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Abstract

In the Intensive Care Unit of a hospital (ICU), weaning can be defined as

the process of gradual reduction in the level of mechanical ventilation support.

A failed weaning increases the risk of death in prolonged mechanical ventilation

patients. Different methods for weaning outcome prediction have been pro-

posed using variables and time series extracted from the monitoring systems,

however, monitored data are often non-regularly sampled, hence limiting its

use in conventional automatic prediction systems. In this work, we propose the

joint use of two statistical techniques, Normalized Compression Distance (NCD)

and Multidimensional Scaling (MDS), to deal with data heterogeneity in mon-

itoring systems for weaning outcome prediction. A total of 104 weanings were

selected from 93 patients under mechanical ventilation from the ICU of Hospital

Universitario Fundación Alcorcón; for each weaning, time series (TS), clinical

laboratory and general descriptors variables were collected during 48 hours pre-

vious to the moment of withdrawal mechanical support (extubation). The TS

diastolic blood pressure variable provided the best weaning prediction, with an
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improvement of 37% in the error rate regarding the physician decision. This

result shows that the joint use of the NCD and MDS efficiently discriminates

heterogeneous time series.

Keywords: Weaning, Extubation, Intensive Care Unit, Normalized

Compression Distance, Multidimensional Scaling, Partial Least Squares.

1. Introduction

In daily routine of a hospital Intensive Care Unit (ICU), patients are of-

ten assisted with mechanical ventilation, which replaces or collaborates with

the spontaneous breathing of a patient with respiratory problems. The process

of discontinuing mechanical ventilation is usually called weaning, and it con-

sists in a gradual removal of the mechanical respiratory support (Tobin, 2006).

Although current mechanical ventilators are sophisticated devices capable of

stabilizing the respiratory conditions of a patient, the decision about the exact

time of withdrawal mechanical support (extubation) is under the responsibility

of a physician and has several problems. On the one hand, a premature ex-

tubation can increase the patient distress, causing difficulty in reestablishing

artificial airways and compromising gas exchange (MacIntyre, 2004). On the

other hand, an unnecessary delay in the discontinuation of mechanical venti-

lation brings other problems, such as pneumonia or airway trauma, as well as

an increase in the hospital economic cost (MacIntyre, 2001). Hence, two main

questions have to be taken into account in the weaning setting, specifically, how

can the physician decide the best extubation instant, and which information

can be used to support this decision.

Nowadays, physicians use their knowledge and own experience to start the

patient weaning and select the most appropriate procedure (Blackwood et al.,

2011). Currently, the most used method for weaning consist in assessing the pa-

tient’s respiratory status by observing either his spontaneous breathing through

a T-Tube circuit (T-Tube Test) or his breathing while assisted by a low pres-

sure support. If the patient tolerates the test and the physician considers the
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weaning is appropriate, the patient is extubated. An example of an alternative

method is presented in (Scheinhorn et al., 2001), where a therapist-implemented

protocol was used to extubate patients from prolonged mechanical ventilation

for reducing the weaning duration. However, the disconnection strategy seemed

to be strongly dependent on the patients and their circumstances (Bruton et al.,

1999), and it often required a reintubation. Since reintubation may cause serious

problems and even exitus, many researchers have tried to identify the physio-

logical factors affecting the weaning. Scientific evidence has shown that the risk

of death increases when the patient suffers a failed weaning (Tobin, 2006).

To determine the extubation optimal instant is a nontrivial decision. The

current reintubation rate is still in the range of 15-30% and indices for ex-

tubation instant prediction are still under active investigation (Tobin, 2006).

In the last decade, several authors have proposed different methods for data

analysis and model inference using only respiratory parameters, such as inspi-

ratory and expiratory time, breath duration, or tidal volume (Casaseca-de-la

Higuera et al., 2006; Giraldo et al., 2006; Arizmendi et al., 2009; Casaseca-

de-la Higuera et al., 2009; Preciado and Giraldo, 2011). Other authors have

proposed similar methods combining the aforementioned parameters with other

physiological (age, sex, or blood pressure), biochemical (creatinine, albumin, or

hemoglobin) (Burns et al., 2012), and pathological (such as multiple-organ fail-

ure, traumas, or medical scores) data (Jiin-Chyr et al., 2007; Hao-Yung et al.,

2008; Yung-Fu et al., 2009).

Most of the previous methods propose a prediction model for weaning out-

come, working with a limited number of cases and an homogeneous set of vari-

ables. Giraldo et al. (2006) and Hao-Yung et al. (2008) employ Support Vec-

tor Machines (SVM) for constructing a predictive model of weaning outcome.

Arizmendi et al. (2009) propose cluster analysis together with feature selection

algorithms and neural networks to determine the weaning outcome. Preciado

and Giraldo (2011) use a linear discriminant and logistic regression to estimate

the probability of failed weaning.

In ICU, a vast amount of data are usually measured and stored in an hetero-
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geneous way: time series are usually acquired at different time instants, what

represents an heterogeneity in terms of sampling period and number of samples;

similar considerations can be done for clinical tests. In addition, missing and

occasionally incorrect values have to be dealt with.

Classical statistics and machine learning techniques usually require feature

extraction and selection stages, which are mostly unable to deal with heteroge-

neous time series. In this setting, we propose the joint use of two unsupervised

statistical learning tools: Normalized Compression Distance (NCD) (Li et al.,

2004) and Multidimensional Scaling (MDS) (Jolliffe, 2002). The NCD technique

comes from Information Theory and has been successfully applied to a number

of descriptive and predictive applications (Cilibrasi and Vitányi, 2007; Axels-

son, 2010; Pinho and Ferreira, 2011). By using the compression length, the

NCD technique provides a similarity measure between two sequences (in terms

of their mutual information), regardless of their sampling frequency and number

of samples. In this work, the NCD technique is used to identify patterns in the

time series of the weaning variables. MDS is applied to locate each sequence as

a point in an N -dimensional space, which is the input of a subsequent classifier

for predicting the weaning outcome. In this work different classifiers have been

benchmarked for this purpose. Best performance was provided by Partial Least

Squares (PLS) (Rosipal and Krämer, 2006).

The remaining of the paper is organized as follows. Next section presents

the techniques and proposed methodology to predict the weaning outcome from

heterogeneous time series variables. Results with real-world data using classical

tools and those proposed in this paper are shown in Section 3. Conclusions are

presented in Section 4.

2. Methodology and statistical methods

Let us consider a given set of w labeled time sequences {(si, ti)}wi=1, with si

being the i-th sequence of a time series weaning variable, and ti its associated

label {failure, success}. The aim is to infer a weaning outcome prediction
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model from the w labeled time sequences. For this purpose, a procedure of

three stages (graphically represented in Fig. 1) has been proposed:

Stage 1: The NCD technique is applied to the set of w sequences {si}wi=1. A

matrix of size w×w (the named NCD matrix) is obtained, whose elements

are a dissimilarity measure dij between pairs of sequences si and sj .

Stage 2: The NCD matrix is projected onto an N -dimensional space by ap-

plying the MDS technique. The result of this stage is a set of points

{pi}wi=1 ∈ RN , each point associated to a different sequence.

Stage 3: The points yielded in Stage 2 are used, together with labels {ti}wi=1 of

original sequences, to design a classifier to distinguish between successful

and failed weanings.
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Figure 1: Diagram of the proposed procedure to deal with heterogeneous time series for

weaning outcome prediction.

Since conventional classification techniques (such as Neural Networks or

SVM) have been described in the weaning outcome prediction literature (Hao-

Yung et al., 2008; Arizmendi et al., 2009), we present here the PLS tech-

nique (Rosipal and Krämer, 2006), which has been shown extremely useful when

the number of explanatory variables N exceeds the number of instances w (a

common scenario in clinical studies with a reduced number of instances). In

this work, a description of the NCD, MDS and PLS techniques is complemented
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with a synthetic example, in order to get a better understanding of the proposed

methodology.

2.1. Normalized Compression Distance

The aim of the first stage is to obtain a measure, in terms of distance, for

comparing two sequences regardless of their number of elements and sampling

frequency. For this purpose we use the NCD technique, closely related to the

Kolmogorov complexity. The Kolmogorov complexity of a string si, named

K(si), is defined as the number of bits of the shortest computer program of

the fixed reference computing system capable of producing si (Li and Vitányi,

2008). Hence, K(si) can be considered as the number of bits of the ultimate

compressed version of si from which si can be recovered by a decompression

program. Intuitively, K(si) corresponds to the minimum amount of information

required to generate si, i.e., to a quantity approximately equal to the entropy

of the entity that generated si multiplied by the length of si.

Given two strings si and sj , the length of the shortest program computing

sj from si is called information distance, E(si, sj), and it is defined (Bennett

et al., 1998) as:

E(si, sj) = K(si, sj) − min{K(si),K(sj)} (1)

where K(si, sj) is the length of the shortest program producing the concate-

nated pair si and sj . Bennett et al. (1998) have shown that E(si, sj) is actually

a metric and depends on the length of the strings. For example, if the informa-

tion distance q between two short strings is large in comparison to their lengths,

then the strings are very different; but if two long strings have the same value

q for the information distance, since now q is small compared to the strings

lengths, then those strings are very similar. Therefore, the information dis-

tance itself is not suitable to express true similarity. To solve this problem, Li

et al. (2004) defined a relative measure called Normalized Information Distance

(NID):

NID(si, sj) =
K(si, sj) − min{K(si),K(sj)}

max{K(si),K(sj)}
(2)
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NID expresses the similarity between every pair of strings on a scale from zero

to one (Cilibrasi and Vitányi, 2007).

In the practical use, data compressors can be applied to approximate the

Kolmogorov complexities K(si), K(sj) and K(si, sj). Thus, for a given com-

pressor C, C(si) denotes the length, in bits, of the compressed version of the

string si. Using this approximation in (2), the Normalized Compression Dis-

tance (NCD) is achieved:

NCD(si, sj) = dij =
C(si, sj) − min{C(si), C(sj)}

max{C(si), C(sj)}
(3)

which is a non negative number on a scale from zero to one: values of NCD

close to zero represent similar strings, while values close to one correspond to

different strings. In practice, NCD values can be slightly higher than 1 for

real-world compressors (Li et al., 2004).

The first stage of the proposed procedure provides us with an almost sym-

metric NCD matrix (of size w×w) with entries almost null in the main diagonal.

In practice, we force the NCD matrix to be symmetric and have zero values in

the main diagonal (see Fig. 1). The gzip compressor has been used in our ex-

periments, though other real-world compressors can be used (e.g. zip, bzip2,

LZMA or PPMZ ).

2.2. Multidimensional Scaling

The second stage takes the NCD matrix an projects it onto a N -dimensional

space using the Multidimensional Scaling (MDS) technique (see Fig. 1), also

known as Principal Coordinates Analysis (Jolliffe, 2002). This is an exploratory

technique for representing a dissimilarity matrix and visualizing the proximity

of the sequences in a low-dimensional space.

Let us consider the symmetric matrix Mncd containing the pairwise dissim-

ilarities of a set of w instances. The MDS technique searches an orthogonal

N -dimensional configuration of w points, {p1,p2, . . . ,pw} ∈ RN (N < w), such

that dissimilarities among these points are as close as possible to the dissimilari-

ties provided by the elements of matrix Mncd. Mathematically, this is equivalent
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to minimize the following cost function (MDS criterion) (Jolliffe, 2002):

1

2

w∑
i=1

w∑
j=1

(dij − ‖ pi − pj ‖2)2 (4)

where ‖·‖2 denotes the Euclidean norm. In general, it is not possible to find

a configuration providing exactly the same dissimilarities. However, approxi-

mations can be found (as N increases, approximations are closer to the actual

dissimilarities). A representation in a low-dimensional space will allow us to

understand data structure, for instance, proximity between sequences, groups

or outliers.

2.3. Partial Least Squares

Partial Least Squares (PLS) techniques are used for modeling relations be-

tween blocks of variables (e.g., a block of N explanatory variables and another

block of M response variables), as well as for dimension reduction (Rosipal and

Krämer, 2006). PLS techniques assume that the observed data are generated

by a process driven by a small number of latent (not directly observed) com-

ponents. PLS extracts orthogonal1 latent vectors (also called score vectors) by

maximizing the covariance between blocks of variables; then PLS projects the

observed data (MDS points in our case) to its latent structure and use the latent

vectors to perform regression of the response variables.

PLS decomposes the zero-mean (w ×N) matrix of explanatory variables P

and the the zero-mean (w ×M) matrix of response variables Y into the form:

P = CST + RP

Y = LQT + RY

(5)

where C = {c1, c2, . . . , cv} and L = {`1, `2, . . . , `v} are (w×v) latent matrices

containing the v extracted latent vectors of P and Y respectively, and RP

and RY are matrices of residuals. Loading matrices S = {s1, s2, . . . , sv} and

1This orthogonality avoids numerical problems that may arise in Ordinary Least Squares

when the variables are highly colinear.
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Q = {q1, q2, . . . , qv} contain correlations between P and C; and between Y

and L, respectively. Assuming a linear relationship between latent vectors c

and `, it is possible to express L as:

L = CD + RD (6)

where D is a diagonal matrix and RD is a matrix of residuals. Replacing (6) in

the second equality of (5),

Y = CDQT + R∗ (7)

where R∗ = (RDQT + RY ) is a residual matrix. Equation (7) is the decom-

position of Y using Ordinary Least Squares with orthogonal vectors C, and

reflects the assumption that latent vectors of P are good predictors of Y.

The conventional way to find latent vectors is based on the Nonlinear Iter-

ative Partial Least Squares (NIPALS) algorithm (Wold, 1966), which provides

weighting matrices W = {w1,w2, . . . ,wv} and U = {u1,u2, . . . ,uv} such that:

cov2(c, `) = cov2(Pw,Yu) = max
|r|= |b|=1

cov2(Pr,Yb) (8)

where cov(c, `) is the sample covariance between vectors c and `. Weighting

vectors w and u can also be found with algorithms based on eigenvector de-

composition (Höskuldsson, 1988), or using other approaches as SIMPLS (Jong,

1998). After the extraction of the score vectors c and `, the loading vectors s

and q can be computed as coefficients of regressing P on c and Y on `, respec-

tively (Rosipal and Krämer, 2006). Using the relationship C = PW(STW)−1

(Wold, 1966), it is possible to rewrite (7) in terms of the explanatory variables

Y = PB + R∗ (9)

where B = W(STW)−1QT is a regression coefficients matrix. Therefore, linear

estimation of Y is given by:

Ŷ = PB (10)

Note that values of B denote the influence of each explanatory variable on

the response variables. A high absolute value in an entry of B indicates that
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the associated explanatory variable has a high covariance with the associated

response variable.

Since originally PLS is a regression technique and the weaning problem has

been defined as a classification task, a procedure for thresholding Ŷ has been

established. The threshold is selected as the one providing the highest accuracy

(percentage of correctly classified weanings) after performing the two resampling

methods revised in Section 2.5.

2.4. Synthetic Example

Let us consider a binary classification problem where each class (success and

failure) is characterized by a synthetic time series pattern of 48 hours, with

values in the range [0,1]. Pattern for success is a sinusoid with exponentially

decreasing amplitude, and pattern for failure is a triangle (see Figs. 2a and 2b).

To represent a similar scenario to that of our clinical data, both time series

patterns were sampled in a non-regular way (minimum rate of one minute) to

provide w = 100 time sequences, corresponding to an imbalanced dataset (10%

of sequences were labeled as failure). The number of samples per sequence was

a random value between 10 and 150 (typical values in our clinical series, see an

example in Figs. 2c and 2d).

The NCD technique was applied to the sequences artificially generated, and

a NCD matrix of size 100× 100 was obtained (gzip compressor was used in this

case). Subsequently, the MDS technique was applied to the NCD matrix and 100

points of N = 99 dimensions were obtained (each point associated to a different

sequence). Finally, the PLS algorithm was applied for prediction outcome (99

explanatory variables and 1 response variable), and the corresponding regression

coefficients are shown in Fig. 3.

For visualization purposes, in Fig. 4 the MDS points are depicted on a plane

using the most influential dimensions according to the PLS algorithm (2nd and

3rd dimensions, see Fig. 3). Though in this example classification can be easily

performed using a linear classifier, this is not the typical case with non-synthetic

sequences, with usually require a learning stage to design non-linear classifiers.
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Figure 2: Time series patterns for: (a) success; (b) failure. Example of non-regularly sampled

sequence from time series pattern: (c) success; (d) failure.
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2 for the synthetic example in Section 2.4.
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Marked points in Fig. 4 denote, for each class, far and close points to the linear

classification boundary of maximal margin between classes. The sequences asso-

ciated to these points are shown in Fig. 5. Discriminability between classes can

be explained by two factors: (1) number of samples; and (2) structure. Thus,

sequences with a high number of samples (Figs. 5a and 5c -successful class-;

and Figs. 5b and 5d -failed class-) provide a better definition of the pattern

structure they belong to and they are farther to the opposite class in the space

represented in Fig. 4. On the other hand, patterns of sequences with few sam-

ples (Figs. 5e and 5g -successful class-; and Figs. 5f and 5h -failed class-) are

worse represented and are also very close to the maximal margin boundary (see

Fig. 4).
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Figure 4: MDS projection of sequences in synthetic example of Section 2.4. Most influen-

tial dimensions according to the PLS algorithm have been considered. Marked points are

associated to the sequences of Fig. 5.

2.5. Performance Evaluation and Validation Methods

Accuracy is the most common merit figure for evaluating performance in bi-

nary classification problems. The term baseline accuracy is used in this paper to

denote the accuracy obtained by classifying all instances as the majority class.

In problems with imbalanced datasets, a deeper analysis of performance can be

provided through the sensitivity and specificity. Both measures can be related
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Figure 5: Time sequences associated to the points marked in Fig. 4. Successful class: left

column; Failed class: right column.
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through the Area Under the Curve (AUC) obtained by plotting the complemen-

tary to specificity vs sensitivity. The Balanced Error Rate (BER) merit figure

is the mean of the error rate of each class and is used with imbalanced dataset

because it penalizes the classification of all instances as the majority class. A

lower BER indicates that both sensitivity and specificity are high and therefore

performance is good.

In this work, two methods based on resampling are used for estimating the

performance on an unseen test dataset:

– Leave One Out - Cross Validation (LOOCV) (Duda et al., 2001): this

technique divides the original dataset into w subsets (as many subsets as

available instances). A total number of w statistical models are designed,

each model being designed on a different combination of w − 1 of the

w subsets, and performance is evaluated on the partition (instance) not

used for design (test partition). The model performance is estimated as

the average performance on the w test partitions. LOOCV has been shown

to give an almost unbiased estimator of the generalization performance of

statistical models, and therefore provides a sensible criterion for model

selection and comparison.

– Bootstrap Resampling (Efron and Tibshirani, 1993): let us assume a ran-

dom variable x and a set Xw of w i.i.d. instances of x. A bootstrap

resample is constructed by randomly selecting w instances with replace-

ment from Xw. This resampling procedure is repeated B times to form

B sets X
(b)
w b = 1, . . . , B of w instances. Bootstrap resamples X

(b)
w are

conditionally independent given Xw and follow the same empirical distri-

bution as x. Let us assume now that we estimate an statistic θ of x (e.g.

mean) using an estimator ϕ(·), where θ̂w = ϕ(Xw) represents an estima-

tion of θ from Xw. If ϕ(·) is applied to the bootstrap resamples X
(b)
w , B

estimations θ̂
(b)
w are obtained. The properties of θ̂w can be assessed using

statistics (such as standard deviation or confidence interval) of the boot-

strap estimations. In this work, bootstrap resampling is used to select the
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PLS classification threshold and assess the empirical distribution of the

obtained merit figures.

3. Experiments and Results

3.1. Weaning Data

We selected 93 out of 253 patients under mechanical ventilation in the ICU

of Hospital Universitario Fundación Alcorcón (Spain) from January 2010 to

December 2011. The patient’s information was collected according to a protocol

approved by the local ethic committee. Selected patients had not suffered a

tracheotomy procedure and their mechanical ventilation time was longer than

48 hours. A total of 104 weanings from 93 patients were considered, which were

classified by the Head of the ICU into two classes: 88 for the successful weaning

class (SW) and 16 for the failed weaning class (FW), yielding a value of 84.6% for

the baseline accuracy. In this work, a weaning outcome corresponds to the FW

class when the patient is reintubated within 48 hours after extubation (Tobin,

2006).

The weaning dataset was collected by using the clinical information system

IntelliVue Clinical Information Portfolio (ICIP) by Philips. For each weaning,

18 time series (TS), 15 clinical laboratory parameters (CLP) and 12 general

descriptors (GD) were collected at least once during 48 hours previous to the

extubation (see Table 1). A description of these variables can be found in

(Ferreira et al., 2001; Tobin, 2006; Woodrow, 2012). From a clinical point of

view, these variables are potentially influential in the weaning outcome.

TS variables are characterized by a non-regular sampling (maximum sam-

pling frequency of one sample per minute), providing a number of values per

variable fluctuating between 1 and 138. Fig. 6 shows four instances of two TS

variables for SW and FW classes during 48 hours before the extubation. Note

that, in contrast to the synthetic example of Section 2.4, it is not evident to

devise a characteristic pattern for each class.
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TS CLP GD

Heart rate Albumin APACHE3

Diastolic blood pressure Creatinine SAPS2

Systolic blood pressure Hematocrit SAPS3

Temperature Hemoglobin SOFA1

spO2 Leukocytes SOFA2

Resistance C Reactive Protein % IPPV

Peep SBC % BIPAP

Support airway pressure Urea % ASB

Mean airway pressure Arterial pCO2 % O2TT

Plateau airway pressure Venous pCO2 Time MV

Peak airway pressure Arterial pH Age

Inspiratory time Venous pH Sex

Compliance Arterial pO2

Inspiratory flow Lactic Acid

Expired minute volume Procalcitonin

Tidal volume

Respiratory rate

fiO2

Table 1: Time Series (TS), Clinical Laboratory Parameters (CLP) and General Descriptors

(GD) for each weaning.
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Figure 6: Sequences for two TS variables: heart rate (upper row) and expired minute volume

(lower row). Left column correspond to the SW class, and right one to the FW class.

In the CLP group of variables, each variable had a reduced number of mea-

sures (up to seven, depending on the weaning), and the mean value was com-

puted as the representative value; variables with no values (missing data) were

imputed to zero. Regarding GD variables, they just have one value per variable

and it can be numerical (e.g. APACHE3 index) or categorical (e.g. sex).

3.2. Conventional Tools

Three rounds of experiments were performed, two of which included some

schemes proposed in other studies, such as (Giraldo et al., 2006; Hao-Yung et al.,

2008; Arizmendi et al., 2009).

The first round of experiments considered features of the three kinds of vari-

ables (TS, CLP and GD). Eight statistics were obtained from each TS variable:

minimum, maximum, standard deviation, variance, interquartile range, mean,
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median, and summatory. A total of 187 features (8 statistics × 18 TS + 15

CLP + 12 GD) were considered. A LOOCV strategy was applied to evaluate

the performance of three classifiers: linear SVM, nonlinear SVM with RBF ker-

nel (SVM-RBF), namely k(x,y) = e
−‖x−y‖2

2σ2 , and k-NN (Duda et al., 2001;

Schölkopf and Smola, 2001). Parameters of each classifier were tuned using a

LOOCV strategy as well: a test sample is never used neither to design the clas-

sifier nor to tune its parameters. The search strategy was a grid-search with

the SVM regularization trade off parameter C ∈ [1, 150], the RBF-SVM kernel

width parameter σ ∈ [0.01, 15] and the number k of nearest neighbors used to

decide the class in k-NN k ∈ [1, 3, . . . , 11]. Baseline accuracy was not exceeded

in any case. Since the number of features was larger than the number of in-

stances, we considered two feature selection procedures: a filter method based on

Mann-Whitney test (Dickinson-Gibbons and Chakraborti, 1985), and a wrap-

per method proposed in (Alonso-Atienza et al., 2012). In the filter method, for

each feature a Mann-Whitney test was applied to test whether data supported

that medians of each class were different. Those features with a p-value lower

than 0.1 (following Hao-Yung et al. (2008)) were selected. Even though a false

detection rate procedure (Benjamini and Hochberg, 1995) should have been ap-

plied, as we are performing 187 tests, we omitted this step as our aim was to

rank features for their discrimination ability (perhaps allowing some false rejec-

tions) instead of knowing whether a feature is significant or not. The second

feature selection procedure is a variant of a bootstrapped backward search us-

ing a SVM-RBF classifier. Baseline accuracy was not exceeded using selected

feature sets with the three classifiers.

In the second round of experiments, each set of variables (TS, CLP and

GD) were considered for predicting the weaning outcome. We included the

TS trend to the previous TS statistics (i.e., the total number of features for

TS was 9 × 18 = 162). The procedure used in the first round of experiments

was applied to evaluate the performance of the same three classifiers with each

set of variables. Baseline accuracy was only exceeded when TS variables were

considered, yielding an accuracy of 85.57% and a BER of 47% with a linear SVM
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with C = 11, what represents an improvement of one instance over baseline

accuracy.

In the third round of experiments, other selection and classification tools

available in the WEKA software (Hall et al., 2009) were evaluated with each

set of variables (TS, CLP and GD). To select the most relevant features, fil-

ter (such as selection based on correlation or information gain), wrapper (with

evaluators such as SVM or Multi-Layer Perceptron (MLP) and search meth-

ods such as ranker, best first or genetic algorithm) and embedded (such as

C4.5 algorithm) feature selection approaches were applied using LOOCV. Se-

lected features sets were used for weaning outcome prediction with classifiers

such as decision trees (Simple CART, Random Forests and Decision Stump) or

MLP, and the Adaboost M1 method with all the aforementioned base classifiers.

Regarding experiments with TS variables, an accuracy2 of 88.5% and a BER

of 29% was obtained. It is interesting to remark that just four features were

selected, namely interquartile range of variables heart rate, compliance and sys-

tolic blood pressure; and mean of the compliance variable, with a filter selection

method based on correlation, and classified subsequently with Adaboost M1

using Decision Stump as base classifier.

From previous experiments it is clear that predicting the weaning outcome

from heterogeneous data is not a simple task. Furthermore, in the above experi-

ments, temporal reference in TS variables has not been taken into consideration.

In order to deal with the raw data while maintaining the temporal reference, an

investigation was made with heterogeneous TS variables, leading to the proce-

dure proposed in Section 2.

3.3. Proposed Procedure

The NCD technique described in Section 2.1 was applied to each one of the

TS variables indicated in Section 3.1. We chose the commonly used gzip as

2This result was obtained using LOOCV for selecting features and LOOCV for evaluating

performance.
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compressor. A total of 18 NCD matrices of size 104× 104 (number of weanings

× number of weanings) were obtained, one for each TS variable. Then, the

MDS technique was applied to each NCD matrix. As a result, 18 matrices of

size 104×Nv were obtained, with Nv (the rank of the NCD matrix) potentially

different for each TS variable. In our experiments, Nv ∈ [47, 98].

Three classifiers (linear SVM, nonlinear SVM-RBF, and k-NN) were de-

signed for classifying weaning outcomes considering just one TS variable. The

Nv features obtained from the MDS technique were used for this purpose. Ac-

curacy with LOOCV did not exceed the baseline accuracy in any case. To

check if another classification technique would work better, PLS technique with

LOOCV was applied. As indicated in Section 2.3, a procedure for thresholding

the PLS prediction is necessary to perform the classification task, which we de-

tail below. A wide enough range3 of candidate equispaced thresholds (precision

of 0.01) was considered. In order to evaluate the performance of each threshold,

we bootstrapped the PLS predictions (B = 2000) and computed the accuracy

and BER bootstrap empirical distributions, their medians and 95% confidence

intervals (CIs). Threshold with the highest median accuracy (not necessarily

corresponding to minimal BER) is chosen for classification. Fig. 7 shows the

result of applying this procedure to the diastolic blood pressure TS variable.

Note that both accuracy and BER change with the PLS threshold, reaching its

maximum and minimum value, respectively, for a threshold of 0.99.

Table 2 presents the merit figures obtained for each TS variable. First and

second column show the median and 95% CI of the bootstrap performance for

accuracy and BER respectively. Last column in Table 2 shows the AUC, a global

merit figure directly obtained from the PLS predictions of each TS variable.

Best performance (boldface in Table 2) was obtained with the diastolic blood

pressure variable: median accuracy of 90.4% (lower limit of the 95% CI is the

baseline accuracy) and BER of 28.7% (upper limit of the 95% CI is lower than

50%). Note that this is the only case where the lower limit of the CI is at least

3According to the range of the corresponding PLS predictions.
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Figure 7: Diastolic blood pressure TS variable. Accuracy (a) and BER (b) obtained with

different thresholds on the PLS prediction. Gray area represents the bootstrapped 95% CI for

each merit figure, with interior line corresponding to the median. Best accuracy is obtained

for a threshold of 0.99 (marked points).

equal to the baseline accuracy. The confusion matrix associated to the best

performance is shown in Table 3: since the dataset is imbalanced, the SW class

has a stronger influence on the PLS predictions, making it difficult classification

of the FW weanings (9 false positives and 1 false negative).

Fig. 8 represents the PLS regression coefficients for the MDS features of the

diastolic blood pressure TS variable. In contrast to the results of the synthetic

example of Section 2.4, where one dimension stood out from the rest, now

there is not clear cut to decide which dimensions are the most influential in the

PLS estimation, what makes difficult an interpretation. Just for visualization

purposes, Fig. 9 represents as points on a plane the instances using the two

MDS dimensions with the highest influence on the prediction outcome. Absolute

value of PLS regression coefficients is considered for measuring this influence,

therefore dimensions 71 and 82 were selected. Note the difficulty to discriminate

sequences of each class in this space. Points corresponding to sequences far and

close to the cloud center (corresponding to the origin of coordinates) have been

marked: sequences 23 and 37 (SW class) and sequences 50 and 70 (FW class) are

more separated from the cloud center and it is expected that they have different

patterns; however, as it is shown from Figs. 10a and 10c -SW class- and Figs. 10b
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TS variable Accuracy % BER % AUC %

Diastolic blood pressure 90.4 [84.6,95.2] 28.9 [15.5,40.6] 78.9

fiO2 86.5 [79.8,92.3] 44.1 [34.4,50.0] 55.5

Peak airway pressure 86.5 [79.8,92.3] 44.1 [34.6,50.0] 61.5

Systolic blood pressure 86.5 [79.8,92.3] 44.4 [34.2,50.0] 52.3

Inspiratory flow 85.6 [78.8,92.3] 47.1 [40.0,50.0] 53.2

Peep 85.6 [78.8,92.3] 47.1 [39.7,50.0] 53.0

Resistance 85.6 [78.8,92.3] 47.1 [40.0,50.0] 63.6

spO2 85.6 [78.8,92.3] 42.2 [31.2,51.1] 51.9

Inspiratory time 84.6 [77.9,91.3] 47.6 [39.5,51.6] 56.3

Compliance 84.6 [77.9,91.3] 50.0 [50.0,50.0] 56.3

Expired minute volume 84.6 [77.9,91.3] 50.0 [50.0,50.0] 51.1

Heart rate 84.6 [77.9,91.3] 50.0 [50.0,50.0] 54.3

Mean airway pressure 84.6 [77.9,91.3] 50.0 [50.0,50.0] 53.8

Plateau airway pressure 84.6 [77.9,91.3] 50.0 [50.0,50.0] 59.0

Respiratory rate 84.6 [77.9,91.3] 50.0 [50.0,50.0] 66.8

Support airway pressure 84.6 [77.9,91.3] 50.0 [50.0,50.0] 63.9

Temperature 84.6 [77.9,91.3] 50.0 [50.0,50.0] 52.8

Tidal volume 84.6 [77.9,91.3] 50.0 [50.0,50.0] 63.1

Table 2: LOOCV results for the proposed procedure when applied to each TS variable. First

and second column correspond to the median and 95% CI of the bootstrapped accuracy and

BER merit figures. Third column shows the AUC merit figure.

PPPPPPPPPPP
Actual

Predict
Success Failed

Success 87 1

Failed 9 7

Accuracy = 90.4%, BER = 28.7%, AUC = 78.9%

Table 3: Confusion matrix for the diastolic blood pressure TS variable.
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Figure 8: Regression coefficients provided by the PLS technique when applied to the MDS

projections of diastolic blood pressure TS variable.

and 10d -FW class-, it is not straightforward to find the dissimilarity between

patterns of different classes. On the other hand, sequences 67 and 71 (SW class)

and sequences 11 and 15 (FW class) are in the middle of the cloud and it is

expected that they have similar patterns; however, as it is shown in Figs. 10e

and 10g -SW class- and in Figs. 10f and 10h -FW class-, it is difficult to assign

similar patterns to each class. Though classification of these sequences is not

evident, the proposed framework is able to detect similarities not easily captured

by the naked eye neither in two nor in three dimensions, providing a reasonable

solution.

4. Conclusions

A number of variables for weaning outcome prediction have been analyzed

using schemes proposed in other studies. Experiments with real-world weaning

data were performed using several feature selection techniques and classifiers

such as decision trees, k-NN, MLP, SVM and Adaboost.

Since results with previous experiments scarcely improved the baseline ac-

curacy, a general procedure to deal with heterogeneous time series regardless of
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Figure 9: MDS projection of diastolic blood pressure sequences on the two dimensions with

the highest influence on the PLS prediction. Marked points are associated to sequences of

Fig. 10.

the sampling frequency and the number of samples has been proposed in this

paper. The joint use of NCD and MDS allows us to provide a compact input

space to design a statistical classifier. Additionally, the only parameters to be

tuned are the classifier ones (in our case, the PLS threshold). Our procedure

achieved the best result with the diastolic blood pressure TS variable: accuracy

of 90.4% and BER of 28.7%. This represents an error rate of 9.6%, i.e. an

improvement of 37% if it is compared to the physician error rate (100 - baseline

accuracy = 15.4%) who classified all weanings as successful ones.

Even though previous result was achieved by analyzing TS variables one by

one, its extension for considering simultaneously several TS variables is straight-

forward. This work has been mainly focused on time series variables, however

we conjecture that performance might be enhanced by feeding the classifier

with other type of variables providing complementary information for weaning

outcome prediction.
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Figure 10: Associated diastolic blood pressure sequences to the marked points of Fig. 9.

Successful class: left column; Failed class: right column.
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