ð2Þ

In this selection process a vector of the input layer is chosen at ran-
dom, then normalized and entered into the network. The winning
vector is updated according to Rumelhart and Zipser (1985).

DWij ¼
aðXi �WijÞ winning node
0 otherwise

�
ð3Þ

where a is the learning rate, if a > 0,Xi is the ith node of input vector,
and Wij is the weight of the ith input node to the winner node j. The
competitive signal, which is a binary variable assuming a value of
one for the winning node and a value of 0 in all other cases, sent
from the winning node to the Grossberg layer is 1, and the compet-
itive signals sent by the other Kohonen nodes are 0.



Fig. 2. Neural network for forecasting.
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After the weight vector from the input layer to the Kohonen
layer has been determined, the weight vector between the Koho-
nen layer and the Grossberg layer are trained by:

Dpij ¼ ZjbðYk � pijÞ ð4Þ

where Zj is the competitive signal, b is the learning rate, Yk is the tar-
get and pij is the weight of the Kohonen node j to Grossberg node k.
The output of the node k is given by:

y�k ¼
Xp

j¼1

pjkZj ð5Þ

where y�k is the calculated output.
After the CPN is trained, all of the weight will be fixed. Only in-

put data is needed for the model to operate when the CPN is used
for predicting.

3. Taranis application

The development of the application uses the concept of sys-
tems-based agents, because this requires the same to be imple-
mented without the obligatory nature of agents, and in this way
take advantage of the fundamentals of both paradigms (systems-
based agents and multi-agent systems) (Corchado, Tapia, & Bajo,
2012).

3.1. Application of the CPN networks in the prediction of rain

3.1.1. Telemetric network
For the implementation of the system it has a telemetry net-

work consisting of 5 stations located on the river of the Yaque
del Norte (Indhri station, 2010). Table 1 lists the stations, as well
as the geographical position which are as follows.

For the training and testing of NN a data set of was used. The
data for the verification had 9300 records with the values at mea-
surement hydrometeorological stations at the basin of the River
Yaque del Norte in the Dominican Republic. Each record contains
the measurement values of temperature, wind, wind direction, rel-
ative humidity, solar radiation and atmospheric pressure.

The NN scheme for forecasting the volume of expected rain is as
shown in Fig. 2. This has an entry layer with 6 neurons, corre-
sponding to the hydrometeorological variables; a hidden layer
with 30 neurons and an output layer with values that corresponds
to the volume of corresponding rain.

In the original scheme of the CPN the activation function of the
hidden layer uses the competitive function, but this project was
modified to a sigmoid function because the resilient propagation
algorithm cannot be used with the competitive activation function.
This function can only be used when positive output values are ex-
pected because it only produces positive outputs (Heaton, 2010).
The equation for this function is:

f ðxÞ ¼ 1
ð1þ exÞ ð6Þ

The graph scheme of the activation function is shown below in
Fig. 3.
Table 1
List station of network telemetry.

No. Station Latitude Longitude

1 Jarabacoa 331100 2115150
2 Manabao 311130 2108700
3 Santiago 316800 2150750
4 Tavera 320450 2132350
5 Mata Grande 290800 2124650
3.1.2. Reservoir network
A second layer of the NN is responsible for determining the evo-

lution of the reservoir:
In Fig. 4 is the scheme of the NN to determine the incidence of

rainfall in the reservoir. This has an entry layer with 3 neurons, cor-
responding to the variables of the predicted volume of rain, volume
of entry, and level of the reservoir; a hidden layer with 9 neurons
and a layer with an output value that corresponds to the volume
that can be emptied.

3.1.3. Function activation competitive
For the neurons in the reservoir layer activation competitive

was used for the original scheme of neurons. This function is only
used to force the selection of a group of winning neurons. The win-
ning group of neurons is the one with the highest output. This
function first determines the winning neurons. Losing neurons
are matched to zero. The winners may be of equal value. At the
beginning of the function all neurons selected as winners are
tracked. This uses a function of derivation which receives a double
as a parameter (Heaton, 2010). The graphic scheme of the compet-
itive activation is shown in Fig. 5:

The activation function of the input and Grossberg layer use the
linear activation function (Heaton, 2010). This uses a linear equa-
tion, which is shown in Fig. 6:

f ðxÞ ¼ x ð7Þ

Below is the graph of the linear function (Heaton, 2010).

3.2. Structure of the application

The application’s architecture is based on layers, each indepen-
dent of the other which makes it highly scalable and interoperable.
Fig. 3. Sigmoid activation function scheme.



Fig. 4. Neural network for reservoir.

Fig. 5. Competitive activation function scheme.

Fig. 6. Linear activation function scheme.
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Each layer is responsible for performing a function which together
complement the system. The structure is based on a modification
of the model of three layers of software architecture; these are:
data layer, services layer (Web, sensors) and presentation layer
(Web, Windows and agents).

Two graph interfaces based on Windows and Web are necessary
because due to the time that the training of the network requires, it
is not possible to do it in a Web environment.

In Fig. 7, shows the diagram of the application, and in this the
sensors of the weather stations are read by the agents and the
information is sent to the server database through the web service.
This information is processed by the server model and if there is a
level of warning, it notifies about the possibility of danger. If you
reach the level of alert allows you to publish the alert in the web
application and send alerts to mobile devices that have agents
and which are specified.

In addition to data from the sensors model generation applica-
tion, it loads the data from the NOAA (NOAA, 2009) files containing
the prediction about the rainfall expected in 6 h and relates these
two data source with data from the SCADA which provides infor-
mation on the levels of the central and the volume of incoming
water to the reservoir.

Likewise, from the implementation of model generation you can
acquire information from the states of the sensors of the stations,
and check the state of the agents.
3.3. Intelligent agents in mobile application

The technology used by some countries issuing alerts is cell
broadcast services (CBS). This technology presents several prob-
lems, the main one being the cost of implementation. Therefore,
on the one hand, it is necessary to expand the capacity available
to the telephone companies for the sending of mass messages. An-
other drawback is that it requires special operation companies.

The mobile alert system is based on intelligent agents that are
incorporated into equipment with Android Operating Systems,
but can be incorporated into equipment with Connected Device
Configuration (CDC) or Mobile Information Device Profile (MIDP)
Java and Windows Mobile. The implementation of this platform
would eliminate another drawback of the Short Message Service-
Cell Broadcast (SMS-CB) technology, which is the limitation of
160 or 170 characters in messages. Presented in this way it is a
more usable platform and with features for people with disabilities
who can take advantage of technological advances in mobile tele-
phony, such as the incorporation of new sensors.

Although the application of the NN presented in this paper cor-
responds to a flood warning EWS, the mobile application is ready
to handle other types of alerts such as earthquakes, tsunamis or
forest fires. Fig. 8, shows the types of alert managed.

It is necessary to indicate that mobile agents can be upgraded to
expand the options available for users and can use new technolo-
gies that can be incorporated to mobile phones, for example, the
reading of Bluetooth or WI-FI sensors. It even offers the possibility
of interaction with other intelligent agents and work in a collabo-
rative way.

This version of the application is available in the following lan-
guages; English, Spanish, French, Italian, Japanese, Portuguese.

3.4. Alert levels

It is the level that represents the degree of certainty of an ex-
treme event occurring. In the implementation of alerts, in addition
to images, they use colors to further help the user to discern the le-
vel of alert that is being shown. For this purpose the following
scheme has been established.

1. Normal (Green or Grey)Status of a normal situation.
2. Warning (Orange)

The basin has a sign of abnormality in the channel or existence
of the possibility of an event that could cause an emergency and
require a warning to the User Control type to start the process
of emergency. In some phenomena such as earthquakes, it can
pass from Grey to Red Alert, due to the characteristics and the
greater need for speed in response.

3. Alert (Red or Brown)
Confirmation of the emergency, beginning of the recovery pro-
cess before disasters.

3.5. Usability options

The application presents an icon at the top, indicating the status
of the application at all times. In addition, to achieve a correct dis-
play, the images have been defined for three screen sizes, depend-
ing on the dpi of the same which are High Dots Per Inch (HDPI),
Medium Dots Per Inch (MDPI), Low Dots Per Inch (LPDI) (Android
developers, 2011).

The colors selected have been chosen taking into consideration
the colors that can be seen by persons with disorders in the iden-
tification of the colors (colorblind people). According to the re-
search on the problems of colorblind people there are two major
groups, those who confuse red and green colors, and those who
cannot distinguish blue.



Fig. 7. System architectures.

Fig. 8. Types of alerts available.
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Being aware that persons with disabilities should be taken into
account in moments of warnings and alerts. In addition to modify-
ing colors of alert level standards so that people with color recog-
nition problems can efficiently receive messages, functions to
translate the text content to voice messages and an outline of
vibration will be incorporated. Thus people with visual disabilities
can be kept informed.
Table 2
Description data test.

Data type Station audubon Error

Training data 86,468 0.009979
Evaluation data 37,059 1.005134
4. Experiments and result

The first evaluations of the NNs were carried out using the data
from the hydroclimatic stations in Santiago, Taveras, Jarabacoa and
Manabao, which are located in the basin of the Yaque del Norte riv-
er. Data was extracted from the information system in real time
the Instituto Nacional de Recursos Hidraulicos (INDRHI) in the
Dominican Republic (Indhri station, 2010), but due to the fact that
the daily sequence was relatively short and that after the pre-pro-
cessing the information available was reduced considerably, as
well as becoming inconsistent for a proper climate learning, much
of the daily sequence could not be used in some cases due to the
absence of full or partial values.

A second set of data used for the tests was that from the Chama
station (2011) located to the south of Lake Maracaibo, in Venezuela
a station with a climate and longitude similar to that of the original
stations. These data corresponded to the measurements taken
every 30 min, from August 2001 to July 2005 (Chama station,
2011). This data set did with the record of 173 h.
A third set of data used came from the meteorology station of
Audubon located in Tucson, Arizona (Agricultural research ser-
vices, 2011). This data corresponds to the measurements taken
every 20 min between 19 January 1997 to December 5, 2006. The
Table 2 shows in detail the distribution of the data.

The other data from evaluated stations correspond to the Mu-
cujún station (2011), La Hechicera station (2011) stations, but were
discarded for being at a much greater altitude than the stations
whose data will be used by Taranis.

The CPN was trained using the Ecocog tool (Heaton, 2010), a
NN framework for Java and .NET. For the training, we consider
an maximum error of 1%, 50 steps as maximum and an initial up-
date value of 0.1. Data that was managed to reach to the set of
training threshold expected in only 84 iterations in 25 s. The ini-
tial error percentage was 7%, with a variation of average error of
0.06947342. The Fig. 9 shows the evolution of the learning pro-
cess of network.

After the tests with data from different areas and climates, it
was determined that for tropical areas, depending on the charac-
teristics of the basin, 20 min is the ideal time for the reading of
the measurements (instead of 1 h which is the average in most
of the stations), during the occurrence of unusual rain or for rains
which exceeds the normal parameters. This process is extremely
easy to perform with Taranis, which can be configured to automat-
ically fit the change the sensor reading times, then that is detected
the sudden increase in the rainy season.



Fig. 9. Process training network.
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5. Conclusions

In this article we presented a EWS that use NNs of CounterProp-
agation type and intelligent agents for analysis and assessment of
the risk of flood caused by rain. The system creates models to pre-
dict floods and provide information to manage the hydroelectric
reservoir in an effective manner to prevent material damage. The
use of NNs provides an interesting alternative to adapt to the
new meteorological values caused by climate change. On the other
hand the addition of a second layer of NNs, to assess the level of the
reservoir, would allow the operation of the central authorities to
take the appropriate decisions at the right time. With the results
described in Section 4 it is clearly shown that with the Nns classi-
fiers a high level of accuracy can be achieved.

Taranis also offers intelligent mechanisms for communication
and dissemination of mass alerts through agents, which are also
used to control the reading of the hydrometeorological stations,
with which the third structural of this type of system requirement
is met and, likewise, through the knowledge of the level of risk of
each community to evaluate the main requirements for each case.
With the communication mechanism previously mentioned, you
will obtain better control of the evacuation operations.

On the other hand, the system also provides an alternative
means of communication and issuance of massive alerts, through
the use of intelligent agents, which is prepared to handle earth-
quake, tsunami and wildfire alerts, although the current system fo-
cuses on alerting against flooding.

The persons with disabilities are taken into account in moments
of warnings and alerts. In addition to modifying colors of alert level
standards so that people with color recognition problems can effi-
ciently receive messages, functions to translate the text content to
voice messages and an outline of vibration will be incorporated. Thus
people with visual disabilities can be kept informed with Taranis.

6. Future applications

For a second implementation of the network layer scheme two
new networks levels will be added, which will attempt to predict
the evolution volume at the front and rear of the reservoirs. What
is achieved is having more control and optimizing the process of
drainage of hydroelectric dams, in addition to being able to im-
prove the way in which resources are used in the event of drought.
Likewise, enabling access to satellite information and the estab-
lishment of a hydrological database are intended.

Also, intelligent agents are created with embedded neural net-
works to act with the warning and alert process in an autonomous
way, in the event that communication with the central application
fails. On the other hand, it increases the communication options
with people who have other types of disabilities, which have not
been included in the first version.
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