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Abstract

In this work we apply multi-class support vector machines (SVM) and a multi-class
stochastic SVM formulation to the classification of fish schools of three species: anchovy,
common sardine, and jack mackerel, and we compare their performance. The data used
come from acoustic measurements in southern-central Chile. These classifications were
carried out by using a diver set of descriptors including morphology, bathymetry, energy,
and space positions. In both type of formulations, the deterministic and the stochastic
one, the strategy used to classify multi-class SVM consists in employing the criterion
one-species-against-the-Rest. We thus provide an empirical way to adjust the parameters
involved in the stochastic classifiers with the aim of improving its performance. When
this procedure is applied to the classification of fish schools we obtain a classifier with
a better performance than the deterministic classifier.

Key words: Support vector machines, multi-class classification, robust chance constraints,
second-order cone programming, species identification.

1 Introduction

Acoustics surveys are used to estimate the abundance and to study the behavior of many
species. The last decades shows a great progress in the development of acoustics devices, and
of new methods and techniques for automatically identifying species (see Horne (2000), [12]
and Fernandes et al.(2006), [10]). The echograms obtained with acoustics devices provide
information of size, location and echo intensity of fish schools. However, its classification
is still not detectable by modern devices. Indeed, according to Horne (2000), the species
identification is the big challenge of fisheries and plancton acoustics.

A wide range of statistical techniques have been used to classify mono-specific fish-school.
Fernandes (2009)(see [11]) presents a complete list of studies including principal component
analysis, discriminant-function analysis, artificial neural networks, nearest-neighbor anal-
ysis, k-means clustering and mixture models. Buelens et al. (2009) (see [4]) use kernel
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methods to classify fish schools in single beam and multibeam acoustic data. In Robotham
et al. (2010) (see [19]), support vector machine methods (tool for discriminating between
two groups, see [8]) are used for the automatic classification of small pelagic fish species
from acoustic surveys data. The results obtained by this approach was compared with an
artificial neural networks methods.

Typically, the methods used to classify species of fishes require a scrutiny process of
the echograms, the guide of expert criteria and additional information from trawl sampling
(Simmonds and MacLennan (2005), see [22]). This procedure incorporates some grade of
subjectivity. Thus, other approaches have been developed based only on the information
provided by the echosounders. For instance, the identification of species based on school
“descriptors parameters” from single-frequency acoustic data represents one type of ap-
proach. A second type of approach, which will not be exploded in this work, makes use of
multifrequency acoustic data (Korneliussen et al. (2009), see [15]).

The purpose of this article is to compare the results of support vector machines (deter-
ministic SVM) and classification when the uncertainty of data is incorporated for automatic
acoustic identification of small pelagic fish species; anchovy (Engraulis ringens), common
sardine (Strangomera bentincki) and jack mackerel (Trachurus murphyi) in southern-central
Chile. The latter makes no precise assumption on the class-conditional densities with given
mean and covariance matrix, that is, it is a “worst-case” setting.

1.1 Data collection and descriptors

School data were obtained from 11 acoustic assessment surveys performed with the R/V
Abate Molina in northern and south-central Chile (18◦25’S-43◦50’S) between 1991 and 2006.
The data were collected using a scientific echosounder (SIMRAD EK-500) with a split-beam
transducer (ES38 38 kHz) with a nominal -3 dB beam with of 7◦, calibrated according to
standard procedures (Foote et al., 1987). The ping rate of the echosounder in the surveys
was 1 vs-1, the pulse duration was 1 ms and a minimum threshold of -65 dB. An Engel
pelagic trawl with a 14-m vertical opening and 14-mm mesh size in the codend as used to
identify the species in the acoustic survey. The flotation line of this net was adapted for
fishing near the surface.

The acoustic records of the fish schools detected by the echosounder were processed with
Echoview 3.0 software (Sonardata). Schools were identified by fishing hauls carry out using a
midwater trawl. The parameters of the fish schools were determined automatically by the al-
gorithm SHAPES programmed into the software Echoview and described in Barange (1994),
and Coetzee (2000), (see [3] and [7], respectively). Each aggregation was manually marked
in a region on the image of the echogram, and each case was individually analyzed. The
parameters used were minimum candidate heigth=1m, minimum candidate length =1m,
maximum vertical linking distance =1m, and maximum horizontal linking distance =15m.

The input data for a classification of fish-school is a collection of acoustics records. Each
acoustics record, is characterized by a duple (x, y), where x ∈ Rn is the n-dimensional
descriptors vector and y is a category (class) species which belong this descriptor. We used
12 descriptors for each school detected, which were grouped in four categories (see Scalabŕın
and Massé (1993), [21]):
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1. Morphological: mean height (H), length (L) and perimeter (P ) with units in meter
(m); area (m2) and unidimensional descriptors:

- Elongation = length
meanheight .

- Fractal dimension = 2 ln 0.25P
ln area .

2. Bathymetric: Bottom depth (D) and mean school depth (Dm) with units in meter
and unidimensional descriptor:

- School altitude index = 100D−Dm
D .

3. Energetic: Acoustic energy (m2/mn2) and acoustic density (dB).

4. Space position: School-shore distance (mn).

Some bathymetric and morphological descriptors are presented in Figure 1.

Figure 1: Representation of bathymetric and morphological descriptors

2 Support vector machines

In this section we describe the support vector machines (SVMs) developed by Cortes and
Vapnik (1995), and second-order cone programming SVMs formulation based on the first
two moments of each class, the mean and covariance (Nath and Bhattacharyya (2007);
Shivaswamy et al. (2006)).

2.1 l2-Support vector machines

Support vector machines (SVMs) is a statistical classification method originally designed
for binary classification. Given a set T = {(x1, y1), . . . , (xm, ym)} of m training data, where
xi ∈ Rn representing the ith training data and yi ∈ {−1, 1} the class label of xi, SVM
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provides the optimal hyperplane f(x) = w>x − b that separates two classes. When the
training data are linearly separable, this hyperplane separates two classes with no training
error, and maximizes minimum distance from the training data to the hyperplane. In order
to maximize this minimum distance, we need to classify correctly the vectors xi of the
training set into two different classes yi, using the smallest norm of coefficients w. The
maximum hyperplane problem can be formulated as the following Quadratic Programming
(QP) optimization problem (see [8]):

min
w,b

1

2
‖w‖2

yi(w
>xi − b) ≥ 1, i = 1, . . . ,m.

(2.1)

2.2 Support vector machines under uncertainty

Let X1 and X2 be two random vector variables associated to the positive and negative
classes, respectively. In order to construct a maximum margin linear classifier such that
the false-negative and false-positive error rates do not exceed η1 ∈ (0, 1] and η2 ∈ (0, 1], re-
spectively, we consider the following Quadratic Chance-Constrained Programming (QCCP)
problem:

min
w,b

1

2
‖w‖2

Pr{w>X1 − b ≤ −1} ≤ η1,

Pr{w>X2 − b ≥ 1} ≤ η2.

(2.2)

In other words, we require that the random variable Xi lies on the correct side of the
hyperplane with probability greater than 1 − ηi for i = 1, 2. Assume that for i = 1, 2 we
only know the mean µi ∈ Rn and covariance matrix Σi ∈ Rn×n of the random vector Xi. In
this case, for each i = 1, 2 we want to be able to classify correctly, up to the rate ηi, even for
the worst distribution in the class of distributions which have common mean and covariance
Xi ∼ (µi,Σi), replacing the probability constraints in (2.2) with their robust counterparts

sup
X1∼(µ1,Σ1)

Prob{w>X1 − b ≤ −1} ≤ η1, sup
X2∼(µ2,Σ2)

Prob{w>X2 − b ≥ 1} ≤ η2.

Thanks to an appropriate application of the multivariate Chebyshev inequality, this
worst distribution approach leads to the following quadratic second-order cone programming
(QSOCP) problem (see [1]), which is a deterministic formulation of (2.2) (see [20, 2] for all
details):

min
w,b

1

2
‖w‖2

w>µ1 − b ≥ 1 + κ1‖S>1 w‖
b− w>µ2 ≥ 1 + κ2‖S>2 w‖,

(2.3)
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where Σi = SiS
>
i (for instance, Cholesky factorization) and ηi and κi are related via the

formula κi =
√

1−ηi
ηi

, for i = 1, 2.

Note that any feasible hyperplane must separate the means, hence the natural condition
µ1 6= µ2 is necessary for (2.3) to be feasible. Since κi → 0 when ηi → 1, the problem (2.3)
can be made feasible whenever µ1 6= µ2 by choosing appropriate values for η1 and η2. The
election of different values of η1 and η2 leads to classify with preferential bias towards a
particular class. For instance, in many binary medical classification problems, the cost of
misclassifying one category is higher than the other, and in these applications it is desirable
to employ a classifier with selective sensitivity or specificity (Cismondi et al [6]). This is the
case of medical diagnosis of cancer (e.g. [14, 18]), where the cost of misclassifying a cancer
patient is higher than the cost of misclassifying of a healthily patient.

Finally, since κi → ∞ when ηi → 0, we note that problem (2.3) becomes unfeasible for
small values of η1 and/or η2.

2.2.1 Practical implementation

So far we have assumed that the mean-covariance pairs (µi,Σi) are known. However, in
many practical situations we only have the training data set T = {(x1, y1), . . . , (xm, ym)}.
Assuming that T consists of two samples of independent observations of the random vectors
X1 for y = 1 and X2 for y = −1, the idea is to replace (µi,Σi) with a statistical estimator
(µ̂i, Σ̂i); this can be done by computing the sample mean and covariance for each class from
the available observations.

We denote by T1 = [x1
1, . . . , x

1
m1

] ∈ Rn×m1 a n ×m1 data matrix for positive class and
by T2 = [x2

1, . . . , x
2
m2

] ∈ Rn×m2 a n × m2 data matrix for negative class. The empirical
estimates of the mean and covariance are given by

µi = µ̂i =
1

mi
Ti1mi , Σi = Σ̂i = SiS

>
i with Si =

1
√
mi

(Ti − µi1>mi
),

for i = 1, 2, where 1mi denotes a vector of ones of dimension mi. Since w ∈ Rn, it can be
written as w = [T1,T2]s+Mr, where M is a matrix with its columns as vectors orthogonal
to training data points and s, r are vectors of combining coefficients. The columns of T1,
T2 and M together span entire Rn. Now, the terms involving w in the constraints of (2.3)
can be written as

w>µi = s>gi, w>Σiw = s>Gis, i = 1, 2,

where

g1 =
1

m1
[K111m1 ;K211m1 ], g2 =

1

m2
[K121m2 ;K221m2 ],

G1 =
1

m1
[K11;K21](Im1 −

1

m1
1m11

>
m1

)[K11,K12]

and

G2 =
1

m2
[K12;K22](Im2 −

1

m2
1m21

>
m2

)[K21,K22]

with Imi denoting the identity matrix of dimension mi ×mi, K11 = T>1 T1, K12 = K21 =
T>1 T2, K22 = T>2 T2 matrices whose elements are inner products of data points. For
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instance, the entry (i, j) for the matrix K12 is

(K12)ij = 〈x1
i , x

2
j 〉. (2.4)

Thus, the formulation (2.3) can be written as:

min
s,b

1

2
s>Ks

s>g1 − b ≥ 1 + κ1

√
s>G1s

b− s>g2 ≥ 1 + κ2

√
s>G2s,

(2.5)

where K = [K11,K12;K21,K22]. Note that in order to solve the above problem, we need to
know only the dot products of training data points. Thus, one can solve the above problem
in any feature space as long as the inner products in that space are available.

Many practical situations cannot directly solved with the former approach. Conse-
quently, one usually introduces a kernel formulation. This consists of considering a kernel
function k : Rn×Rn → R satisfying the Mercer conditions (see [17]). Thus, for instance, the
inner product (2.4) is replacing by (K12)ij = k(x1

i , x
2
j ). The typical kernel functions include

the Gaussian kernel defined by k(u, v) = exp(−γ‖u−v‖2) with γ ∈ R+, and the polynomial
function k(u, v) = (u>v+1)d with d ∈ N. After choosing this kernel function, the quantities
g1,g2,G1,G2 and K can be computed. In the case when K is positive definite, we can
use the Cholesky factorization K = L>L to obtain a full rank matrix L ∈ Rm×m. Thus,
introducing a new variable v = Ls, the formulation (2.5) is rewritten as follows

min
v,b

1

2
‖v‖2

v>h1 − b ≥ 1 + κ1

√
v>H1v

b− v>h2 ≥ 1 + κ2

√
v>H2v,

(2.6)

where hi = L−>gi and Hi = L−>GiL
−1, for i = 1, 2.

Again, Hi being positive semidefinite can be written as Hi = DiD
>
i . Then, (2.6) can

be written in the standard QSOCP form

min
v,b

1

2
‖v‖2

v>h1 − b ≥ 1 + κ1‖D>1 v‖,
b− v>h2 ≥ 1 + κ2‖D>2 v‖.

(2.7)

Clearly, by introducing a new variable t and a constraint ‖v‖ ≤ t, (2.7) can be casted as the
following linear SOCP with three blocks (cf. [1])

min
t,v,b

t

t ≥ ‖v‖,
v>h1 − b ≥ 1 + κ1‖D>1 v‖,
b− v>h2 ≥ 1 + κ2‖D>2 v‖.

(2.8)
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Hence, one can classify a new data point x using the following decision function

f(x) = sign(w>x− b) = sign(s>h(x)− b), (2.9)

where s = L−1v and h(x) =

(
h1(x)
h2(x)

)
with (hi(x))l = k(xil, x) for l = 1, . . . ,mi and i = 1, 2.

3 Numerical results and discussion

Support vector machines (SVM) were originally designed for binary classification. However,
they can be adapted for multi-class problems. According to (Weston and Watkins, 1999
and Hsu and Lin, 2002) two strategies are used to approach the multi-class SVM prob-
lem. A first strategy consist of solving a series of binary classifications using two possible
approaches: one-species-against-one (1-vs-1) and one-species-against-the-Rest (1-vs-R). A
second strategy directly considers all the data in a single optimization formulation. The
latter leads to an optimization problem which is much more difficult to solve numerically
(Weston and Watkins, 1999). In this paper, we use the first strategy together with criterion
1-vs-R. This constructs M binary SVM classifiers, each of which separates one class from all
the rest. Throughout this article this set of machines is called multi-class 1-vs-R classifier,
in contrast with each binary 1-vs-R classifier used to construct it.

Thus, the deterministic ith binary 1-vs-R classifier is a SVM trained with all the training
examples of the ith class with positive labels, and all the others with negative labels. That
is, the ith SVM solves problem (2.1) where the decision function is given by

fi(x) = w>i x− bi. (3.1)

So, it solves

min
wi,bi

1

2
‖wi‖2; ỹj(w

>
i xj − bi) ≥ 1, j = 1, . . . ,m, (3.2)

where ỹj = 1 if yj = i and ỹj = −1 otherwise. Then, at the classification phase, a sample x
is classified in the class which attains the largest value of fi(x), that is, x is in the i∗th class
when fi∗(x) = max{fi(x) : i = 1, . . . ,M}. In the (exceptional) case when this maximum is
attained in more than one class sample x is (by convention) classified in the class associated
with the lowest index i∗.

Based on this idea and on the stochastic approach described in Section 2, we can similarly
construct stochastic binary 1-vs-R classifiers and stochastic multi-class 1-vs-R classifiers.
More precisely, in order to construct a stochastic binary 1-vs-R classifier, we solve (2.7)
instead of (3.2), where now the variable v is replaced by wi, and function f , defined in (2.9),
is replaced by fi, defined in (3.1).

In the next section we construct several multi-class 1-vs-R classifiers and we use the
average rate of correct classifications in order to compare their performance. Each multi-
class 1-vs-R classifier is composed by three binary 1-vs-R classifiers, one for each fish
species. All our numerical experiment were solved using different codes in Matlab. Indeed,
we have used the SVM-Light software (http://svmlight.joachims.org/) for solving de-
terministic SVM and the SeDuMi software for solving SOCP problems of the form (2.8)
(http://sedumi.ie.lehigh.edu/).
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3.1 Deterministic and stochastic formulation with kernel

A well-known variant of the deterministic binary 1-vs-R classifier is to consider margins to
classify each class. Roughly speaking, the relevance of these margins in the SVM is driven by
a penalty positive parameter denoted by C (the penalization is stronger when C is larger).
In (Robotham et al [19]) the estimation of the parameters C and γ was realized for divers
machines for classifying fish-schools using acoustic data (all of them with Gaussian kernel).
In the following table, these parameters appear together with the classification rate of each
one of the three deterministic binary 1-vs-R classifier.

Table 1: Classification rates (%) using deterministic binary 1-vs-R classifiers.

Species Classification Parameters
rate (%) (C, γ)

Anchovy vs rest 86.7 88.5 (150, 0.14)
Jack mackerel vs rest 81.5 99.5 (110, 0.12)
Common sard. vs rest 90.3 94.4 (117, 0.15)

Next, we present the confusion matrix1 obtained for a deterministic multi-class classifi-
cation based on the last three deterministic binary 1-vs-R classifiers.

Table 2: Confusion matrix for deterministic multi-class 1-vs.-R classifier.

Species Anchovy Jack Common Testing Classification Average
mackerel sardine data rate rate

Anchovy 89 0 9 98 90.8%
Jack mackerel 4 23 0 27 85.2% 88.4%
Common sard. 11 0 92 103 89.3%

Our first idea is to use some attributes of this confusion matrix (for instance, classification
rate, average rate) to compare the performance of the deterministic multi-class 1-vs.-R
classifier presented above with the performances of several stochastic multi-class 1-vs.-R
classifiers. They are constructed for different sets of parameters η1 and η2 (each classifier
contains six parameters, one pair for each of the three binary 1-vs.-R classifiers) For this,
we first set the values of parameters η1 and η2 as the proportion of each class among the
total. For instance, in the machine anchovy vs. the rest, the values of these parameters are
given by:

ηA1 =
Total Anchovy

Total fish
=

98

228
= 0, 43 and ηA2 =

Total Rest

Total fish
=

130

228
= 0, 57.

The next tables illustrate the performances of each stochastic binary 1-vs-R classifiers
and of the stochastic multi-class 1-vs-R classifier. The latter via its confusion matrix.

1This matrix represents the count of classifier’s class predictions with respect to the actual outcome on
some labeled learning set.
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Table 3: Classification rates (%) using stochastic binary 1-vs-R classifiers.

Species Classification Parameters
rate (%) γ (η1, η2)

Anchovy vs rest 87.8 80.0 0.14 (0.43, 0.57)
Jack mackerel vs rest 74.1 80.6 0.12 (0.12, 0.88)
Common sard. vs rest 91.3 86.4 0.15 (0.45, 0.55)

Table 4: Classification rates (%) using stochastic multi-class 1-vs-R classifier.

Species Anchovy Jack Common Testing Classification Average
mackerel sardine data rate rate

Anchovy 86 3 9 98 87.76%
Jack mackerel 4 22 1 27 81.48% 84.57%
Common sard. 15 1 87 103 84.47%

Notice that this choice of parameter leads to a worst performance than the deterministic
classifier. This is reflected in lower classification rates for the three binary 1-vs-R classifiers
(see Table 1 and compare with 3). In particular, in the stochastic binary jack mackerel
vs. the rest classifier, the decision function seems to became more important than in the
deterministic case. Indeed, there are three anchovy and one common sardine misclassified
as jack mackerel (see Table 2 and 4). However, in the deterministic SVM neither anchovies
nor common sardine were classified as jack mackerel.

3.2 Sensitivity analysis of stochastic multi-class 1-vs-R classifiers

In this section, we evaluate the average classification rate of divers stochastic multi-class
1-vs-R classifiers when η2 (false-positive rate) varies. We start this analysis from the results
established in Table 4, it shows the relative importance of the stochastic binary 1-vs-R
jack mackerel vs. the rest classifier in the performance of the stochastic multi-class 1-vs-R
classifiers. Then, we think it is interesting to start our sensitivity analysis by decreasing the
value of η2 from

ηJ2 =
Total Rest

Total fish
=

201

228
= 0, 88.

Since η2 represents the false-positive rate, lower values of this value should improve the
accuracy of this particular stochastic binary 1-vs-R jack mackerel vs. the rest classifier.
However, the performance of the whole stochastic multi-class 1-vs-R classifiers could be
affect if the rest of the stochastic binary 1-vs-R classifiers behaves badly. The remaining
parameters remain unaltered (see Table 3) as well as the number of species used for testing:
98 anchovy, 27 jack mackerel and 103 sardines.
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Table 5: Confusion matrices for different values of ηJ2 .

Parameter Species Anchovy Jack Common Classification Average
mackerel sardine rate rate

Anchovy 87 2 9 88.78 %
ηJ2 = 0.78 Jack mackerel 4 22 1 81.48 % 84.91 %

Common sard. 15 1 87 84.47 %

Anchovy 88 1 9 89.80 %
ηJ2 = 0.68 Jack mackerel 4 22 1 81.48 % 85.25 %

Common sard. 15 1 87 84.47 %

Anchovy 88 1 9 89.80 %
ηJ2 = 0.58 Jack mackerel 4 22 1 81.48 % 85.25 %

Common sard. 15 1 87 84.47 %

Anchovy 89 0 9 90.82 %
ηJ2 = 0.48 Jack mackerel 4 22 1 81.48 % 85.59 %

Common sard. 15 1 87 84.47 %

Anchovy 89 0 9 90.82 %
ηJ2 = 0.38 Jack mackerel 4 22 1 81.48 % 85.59 %

Common sard. 15 1 87 84.47 %

Anchovy 88 1 9 89.80 %
ηJ2 = 0.28 Jack mackerel 4 23 0 85.19 % 86.49 %

Common sard. 15 1 87 84.47 %

Anchovy 86 3 9 87.76 %
ηJ2 = 0.18 Jack mackerel 3 24 0 88.89 % 87.04 %

Common sard. 15 1 87 84.47 %

Table 5 above presents the confusion matrices for the stochastic multi-class 1-vs-R clas-
sifiers obtained for different values ηJ2 in the stochastic binary 1-vs-R jack mackerel vs. the
rest classifier. As expected, lower values of ηJ2 imply better classification rates for this par-
ticular classifier. This has also led to a improvement of the average classification rate of the
stochastic multi-class 1-vs-R classifiers, even when this positive behavior is not ensured by
this choice. Indeed, this average rate could be worse due to a poorer performance of one
of the two other stochastic binary 1-vs-R classifiers. This effect can be seen for instance
in the variation of the performance of the stochastic binary anchovy vs. the rest classifier
with respect to ηJ2 , which is non-monotonic and seems to attains its best performance for
ηJ2 between 0.38 and 0.48. Notice that during these experiments the classification of the
stochastic common sardine vs. the rest remains unaltered. This situations suggest us to
proceed our experiment by varying the values ηA2 corresponding to the false-positive rate of
the stochastic binary anchovy vs. the rest classifier.

For this, we set ηJ2 = 0.18 and keep constant the rest of values of all parameters except
for ηA2 . We have inspected several values of ηJ2 but only two of of them give meaningful
results: ηA2 = 0.47 and ηA2 = 0.17. They are reported in following Table 6 via their confusion
matrices.
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Table 6: Confusion matrices for different values of ηA2 .

Parameter Species Anchovy Jack Common Classification Average
mackerel sardine rate rate

Anchovy 86 2 10 87.76 %
ηA2 = 0.47 Jack mackerel 3 24 0 88.89 % 88.66 %

Common sard. 10 1 92 89.32 %

Anchovy 84 3 11 85.71 %
ηA2 = 0.17 Jack mackerel 2 25 0 92.59 % 89.21 %

Common sard. 10 1 92 89.32 %

Finally, we made a last experiment where only the false-positive rate of the stochastic
binary common sardine vs. the rest classifier, ηS2 , varies. The analysis is similar than the
previous ones and they are thus omitted. The final parameters are then set as follows:(
ηA1 , η

A
2

)
= (0.43, 0.17),

(
ηJ1 , η

J
2

)
= (0.12, 0.18) and

(
ηS1 , η

S
2

)
= (0.45, 0.25). The results are

summarized in Table 7 here below.

Table 7: Confusion matrix for our final experiment.

Species Anchovy Jack Common Classification Average
mackerel sardine rate rate

Anchovy 85 3 10 86.73 %
Jack mackerel 2 25 0 92.59 % 89.55 %
Common sard. 10 1 92 89.32 %

Table 7 shows that the average rate obtained by our last stochastic multi-class 1-vs-
R classifier is 89.55%. This value is better than the one obtained by the deterministic
multi-class 1-vs-R classifier 88.4% (see Table 2). So, despite of the uncertainties on the
data, we have construct a more performant machine via an inspection procedure regarding
false-positive rates η2.
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[2] Alvarez, F., López, J., Ramı́rez C., H., Interior proximal algorithm with variable metric
for second-order cone programming: applications to structural optimization and support
vector machines, Optim. Methods Softw., vol. 25 (2010), no. 6, pp. 859–881.

[3] Barange, M., Acoustic identification, classification and structure of biological patchiness
on the edge of the Agulhas Bank and its relation to frontal features, S. Afr. J. Marine
Sci. 14 (1994), pp. 333-347.

[4] Buelens, B., Pauly, T., Williams, R., Sale, A., Kernel methods for the detection and
classification of fish schools in single beam and multibeam acoustic data, ICES J. Marine
Sci. 66 (2009), pp. 1130-1135.

[5] Canters, F., W.D. Genst and H. Dufourmont, Assessing effects of input uncertainty in
structural landscape classification, International Journal of Geographical Information
Science, Vol. 16, 2 (2002), pp. 129–149.

[6] Cismondi,F., A.L. Horna, A. S. Fialhoa, S. M. Vieirab, S. R. Retic, J. M. C. Sousab
and S. Finkelstein, Multi-stage modeling using fuzzy multi-criteria feature selection to
improve survival prediction of ICU septic shock patients. Expert Systems with Appli-
cations, Volume 39, Issue 16 (2012), pp. 12332?12339.

[7] Coetzee, J.,Use of a shoal analysis and patch estimatiom system (SHAPES) to charac-
terize sardine schools, Aquat. Living Resour. 13 (2000), pp. 1-10.

[8] Cortes, C. and V. Vapnik. Support-vector networks, Machine Learning, vol. 20 (1995),
pp. 273-297.

[9] Cullen, A.C. and H.C. Frey, Probabilistic Techniques in Exposure Assessment: A Hand-
book for Dealing with Variability and Uncertainty in Models and Inputs, Springer, N.Y.,
1st edition, 1999.

[10] Fernandes, P.G., Kornielussen, R.J., Lebourges-Dhaussy, A., Masse, J., Iglesias, M.,
Diner, N., Ona, E., et al. The SIMFAMI Project: Species Identification Methods
for Acoustic Multifrequency Information. Final Report to the EC. Q5RS-2001-02054,
(2006).

[11] Fernandes, P.G., Classification trees for species identification of fish-school echotraces,
ICES J. Marine Sci. 66 (2009), pp. 1073-1080.

[12] Horne, J.K., Acoustic approaches to remote species identification: a review, Fish.
Oceonogr. 94 (2000), pp. 356-371.

[13] Hsu, C.W. and Lin, C.J., A comparison of methods for multiclass support vector ma-
chines, IEEE Trans. Neural Netw. 13 (2002), pp. 415–425.

12



[14] Kononenco, I., Machine learning for medical diagnosis: History, State of Art and Per-
spective, Artificial Intelligence in Medicine, Vol. 23 (2001), pp. 89–109.

[15] Korneliussen, R.J., Heggelund, Y., Eliassen, I.K., Johansen, G.O., Acoustic species
identification of schooling fish, ICES J. Marine Sci. 66 (2009), pp 1111-1118.

[16] Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H. Applications of second-order cone
programming, Linear Algebra Appl. vol. 284 (1998), no 1-3 pp. 193–228.

[17] Mercer, J., Functions of positive and negative type and their connection with the theory
of integral equations, Philosophical Transactions of the Royal Society, London, vol. 209
(1909), pp. 415–446.

[18] Jesmin Nahar, Tasadduq Imam, Kevin S. Tickle, A.B.M. Shawkat Ali, Yi-Ping Phoebe
Chen, Computational intelligence for microarray data and biomedical image analysis
for the early diagnosis of breast cancer, Expert Systems with Applications, Volume 39,
Issue 16, 15 November 2012, pp. 12371-12377.

[19] Robotham,H., Bosch, P., Gutierrez-Estrada, J.C., Castillo, J. and Pulido-Calvo, I.,
Acoustic identification of small pelagic fish species in Chile using support vector ma-
chines and neural networks, Fisheries Research (2010), pp. 115-122.

[20] Saketha Nath, J. and C. Bhattacharyya, Maximum margin classifiers with specified
false positive and false negative error rates, Proceedings of the Seventh SIAM In-
ternational Conference on Data Mining, April 26-28, 2007, Minneapolis, Minnesota.
http://www.siam.org/meetings/proceedings/2007/datamining/papers/004Jagarlapudi.pdf.
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