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a b s t r a c t

It is well-known that one important issue emerging strongly in agriculture is related with the automation
of tasks, where camera-based sensors play an important role. They provide images that must be conve-
niently processed. The most relevant image processing procedures require the identification of green
plants, in our experiments they comes from barley and maize fields including weeds, so that some type
of action can be carried out, including site-specific treatments with chemical products or mechanical
manipulations.

The images come from outdoor environments, which are affected for a high variability of illumination
conditions because of sunny or cloudy days or both with high rate of changes.

Several indices have been proposed in the literature for greenness identification, but under adverse
environmental conditions most of them fail or do not work properly. This is true even for camera devices
with auto-image white balance.

This paper proposes a new automatic and robust Expert System for greenness identification. It consists
of two main modules: (1) decision making, based on image histogram analysis and (2) greenness identi-
fication, where two different strategies are proposed, the first based on classical greenness identification
methods and the second inspired on the Fuzzy Clustering approach. The Expert System design as a whole
makes a contribution, but the Fuzzy Clustering strategy makes the main finding of this paper. The system
is tested for different images captured with several camera devices.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Problem statement

Camera based devices is an excellent sensor for several applica-
tions. One of them is in agriculture where autonomous vehicles
equipped with cameras are demanding solutions to distinguish
plants (crops and weeds) with the aim of applying treatments over
site-specific areas in a larger field (Davies, Casady, & Massey,
1998). Focusing on maize or barley fields, one of the most impor-
tant treatments is weeds killing. Different methods and strategies
for plant identification have been applied in different works
(Burgos-Artizzu, Ribeiro, Tellaeche, Pajares, & Fernández-Quintanilla,
2009; Guerrero, Pajares, Montalvo, Romeo, & Guijarro, 2012;
Guijarro et al. 2011; Montalvo et al., 2012; Onyango & Marchant,
2003; Tellaeche, Burgos-Artizzu, Pajares, & Ribeiro, 2008; Tellaeche,
Burgos-Artizzu, Pajares, Ribeiro, & Fernández-Quintanilla, 2008).
Lopez-Granados (2011) makes a revision of methods where plant
identification is a key step in the process. Most existing strategies
address the problem of green identification under the assumption
ll rights reserved.
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that plants display a clear high degree of greenness. The images
come from outdoor environments, which are affected for a high
variability of illumination conditions: sunny or cloudy days or both
with high rate of changes. In sunny days the position of the sun
with respect the camera makes the illumination component im-
pact differently and plants have different shades and shadows in
the image. Furthermore, the greater the solar illumination the
more intense infrared and ultraviolet radiations are. Also, high
components of illumination could cause sensor saturation. These
situations are absolutely normal in agricultural environments.
Although modern camera devices have the ability to make auto im-
age corrections through auto-image white balance or enhance-
ment, most times this is insufficient, particularly in industrial
cameras, where most camera settings must be dynamically ad-
justed (exposure time, auto-image white balance) or fixed in ad-
vance by the user (focal length, iris aperture).

This paper proposes a new automatic and robust Expert System
for greenness identification which is able to cope with the identi-
fication of green plants even though adverse environmental condi-
tions. It consists of two main modules: (1) decision making, based
on histogram analysis and (2) greenness identification, where two
different strategies are proposed, the first based on classical meth-
ods and the second inspired on the Fuzzy Clustering approach. The
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Expert System design as a whole and the Fuzzy Clustering strategy
make the contributions of this paper. The performance of the
method allows to verify its viability for automatic tasks in agricul-
ture, involving the identification of green plants.

1.2. Revision of methods for greenness identification

Some years ago Tian and Slaughter (1998) considered the
images captured under different conditions such as sunny or clou-
dy days, affecting illumination variability and assuming that they
are typical situations in agricultural images coming from outdoor
environments. Later several strategies have been proposed for seg-
menting crop canopy images, specifically oriented towards green
segmentation:

(1) Visible spectral-index based, including the excess green
index (ExG, Ribeiro, Fernández-Quintanilla, Barroso, &
García-Alegre, 2005; Woebbecke, Meyer, von Bargen, &
Mortensen, 1995), the excess red index (ExR, Meyer,
Hindman, & Lakshmi, 1998), the color index of vegetation
extraction (CIVE, Kataoka, Kaneko, Okamoto, & Hata, 2003),
the excess green minus excess red index (ExGR, Neto,
2004) and the vegetative index (VEG) described in Hague,
Tillet, and Wheeler (2006), which is designed to cope with
the variability of natural daylight illumination. ExG, ExGR,
CIVE and VEG have been applied under a combined form
in Guijarro et al. (2011) gaining in performance with respect
to their individual application. All these approaches need to
fix a threshold for final segmentation, i.e. to discriminate
between plants and other parts (soil, sky).

(2) Specific threshold-based approaches, including dynamic
thresholding. Generally, these techniques assume a two-
class problem where plants and soil are to be identified. Reid
and Searcy (1987) estimate a decision function under the
assumption that the classes follow Gaussian distributions.
The Otsu’s method (Otsu, 1979) is also applied considering
a bi-class problem (Ling & Ruzhitsky, 1996; Shrestha, Stew-
ard, & Birrell, 2004). These algorithms are applied to gray
images. Gebhardt, Schellberg, Lock, and Kaühbauch (2006)
apply also thresholding for segmentation, and transform
the images from RGB to gray scale intensity. This approach
was later improved using local homogeneity and morpho-
logical operations in Gebhardt and Kaühbauch (2007). Kirk,
Andersen, Thomsen, and Jørgensen (2009) apply a combina-
tion of greenness and intensity derived from the red and
green spectral bands and compute an automatic threshold
for a two-class problem assuming two Gaussian probability
density functions associated to soil and vegetation respec-
tively; this procedure requires the previous estimation of
an angle to rotate the hypothetical greenness axis. Meyer
and Camargo-Neto (2008) have applied the automatic Otsu’s
thresholding method for binarizing ExG and the normalized
difference index (NDI), where a comparison is established
against the segmentation obtained from ExGR determining
that in this last case, a value of zero suffices for the thresh-
old, therefore the Otsu’s method is not required. Guijarro
et al. (2011) and Burgos-Artizzu, Ribeiro, Guijarro, and
Pajares (2011) have applied the statistical mean value of
the transformed image obtained with the vegetation indices
instead of automatic thresholding such as Otsu. They justify
its choice because Otsu’s method gives a threshold value
higher than the mean and produces infra-segmentation, i.e.
some plants are not conveniently identified.

(3) Learning-based, Meyer, Camargo-Neto, Jones, and Hindman
(2004) have applied unsupervised approaches, including
Fuzzy Clustering, for segmenting regions of interest from
ExR and ExG. Tian and Slaughter (1998) proposed the envi-
ronmentally adaptive segmentation algorithm (EASA) for
detecting plants through a supervised learning process.
Ruiz-Ruiz, Gómez-Gil, and Navas-Gracia (2009) applied the
EASA under the HSI (hue-saturation-intensity) color space
to deal with the illumination variability. Zheng, Zhang, and
Wang (2009) and Zheng, Shi, and Zhang (2010) use a super-
vised mean-shift algorithm under the assumption that the
segmentation of green vegetation from a background can
be treated as a two-class segmentation problem; the class
separability is validated through a neural network and the
Fisher linear discriminant respectively, the color spaces used
were RGB, LUV and HSI. Guerrero et al. (2012) apply Support
vector machines as the learning.

1.3. Motivational research of the proposed strategy

The above methods are intended for plant identification
through their greenness, based on the accentuation of the green
color (Meyer & Camargo-Neto, 2008), but their effectiveness drops
when, in the plants analyzed, the green spectral component loss its
relevance because of adverse environmental conditions where
such component takes similar values and sometimes lower than
the red one.

Moreover agricultural images contain not only green plants but
other structures, (soil, sky, debris, crop residues or shades), that
must be conveniently addressed.

The main direct effect caused by the illumination is reflected in
the image histogram, where the contrast is a decisive factor for
greenness identification. Classical methods (ExG, ExGR, CIVE or
VEG) work appropriately for well-contrasted images but fail miser-
ably when images are insufficiently contrasted although they are
later enhanced. This situation occurs most often in images cap-
tured with industrial cameras connected to a computer for image
processing. Another undesired situation appears when important
parts in the images become highly saturated.

Thus, our system is designed with a first decision making mod-
ule based on image histogram analysis, which determines if the
incoming image contains sufficient quality to apply classical green-
ness identification methods. Otherwise, the image is to be pro-
cessed by a new greenness strategy, which is a method
specifically developed with such purpose.

We focus this specific method as a bi-classification approach
where green plants are considered as belonging to a class and
the remainder elements in the image are assigned to the other
class. The Fuzzy Clustering (FC) approach is conveniently adapted
for this purpose. FC consists of two phases, namely: learning and
classification. The learning phase is exploited to determine a dy-
namic threshold for each image and the classification is reduced
to a simple decision making process. Previous to this process we
apply image down sampling to achieve an image resolution with
the aim of save processing time so that the image fulfil real time
requirements if any.

Thus, the idea is to apply an automatic strategy for image seg-
mentation based on the potential ability of the FC approach, where
its learning phase is exploited to obtain a specific threshold valid
for each image. No learning is required in the general sense; this
avoids the need of prior training.

1.4. Paper organization

This paper is organized as follows. In Section 2 we explain the
design of the proposed automatic Expert System with its stages
and the corresponding image preprocessing procedures. In Sec-
tion 3 the performance of the proposed strategy is evaluated. Final-
ly in Section 4, the most relevant conclusions are extracted.
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2. Expert System design

The Expert System (ES) architecture is outlined in Fig. 1, where
two main modules are identified: Decision making and Greenness
identification. The incoming image is transferred to the decision
making module, where based on histogram analysis a decision is
made according to the contrast of the histogram. If sufficient con-
trast, we apply the combined method described in Guijarro et al.
(2011) where at the end a binary image is obtained with the green
plants identified; otherwise when the image displays what we con-
sider an insufficient contrast, it is firstly image processed by apply-
ing a down-sampling together with smoothing. After this
preprocessing, a procedure inspired on the FC approach allows to
determine a threshold, during a phase equivalent to what is con-
sidered as learning in the classical FC approach. Once the threshold
is available, through a simple decision rule, a binary image is ob-
tained, also with the green plants identified. In what follows we ex-
plain all process involved in the ES.

2.1. Decision making

This module is designed with the aim of analyze the quality of
the incoming image based on its histogram. After the analysis, a
decision is made and the image is processed according to one of
two available processes in the greenness identification module.
The histograms for the three spectral channels from the RGB image
are processed. Each histogram is defined by its corresponding dis-
crete function h(a) = na, where a represents the gray level and na is
the number of pixels with gray level a. In our 8-bit RGB channel
representation a ranges in [0,255]. Dividing h(a) by the total num-
ber of pixels in the image, the estimation of the probability is ob-
tained, i.e. p(a) = h(a)/M � N, where M and N are both sizes of the
image. The histogram provides useful image statistics that are
exploited for determining the image quality. Let a be a random var-
iable denoting gray levels, the nth moment of a about the mean is
defined as (Gonzalez & Woods, 2008):

lnðaÞ ¼
X

a

ða�mÞnpðaÞ ð1Þ

where m is the mean value of a, i.e. the average gray level
•
•

•
•

Fig. 1. Expert System architecture.
m ¼
X

a

a � pðaÞ ð2Þ

The most important statistical parameters from the point of
view of image quality are (Holub & Ferreira, 2006): mean, m; var-

iance, m = l2(a); skewness, c ¼ l3ðaÞ

l
3
2
2ðaÞ

and kurtosis j ¼ l4ðaÞ
l2

2ðaÞ
. The mean

determines the average level of brightness, where low, high and
medium values indicate the degree of light which has impacted
the device. The moments provide information about the distribu-
tion of values around the mean. Variance is a measure of gray-level
contrast, where high values indicate dispersion of values around
the mean and low values are indicative of a high concentration
of values around the mean. The skewness measures the asymmetry
in the distribution. A right skewness is presented when the histo-
gram displays a large tail oriented towards high brightness values
and high concentration in the part of low brightness values (posi-
tive skewness). In the opposite case the skewness is negative. The
kurtosis provides information about the peakedness in the distri-
bution; low kurtosis indicates flat top parts in the histogram
around the mean but high values are indicative of peaks around
the mean with high slopes and large tails. Skewness and kurtosis
are both zero for Gaussian distributions.

Once we have defined the above parameters, the question is:
how can we determine the image quality and what means quality
from the point of view of our agricultural images? The answer
comes from the experience in this area. Images highly contrasted
are considered as images with sufficient quality and vice versa.
An image with sufficient contrast should be identified by mean val-
ues in the central part of histogram, high variance, low skewness
(positive or negative) and high kurtosis. On the contrary, an image
with insufficient contrast is identified by mean values either low or
high, high skewness (positive or negative) and low kurtosis. The
next step is to determine the ranges of variability for the above
parameters and accordingly the derivation of the corresponding
decision rule. With such purpose we have analyzed a set of images
described in Section 3, such images are classified as images with
sufficient and insufficient contrast from which we obtain their
mean, variance, skewness and kurtosis values. A set of three rules,
each with four premises suffices for making decisions

If mai < mi < mbi and mi > mai and jcij < cai and ji > jai

) sufficient contrast
otherwise ) insufficent contrast

ð3Þ

where i = R, G, B; i.e. three values of each of the three parameters
are obtained according to the three RGB spectral channels. Parame-
ters with subindices a and b are upper and lower limits to be fixed
in Section 3.

2.2. Greenness identification

According to the scheme displayed in Fig. 1, if the incoming im-
age contains sufficient contrast a combination of well-tested meth-
ods is applied based on the experiments carried out in Guijarro
et al. (2011). Otherwise, a new strategy inspired on the FC ap-
proach is proposed for image thresholding.

2.2.1. Combination of methods
Given an original input image in the RGB color space, we apply

the following normalization scheme, which is usually applied in
agronomic image segmentation (Gée, Bossu, Jones, & Truchetet,
2008),

r ¼ Rn

Rn þ Gn þ Bn
; g ¼ Gn

Rn þ Gn þ Bn
; b ¼ Bn

Rn þ Gn þ Bn
ð4Þ

where R, G and B are the normalized RGB coordinates ranging from
0 to 1 and are obtained as follows:
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Rn ¼
R

Rmax
; Gn ¼

G
Gmax

; Bn ¼
B

Bmax
ð5Þ

where Rmax = Gmax = Bmax = 255 for our 24-bit color images. Vegeta-
tion indices to be combined are computed as follows (see references
above in Section 1.2),

Excess green : ExG ¼ 2g � r � b ð6Þ
Excess green minus excess red : ExGR ¼ ExG� 1:4r � g ð7Þ
Color index of vegetation extraction

CIVE ¼ 0:441r � 0:811g þ 0:385bþ 18:78745 ð8Þ

Vegetative VEG ¼ g

rab1�a ;

with a set to 0:667 as in Hague etal:; 2006 ð9Þ

Based on Guijarro et al. (2011) the above three indices are com-
bined to obtain the resulting value COM as follows,

Combined :

COM ¼ wExGExGþwExGRExGRþwCIVECIVEþwVEGVEG ð10Þ

where wExG, wCIVE and wVEG are weights for each index, representing
the relative importance of the index. Guijarro et al. (2011) provide
the values for the four weights participating in the combination,
which are the following: wExG = 0.25, wExGR = 0.30wCIVE = 0.33 and
wVEG = 0.12.

The resulting combined image COM, is linearly mapped to range
in [0,1], after which, it is thresholded by applying the Otsu’s (1979)
method, obtaining a binary image, where white pixels identify
plants in the original image, with clear spectral RGB components
associated to unmasked plants. On the contrary, black pixels iden-
tify those pixels in the original image belonging to masked plants,
soil and other materials present in the field.

2.2.2. Preprocessing and Fuzzy Clustering
Two consecutive strategies are proposed when the images are

insufficiently contrasted, i.e. image preprocessing and FC. The for-
mer is proposed mainly for image reduction, although it could be
avoided if restrictive real-time problems exist. Indeed, because
FC involves a first phase associated to a learning process (iterative)
the number of samples, which are pixels coming from the image,
determine the computational cost. The lower the number of pixels
to process lower the computation time. The second (FC) is the ker-
nel of this process, where after the learning phase, a threshold is
obtained which allows the image binarization.

(a) Image preprocessing The original image is down sampled by
applying successive Discrete Wavelets Transform (DWT)
(Pajares & de la Cruz, 2004). Only the DWT is of interest
applied over the approximation coefficients at each resolu-
tion level and for each spectral R, G, B channel. In this way,
as the same time the signal is decomposed, a smoothing pro-
cess is applied to minimize possible noise or spurious pixels
caused by the adverse environmental outdoor conditions.

(b) Image thresholding by Fuzzy Clustering
(b.1) Learning phase and thresholding: given the down sampled

RGB image, it contains n pixels which are stored in X i.e.,
X ¼ fx1; x2; . . . ; xng 2 Rd, where d is the data dimensional-
ity. Therefore, each sample vector xi represents an image
pixel, where its components are the three RGB spectral
components of that pixel at the original image location
(x,y). This means that in our experiments the data dimen-
sionality is d = 3. Each sample is to be assigned to a given
cluster wj, where the number of possible clusters is c, i.e.,
j = 1,2, . . . ,c. In the proposed approach c is set to 2 because
we were only interested on two types of textures, i.e. green
plants (crop/weeds) and the remainder (soil, debris,
stones).

The samples in X are to be classified based on the well-known
Fuzzy Clustering approach that receives the input training samples
xi and establishes a partition, assuming the number of clusters c is
known. The fuzzy partitioning problem for b > 1 is minimize the
following variance criterion,

min Jbðl
j
i;v ; tÞ ¼

Xn

i¼1

Xc

j¼1

ðlj
iðtÞÞ

bkxi � v jk2 ð11Þ

The process computes for each xi at the iteration t, its degree of
membership in the cluster wjðlj

iÞ and updates the cluster centers vj

as follows (Zimmermann, 1991):

lj
iðt þ 1Þ ¼ 1Pc

r¼1ðdijðtÞ=dirðtÞÞ2=ðb�1Þ ;

v jðt þ 1Þ ¼
Pn

i¼1½l
j
iðtÞ�

bxiPn
i¼1½l

j
iðtÞ�

b
ð12Þ

d2
ij � d2ðxi;v jÞ is the squared Euclidean distance. The number b is

called the exponential weight (Bezdek, 1981; Duda, Hart, & Stork,
2000), b > 1. The stopping criterion of the iteration process is
achieved when klj

iðt þ 1Þ � lj
iðtÞk < e 8ij or a number tmax of itera-

tions is reached.
The method requires the initialization of the cluster centers, so

that the Eq. (11) can be applied at the iteration t = 1. Because our
interest consists in the identification of green plants among other
parts one ideal center should be the one with the pure green color,
without loss of generality this center is identified as v1 = (0,255,0);
the second center only requires that the green spectral component
is not dominant over the red and blue, the following values suffice
v2 = (255,0,128).

Once the learning process is finished we obtain two cluster cen-
ters v1 and v2 associated to clusters w1 and w2 with components
v1 � {v1R, v1G, v1B} and v2 � {v2R, v2G, v2B} respectively; where v1R,
v1G and v1B or v2R, v2G and v2B represent the averaged values for
the corresponding RGB spectral components at each cluster ob-
tained according to Eq. (12). Thus, because v1 is associated to the
cluster where green plants belongs to, we compute the threshold
value T = v1G/(v1R + v1G + v1B), which represents the proportion of
greenness with respect the three spectral components. It is ex-
pected green plants tend to have their green spectral components
in the RGB color model the greatest. Thus we chose T as the thresh-
old for the posterior decision making process.

(b.2) Classification phase and segmentation: given the original RGB
image, we obtain the three r, g and b normalized values
through Eq. (4). Considering the threshold T computed as
above, the following rule allows to obtain a binary image,
W, where white pixels are identified as green pixels in the
original image:

W ¼
1 if g

rþgþb > T

0 otherwise

(
ð13Þ
3. Results

The images used for this study were acquired with the following
digital color camera devices and dates: (a) HPR817 with image res-
olution of 600 � 800 in March/April/May 2007 (330 images) for
barley and maize crops; (b) Canon EOS 400D with resolution of
1944 � 2592 during April/May 2011 (350 images); (c) Basler
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17FC 1400 connected to a laptop through FireWire IEEE 1394 and
resolution of 1392 � 1038 in April/May 2011 (320 images); (d) Ko-
dak EasyShare M380 with resolution 1280 � 960 in March 2011 for
barley crop and May 2012 for maize crop (210 images); (e) SVS-
VISTEK with GigaEthernet connection to a laptop and resolution
of 2336 � 1752 equipped with UV-IR cut Schneider filter 486 in
March/April/May 2012 (340 images) for barley and maize crops.
This makes a total of 1550 images.

All acquisitions for the same crop were spaced by different days
varying from five/six/ten until thirty days, under a high variety of
illumination conditions, including: cloudy and sunny days with
sun incident around all angles with respect the camera; during
the morning, afternoon, midday and late afternoon.

These digital images were captured under perspective projec-
tion in barley and maize fields containing soil with different ele-
ments (stones, debris or old crop residues), plants (crop and
weeds), sky (with and without clouds) and other elements such
as buildings. They were stored as 24-bit color images and saved
in RGB (Red, Green and Blue) color space in the BMP and JPG for-
mats. The Expert System was implemented in Matlab R2010b
(The Mathworks, 2012) and the images were processed with its
Image Processing Toolbox.
3.1. Decision making module: identification of parameters

From the set of available images, we have randomly selected
the 5% of images obtained with each camera device, including
images of barley and maize when available. According to the
Greenness identification module in Fig. 1, for each image we obtain
two binary images, one by applying the combination of classical
methods according to Eq. (10) and the second by applying image
preprocessing and Fuzzy Clustering, Eqs. (11) and (12). The binary
images are visually analyzed by an expert in order to determine the
best result, considering how the green plants, present in the origi-
nal images, have been identified. Figs. 2–4(a) display three repre-
sentative images where the best binarization is achieved by
applying combination of classical methods. On the contrary,
images Figs. 5–7(a) display three representative images in which
the best binarized results have been obtained with the processing
involving FC, i.e. they are considered images with insufficient con-
trast. Figs. 2–7 labeled with (b) display the corresponding histo-
grams for the three RGB spectral channels.

Figs. 2–4 display images with histograms with distributions
covering the whole range of values and with maximum values lo-
cated at the central part. On the contrary, histograms associated to
Figs. 4–7 are heeled left or right. This represents an important find-
ing, which is decisive for making a decision. The only question is to
quantify this observation in some way.
Fig. 2. (a) Original image (maize) captured with the Kodak EasyShare M
Table 1 displays the average parameter values derived from the
corresponding histograms on the set of images analyzed according
to the best binary image obtained. Minimum and maximum values
for each R, G, B spectral channel are identified for the mean (m),
variance (m), skewness (|c|) and kurtosis (j). They are distinguished
as images with sufficient contrast and images with insufficient
contrast and inside these last ones we still can distinguish between
images with the histogram heeled left or right, this is because the
mean histogram values ranges differently.

From results in Table 1, two important conclusions can be ex-
tracted. There are two parameters which are really discriminating
(m and |c|) and two that are not (m and j). Indeed, considering the
Red spectral channel, we can see that the mean for images with
sufficient contrast ranges in [106,130] and for images with insuffi-
cient contrast there are two intervals, one for left heeled [60,75]
and one for right heeled [174,217]. These intervals clearly appear
as no overlapped with wide margins between them. This reasoning
can be extended to the Green and Blue spectral channels, where
this same behavior appears, i.e. [102,136] and [65,81]–[168,213]
for Green and [78,112] and [49,60]–[144,167] for Blue. With re-
spect skewness and the Red spectral channel we can see that
images with sufficient contrast the range is [0.22,0.45] and with
insufficient contrast [0.85,0.89] and [0.79,0.98], i.e. with overlap-
ping between these intervals. Similar behavior is applicable for
the Green spectral channel with [0.10,0.21] and [0.89,0.93]–
[0.78,0.87] and for the Blue channel is [0.33,0.41] and
[0.82,0.90]–[0.68,0.78]. Fig. 8 clarifies this situation, where we
can verify indeed that not overlapping exists on each for the aver-
aged mean and skewness values. Each channel is identified with
the subindices R, G and B accordingly.

The behavior displayed by mean and skewness does not occur
for variance and kurtosis where overlapping occurs and therefore,
these last ones are not discriminant. Hence only setting of mean
and skewness parameters involved in Eq. (3) for each spectral
channel (R,G,B) is possible as follows: maR = 106; maG = 102;
maB = 78; mbR = 130; mbG = 136; mbB = 112, we can assume a certain
margin of tolerance because there are sufficient distances for no
overlapping; for skewness it is clear that appropriate values for
the three spectral channels should be between 0.50 and 0.60, i.e.
caR = caG = caB = 0.55. With respect variance and kurtosis they are
no longer considered and they can be removed from Eq. (3).

3.2. Greenness identification module

Once the above parameters have been established, we have ran-
domly selected the 15% of available images, i.e. 232, about half
with enough contrast and the other half with insufficient contrast,
which are all different from the ones used for parameter’s identifi-
cation. The performance of this combined strategy and also the one
380 camera and (b) Histogram for the three RGB spectral channels.



Fig. 3. (a) Original image (maize) captured with the 17FC 1400 Basler camera and (b) Histogram for the three RGB spectral channels.

Fig. 4. (a) Original image (barley) captured with the HPR817 camera and (b) Histogram for the three RGB spectral channels.

Fig. 5. (a) Original image (maize) captured with Canon EOS 400D and (b) Histogram for the three RGB spectral channels.
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based on FC is tested against the corresponding ground-truth
images which are built following the procedure described in
Guijarro et al. (2011), which is summarized here for facility as
follows: (1) given the original image in the RGB color space, we ex-
tracted all pixels where the Green component is greater than the
Red and Blue ones simultaneously at least in a 10%. This allows
us to obtain an important part of green plants, which are labeled
as white; (2) also from the original image we extracted those parts
where the Red and Blue components are dominant, i.e. they over-
pass at least in a value of 10% the other two. This allows extracting
the Red and Blue parts with a certain degree of confidence, being
labeled as black; (3) the pixels that still were not labeled were
manually touched up and labeled according to the human expert
criterion by comparing them with the original image. Nevertheless,
when the images are highly complex, such as the one in Fig. 6(a) or
extremely complex as the one displayed in Fig. 10(a), we select
parts containing green plants and other elements which are easily
distinguishable.

3.2.1. Combination of classical methods
We have applied exactly the parameters proposed in Guijarro

et al. (2011) obtaining similar results.



Fig. 6. (a) Original image (barley with wide row crops simulating maize) captured with SVS-VISTEK camera and (b) Histogram for the three RGB spectral channels.

Fig. 7. (a) Original image (maize) with the 17FC 1400 Basler and (b) Histogram for the three RGB spectral channels.

Table 1
Histogram parameters (mean, variance, skewness, kurtosis) identifying minimum and maximum values for images with sufficient/insufficient contrast in the three R, G, B spectral
channels.

Sufficient contrast Insufficient contrast

Minimum (R,G,B) Maximum (R,G,B) Left heeled Right heeled

Minimum (R,G,B) Maximum (R,G,B) Minimum (R,G,B) Maximum (R,G,B)

m (106,102,78) (130,136,112) (60,65,49) (75,81,60) (174,168,144) (217,213,167)
m � 103 (1.51,0.83,0.52) (3.73,2.64,3.65) (0.91,1.83,1.85) (2.91,3.55,3.89) (1.83,2.20,1.72) (2.72,2.53,3.33)
|c| (0.22,0.10,0.33) (0.45,0.21,0.41) (0.85,0.89,0.82) (0.89,0.93,0.90) (0.79,0.78,0.68) (0.98,0.87,0.78)
j (1.75,1.84,1.72) (3.69,3.73,4.50) (2.46,2.26,2.10) (4.45,3.98,4.60) (2.77,2.74,2.69) (5.42,3.08,3.66)

J. Romeo et al. / Expert Systems with Applications 40 (2013) 2275–2286 2281
3.2.2. Image preprocessing
We have applied successive DWT decomposition. As mentioned

before, this procedure involves both down-sampling and filtering
processes. Images with maximum resolution used in this paper
are those provided by Canon EOS 400D camera, i.e. 1944 � 2592.
We have verified that reductions of 1

16 suffices for these images to
achieve appropriate performances in terms of effectiveness, as
compared to the corresponding ground-truth, while reducing the
computational cost during this process and also during the subse-
quent FC process because the number of samples to be processed.
This leads to resolutions of 121 � 162 i.e. the number of samples
for our experiments is finally fixed to 19,602. For original images
with resolutions other than the above, the DWT decomposition
level should be the appropriate to achieve a similar number of
samples. Regarding the family of wavelets used, we have verified
that this aspect is not relevant, thus we have used the one that in-
volves less computational cost. The Haar transform fulfill this
requirement because its associated low pass filter contains the less
number of coefficients and the number of computational opera-
tions required for filtering is less.
3.2.3. Fuzzy Clustering
As mentioned above, this process starts with the cluster centers

already initialized, then applying successive iterations we estimate
the final cluster centers, Eq. (12), until convergence through e or a
maximum number of iterations is reached tmax.

In order to fix these parameters we have selected 10 images
identified as images with insufficient contrast and its correspond-
ing ground-truth. Initially we fix tmax = 100, which is a number rel-
atively high. We vary e from 10�2 to 10�5 in steps of 5 � 10�5, once
we achieve the best results according to the ground-truth for each
image, we annotate the number of iterations and the e value for
each image. Table 2 displays these values for the ten images tested.



Fig. 8. Representation of averaged values for mean and skewness for the three RGB spectral channels.

Table 2
Iterations and e values for ten images analyzed.

# Image 1 2 3 4 5 6 7 8 9 10
Iterations (t) 3 8 12 2 3 1 6 7 3 2
e � 10�5 6 11 14 77 73 24 18 10 12 15

Table 3
Averaged CPU computational times in seconds for the process involved in the ES.

Histogram analysis COM DWT FC (per iteration)

CPU time (s) 0.19 0.72 1.01 0.03
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With values in Table 2, we finally fix tmax = 14 and e = 10�5,
which guarantee a certain degree of confidence, because they are
the most restrictive. These values are the ones used for posterior
analysis.

3.2.4. Global performance: quantitative analysis
The proposed ES is quantitatively analyzed with 222 images

with their corresponding ground-truth, where the ones used above
for fixing tmax and e are now discarded.

Because these images have been previously identified as images
with sufficient (108) and insufficient contrast (114) by the expert,
the performance of the decision making module is evaluated based
on the following magnitudes:

� SC: number of images identified correctly with sufficient
contrast.
� IC: number of images identified correctly with insufficient

contrast.
� SCE: number of images identified with sufficient contrast being

of insufficient contrast (error).
� ICE: number of images identified with insufficient contrast

being of sufficient contrast (error).

From these quantities we compute the percentage of correct
classification as follows,

PCC ¼ SC þ IC
SC þ SCEþ IC þ ICE

ð14Þ
Finally, according to the decision rule in (3) excluding variance
and kurtosis as explained, we obtained SC = 101, IC = 109, SCE = 7,
ICE = 5, i.e. PCC = 0.95, which is an acceptable result.

The combination of classical methods is tested with the SC and
ICE images, from which we have achieved the 91% as percentage of
success, averaged over the number of images tested and also based
on the corresponding ground truth, which is a similar result to the
one reported in Guijarro et al. (2011).

The performance of our proposed FC method is tested with the
IC and SCE images obtaining a percentage of 89.9% of success.

Table 3 displays the averaged CPU computational times for each
process involved in the ES for the set of images processed. The va-
lue in FC is averaged over the number of iterations, i.e. it represents
the average time per iteration.

Based on results in Table 3, when an image is identified with
sufficient contrast the total CPU time is 0.91s; when the image is
identified as with insufficient contrast and in the worst case,
tmax = 14, the total time for FC is 0.6s. This means that the total time
for the full process in this case is 1.62 s. Common agricultural vehi-
cles working in agricultural tasks and requiring green identifica-
tion, navigate at speeds between 4 and 6 km/h (1.1–1.7 m/s).
Thus, assuming that vision systems, on board these vehicles, have
the ability to cover areas of 4 meters long without any difficult we
have a window between 3.60 and 2.35 s to process the image,
which is sufficient according to times above.
3.2.5. Global performance: qualitative analysis
Figs. 9–11(a) display representative original images from the set

of available images of maize fields; in (b) appears their histograms.
Results and conclusions extracted from this analysis are valid for
the full set of images tested. In Fig. 10(a) we can see a limited field
area with different weeds densities in the inter-crop rows spaces;
alternatively appear low/high densities, which were manually pre-
pared by farmers for testing purposes. Table 4 displays the relevant
parameters (mean, mi, skewness, ci, cluster center v1 � {v1R, v1G, v1B}
and threshold T) to make a decision about the process to apply, i.e.
COM or FC; for each image we identify the camera device with
which it has been captured.

From results in Table 4 we can see that according to the decision
rule in (3), image in Fig. 9 is identified as belonging to the set of
images with sufficient contrast. It should be processed by applying
the COM procedure according to Eq. (10). Images in Figs. 10 and 11



Fig. 9. (a) Original image representative of the set of images with sufficient contrast; (b) its histogram for the three RGB spectral channels; (c) binary image obtained with
COM; (d) binary image obtained with FC; (e) distribution of clusters and centers obtained through FC and (f) variation of the criterion function against the number of
iterations.
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are identified as belonging to the set of images with insufficient
contrast; they should be processed with the FC-based procedure.
According to the expert criterion the three decisions made for
these images are correct and the histograms distributions confirm
these decisions. An important aspect to remark is the variability of
the threshold T which in images with insufficient contrast varies
from 0.34 to 0.52 depending on the type of image. Thus, fixing a va-
lue as a universal threshold becomes unfeasible. This makes an
important contribution of this paper, because we provide a proce-
dure for adjusting a dynamic threshold adapted to the image qual-
ity under processing, measured by its contrast. Additionally, some
relevant information can be extracted from the histogram. This is
the case for the image in Fig. 11(a) and its histogram in (b), where
one can easily infer that this image presents oversaturation.
Although the proposed FC based approach provides acceptable
results which allow to work under critical adverse conditions,
perhaps the best alternative should be to control the input of
illumination either applying iris modification or decreasing the
exposure time in the sensor device. This makes an additional
contribution.

Only for comparison purpose we have processed the three
images with both COM and FC, obtaining respectively the corre-
sponding binary images displayed in Figs. 9–11 labeled with (c)
and (d). Also, for the same purpose, we display in Figs. 9–11 labeled
with (e) the clustering of the samples with the cluster centers iden-
tifying the clusters with green plants and the remainder with other
elements (soil, sky). Finally, in figures with labels (f) it is displayed
the variation of the criterion function defined in Eq. (10) against
the number of iterations. It is important to remark once again that
during the ES normal operation images with sufficient contrast are



Fig. 10. (a) Original image representative of the set of images with insufficient contrast; (b) its histogram for the three RGB spectral channels; (c) binary image obtained with
COM; (d) binary image obtained with FC; (e) distribution of clusters and centers obtained through FC and (f) variation of the criterion function against the number of
iterations.
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not processed under the FC approach and with insufficient contrast
are not processed with COM.Analysis of binary images: by compar-
ing the binary images obtained with COM and FC, we can easily
verify the outperformance of the appropriate procedure according
to the decision made. Indeed, the quality of the binary image in
Fig. 9(c) is better than the one in Fig. 9(d) where important defi-
ciencies are identified with circles, i.e. real plants which have not
been identified. This means that COM outperforms FC as expected.
On the contrary, the quality of binary images in Figs. 10 and 11(d)
is clearly superior to the one obtained in binary images in Figs. 10
and 11(c). Now, this implies that FC for images with insufficient
quality is the appropriate procedure but not COM. These results
confirm in a qualitative way that the proposed ES is appropriate
for identifying greenness in agricultural images, captured even un-
der adverse environmental conditions.

Analysis of FC (clustering and convergence): Figs. 9–11(e) display
the clustering of green plants and the remainder elements in the
image, basically soil, sky, trees and some building. As we can see
in the three figures, samples belonging to each cluster appear
grouped together. Perhaps a greater compactness can be seen in
images with insufficient contrast, Figs. 10 and 11(e), which is a di-
rect consequence of the histograms and their concentration either
left or right. A different measure allows us to verify that in images
with insufficient contrast, Figs. 10 and 11(e), the Euclidean dis-
tance between cluster centers is less than in images with sufficient
contrast, Fig. 9(e), this could serve as an additional measurement to



Fig. 11. (a) Original image representative of the set of images with insufficient contrast; (b) its histogram for the three RGB spectral channels; (c) binary image obtained with
COM; (d) binary image obtained with FC; (e) distribution of clusters and centers obtained through FC and (f) variation of the criterion function against the number of
iterations.

Table 4
Histogram parameter values (mean, skewness, cluster center v1 and threshold T) for
the images displayed in Figs. 9–11.

Fig. 9 (Kodak) Fig. 10 (SVS-
VISTEK)

Fig. 11 (Basler)

(mR,mG,mB) (116,124,105) (52,53,33) (236,230,187)
(cR, cG, cB) (0.32,0.17,0.38) (0.68,0.89,1.65) (�2.74,�2.13,�1.43)
v1 � {v1R, v1G, v1B} (71.2,91.3,57.1) (32.0,34.6,19.9) (176.8,155.0,107.2)
T 0.42 0.40 0.35
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verify that the image has been correctly processed if this distance
is sufficiently small. With respect the convergence criterion one
can see that the convergence is relatively fast, Jb drops drastically
at the first iterations, iteration two at Figs. 9 and 10(f) and three
at Fig. 11(f). Although this convergence process is only applied
for images classified as with insufficient contrast, we can infer
again that the number of iterations is relatively low. This confirms
what we had already advanced with regard the maximum number
of iterations set to tmax = 14, which validates the setting of this
parameter.
4. Conclusions

We propose a new automatic ES for greenness image identifica-
tion in agricultural images in maize and barley fields. Its open
architecture allows its application to any type of crops in growth
states where green plants appear. The proposed system is also
applicable to other environments where the main goal is the
greenness detection, by example urban areas where trees or lawn
densities are of interest.
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The proposed ES is based on two main modules, where the first
one decides about the image quality by histogram analysis.
Depending on this decision, each is image is conveniently pro-
cessed either by applying a combination of classical greenness
strategies or through a module where the FC approach supports
the adjusting of a threshold which is dynamic for each image.
The proposed strategy has been tested with a broad set of images
coming from different camera devices, all oriented toward auto-
matic applications in agricultural images for site specific treat-
ments and captured under very different environmental
conditions.

The ES has been designed with an open architecture, so that in
the future be possible to replace or add new modules, being of par-
ticular interest to study new automatic thresholding methods
(Avci & Avci, 2009) or improve the decision rule defined in Eq.
(3) by applying a decision-tree inductive learning strategy such
as ID3, CART or C4.5 among others (Duda et al., 2000). In this paper
we have applied the DWT to the three RGB spectral channels; the
down-sampling process could be only applied to the intensity im-
age after the image transformation from the RGB color space to HSI
(H-hue, S-saturation, I-intensity) among others.

In addition, once green plants are identified, the remainder
parts, mainly the soil, could be analyzed to identify relevant eco-
logically categories (Luscier, Thompson, Wilson, Gorham, & Dragut,
2006), thus the proposed ES could be extended to deal with the
analysis of soil materials with the feedback of samples belonging
to this category.
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