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Abstract: The mining frequent itemsets plays an important role in the mining of 

association rules. Frequent itemsets are typically mined from binary databases where each 

item in a transaction may have a different significance. Mining Frequent Weighed 

Itemsets (FWI) from weighted items transaction databases addresses this issue. This 

paper therefore proposes algorithms for the fast mining of FWI from weighted item 

transaction databases. Firstly, an algorithm for directly mining FWI using WIT-trees is 

presented. After that, some theorems are developed concerning the fast mining of FWI. 

Based on these theorems, an advanced algorithm for mining FWI is proposed. Finally, a 

Diffset strategy for the efficient computation of the weighted support for itemsets is 

described, and an algorithm for mining FWI using Diffsets presented. A complete 

evaluation of the proposed algorithms is also presented. 

Keywords: Data Mining, Frequent Weighted Itemset, Frequent weighted support, WIT-
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1. Introduction 

Association Rule Mining (ARM) is an important element within the domain of Knowledge 

Discovery in Data (KDD) [1, 18]. ARM is used to identify relationships amongst items in transaction 

databases. Given a set of items , a transaction is defined as a subset of I. The input to an 

ARM algorithm is a dataset D comprising a set of transactions. Given an itemset X ⊆ I, the support of 

X in D, denoted as σ(X), is the number of transactions in D which contain X. An itemset is described 

as being frequent if its support is larger than or equal to a user supplied minimum support threshold 

(minSup). A “classical” Association Rule (AR) is an expression of the form {X � Y (sup, conf)}, 

where X, Y ⊆ I and X Y = Ø. The support of this rule is sup = σ(XY) and the confidence is conf = 

. Given a specific minSup and a minimum confidence threshold (minConf), we want to mine 

all association rules whose support and confidence exceeds minSup and minConf respectively. 

However, “Classical” ARM does not take into consideration the relative benefit or significance of 

items. With respect to some applications, we are interested in the relative benefit (weighted value) 

associated with each item. For example the sale of bread may incur a profit of 20 cents while a bottle 

of milk might realize a profit of 40 cents. It is thus desirable to identify new methods for applying 

ARM techniques to this kind data so that such relative benefits are taken into account.  

In 1998, Ramkumar et al. [13] (see also [2]) proposed a model for describing the concept of 

Weighted Association Rules (WAR) and presented an Apriori-based algorithm for mining Frequent 

Weighted Itemsets (FWI). Since then many Weighted Association Rule Mining (WARM) techniques 

have been proposed (see for example Wang et al. [19] and Tao et al. [14]).  

The purpose of this paper is to develop algorithms for the fast mining of FWI.  Firstly, some 

theorems and corollary are proposed. Based on these theorems, and using WIT-trees [10, 11], we 



present an algorithm for the fast mining of FWI. After that, we apply the Diffset strategy [20, 22] and 

extend the originally proposed FWI mining algorithm.  

The rest of this paper is organized as follows. Section 2 presents some related work concerning the 

mining of FWI and WAR. Section 3 presents a proposed modification of the WIT-tree data structure 

[10, 11] for compressing the database into a tree structure. Algorithms for mining FWI using WIT-

trees are discussed in section 4. Some experimental results are present in section 5, and some 

conclusions in section 6. 

2. Related work 

This section presents some related works. The section commences with a formal definition of 

weighted transaction databases. The Galois connection, used later in this paper to prove a number of 

theorems, is then reviewed in Sub-section 2.2. Next, in Sub-section 2.3, some definitions related to 

weighted association rules are presented.  

2.1. Weighted items transaction databases 

A weighted transaction database (D) is defined as follows: D comprises a set of transactions 

, a set of items  and a set of positive weights 

corresponding to each item in I.  

For example, consider the data presented in Table 1 and Table 2. Table 1 presents a data set 

comprising six transactions T = {t1,…, t6}, and five items I = {A, B, C, D, E}. The weights of these 

items are presented in Table 2, W = {0.6, 0.1, 0.3, 0.9, 0.2}. 

 

 

 

 



Table 1. The transaction database 

Transactions Bought items 

1 A, B, D, E 

2 B, C, E 

3 A, B, D, E 

4 A, B, C, E 

5 A, B, C, D, E 

6 B, C, D 

Table 2. Items weight 

Item Weight 

A 0.6 

B 0.1 

C 0.3 

D 0.9 

E 0.2 

2.2. Galois connection 

Let δ ⊆ I × T be a binary relation, where I is a set of items and T is a set of transactions contained 

in a database D. Let P(S) (the power set of S) include all subsets of S. Two mappings between P(I) 

and P(T) are called Galois connections as follows [21]. 

Let  and , we have: 

i.    

ii.  

The mapping t(X) is the set of transactions in the database which contain X, and the mapping i(Y) 

is an itemset that is contained in all the transactions Y. 

Given X, X1, X2 ∈ P(I) and Y, Y1, Y2 ∈ P(T). The Galois connection satisfies the following 

properties [21]: 



i)   X1 ⊂ X2 ⇒ t(X1) ⊇ t(X2) 

ii)  Y1 ⊂ Y2 ⇒ i(Y1) ⊇ i(Y2) 

iii) X ⊆ i(t(X)) and Y ⊆ t(i(Y)) 

2.3. Mining frequent weighted itemsets 

Definition 2.1. The transaction weight (tw) of a transaction tk is defined as follows: 

 (2.1) 

Definition 2.2. The weighted support of an itemset is defined as follows: 

 (2.2) 

where T is the list of transactions in the database. 

Example 2.1. Consider tables 1, 2, and definition 2.1, we can compute the tw(t1) value as follow: 

 

Table 3 shows all tw values of transactions in Table 1. 

Table 3. Transaction weights for transactions in Table 1 

Transactions tw 
1 0.45 
2 0.2 
3 0.45 
4 0.3 
5 0.42 
6 0.43 

Sum 2.25 
From Tables 1 and 3, and definition 2.2, we can compute the ws(BD) value as follows: Because 

BD appears in transactions {1, 3, 5, 6}, ws(BD) is computed: 

 



The mining of FWI requires the identification of all itemsets whose weighted support satisfies an user 

specified minimum weighted support threshold (minws), i.e. FWI = {X ⊆ I| ws(X) ≥ minws}. 

Theorem 2.1. The use of the weighted support metric described above satisfies the downward closure 

property. i.e., if X ⊂ Y then ws(X) ≥ ws(Y). 

Proof: Because X ⊂ Y, according to the property i) of Galois connection, we have t(X) ⊇ t(Y) 

⇒  ⇒  . 

To mine WAR, we must first mine all FWI that satisfy the minimum weighted support threshold. The 

mining of FWI is the most computationally expensive element of WAR mining. In 1998, Ramkumar 

et al. [13] proposed an Apriori-based algorithm for mining FWI. This approach requires many scans 

of the whole database to determine the weighted support of itemsets. Some other studies used this 

approach for generating WAR [14, 19]. 

3. WIT-tree data structure 

We proposed the WIT-tree (Weighted Itemset-Tidset tree) data structure, an expansion of the IT-

tree proposed in [22], to support the mining of high utility itemsets. The WIT-tree data structure 

provides for a representation of the input data (so that we only need scan the database once), 

comprising of itemset TID lists, that supports the fast computation of weighted support values. Each 

node in a WIT-tree includes 3 fields: 

i. X: an itemset. 

ii. t(X): the set of transactions contains X.  

iii. ws: the weighted support of X.   

The node is denoted using a tuple of the form

! 

X,t(X),ws . 



The value for ws is computed by summing all tw values of transactions, t(X), which their tids 

belong to and then dividing this by the sum of all tw values. Thus, computing of ws is founded on 

Tidset. The links connect nodes at kth level (called X) with nodes at the (k+1)th level (called Y). 

Definition 3.1[22] – The equivalence class 

Let I be a set of items and , a function p(X,k) = X[1:k] as the k length prefix of X and a 

prefix-based equivalence relation on itemsets as follows: . 

The set of all itemsets having the same prefix X is called an equivalence class, and is denoted as 

the equivalence class with prefix X is [X]. 

Example 3.1: Consider Tables 1 and 3 above, the associated WIT-tree for mining frequent weighted 

itemsets is as presented in Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1. Search tree using WIT-tree 

The root node of the WIT-tree contains all 1-itemset nodes. All nodes in level 1 belong to the 

same equivalence class with prefix {} (or [∅]). Each node in level 1 will become a new equivalence 

class using its item as the prefix. With each node in the same prefix, it will join with all nodes 

{} 
 
 
 

                                A×1345                                             B×123456                             C×2456               D×1356    E×12345 
                                  0.72                                                       1.0                                       0.6                      0.78           0.81 
 
 
 
      AB×1345        AC×45      AD×135     AE×1345     BC×2456    BD×1356   BE×12345    CD×56     CE×245    DE×135 
           0.72              0.32             0.59            0.72               0.6               0.78           0.81            0.38          0.41            0.59 
 
 
 
ABC×45 ABD×135 ABE×1345   ACD×5 ACE×45   ADE×135    BCD×56  BCE×245  BDE×135    CDE×5 
    0.32         0.59             0.72           0.19       0.32            0.59             0.38          0.41           0.59            0.19 
 
   
 
ABCD×5 ABCE×45    ABDE×135  ACDE×5                                BCDE×5 
     0.19         0.32                0.59            0.19                                          0.19 
    
 
 
ABCDE×5 
     0.19 



following it to create a new equivalence class. The process will be done recursively to create new 

equivalence classes in higher levels. For example, considering Figure 1, nodes {A}, {B}, {C}, {D}, 

{E} belong to the equivalence class [∅]. Consider node {A}, this node will join with all nodes 

following it ({B}, {C}, {D}, {E}) to create a new equivalence class [A] = {{AB}, {AC}, {AD}, 

{AE}}. [AB] will become a new equivalence class by also joining with all nodes following it ({AC}, 

{AD}, {AE}); and so on. 

Inspection of Figure 1 indicates that all itemsets satisfy the downward closure property. Thus, 

we can prune an equivalence class in the WIT-tree if its ws value does not satisfy the minws. For 

example, suppose that minwus = 0.4, because ws(ABC) = 0.32 < minws we can prune the 

equivalence class with the prefix ABC, i.e., all child nodes of ABC can be pruned. 

4. Mining frequent weighted itemsets 

In this section, we propose algorithms for mining FWI from weighted transaction databases. 

Firstly, an algorithm for directly mining FWI from WIT-trees is presented. It uses a minws 

threshold and the downward closure property to prune nodes that are not frequent. Some theorems 

are then derived and based on these theorems, an improved algorithm is proposed. Finally, the 

algorithm is further developed, by adopting a Diffset strategy to allow for the fast computation of 

the weighted support of itemsets in a memory efficient manner. 

4.1. WIT-FWI algorithm 

In this sub-section, an algorithm for mining FWI using WIT-trees will be present. It is founded 

on the downward closure property to prune nodes that are not frequent.  

In function WIT-FWI (Figure 2), let Lr contains all single items that their weighted supports 

satisfy minimum weighted support (line 1). Nodes in Lr are stored in increasing order according to 



their weighted support (line 2). After that, the set of FWI is set to null (line 3). Finally, the FWI-

EXTEND function will be called to mine all FWI (line 4).  

Consider function FWI-EXTEND: This function considers each node li in Lr with all nodes 

following it to create a set of nodes Li (lines 5 and 7). The way to create Li as follows:  Firstly, let X 

= li.itemset ∪ lj.itemset, it computes Y = t(X) = t(li) ∩ t(lj) (line 8), if ws(X) (computed through t(X) 

using equation 2.2, line 9) satisfies minws (line 10), we add new node <X, Y, ws(X)> into Li (line 

11). After creating Li, function FWI-EXTEND is called recursively to process with the input is Li 

(line 13) if number of nodes in Li greater than 1. Function COMPUTE-WS(Y) uses the eq. (2.2) to 

compute the ws of itemset X based on the values in Table 3 with Y = t(X) (line 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. WIT-FWI algorithm for mining frequent weighted itemsets 

Input: Database D and minimum weighted support threshold minws  

Output: FWI contains all frequent weighted itemsets that satisfy minws from D 

Method: 

WIT-FWI( ) 

1. Lr = all items that their ws satisfy minws 

2. Sort nodes in Lr increasing by their ws 

3. FWI = ∅ 

4. Call function FWI_EXTEND with the parameter is Lr         

FWI-EXTEND(Lr) 

5. Consider each node li in Lr do 

6.     Add (li.itemset, li.ws) to FWI 

7.     Create a new set Li by join li with all lj following it in Lr by: 

8.           Set X = li.itemset ∪ lj.itemset and  Y = t(li) ∩ t(lj) 

9.           ws(X) = COMPUTE-WS(Y)   // using the eq. (2.2) 

10.         if ws(X) satisfies minws then 

11.              Add new node <X, Y, ws(X)> into Li            

12.     if number of nodes in Li ≥ 2 then  

13.        Call recursive the function FWI-EXTEND with the parameter is Li 

 



Example 4.1: Using the data presented in Tables 1 and 3, and with reference to Figure 2, an 

illustration of the WIT-FWI algorithm with minws = 0.4 is as follows: 

We commence by computing the ws values of the single items. We have ws(A) = 0.72, ws(B) = 

1.0, ws(C) = 0.60, ws(D) = 0.78, ws(E) = 0.81. All ws values of single items satisfy minws ⇒ Lr = 

{<A,1345,0.72>, <B,123456,1.0>, <C,2456,0.6>, <D,1356,0.78>, <E,12345,0.81>}. After sorting 

them according to their weighted supports, we have Lr = {<C,2456,0.6>, <A,1345,0.72>, 

<D,1356,0.78>, <E,12345,0.81>, <B,123456,1.0>}. 

Consider node <A, 1345, 0.72>: First of all, A is added to FWI = {C, CE, CEB, CB} ⇒ FWI = {C, 

CE, CEB, CB, A}. 

o A joins C, we have a new itemset AC. Because ws(AC) = 0.32 < minws, AC is not added into LA. 

o A joins D, we have a new itemset AD with t(AD) = 135 and ws(AD) = 0.59, so add AD into LA 

⇒ LA = {<AD,135,0.59>}. 

o A joins E, we have a new itemset AE with t(AE) = 1345 and ws(AE) = 0.72  ⇒ Add node AE 

into LA ⇒ LA = {<AD,135,0.59>, <AE,1345,0.72>}. 

o A joins B, we have a new itemset AB with t(AB) = 1345 and ws(AB) = 0.72  ≥ minws ⇒ Add 

node AB into LA ⇒ [A] = {<AD,135,0.59>, <AE,1345,0.72>,<AB,1345,0.72>}. 

 

 

 

 

 

 

Figure 3. WIT-tree for mining FWI from the databases in Tables 1 and 3 with minws = 0.4 

{} 
 

 
         C×2456      A×1345                  D×1356    E×12345   B×123456                              
            0.6                     0.72                        0.78          0.81           1.0 
 
 
CE×245 CB×2456   AD×135 AE×1345 AB×1345   DE×135 DB×1356  EB×12345       
   0.41         0.6           0.59         0.72         0.72           0.59       0.78          0.81                 
 
 
CEB×245   ADE×135 ADB×135  AEB×1345         DEB×135     
       0.41            0.59          0.59           0.72                 0.59             
   
 
                  ADEB×135  
                          0.59        

    
 



After creating the set LA, and because the number of nodes in LA is larger than 1, the function will be 

called (in a recursive manner) to create all child nodes of LA. 

o Consider node <AD,135, 0.59>:  

• Add AD to FWI ⇒ FWI = { C, CE, CEB, CB, A, AD}. 

• AD joins AE, we have a new itemset ADE×135 with ws(ADE) = 0.59, so add ADE to [AD] 

⇒ [AD] = {ADE}. 

• AD joins AB, we have a new itemset ADB×135 with wus(ADB) = 0.59, so add ADB to [AD] 

⇒ [AD] = {ADE, ADB}. 

 Consider node <ADE,1345,0.72>: Add ADE to FWI ⇒ FWI = { C, CE, CEB, CB, A, 

AD, ADE}. 

 ADE joins ADB into a new itemset ADEB×135 with wus(ADEB) = 0.59 ⇒ [ADE] = 

{ADEB}. Because the equivalence class [ADE] has only one element ⇒ there is no any 

equivalence class created in following it.  

Similar to nodes <C,2456,0.6>, <D,1356,0.78>, <E,12345,0.81>, <B,123456,1.0>. 

Finally, we have the set of all FWI that satisfy minwus = 0.4 is FWI = { C, CE, CEB, CB, A, AD, 

ADE, ADEB, ADB, AE, AEB, AB, D, DE, DEB, DB, E, EB, B} as in Figure 3. 

4.2. An improved algorithm 

From Figure 2, we can see that with respect to some nodes we need not compute the weighted 

support because this can be obtained from the parent nodes. For example, nodes AE, AB and AEB 

have the same weighted support as node A; node ADE, ADB and ADEB have the same weighted 

support as node AD; and so on.  

Theorem 4.1: Given two itemsets X and Y, if t(X) = t(Y) then ws(X) = ws(Y) 

Proof: Because t(X) = t(Y) ⇒  ⇒  or ws(X) = ws(Y) . 



Corollary 4.1: If X ⊂ Y and |t(X)| = |t(Y)| then ws(X) = ws(Y) 

Proof: If X ⊂ Y, we have t(X) ⊇ t(Y) (according to the property i) of the Galois connection). 

Besides, because |t(X)| = |t(Y)| ⇒ t(X) = t(Y) ⇒ ws(X) = ws(Y) according to the theorem 4.1. 

Based on Corollary 4.1, we developed an algorithm for mining FWI by introducing some 

modifications to the algorithm presented in the section 4.1. When we join two nodes li, lj of Lr to 

create a new node li ∪ lj, if |t(li)| = |t(li ∪ lj)| then ws(li ∪ lj) = ws(li.itemset), we need not compute 

the ws value of li.itemset ∪ lj.itemset.  Similarly, if |t(lj)| = |t(li ∪ lj)| then ws(li ∪ lj) = ws(li), we need 

not also compute the ws value of li ∪ lj. 

 

  

 

 

 

 

 

 

 

 

 

Figure 4. The modification of WIT-FWI algorithm for mining frequent weighted itemsets 

Input: Database D and minimum weighted support threshold minws  

Output: FWI contains all frequent weighted itemsets that their ws satisfy minws from D 

Method: 

WIT-FWI-MODIFY() 

1. Lr = all items that their ws satisfy minws 

2. Sort nodes in Lr increasing by their ws 

3. FWI = ∅ 

4. Call function FWI_EXTEND with the parameter is Lr         

FWI-EXTEND-MODIFY(Lr) 

5. Consider each node li in Lr do 

6.     Add (li.itemset, li.ws) to FWI 

7.     Create a new set Li by join li with all lj following it in Lr by: 

8.           Set X = li.itemset ∪ lj.itemset and  Y = t(li) ∩ t(lj) 

9.           if |t(li)| = |Y| then ws(X) = ws(li)         // using corollary 4.1 

10.         elseif |t(lj)| = |Y| then ws(X) = ws(lj)   // using corollary 4.1 

11.          else ws(X) = COMPUTE-WS(Y)    // using the eq. (2.2) 

12.          if ws(X) satisfies minws then 

13.               Add new node <X, Y, ws(X)> to Li.                     

14.     if number of nodes in Li ≥ 2 then  

15.        Call recursive the function FWI-EXTEND-MODIFY with the parameter is Li 
 



The algorithm in Figure 2 is modified as follow: Line 9 (in Figure 2) is changed by 3 lines (from 

lines 9 to 11 in Figure 4). In line 9, we have li.itemset ⊂ X, according to corollary 4.1, if |t(li)| = |Y| 

then ws(X) = ws(li). Similarly, if |t(lj)| = |Y| then ws(X) = ws(lj) (line 11).  

Example 4.2: Consider the WIT-tree presented in Figure 3, when we join node <A,1345, 0.72> 

with node <B,123456,1.0> to create new node <AB,1345,?>, because of |t(A)| = |1345| = |t(AB)| ⇒ 

ws(AB) = ws(A) = 0.72. Similarly, |t(C)| = |2456| = |t(BC)| ⇒ ws(BC) = ws(C) = 0.6. Besides, 

because t(A)| ≠ |t(AD)| and |t(D)| ≠ |t(AD)| ⇒ we must compute ws(AD) (based on t(AD)). 

According to Corollary 4.1, we need not compute ws values of 11 itemsets, namely {AE, AB, CB, 

DE, BD, EB, ADE, ADB, AEB, CEB, DEB, ABDE} (see Figure 3 for more details). 

4.4. Diffset for computing ws values fast and saving memory 

Zaki and Gouda [20] proposed the Diffset strategy for fast computing the support of itemsets and 

saving memory to store Tidsets. We recognize that it can be used for fast computing the ws values 

of itemsets. Diffset computes the difference set between two Tidsets in the same equivalence class. 

In a dense database, the size of Diffset is smaller than the Tidset [20, 22]. Therefore, using Diffset 

will consume less storage and allow for the fast computing of weighted support values. 

Let d(PXY) be the difference set between PX and PY. We have: 

d(PXY) = t(PX) \ t(PY) [20] (4.1) 

where PX and PY  are in equivalence class [P]. 

Assume that we have d(PX) and d(PY), and need get d(PXY): According to the results in [20], we 

can get it easily by computing the difference set between d(PY) and d(PX): 

d(PXY) = d(PY) \ d(PX) [20] (4.2) 

Based on eq. (4.1) and eq. (4.2), we can compute the ws value of PXY by using the d(PXY) as 

follows: 



ws(PXY) = ws(PX) –  (4.3) 

Proof: We have t(PXY) = t(PX)∩t(PY) = t(PX) \ [t(PX) \ t(PY)] = t(PX) \ d(PXY) ⇒ 

  

= ws(PX) – . 

Based on eq. (4.1), eq. (4.2) and eq. (4.3), we can use the Diffset strategy instead of using 

Tidsets for computing the ws values of itemsets in the process of mining FWI. 

Theorem 4.2. If d(PXY) = ∅ then ws(PXY) = ws(PX). 

Proof: Because d(PXY) = ∅ ⇒ ws(PXY) = ws(PX) – = ws(PX). 

To save the memory for storing Diffset and the time for computing Diffset, we sort itemsets in 

the same equivalence class in increasing order by their ws. 

4.4.1. WIT-FWI-DIFF – An algorithm based on Diffset 

The WIT-FWI-DIFF algorithm presented in Figure 5 differs from the WIT-FWI-MODIFY 

algorithm presented in Figure 4 in that it uses Diffset to compute the ws values. Because the first 

level stores the Tidsets, if Lr belongs to the first level (line 9), means that li and lj belong to the first 

level, we use the eq. (4.1) to compute Y = d(X) = d(li∪lj) = t(li) \ t(lj) (line 11, using eq. (4.1)). From 

level 2 stores Diffset, we use the eq. (4.2) to compute Y = d(X) = d(li∪lj) = d(lj) \ d(li) (line 13). Line 

14 uses the theorem 4.2 to fast compute ws(X). 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. WIT-FWI-DIFF algorithm for mining frequent weighted itemsets 

4.4.2. An example of Diffset 

 Using the example data presented in Tables 1 and 3, and the algorithm in Figure 6, we illustrate the 

WIT-FWI-DIFF algorithm with minws = 0.4 as follows. Level 1 of the WIT-tree contains single 

items, their tids, and their ws. They are sorted in increasing order by their |tids|. The purpose of this 

work is to compute Diffset faster. For example, consider nodes B and D, if they are not sorted, we 

must compute d(BD) = t(B) \ t(D) = 123456 \ 1356 = 14; otherwise, d(DB) = t(D) \ t(B) = 1356 \ 

123456 = ∅. 

Input: Database D and minimum weighted support threshold minws  

Output: FWI contains all frequent weighted itemsets that satisfy minws from D 

Method: 

WIT-FWI-DIFF( ) 

1. Lr = all items that their ws satisfy minws 

2. Sort nodes in Lr increasing by their ws 

3. FWI = ∅ 

4. Call function FWI-EXTEND-DIFF with the parameter is Lr         

FWI-EXTEND-DIFF(Lr) 

5. Consider each node li in Lr do 

6.     Add (li.itemset, li.ws) to FWI 

7.     Create a new set Li by join li with all lj following it in Lr by: 

8.          Set X = li.itemset ∪ lj.itemset 

9.          if Lr is the first level then   Y = t(li) \ t(lj) // using eq. (4.1) 

10.        else Y = d(lj) \ d(li)                                  // using eq. (4.2) 

11.        if  Y = ∅  then ws(X) = ws(li)                  // using theorem 4.2 

12.        else ws(X) = COMPUTE-WS-DIFF(Y ) // using the eq. (4.3) 

13.        if ws(X) satisfies minws then 

14.             Add new node <X, Y, ws(X)> into Li            

15.     if number of nodes in Li ≥ 2 then  

16.        Call recursive the function FWI-EXTEND-DIFF with the parameter is Li 

 



 

 

 

 

 

 

Figure 6. Results of the algorithm WIT-FWI-DIFF from the databases in Tables 1 and 3 with 

minws = 0.4 

Consider node <A,1345,0.72>: 

A joins C: d(AC) = t(A) \ t(C) = 1345 \ 2456 = 13 ⇒ ws(AC) = ws(A) – = 0.72 – 

= 0.32 < minws. 

A joins D: d(AD) = t(A) \ t(D) = 1345 \ 1356 = 4 ⇒ ws(AD) = ws(A) – = 0.72 – = 

0.59 ≥ minws. 

A joins E: d(AE) = t(A) \ t(E) = 1345 \ 12345 = ∅ ⇒ ws(AD) = ws(A) = 0.72. 

A joins B: d(AB) = t(A) \ t(B) = 1345 \ 123456 = ∅ ⇒ ws(AB) = ws(A) = 0.72. 

5. Experimental results 

All experiments described below were performed on a Centrino core 2 duo (2×2.53 GHz), 4GBs 

RAM memory, Windows 7, using C# 2008. The experimental datasets used for the experimentation 

were downloaded from http://fimi.cs.helsinki.fi/data/. Some statistical information regarding these 

{} 
 

 
         C×2456      A×1345                  D×1356    E×12345   B×123456                              
            0.6                     0.72                        0.78          0.81           1.0 
 
 
CE×6     CB×∅        AD×4      AE×∅     AB×∅       DE×6    DB×∅        EB×∅       
   0.41         0.6           0.59         0.72         0.72           0.59       0.78          0.81                 
 
 
CEB×∅       ADE×∅   ADB×∅     AEB×∅           DEB×∅     
       0.41            0.59          0.59           0.72                 0.59             
   
 
                  ADEB×∅  
                         0.59        

    
 



data sets is given in Table 4. We modified these datasets by creating one table to store weighted 

values of items (values in the range of 1 to 10) for each database. 

Table 4. Experimental databases 

 

 

 

Table 5. Numbers of FWI from databases 

Database minws(%) #FWI 

10 12 

8 21 

6 32 
BMS-POS 

4 85 

85 2624 

80 8088 

75 20298 
Chess 

70 47181 

35 1257 

30 2937 

25 5751 
Mushroom 

20 53853 

96 1015 

94 4131 

92 11315 
Connect 

90 28991 

95 15 Accidents 

85 65 

Database (DB) #Trans #Items Remark 

BMS-POS 515597 1656 Modified 

Connect 67557 130 Modified 

Accidents 340183 468 Modified 

Chess 3196 76 Modified 

Mushroom 8124 120 Modified 



75 289  

65 1035 

 

The results presented in Table 5 show that number of FWI of BMS-POS is small, for Accidents 

it may be described as medium, and for Chess, Mushroom and Connect are large.  It should be 

noted that the number of FWI found in the Connect database changes rapidly; when we change 

minws from 96% down to 90%, the number of FWI changes from 1015 up to 28991. 

Experiments were also conducted to compare the processing time of our three proposed algorithms 

(WIT-FWI, WIT-FWI-MODIFY, WIT-FWI-DIFF) with an Apriori-based algorithm [13] (Apriori). 

Figures 7 to 11 show the recorded run times with respect to each of the selected above test data sets. 

 

  

Figure 7. Run time for the four algorithms when mining FWI in the BMS-POS database 



 

Figure 8. Run time for the four algorithms when mining FWI in the Chess database 

  

Figure 9. Run time for the four algorithms when mining FWI in the Mushroom database 

 



Figure 10. Run time for the four algorithms when mining FWI in the Connect database 

  

Figure 11. Run time for the four algorithms when mining FWI in the Accidents database 

 

The experimental results presented in Figures 7 to 11 demonstrate that our proposed algorithms 

are more efficient than an Apriori-based algorithm when mining FWI. When the number of FWI is 

small, the running time of algorithms using WIT-trees is slight faster than Apriori-based algorithm. 

For example, consider the BMS-POS database with minws = 4%, the mining time of Apriori is 

14.74 (s), of WIT-FWI is 13.78 (s), of WIT-FWI-MODIFY is 13.49 (s), and of WIT-FWI-DIFF is 

12.27 (s). The scale run time difference between Apriori and WIT-FWI-DIFF is 

. However, when we compare the operation of these algorithms using the 

Chess and Mushroom databases (which contain a large number of FWIs) the WIT-tree based 

algorithms were found to be more efficient than that of the Apriori-based algorithm. For example: 

Consider the Chess database with minws = 70%, the mining time of Apriori is 111.82(s), of WIT-

FWI is 33.21 (s), of WIT-FWI-MODIFY is 27.85 (s), and of WIT-FWI-DIFF is 0.7 (s). The scale 

difference between Apriori-based and WIT-FWI-DIFF is . 



It should also be that the WIT-FWI-MODIFY algorithm is not as efficient as WIT-FWI when the 

number of FWI in the input database is small (for example in the case of the Accidents database).    

6. Conclusions and future work 

This paper has presented a method for mining frequent weighted itemsets from weighted item 

transaction databases, and a number of efficient algorithms have been proposed. From the reported 

evaluation the mining (run) time to identify FWIs using the proposed WIT-tree-based algorithms is 

significantly less than the time required using alternatives such as Apriori-based FWI mining 

algorithms. This is because using the proposed WIT-tree data structure, the algorithms only scan the 

database once. The evaluation also indicated that use of the Diffset strategy allows for further 

efficiency gains.  

In this paper, we have concentrated only on the mining of FWIs (using the proposed WIT-tree 

data structure). In reecent years some methods for the fast mining of association rules have been 

discussed [15-17]. In future, we will study how to apply these methods to efficiently mine weighted 

association rules from discovered FWIs using our method. Besides, we will apply our method for 

mining weighted utility association rules [9]. The mining of association rules in incremental 

databases has also been considered in recent years [3-6, 12]. The intention is thus to also consider 

the concept of mining weighted association rules from such incremental databases. 
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