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A B S T R A C T 

This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on 
images acquired from a vision system. Different applications in maize, particularly those based on site 
specific treatments, require the identification of the crop rows. The vision system is designed with a 
defined geometry and installed onboard a mobile agricultural vehicle, i.e. submitted to vibrations, gyros 
or uncontrolled movements. Crop rows can be estimated by applying geometrical parameters under 
image perspective projection. Because of the above undesired effects, most often, the estimation results 
inaccurate as compared to the real crop rows. The proposed expert system exploits the human knowledge 
which is mapped into two modules based on image processing techniques. The first one is intended for 
separating green plants (crops and weeds) from the rest (soil, stones and others). The second one is based 
on the system geometry where the expected crop lines are mapped onto the image and then a correction 
is applied through the well-tested and robust Theil-Sen estimator in order to adjust them to the real 
ones. Its performance is favorably compared against the classical Pearson product-moment correlation 
coefficient. 

1. Introduction 

1.1. Problem statement 

Machine vision systems onboard robots are being increasingly 
used for site specific treatments in agriculture. With such arrange­
ments, the robot navigates and acts over a site-specific area of a 
larger farm (Davies, Casady, & Massey, 1998), where the vision sys­
tems can supply abundant information. 

An important issue related with the application of machine vi­
sion methods is that concerning the crop row and weed detection, 
which has attracted numerous studies in this area (Burgos-Artizzu, 
Ribeiro, Tellaeche, Pajares, & Fernández-Quintanilla, 2009; 
Guerrero, Pajares, Montalvo, Romeo, & Guijarro, 2012; López-
Granados, 2011; Montalvo et al., 2012; Onyango & Marchant, 2003; 
Sainz-Costa, Ribeiro, Burgos-Artizzu, Guijarro, & Pajares, 2011; 
Tellaeche, Burgos-Artizzu, Pajares, & Ribeiro, 2008; Tellaeche, 
Burgos-Artizzu, Pajares, Ribeiro, & Fernández-Quintanilla, 2008). 
The goal is to eliminate weeds to favor the growth of crops. 

The vision system consists of a CCD-based calibrated camera 
with known intrinsic parameters, i.e. focal length, lens distortion, 

image center and CCD sensor sizes and pixel resolutions. The cam­
era is located in front of the robot, inclined with a tilt angle (pitch) 
and at a high from the ground. Yaw and roll angles are also known. 
This allows determining the rotation and translation matrices 
defining the extrinsic parameters. Thus, areas in the field can be 
identified onto the image plane. This means that given an element 
in the field, with its spatial location, we can determine its relative 
positioning on the image. 

The vehicle navigates on a real terrain presenting irregularities 
and roughness. This produces vibrations and also swinging mainly 
in the pitch and roll angles. The yaw angle is assumed to be correct 
because otherwise the robot navigates erroneously out of the crop 
rows. Moreover, the spacing of crop rows in the field is also known. 
Because of the above, most often, the mapped expected crop rows 
in the image do not match with the real ones, this inaccurate esti­
mation impedes the application of correct site specific treatments. 
On the other hand the discrimination of crops and weeds in the im­
age is a very difficult task because their Red, Green and Blue spec­
tral components display similar values. This means that no 
discrimination is possible between crops and weeds based on the 
spectral signatures. Thus, the best option is to locate the crop rows 
in the image with the maximum accuracy as possible. Indeed, if the 
crop rows are well located, we can accurately identify those pixels 
along and around the detected line as crops and the remainder, 
which are moved away, can be considered as weeds. To achieve 



this goal, we propose an automatic expert system, which exploits 
the human knowledge, with two main modules based on image 
processing techniques, as described later. 

1.2. Revision of methods 

Several strategies have been proposed for crop row detection. 
Fontaine and Crowe (2006) tested the abilities of fourth line detec­
tion algorithms to determine the position and the angle of the cam­
era with respect to a set of artificial rows with and without 
simulated weeds. These were stripe analysis, Hough transform, 
blob analysis and linear regression. The following is a list of crop 
row detection methods grouped into different categories including 
the above. 

1.2.1. Methods based on the exploration of horizontal strips 
Sogaard and Olsen (2003) apply RGB color image transformation 

to gray scale. This is done by first dividing the color image into its 
red, green and blue channels and then by applying the well-tested 
methods to extract living plant tissue described in Woebbecke, 
Meyer, von Bargen, and Mortensen (1995). After this, the gray scale 
image is divided into horizontal strips where maximum gray values 
indicate the presence of a candidate row, each maximum deter­
mines a row segment and the center of gravity of the segment is 
marked at this strip position. Crop rows are identified by joining 
marked points through a similar method to the one utilized in the 
Hough transform or by applying linear regression. Sainz-Costa 
et al. (2011) have developed a strategy based on analysis of video 
sequences for identifying crop rows. Crop rows persist along the 
directions defined by the perspective projection with respect the 
3D scene in the field. Exploiting this fact, they apply gray scale 
transformation based on the approach proposed by Ribeiro, Ferná-
ndez-Quintanilla, Barroso, and García-Alegre (2005) and then the 
image is binarized applying a thresholding technique. Each image 
is divided into four horizontal strips. Rectangular patches are drawn 
over the binary image to identify patches of crops and rows. The 
gravity centers of these patches are used as the points defining 
the crop rows and a line is adjusted considering these points. The 
first frame in the sequence is used as a lookup table that guides 
the full process for determining positions where the next patches 
in subsequent frames are to be identified. Hague, Tillet, and 
Wheeler (2006) transform the original RGB image to gray scale. 
The transformed image is then divided into eight horizontal bands. 
The intensity of the pixels across these bands exhibits a periodic 
variation, due to the parallel crop rows. Since the camera character­
istics, pose and the crop row spacing are known a priori, the row 
spacing in image pixels can be calculated for each of the horizontal 
bands using a pinhole model of the camera optics. A band-pass filter 
can then be constructed which will enhance this pattern, and has a 
given frequency domain response. Sometimes horizontal patterns 
are difficult to extract because crops and weeds form a unique 
patch. 

1.2.2. Methods based on the Hough transformation 
According to Slaughter, Giles, and Downey (2008), one of the 

most commonly used machine vision methods for identifying crop 
rows is based upon the Hough (1962) transform. It was intended 
to deal with discontinuous lines, where the crop stand is incomplete 
with gaps in crop rows due to poor germination or other factors that 
result in missing crop plants in the row. It has been intended for real­
time automatic guidance of agricultural vehicles (Astrand & 
Baerveldt, 2005; Hague, Marchant, & Tillett, 1997; Leemans & 
Destain, 2006; Marchant, 1996). It is applied to binary images, which 
are obtained by applying similar techniques to the ones explained 
above, i.e. RGB image transformation to gray scale and binarization 
(Tellaeche, Pajares, Burgos-Artizzu, & Ribeiro, 2011; Tellaeche et al., 

2008; Tellaeche, Burgos-Artizzu, Pajares, Ribeiro, et al., 2008). Gee, 
Bossu, Jones, and Truchetet (2008) apply a double Hough transform 
under the assumption that crop rows are the only lines of the image 
converging to the vanishing point, the remainder lines are rejected, 
additional constraints such as inter-row spacing and perspective 
geometry concepts help to identify the lines. It is required to deter­
mine the threshold required by the Hough transform to determine 
maximum peaks values (Jones, Gée, & Truchetet, 2009a, 2009b) or 
predominant peaks (Rovira-Más, Zhang, Reid, & Will, 2005). 
Depending on the crop densities several lines could be feasible and 
a posterior merging process is applied to lines with similar parame­
ters (Tellaeche et al., 2008; Tellaeche, Burgos-Artizzu, Pajares, 
Ribeiro, et al., 2008; Tellaeche et al., 2011). Although intended for 
real-time, as mentioned before, in our images, where crop and weed 
plants contribute on the Hough parameter estimation, this method 
becomes computationally expensive (Ji, & Qi, 2011). On the other 
hand, the randomized Hough transform requires selecting pairs of 
points to be considered as a line, i.e. pairs of points belonging to a 
crop row. If we apply this technique in images where edge points 
have been extracted, the selection of those pairs becomes highly 
complex because weeds are also involved. 

1.2.3. Vanishing point-based 
Pla, Sanchiz, Marchant, and Brivot (1997) propose an approach 

that identifies regions (crops/weeds and soil) by applying color im­
age segmentation. They use the skeleton of each defined region as a 
feature to work out the lines that define the crop. The resulting 
skeletons and their properties, defined as chains of connected con­
tour points, allow the identification of crop rows oriented toward 
the vanishing point. This process is highly dependent of skeletons, 
which are not always easy to extract, specially taking into account 
that weed patches are present. Romeo et al. (2012) apply also 
knowledge concerning the position of the vanishing point and 
the crop rows arrangement in the field to detect the expected crop 
rows. The process is based on the identification of maximum accu­
mulation of green pixels along lines oriented toward the vanishing 
point. A supervised fuzzy clustering method is the proposed strat­
egy for greenness identification. This makes the method highly 
dependent on the training phase unlike the one prosed in this ap­
proach which is automatic, i.e. unsupervised. 

1.2.4. Stereo-based approach 
Kise, Zhang, and Rovira-Más (2005) or Kise and Zhang (2008) 

developed a stereo vis ion-based agricultural machinery crop-row 
tracking navigation system. Stereo-image processing is used to 
determine 3D locations of the scene points of the objects of interest 
from the obtained stereo image. Those 3D positions, determined by 
means of stereo image disparity computation, provide the base 
information to create an elevation map that uses a 2D array with 
varying intensity to indicate the height of the crop. This approach re­
quires crops with significant heights with respect the ground. Be­
cause in maize fields, during the treatment stage, the heights are 
not relevant, it becomes ineffective in our application. Rovira-Más, 
Zhang, and Reid (2008) have applied and extended stereovision 
techniques to other areas inside Precision Agriculture. Only feasible 
if crops or weeds in the 3D scene display a relevant height. 

3.2.5. Methods based on blob analysis 
This method finds and characterizes regions of contiguous pix­

els of the same value in a binarized image (Fontaine & Crowe, 
2006). The algorithm searches for white blobs (inter-row spaces) 
of more than 200 pixels, under the assumption that smaller blobs 
could represent noise in the crop rows. Once the blobs were iden­
tified, the algorithm determined the angle of their principal axes 
and the location of their centre of gravity. For a perfectly straight 
white stripe, the centre of gravity of the blob was over the centre 



line of the white stripe, and the angle was representative of the 
angle of the inter-row spaces. The algorithm returned the angle 
and center of gravity of the blob closest to the center of the image. 
Identification of blobs in areas with weed patches does not distin­
guish between blobs caused by weeds and crops. 

1.2.6. Methods based on the accumulation of green plants 
Olsen (1995) proposed a method based on the consideration 

that along the crop row appear an important accumulation of 
green parts in the image. The image is gray scale transformed 
where green parts appear clearer that the rest. A sum-curve of gray 
levels is obtained for a given rectangular region exploring all col­
umns in the rectangle. It is assumed that vertical lines follow this 
direction in the image. The images are free of perspective projec­
tion because they are acquired with the camera in orthogonal po­
sition. A sinusoidal curve is fitted by means of least squares to the 
sum-curve previously obtained. Local maxima of the sinusoid pro­
vide row centers locations. 

1.2.7. Methods based on frequency analysis 
Because crop rows are vertical in the 3D scene, they are mapped 

under perspective projection onto the image displaying some 
behavior in frequency domain. Vioix et al. (2002) exploit this fea­
ture and apply a bi-dimensional Gabor filter, defined as a modula­
tion of a Gaussian function by a cosine signal. The frequency 
parameter required by the Gabor filter is empirically deduced from 
the 2D-Fast Fourier Transform (Bossu, Gee, Guillemin, & Truchetet, 
2006). Bossu, Gee, Jones, and Truchetet (2009) apply wavelets to 
discriminate crop rows based on the frequency analysis. They 
exploit the fact that crop rows are well localized in the frequency 
domain; thus selecting a mother wavelet function with this fre­
quency the crop rows can be extracted. Crops, in the images we 
have studied, do not display clear frequency contents in the Fourier 
space, therefore the application of filters based on the frequency 
becomes a difficult task. 

1.2.8. Methods based on linear regression 
Some techniques above apply this approach. Billingsley and 

Schoenfisch (1997) reported a crop detection system that is rela­
tively insensitive to additional visual 'noise' from weeds. They used 

linear regression in each of three crop row segments considered 
and a cost function analogous to the moment of the best-fit line 
to detect lines fitted to outliers (i.e., noise and weeds) as a means 
of identifying row guidance information. Montalvo et al. (2012) ap­
ply a linear regression for crop row detection in images containing 
high weeds densities. Some templates are used to guide the detec­
tion. Linear regression is also applied in Sogaard and Olsen (2003). 
Linear regression is highly sensitive to isolated weeds patches 
placed on the inter crop rows and also for weeds patches over­
lapped with crops. In this paper we also apply linear regression 
based on the Theil Sen estimator (Sen, 1968; Theil, 1950) which 
is free of the above sensitivity and has been proven in statistics 
with satisfactory results. 

2. Design of the automatic expert system 

2.1. System architecture 

The system architecture is inspired on the human expert knowl­
edge about the specific application and also considering the require­
ments that must be fulfilled. Astrand (2008) and Slaughter et al. 
(2008) propose a list of requirements for guidance systems that 
can be also considered for crop row detection, which in essence is 
a similar problem. Knowledge and requirements are mapped as fol­
lows to build the architecture of the proposed automatic expert sys­
tem for the accuracy crop row detection based on images. 

(a) Both crop and weeds display similar color spectral compo­
nents and during the treatment their growth stages are sim­
ilar, i.e. with similar height in the plants. 

(b) Crop rows are accumulations of green plants following spe­
cific alignments oriented to the vanishing point. Crops are 
sown, not manually planted, and the inter-line distances in 
the field are known. 

(c) Weeds appear on isolated or overlapped patches with 
respect crops with irregular distributions. 

(d) Crop rows must be located with the most accuracy as possi­
ble, regardless the distribution of weeds patches around 
crop and also considering that crop plants could miss along 
crop lines, as a common situation. 
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Fig. 1. Automatic expert system architecture. 



(e) Camera system geometry is known, i.e. the intrinsic and 
extrinsic parameters. 

(f) The robot navigates on uneven terrains with perhaps abun­
dant irregularities. 

(g) The system must work on real-time. This represents a t rade­
off between the speed of the robot and the computational 
cost. 

Based on this knowledge and requirements and also considering 
advantages and shortcomings of the different crop row detection 
methods, the automatic expert system is designed consisting of 
two main modules: image segmentation and crop rows estimation. 
Fig. 1 displays schematically these two modules with the corre­
sponding processes. This results in a robust expert system, making 
the contribution of this paper. 

2.2. Image segmentation 

Image segmentation is focused on the separation of green 
plants (crops and weeds) from the rest (soil, stones and others). 
According to point (a) in the list of knowledge and requirements 
above, the best option to identify weeds and crop is the application 
of vegetation indices instead of methods based on height discrim­
ination. Vegetation indices are well tested methods, Guijarro et al. 
(2011) propose a combination of vegetation indices, which is the 
one chosen in this paper because its performance in maize fields. 

2.2.1. Combination of vegetation indices 
Given an original input image in the RGB color space, we apply 

the following normalization scheme, which is usually applied in 
agronomic image segmentation (Gee et al., 2008), 

Rn C„ , B„ 
R„ B„ R„ B„ 

b = 
Rn B„ (1) 

where R, G and B are the normalized RGB coordinates ranging from 
0 to 1 and are obtained as follows: 

R„ 
Rn 

B„ 
Bn 

(2) 

where Rm3X = Gmax = B m a x = 255 for our 24-bit color images. 
Vegetation indices to be combined are computed as follows 

Guijarro et al. (2011), 

Excess Green (Woebbecke et al., 
1995; Ribeiro et al., 2005) 

Color index of vegetation 
extraction (Kataoka, Kaneko, 
Okamoto, & Hata, 2003) 

Vegetativen 
(Hague et al., 2006) 

(3) 

ExG = 2g -r -b 

C/VE = 0 . 4 4 1 r - 0 . 8 1 1 g (4) 

+ 0 . 3 8 5 b + 18.78745 

VEG = 
(5) 

r"b 

with a = 0.667 as in its 
reference 

Excess green minus excess red (6) 
(Meyer & Camargo-Neto, = _ 
2008; Neto, 2004) 

where excess red is computed as follows (Meyer, Hindman, & 
Lakshmi 1998): ExR = 1 . 4 r - g . According to Guijarro et al. (2011) 
the above four indices are combined to obtain the resulting value 
COM as follows, 

COM = WEXGEXG + WEXGEXGR + WQVEC/VE + WVEGVEG (7) 

where wExG = 0.25, wExGR = 0.30, wCJV£ = 0.33 and wVEG = 0.12 are the 
weights for each index, representing their relative relevance in the 
combination. The resulting combined image COM, is linearly 
mapped to range into the interval [0,1]. 

2.2.2. Greenness reinforcement 
Romeo et al. (2012) propose a fuzzy clustering strategy where 

the cluster containing pixels belonging to green plants has been 
analyzed. Clusters contain pixels with the three spectral compo­
nents in the RGB model as features. Obviously, and as expected, 
the green spectral component is dominant. On average this compo­
nent in the cluster center for green plants represents values above 
the 36% with respect the other two components. Exploiting this 
knowledge and applying the trivial reasoning that pixels coming 
from plants should have their green component dominant, we 
accentuate the greenness in COM by multiplying their values by 
g in Eq. (1), i.e. a new greenness is obtained as: GA = COM*g. The 
multiplication is carried out pixel by pixel and GA is linearly 
mapped to range in [0,1]. Because g represents the percentage of 
the green component, the result obtained represents the emphasis 
in the greenness. 

2.2.3. Thresholding 
Given the transformed image GA, the next step is its binariza-

tion for posterior processing. An easy threshold based on the mean 
gray level of the image (histogram) has been implemented in Gee 
et al. (2008) where the living plant material (crop or weed) appears 
as white spots and the rest (i.e. soil surface, stones, shadows) as 
black. Also in Guijarro et al. (2011) the well-known Otsu's (1979) 
method, traditionally applied for binarization, has been applied. 
More complex approaches have been also applied such as the 
one used in Bossu et al. (2009), based on the fe-means clustering 
method. We have chosen the Otsu's method for its well-known 
performance as reported in Meyer and Camargo-Neto (2008) and 
also based on the study of Sezgin and Sankur (2004) where its per­
formance has been tested in images where the number of pixels in 
both parts of the image histogram that Otsu's produces is close to 
each other. 

Fig. 2(a) displays an original image in the RGB color space of a 
maize crop field. The color space transformation by applying GA 
is displayed in Fig. 2(b). Fig. 2(c) displays the image transformation 
from image in Fig. 2(b) by applying the Otsu's method. Note the 
landmarks in the image, which are explained later in Section 3. 

2.3. Crop row estimation 

This module is intended to apply the knowledge embedded in 
points (b)-(f), Section 2.1, at the same t ime it provides specific 
solutions for the requirements expressed in such points. 

2.3.1. Tracing expected crop lines 
The robot navigates on uneven terrains with perhaps abundant 

irregularities, the knowledge of extrinsic parameters of the vision 
system does not suffice because the camera is continuously in­
volved in a permanent swinging. We propose the customization 
of the Theil-Sen regression estimation approach, because of its 
well-tested performance in statistics. 

Because the crop rows arrangement are known in the field and 
also the extrinsic and intrinsic camera system parameters, the ex­
pected crop row locations in the image can be estimated and 
mapped as known lines onto the image (Fu, González, & Lee, 
1987; Hartley & Zisserman, 2006). Under the assumption of ideal 
system geometry the expected lines should match and overlap 
the imaged real crop rows. Nevertheless, due to uneven terrains 
and errors in the crop row alignment during the sowing, this often 
does not occur. 
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Fig. 2. (a) Original image; (b) GA index extracted from the image in (a); (c) binary image after Otsu thresholding. 

Therefore, under the above consideration, two cases can appear 
with respect to the expected and the imaged real crop lines: (a) 
they match; (b) they do not match. In the first case, the detection 
method needs to verify this matching. In the second case, a line 
location correction must be applied until the real crop row is lo­
cated. Under this approach the system geometry through the 
intrinsic and extrinsic parameters guides the crop row detection 
process. 

Now the question is: how can we verify the expected lines 
match or not with the real crop ones? Because we have available 
white pixels representing green plants in the binary image, we 
can adjust a straight line for specific pixel alignments that are ex­
pected to identify crop rows. This will represent the real crop line. 
So, because we have both, the expected straight line equation and 
the adjusted one, we are able to verify the correct or incorrect 
match for both lines. Thus, we focus the effort in methods for esti­
mating the parameters defining real crop lines. 

2.3.2. Correction of the expected crop lines: Theil-Sen estimator 
An important problem to be addressed in our approach is that 

the method selected can cope with specific pixel alignments but 
also must be robust enough to avoid significant deviations caused 
by weeds that are not aligned and placed more or less near the 
main crop row alignments. This is the main issue addressed in this 
work. 

Stewart (1999) provides a tutorial oriented toward robust 
parameter estimation in computer vision. Two frequently tech­
niques used are least-median of squares (LMS) (Rousseeuw, 
1984) and M-estimators (Hampel, Rousseeuw, Ronchetti, & Stahel, 
1986; Huber, 1981), but a huge volume of data implies that param­
eter estimation techniques in computer vision are heavily over 
constrained, even for problems where low-level feature extraction, 
such as edge detection, are applied. This in turn implies that 
parameter estimation problems in vision should be solved by least 
squares or, more generally, maximum likelihood estimation (MLE) 
techniques. Unfortunately, computer vision data are rarely drawn 
from a single statistical population as required for effective use 
of MLE. 

In our approach we must estimate two parameters, defining the 
straight line equations associated to the corresponding crop rows, 
they are the slope a and the intercept /¡. For the linear regression 
approach, after several studies, we observed that the least squares 
estimator of a regression, coefficient a is vulnerable to gross errors 
and the associated confidence interval is, in addition, sensitive to 
non-normality of the parent distribution. With other measures, 
for example, the breakdown point (Rousseeuw & Leroy, 1987) a 
small number of outlying data can cause an estimate to diverge 
arbitrarily far from the true estimate. From the point of view of 
our approach, this means that few weed pixels can move the least 
squares fit far from the true fit, i.e. far of the real crop line. A second 

measure of robustness is the influence function (Hampel et al., 
1986; Huber, 1981), in which the change in an estimate caused 
by insertion of outlying data, using a function of the distance, also 
causes false estimations because it should tend to zero with 
increasing distance to achieve robustness. 

Alternative estimators for the regression coefficient, a, based 
on suitable rank tests are proposed by Mood (1950). They apply 
the estimation of both parameters a and ¡5 simultaneously using 
the statistical median by trial and error. Adichie (1967) proposes 
a more restrictive method under the assumption that the set of 
points to be adjusted is an absolutely continuous and symmetric 
distribution function with also an absolutely continuous and 
square integrable density function; Theil (1950) proposes a very 
simple estimator for a using also the statistical median; Dytham 
(2011) and Sen (1968) study a simple and robust estimator for 
a based on Kendall's (1955) tau rank correlation, a simple non-
parametric test that can be used instead of normal regression. 
Hence, the estimator for a and ¡5 is the median of the set of slopes, 
where a simple slope is computed between every possible pair of 
pixels i and j with image coordinates (x„ y,) and (x,-, y¡) respec­
tively, finally the median slope is then selected as the best 
estimate for a. 

Based on the above considerations, we select the Theil-Sen esti­
mator as proposed in Massart (1997), because of its statistical effi­
ciency and its robustness, even for low image resolutions, resulting 
in a promising approach in agricultural images containing crop 
rows. Nevertheless, as we will see later, its effectiveness from the 
real-time point of view is relatively low. This means that further 
analysis or new software and hardware implementations should 
be required for real-time processing. 

A straight line is represent by its slope a and its intercept ¡5 as 
follows, 

Y = aX- (8) 

Given a distribution of n pixels the goal is to adjust a straight 
line to such distribution. The Theil-Sen estimator evaluates pairs 
of pixels i and j and compute the slope over the set of all possible 
pairs of such pixels, i.e. over the n(n - l)/2 possible combinations. 
This is carried out as follows, 

a = med[Sij\Sij = 
y¡-y¡ x¡ T^Xj, i,j = 1,2, (9) 

The estimation of the intercept, /¡, is computed as the statistical 
median of the intercepts obtained with the robust slope a in (9). 
The E parameter, set to 10~3, is introduced to avoid exactly vertical 
lines with slope toward oo. Polar coordinates could be used to 
avoid this problem. Nevertheless, vertical lines do not appear in 
our real application. This is carried out as follows, 

• med(y¡ - <xx¡); Vi = 1,2, (10) 



3. Results 

The images used for this study belong to maize crops. They 
were captured with a BASLER 17FC 1400 color camera during 
April/May 2011 in a 1.7-ha experimental field of maize on La Pov-
eda Research Station, Arganda del Rey, Madrid. All acquisitions 
were spaced by five/six days, i.e. they were obtained under differ­
ent environmental lighting conditions and different growth stages 
in maize and weed plants. The digital images were captured under 
perspective projection and stored as 24-bit color images with res­
olutions of 1392 x 1038 pixels saved in RGB (Red, Green and Blue) 
color space in the TIFF format. The images were processed under 
LabVIEW Real-Time (2012) from National Instruments, release 
2011, under a CompactRIO-9082 1.33 GHz dual-core Intel Core i7 
processor, including LX150 FPGA with Real-Time Operating Sys­
tem. The proposed algorithm is developed in C++ with MS Visual 
Studio and compiled as a DLL, which is embedded as an additional 
module in LabVIEW. A set of 240 images was processed. This 
equipment is intended to fulfill the real-time specifications ex­
pressed in point (g) Section 2.1. 

The camera extrinsic and intrinsic parameters are: pitch an­
gle = 20°, roll angle = 0° and yaw angle = 0° with the camera 
placed at a height of 1.5 m from the ground; the focal length was 
8 mm. 

An illustrative result, displayed in Fig. 3, is the outperformance 
of the proposed Theil-Sen estimator as compared to linear regres­
sion based on the Pearson product-moment correlation coefficient. 
The green pixels in the right crop line are the annotated pixels ob­
tained by considering the expected crop line as given by the appli­
cation geometric transformations according to the intrinsic and 
extrinsic parameters and the margin of tolerance set to 150 pixels 
for each side around the expected crop line, making a total margin 
of 300 pixels. As we can easily infer, pixels far away from the cen­
tral ones are weeds, i.e. they appear scattered in the inter-rows. 
Red line1 in the image is estimated by applying the Theil-Sen 
estimator and blue line is the one estimated by linear regression 
based on the Pearson product-moment correlation coefficient. As 
we can easily see, the best adjusting is achieved by the Theil-Sen's 
method. This is because it is robust enough against pixel dispersions. 
On the contrary, the regression-based method is sensitive to this 
kind of dispersion because it is based on the computation of 
minimum distances and the scattered pixels exert an important 
attractiveness. 

The performance of the Theil-Sen estimator against the Pearson 
product-moment correlation coefficient is studied through a qual­
itative analysis, based on the human expert criterion because no 
ground truth images are available. By visual inspection of real crop 
row on the images, the expert determines the best adjustment of 
the estimated crop lines. 

Because this approach is oriented to work in the future in real­
time applications once the quality performance is achieved, we 
analyze the behavior of both estimators when applied to images 
with different resolutions, now under a quantitative analysis. 

Fig. 4(a) and (b) represent an illustrative example representing 
an image of the 240 ones analyzed. The area of interest is delimited 
by landmarks with a wide of 2.25 m (covering three crop rows with 
inter-row spacing of 0.75 m) and 4 m long. This area is the one to 
be processed during a normal operation of the agricultural robot. 

The setting of the intrinsic and extrinsic parameters is the one 
described in Section 2.1. The camera system was placed 2 m from 
the area of interest, where a horizontal landmark line delimits the 
bottom part. 

1 For interpretation of color in the figures, the reader is referred to the web version 
of this article. 

Fig. 3. Example of crop lines correction by Theil-Sen estimator (red line) and 
Pearson product-moment correlation coefficient (blue line) considering the 
dispersion of plants (green pixels). 

3.1. Qualitative analysis 

Fig. 4(a) displays in red those pixels representing green plants 
(crop and weeds). The expected crop lines, according to the system 
geometry based on extrinsic and intrinsic parameters, are drawn as 
yellow lines. A simple image inspection based on the human expert 
criterion allows us to infer that the expected crop lines do not 
match accurately with the real ones. This observation is particu­
larly relevant in the left crop line. Perhaps this situation is due to 
the fact that this crop row was the outer line applied by the seeder 
machine and its location differs from the 0.75 m of the ideal inter­
line spacing in maize fields. The deviation of the expected central 
and right crop lines from the real ones is less marked than in the 
left one. It is obvious that under this situation the expected crop 
lines need correction. The three real crop lines contain some gaps 
produced by errors during the sowing or perhaps because the 
maize seeds have not emerged. 

Fig. 4(b) displays corrections of the yellow lines by applying 
both the Theil-Sen estimator (red lines) and regression through 
the Pearson product-moment correlation coefficient (blue lines). 
Based on the human expertise, it is easy to see how the three red 
lines are well adjusted by Theil-Sen. Indeed, they follow the cen­
tral part of the furrow. Perhaps in the central crop line a slight 
deviation can be appreciated, which compared against the one pro­
duced by the Pearson product moment becomes irrelevant. The 
huge deviation produced by this last estimator in the central crop 
line is due to the presence of isolated patches (marked with the cir­
cle), probably weeds, which have been considered during the pro­
cedure of estimation. Something similar happens with respect the 
right crop lines, but the deviation it is less pronounced. This allows 
us to conclude that Theil-Sen works appropriately under this type 
of situations which are abundant in maize fields. 

This is the general behavior observed in the set of 240 images 
analyzed, which allows us to verify the outperformance of the 
Theil-Sen estimator as compared to the Pearson product moment. 
The margin of tolerance used was again 150 for each side. 

In order to detect the real crop lines over the image we have 
also applied the Hough transformation (Slaughter et al., 2008). De­
spite we apply geometric constraints considering the extrinsic and 
intrinsic parameters; the method produces abundant peaks on the 
accumulator cells, making difficult the selection of the correct one 
that identifies a crop row. A lot of lines, with different slopes, 
appear for a unique crop row. This requires a careful peak thres­
holding selection (Jones et al., 2009a, 2009b; Rovira-Más et al., 
2005). 

3.2. Quantitative analysis 

From a point of view of quantitative analysis we compare the 
average percentage of success based on the human expert criterion 



Fig. 4. (a) Expected crop lines mapped by considering intrinsic and extrinsic parameters (yellow) and a margin of tolerance of 300; (b) corrected lines using Theil-Sen 
estimator (red) and Pearson product-moment correlation coefficient (blue). 

Table 1 
Averaged percentages of success and processing times (ms) for WA, Pearson and Theil-Sen for different size reductions and margins of tolerance. 

Percentage of success 

Time (ms) 

Reduction 

Margin of tolerance 

WA 
Pearson 
Theil-Sen 
WA 
Pearson 
Theil-Sen 

0% (original image) 

50 100 

70 70 
78.2 83.1 
86.1 93.1 
105 105 
9.3 9.5 
5354 7506 

150 

70 
72.9 
94.1 
105 
9.9 
9568 

67% 

50 

70 
80.2 
85.2 
11.3 
8 • 10~2 

92 

100 

70 
83.1 
91.3 
11.3 
3 .4-10- ' 
476 

150 

70 
79.3 
84.6 
11.3 
7.5-10- ' 
1440 

84% 

50 

70 
81.1 
83.8 
3.3 
8.0-10-4 

30 

100 

70 
82.3 
83.1 
3.3 
2.0-
98 

io-5 

150 

70 
69.3 
77.8 
3.3 
3.9 - IO"5 

230 

I 

GA + Otsu + THEIL-SEN Adjustment 

16 

8 

• Marginof tolerance SO pixels 

—•—Marginof tolerance 100pixels 

—±— Margin of tolerance 150 pixels 

Reduction 094 

5,375 

7,527 

9,589 

Reduction 67% 

0,09152 

0,47826 

1,44226 

Reduction 8494 

0,03086 

0,09886 

0,23066 

Fig. 5. Averaged processing times for the full process: greenness extraction (GA), binarization (Otsu) and linear adjustment (Theil-Sen) for three size reductions and three 
margins of tolerance. 

for both Pearson and Theil-Sen and also without adjustment. Each 
image was visually analyzed by an expert to identify the accuracy 
between the adjust line and the real crop row considered as satis­
factory by the expert. We also compute the computational cost 
measured in processing times for these three approaches. We call 
without adjustment (WA) the procedure involving ExG greenness 
extraction and Otsu based binarization, i.e. we only analyze the 
crop line detection obtained from a direct geometric mapping 
based on intrinsic and extrinsic parameters. 

For Pearson and Theil-Sen, times displayed are exclusively the 
ones obtained for the specific adjustment, i.e. to obtain the total 
time they must be added to the one displayed without adjustment. 

Because Theil-Sen is computational expensive but effective, we 
have reduced the resolution of the original image by down-sam­
pling until to achieve values of 67% and 84% to verified the perfor­
mances with and without reductions. Table 1 displays averaged 
percentages and computational times expressed in milliseconds 
for the set of original images available (i.e. with the 0% of 



reduction) and also for these images when their sizes are reduced 
until the 67% and 84% respectively, in horizontal and vertical sizes. 
For each reduction we display averaged percentages and times for 
three values (50,100 and 150) in what we call margin of tolerance. 
This margin represents the horizontal width used to search pixels 
representing crop and weeds around the expected crop line ob­
tained by applying geometrical constraints (extrinsic and intrinsic 
parameters). Under this consideration all values for WA do not 
vary because here no search is required. 

From Table 1 we can see that the best performance, in terms of 
accuracy, is achieved by the Theil-Sen approach as compared to 
WA and Pearson, because it obtains the best results. The best abso­
lute performance of Theil-Sen, also in terms of accuracy, is ob­
tained for the original images with a margin of 150 pixels. This is 
because these images contain the maximum information and this 
margin covers the necessary range to capture all information com­
ing from crops being unaffected by weeds pixels. As the reduction 
increases the accuracy decreases, except for a reduction of 67% 
with margin of 100 pixels. The decreasing can be explained by 
the fact that the greater the reduction and tolerance, more pixels 
belonging to weeds are involved in the line estimation. The excep­
tion to this general behavior occurs for a reduction of 67% and a 
margin of 100. We have tested different combinations of margins 
and reduction without apparent improvements with respect to 
the ones displayed. 

Regarding times, it is obvious that the greater the image sizes 
and margins of tolerance the greater are processing times. This is 
because a greater number of pixels need to be processed. The main 
drawback for Theil-Sen is its high computational cost. Assuming 
the vision system captures an area of 4 m long the robot will need 
to navigate at speeds below of 4/I(m/s) to gain time for image pro­
cessing and actuation. T represents the processing time. So, in the 
worst case T= 9.568 s and in the best case T= 0.476 s. The corre­
sponding speeds are 1.5km/h and 30.25 km/h, where the first 
one is acceptable for agricultural tasks and the second one is exces­
sive. This means that it is unnecessary reductions of 67%, i.e. reduc­
tions between 0 and 67 should be appropriate depending on the 
agricultural treatments. 

For clarity, Fig. 5 displays averaged processing times, in seconds, 
over the set of images available for the full process including 
greenness extraction based on ExG, binarization through the Otsu's 
method and line adjustment based on the Theil-Sen estimator. As 
above, these values are obtained for the three values of reduction 
(0%, 67% and 84%) and with the three margins of tolerance in pixels 
(50, 100 and 150). As expected, processing times decrease as the 
reduction and margin of tolerance also decrease. 

4. Conclusions 

We propose a method for accuracy crop row detection in maize 
fields. The image is segmented to transform the original color im­
age into a gray scale. Then a binarization process is carried out 
based on the Otsu's method. This allows identifying green plants 
which are white pixels in the binary image. According to the intrin­
sic and extrinsic parameters and applying perspective projection, 
we trace the expected crop lines over the original image. Consider­
ing that white pixels in the binary image are crop and weeds in the 
original one we follow the expected crop lines and explore in the 
horizontal direction to capture white pixels in the binary image. 
These pixels are the ones used for estimating a new crop line that 
can coincide with the expected one or not. If the new line does not 
match with the expected one, a correction is made, but if it 
matches the correct location is verified. The estimation is carried 
out by applying Theil-Sen and also a linear regression based on 
the Pearson product-moment correlation coefficient. We have 

verified Theil-Sen outperforms Pearson product-moment based 
on qualitative and quantitative analysis, in terms of accuracy, 
and it is acceptable from the point of view of the processing time. 

Future improvements could be considered when high weed 
pressure is present in the image and a great number of weed 
patches invade the inter-row spacing. 
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