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Abstract

The increasing penetration of smartphones, i.e., smart devices with multiple

sensing and communication interfaces, creates the possibility to build novel

types of networks. Opportunistic networking and Content-Based networking

strongly rely on the use of such devices. Smartphones tend to have an ON/OFF

status that strongly depends on the user activity, mobility pattern and energy

saving approach. Wireless adaptors are, after the terminal screen, the strongest

source of power consumption. It is therefore common for a node to occasionally

turn off the networking device to save energy. The impact on routing of the

presence of nodes in the off-state must therefore be thoroughly evaluated.

We propose an analytical model based on evolving graphs, which provides an

exhaustive evaluation of routing conditions with the aim to determine the best

recurring strategy and parameters when dealing with end-devices that show

an ON-OFF behavior. Computational results are given, both on static and

dynamic scenarios.
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1. Introduction

The increasing penetration of smartphones, i.e., smart devices with mul-

tiple sensing and communication interfaces, creates the possibility of building

novel types of applications that leverages the use of wireless ad hoc networks

(MANETs), see for example (Mengual et al., 2012; Oliveira et al., 2012; Santiago

et al., 2012; Yoon & Cho, 2012). These devices can be intermittently connected

and even individual nodes can dynamically be turned off to save energy. Re-

garding topology, high variability can be expected, from very dense scenarios

to highly partitioned ones (Cheng et al., 2012). We will refer to this type of

networks as Smartphones-based wireless networks (SWNs).

Classical MANETs routing algorithms can provide forwarding in SWNs by

building and updating routing tables whenever mobility occurs. There is any-

way a novel and critical factor that has a strong impact on the behavior of those

algorithms: energy saving. For example, in some recent works (Frantti, 2012;

Quintas & Friderikos, 2012) efforts on reducing energy consumption by modify-

ing and adapting the lower layers of the networking architecture are presented.

Wireless adaptors are, after the terminal screen, the strongest source of power

consumption. It is therefore very common for a node to occasionally turn off

the networking device to save energy. The effect of the presence of nodes in the

off-state must therefore be thoroughly evaluated.

The definition of a formal model to describe a SWN can be approached in

different ways (Frantti & Koivula, 2011; Gutierrez-Reina et al., 2012; Liao et al.,

2011; Torres et al., 2012; Zhou et al., 2004). In (Buchegger & Le Boudec, 2002)

the authors use game theory to evaluate cooperation in ad hoc networks for

energy optimization. In (Tian et al., 2002) the authors propose a graph-based

mobility model, which provides a more realistic movement than the random walk

model by reflecting the spatial constraints in the real world. Finally, some papers

have considered a graph structure called evolving graph to study the behavior

of some kinds of SWNs, with the aim of designing new routing protocols; see

for example (Ferreira, 2004; Monteiro et al., 2006).
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We will use this last approach formally defining the concepts of evolving

graph and journey as follows:

Definition 1. Let SG = {Gi}Ti=1 be a set of subgraphs of a given graph G such

that G = ∪Ti=1Gi. Let ST = {t1, t2, . . . , tT , tT+1} be an ordered sequence of time

instants. The system Γ = {G,SG, ST }, where each Gi is the subgraph in place

during [ti, ti+1[ ∀i ∈ {1, 2, . . . , T } is called an evolving graph.

Definition 2. Given an evolving graph Γ = {G,SG, ST }, a path P = {(u1, u2),

(u2, u3), . . . , (uk, uk+1)} in G and a time schedule R = {τ1, τ2, . . . , τk} indicating

that edge (ui, ui+1) is to be traversed at time τi, the pair J = (P,R) is called a

journey in Γ if and only if t1 ≤ τ1 ≤ τ2 ≤, . . . ,≤ τk < tT+1 and a subgraph in

SG containing edge (ui, ui+1) is placed at instant τi ∀i ∈ {1, 2, . . . , k}.

We propose an analytical model based on an evolving graph (hereinafter

EG) associated to the network conditions. This tool provides an exhaustive

evaluation of routing conditions, and its aim is to determine the best option for

routing parameters taking into consideration the network conditions in SWNs,

mainly the possible switching-off mechanisms adopted to save energy.

We describe an algorithm that determines factors like: how many complete

messages get to the destination, which is the smallest amount of time required

by a packet to get to the destination, and the fluctuations of the number of hops

observed by a packet to get to its destination. Thus, for example, applying this

algorithm to different switching-off patterns, through the obtained results with

respect to the factors cited above, we can determine the best routing strategy

to maintain an adequate performance while still saving energy.

We show that the complexity of the algorithm is O(nT 2), n being the number

of nodes, and T being the width of the time interval studied, that is, the number

of instants of time of the studied period.

The rest of this paper is organized as follows. Section 2 describes our model,

i.e. the network conditions and the problem we are going to tackle in this net-

work. Section 3 describes the EG associated to our model as well as a particular
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case of journey, Section 4 presents the details of the proposed algorithm. Sec-

tion 5 offers computational results on a set of 400 randomly generated instances,

both in static and dynamic scenarios. Finally, Section 6 gives the conclusions

of this work.

2. Model definition

2.1. Network conditions

We represent an SWN as a set of n nodes, W = {vi}ni=1, each referring to a

device placed on the R
3 space. We define a coordinate function:

coi : [0, T ]→ R
3, coi(t) = (xi(t), yi(t), zi(t))

where T ∈ Z
+ and [0, T ] is the total interval of time during which there is

network activity. The coordinate function provides the position of node vi at

any instant of time t ∈ [0, T ].

Each node vi can be either active or inactive. A node is active, i.e., it

can either send or receive messages, during certain time windows inside [0, T ],

where we will suppose that time takes integer values (discretized time). The set

of activating time windows for node vi is defined as:

twi = {[t
i
2k−1, t

i
2k]}

pi

k=1

where 0 ≤ tis < tir ≤ T if s < r with s, r ∈ {1, 2, . . . , 2pi}, pi being the number

of activating time windows for node vi. Thus, vi can only send messages at time

t ∈ [ti2k−1, t
i
2k] for some k ∈ {1, . . . , pi}. Outside twi node vi is inactive and it

can neither send nor receive any message.

The transmission range of a node is a zone in R
3 that depends of the node

itself and the sending time t. We define the transmission range of node vi

at instant t as Ri(t) ⊂ R
3 such that if coj(t) ∈ Ri(t) and vi sends a packet

at time t, this packet will be received by vj at instant t + tij(t). Note that

Ri(t) = ∅ ∀t 6∈
⋃pi

k=1

[

ti2k−1, t
i
2k

]

, and that this transmission range can depend

on many factors, like the RF technology adopted, the surrounding environment,

the antenna type, and so on. For example, it can be an sphere centered at coi(t)
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or like a cone with vertex at coi(t) if the antenna transmits only in one direction,

or a disc or a circular sector if we only consider movements in R
2 (which is the

usual), etc.

In this paper we will use the term “packet” to indicate the message unit,

and we will suppose that all messages consist of one or several packets and that

at any instant of time a node can send at most one packet.

On the other hand, function tij(t) ∈ Z
+ indicates the units of time it takes

for a packet to move from vi to vj . The node vj will receive this packet only

if active, that is, only if t + tij(t) ∈ [tj2k−1, t
j
2k] for some k ∈ {1, . . . , pj}. We

consider that tij(t) is small enough so that coj(t) ≈ coj(t+tij(t)), and therefore,

if coj(t) ∈ Ri(t) then coj(t
′) ∈ Ri(t) ∀t′ ∈ [t, t+ tij(t)]. We are basically

supposing that, since sending time are so small compared to the nodes mobility,

vertices are practically static during each sending operation. Note that the fact

that the values tij(t) must be integer does not involve a strong restriction with

respect to the continuous case, because we can define an appropriate unit of

time for each SWN.

The sending of a packet from vi at time t and the reception at node vj at

instant t+ tij(t) if coj(t) ∈ Ri(t), implies a nonnegative cost that may depend

on many different factors that might be of interest of the protocol designer. For

example, it might be proportional to the distance, to the sending time, or it

might be equal to one (representing a hop). For each path followed by a packet,

our procedure will consider three associated values: time consumed, cost and

number of hops.

Once node vj receives a packet from vi and determines that it has to forward

it, it will do it at time t+tij(t)+rj , where value rj ∈ Z
+ represents the processing

time at node vj . The instant of time t + tij(t) + rj must belong to the same

activation window of t + tij(t), otherwise the message will get lost at vj . To

simplify, in this paper we suppose rj as a fixed value for each vj , but in general

it can be a function rj(t) that may for example depend on the routing protocol.

This last can be included in our procedure without additional changes. In

this work we are focussing on FIFO scheduling which is the generally deployed
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scheme. We are not saying that this is the best schedule, but it includes most

of the real cases. Proving that more transmissions might be feasible with some

other schedule is not part of this work. In fact, given that some transmissions

are not possible (i.e. the system is above capacity), there may be different ways

to choose which packets should be transmitted.

We will suppose that in the network the following circumstances are verified:

• If a node vi receives more than one packet at the same instant of time,

because of interferences all the packets will be lost at vi.

• A node does not forward a packet originated by itself nor resends a packet

whose destination is itself, nor resends a packet sent previously by itself.

Basically a packet is resent by a node only if it comes from different paths,

thus avoiding loops.

• To save energy, a node vi resends the same packet (not originated by itself)

at most gi times, ignoring this packet if it comes after the gi-th resending

operation.

• If a node vj is about to send a locally generated packet at instant t, instant

t− rj belongs to the same activating time window that t, and vj receives

one and only one packet at t− rj , except in the three cases listed below,

it will send the packet received at instant t and it will send its own packet

in the following available instant t, delaying if it is required any other own

packets. If at instant t− rj vj receives more than one packet, as explained

before these packets will be lost and therefore the node will send its own

packet at instant t. The three exceptions are:

1. If the packet that receives at t− rj is directed to it;

2. if the packet received at instant t − rj was generated by vj in a

previous instant of time;

3. if the packet received at instant t − rj is not directed to vj and vj

already forwarded it gj times;

in the above three cases it will send its own packet at instant t.
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2.2. Problem statement

Given an SWN consisting of n nodes, W = {vi}ni=1, with all the conditions

and data cited above, we suppose that during interval [0, T ] a subset of nodes

W0 ⊆ W generate (i.e., send) messages. That is, each node vi ∈ W0 sends mi

messagesM i
1,M

i
2, . . . ,M

i
mi

respectively to nodes v1i , v2i , . . . , vmii
which can not

be two disjunct. Each message M i
k has a unique destination and it is made of

pik packets sent at integer instants of time tki

1 , tki

2 , . . . , tki

pi
k

where 0 ≤ tki

1 < tki

2 <

. . . < tki

pi
k

< T . Packets related to different messages can be alternated, like for

example, tki

1 < thi

1 < tki

2 supposing h 6= k, where node vi after sending the first

packet of message M i
k send the first packet of message M i

h and afterward the

second packet of message M i
k.

The answers that we will give with our approach are all oriented to offer

criteria to determine the impact of the different parameters values involving

the network conditions (e.g., inactivity periods, transmission ranges, number of

times that a packet can be resend, processing times, etc.), when adopting an

energy saving procedure at the device level. The three most important metrics

that we will obtain are:

• the number of complete messages that get to the destination;

• the minimum and maximum number of hops made by a packet to get to

its destination;

• the amount of time required by a packet to get to the destination;

3. EG associated to our model

For each t ∈ [0, T−2]∩(Z+∪{0}) we construct a directed graphGt = (Vt, At)

such that if vi, vj ∈W verify that:

• coj(t) ∈ Ri(t),

• vj is active during the time interval [t+ tij(t), t+ tij(t) + rj ] and

• t+ tij(t) + rj ≤ T ;
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that is, if vj can receive and process a packet sent by vi at instant t, then

vertices vi, vj ∈ Vt and arc (vi, vj) ∈ At, having this arc two associated costs:

ctij = tij(t) + rj (the sending time plus the processing time at vj) and c′tij

corresponding to the sending of a message from vi at time t and the reception

at node vj at instant t+ tij(t) (see the network conditions).

We consider the EG Γ = {GE , SG, ST }, where SG = {Gt}
T−2
t=0 , ST =

{0, 1, . . . , T − 1}, GE = (VE , AE) = ∪
T−2
t=0 Gt, with VE ⊆ W and Gi is in place

in [i, i+1[ ∀i ∈ {0, 1, . . . , T − 2}. Note that as we consider discretized time, the

last condition implies that Gi is only in place at instant i.

It is easy to see that given our SWN with all the cited parameters, the

construction of the corresponding EG Γ has complexity O(nσ), where σ is the

sum of all the instants of time during which nodes are active, that is:

σ =

n
∑

i=1

pi
∑

j=1

(ti2j − ti2j−1)

Note that σ is upper bounded by nT , the case in which all the nodes are

active during the whole interval [0, T ], and then, that the construction of the

EG Γ has complexity upper bounded by O(n2T ). We will use this fact later.

To clarify the presentation of our network model and its associated EG,

we show an example of an SWN in R
2 with 11 nodes (W = {vi}11i=1) with

their corresponding activation time windows: tw1 = [0, 2], tw2 = [1, 3], tw3 =

tw4 = tw5 = [3, 6], tw6 = [4, 7], tw7 = [4, 8], tw8 = tw9 = [6, 10], tw10 = [7, 12]

and tw11 = [10, 15]. To simplify, independently of the movements and position

in R
2 of each node at each instant of time, we will suppose that the transmission

range of each node does not change along its activation time window. Thus, if

we denote by < i, k > the fact that node i is always in the transmission range of

node k and vice versa, independently of the movements and position in R
2, in

this example we consider the next pairs: < 1, 2 >, < 1, 3 >, < 1, 5 >, < 2, 3 >,

< 3, 4 >, < 3, 7 >, < 4, 5 >, < 4, 7 >, < 5, 6 >, < 5, 9 >, < 6, 9 >, < 6, 10 >,

< 7, 8 >, < 8, 11 >, < 9, 10 > and < 10, 11 >.

We will assume that all sending operations will last 1 time unit, i.e. tij(t) = 1

for all j in the transmission range of i and for all t in the activation window of
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Figure 1: Subgraphs of the EG associated to our example.

i, and that rj = 1 ∀j.

In this example T = 15 and therefore ST = {0, 1, . . . , 14}. Figure 1 shows

all the subgraphs Gi i ∈ {0, 1, . . . , 13}. Note that given the size of this figure,

inside each vertex we have written i instead of vi. From the sending times and

processing times given above, it is evident that all arcs in all these subgraphs

have cost ctij = 2. In this example we do not consider a different second cost c′tij

(we may suppose that both costs are the same). Figure 2 shows the resulting

graph GE of our EG.

In our EG Γ we need to define a particular case of journey:

Definition 3. Let Γ be an EG as defined above and let J = (P,R) be a journey

in Γ with P = {(vi1 , vi2 ), (vi2 , vi3 ), . . . , (vis , vis+1
)} with ij 6= ik if j 6= k and

with R = {τi1 , τi2 , . . . , τis}, we say that J is a possible journey from vi1 to vis+1

in Γ if (vij , vij+1
) ∈ Aτij

and τij+1
= τij + c

τij
ijij+1

∀j ∈ {1, . . . , s}.

In absence of any kind of interferences, a possible journey from vi1 to vis+1

implies that in our network model, a packet sent from node vi1 at time τi1
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Figure 2: Graph GE associated to our example.

arrives at node vis+1
at time τis+1

− ris+1
and is processed by vis+1

.

From figures 1 and 2 it is easy to see that the pair (P,R) with P =

{(v1, v2), (v2, v3), (v3, v7), (v7, v8)} and with R = {0, 2, 4, 6} is a possible journey

in the EG associated to our example. Also (P,R′) with R′ = {1, 3, 5, 7} is a

possible journey. In Section 4, after the application of our procedure to this

example, it will be clear that a packet sent by v1 at time t = 1 will arrive at v8

at time t = 9 following the possible journey (P,R′), while a packet sent by v1

at time t = 0 will not arrive at v8 despite of the existence of a possible journey

in Γ between these nodes.

Note that the difference between journey and possible journey takes root in

the fact that in our SWN model, a node must forward the packet immediately

it has processed the packet; it can not store the packet and to forward it later,

each time a node is in its range.

From the definition of possible journey, in absence of any kind of interfer-

ences, if we want to know the shortest path followed by a packet sent from a

node to another one at a given time, we have to apply a specifically designed

modification of the classical Dijkstra’s algorithm (Dijkstra, E.W., 1959) to find

a shortest path in directed graphs, in a similar way as in (Monteiro et al., 2006).
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But from a theoretical point of view, the conditions of our model do not guar-

antee this absence of interferences; if two or more packets arrive at a node at

the same instant of time (which can occur in real SWNs), the node does not

forward any of them. Therefore, if we take into account this last fact, we can

not use and adaptation of Dijkstra’s algorithm individually for each packet.

Moreover, another important difference between our model and those con-

sidered in the cited papers involving EGs, is that in those models, each node

knows exactly what is going to happen in the network topology, i.e. it knows ex-

actly when some other node will be available or not for communication, so when

it receives a packet, as it knows the journey from the source to the destination,

if possible, it only has to store the packet until the next node in the journey

is available. Although in some SWNs the networks can have a predictable dy-

namic, in general this assumption is less realistic, and moreover it implies that

a node could store hundreds or thousands of packets and that it could forward

a lot of packets at the same time, which it is also less realistic. In our model,

none of the nodes has information about the rest of them and if a node receives

a packet, in absence of interferences it just resends the packet to all nodes inside

its transmission range.

Thus we propose a new and more complex procedure that, taking into ac-

count the characteristics of our model, in particular the handicaps cited above,

it allows to know the path followed by each packet sent by each node during the

whole time period [0, T ].

4. The Algorithm

This section describes the details of the proposed algorithm, which whole

pseudo-code is given in Appendix A.

To make more comprehensible its description, some steps will be executed

on the network given in Section 3 to construct an EG. The additional data we

need are the messages and the values gi. We will suppose that gi = 2 ∀i, that is,

each node will forward at most twice the same packet, an that only the following

messages are sent:
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• v1 sends to v11 a message made of 3 consecutive packets at the instants of

time 0, 1 and 2.

• v3 sends to v8 a message made of 2 consecutive packets at the instants of

time 3 and 4.

• v5 sends to v10 a message made of 2 consecutive packets at the instants of

time 3 and 4.

The aim of this algorithm is the construction of a directed graph G = (V,A)

with associated vectors to its vertices, from which we can obtain all the desired

information.

By default, all variables that are not initially set to a different value must

be considered as initialized at 0.

Each vertex vhm that appears in the graph G = (V,A) refers to node vm at

the instant of time h. Associated to each vertex vhm there is a 4-component

vector tehm = (m̃, h̃, m̂, h̃′). This vector must be interpreted as if node vm at

instant h forwards the packet sent for the first time by node vm̃ at instant h̃,

and whose destination is node m̂; this packet was initially scheduled to be sent

by vm̃ at instant h̃′. Note that h̃ > h̃′ means that the corresponding packet was

sent with a delay of h̃− h̃′ units of time.

The vertices vhm that generate packets, will sometime have a second associ-

ated vector, stehm, similar to the previous one, and a third one, ttehm. These two

vectors are used to determine which packet will be eventually sent.

Each vertex vhm will have another associated vector pathh
m, with at most

n − 1 components (remember that n is the total number of nodes). The i-th

component of pathh
m will indicate the i-th node through which passed the packet

that vm will possibly send at instant h. This vector is used to avoid loops and

to count the number of hops made by a path.

Obviously, at the beginning pathh
m = ∅ for all m and h. The first element of

pathh
m, when created, indicates the node that generated the packet.

In the algorithm pseudo-code (Appendix A) we will use the symbol ⊕ to

indicate the addition of a component to vector pathh
m; e.g., (2, 3)⊕ 4 = (2, 3, 4).
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Also, c ∈ pathh
m will indicate that one of the components of pathh

m is node c;

therefore m ∈ pathh
m will alert about the creation of a loop.

Each vertex vhm will have associated a binary variable etiqhm which will be set

to 1 if node vm receives 2 or more packets at instant h− rm. The procedure will

only consider this variable for vertices that do not generate a packet. Vertices

vhm that generate a packet will have associated another variable rechm which will

be set to 0 if node vm does not receive any packet at instant h− rm, or to 1 if

it receives a unique packet at instant h− rm, or to 2 if it receives two or more

packets at instant h− rm (interferences). All the etiq and rec variables will be

set to 0 at the beginning.

Using c(vhm, vh
′

m′) we will indicate the cost of arc (vhm, vh
′

m′) in G; in this work

this will always coincide with c′hmm′ . By d+(v) we will understand, as normal in

graph theory, the number of arcs that comes out from vertex v. Finally a set N

will contain all those tehm vectors that correspond to packets that could not be

sent since their sending instant were delayed to an instant at which the node is

inactive and will remain inactive until T .

The algorithm distinguishes two vertex sets, Q and V (V is the vertex set

of graph G). In the beginning V = Q and it contains all the vertices vhm so that

vm belongs to the subset of nodes that generate their own messages and h is the

instant of time at which vm wants to send one of its packets; therefore Q and V

will initially have as much vertices as many locally generated packets that the

nodes want to send in the interval [0, T ]. Figure 3 shows all the possible vertices

than can appear throughout the procedure in our example. Initial set V is made

of the shaded vertices vhm in this figure, with their corresponding vectors tehm.

At each iteration the algorithm searches in strictly increasing time order a

vertex vba in Q, it removes this vertex from Q and for all nodes vm such that

(va, vm) ∈ Ab, that is, such that the message sent from va at instant b will get

to vm and will be processed by vm, except for interferences, the algorithm adds

the vertices v
b+cbam
m to V and Q with their respective vectors te

b+cbam
m , and the

arcs (vba, v
b+cbam
m ) to A, or it properly marks them if they already belong to Q,

depending on node vm receives at instant b + cbam − rm two or more packets

13



Figure 3: Initial graph (the shaded vertices)

and therefore, due to interferences, it loses the information of those packets or

it generate a local packet at instant b+ cbam.

If the third vector component of the selected vertex vba is a (i.e., teba(3) = a),

it means that va is the destination of the received packet, then vba will be removed

from Q without any further search, unless va generates a local packet at t = b.

Iterations stop when Q = ∅.

As example of how graph G is being built through the iterations, Figure 4

shows the results on G of the five first iterations (the whole process correspond-

ing to this example is given in Appendix B):

- At Iteration 1, V ← V ∪ {v22} and A← A ∪ {(v01 , v
2
2)}

- At Iteration 2, V ← V ∪ {v32} and A← A ∪ {(v11 , v
3
2)}
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Figure 4: Five first iterations of our procedure over the example.

- At Iteration 3, A ← A ∪ {(v21 , v
4
3), (v

2
1 , v

4
5)}, but v43 , v

4
5 ∈ Q, then these

vertices have associated the additional vectors ste43 and ste45 respectively

(in bold font in Figure 4).

- At Iteration 4, we have that two packets arrive to v3 at the same instant

t = 4. Therefore both packets are lost at v43 , which sends its own packet

(at the moment). The result is A← A− {(v21 , v
4
3)}

- At Iteration 5, V ← V ∪ {v53} and A← A ∪ {(v32 , v
5
3)}

The whole obtained graph G after 33 iterations corresponding to this first

phase is given in Figure 5.

Finally, on a second phase, to reduce as much as possible the size of G we

eliminate from V in strict decreasing time order all those vertices vhm without

leaving arcs (d+(vhm) = 0) where vm does not generate any local packet at

instant t = h and tehm(3) 6= m, which means that vm is not the destination of
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Figure 5: Graph G after first phase.

the received packet at instant h− rm, eliminating at the same time its input arc

of A, which can generate more vertices without any leaving arc in G at previous

instant. Figure 6 shows graph G in its final form; note that vertices v109 , v810, v
5
6

and v22 have been removed.

After the two phases, the resulting directed graph G = (V,A) is acyclic and

is formed by:

• Maximum paths (they are not part of a longer path), which go from ver-

tices vhm so that vm belongs to the subset of nodes that generate their own

messages and h is the instant of time at which vm send one of its packets,

to vertices vh
′

m′ so that vm′ is the destination node of the packet originally

send by vm at t = h. Note that a maximum path in G from vhm to vh
′

m′

coincides with a possible journey in the EG Γ from vm to vm′ with τm = h.

• Various of the previous paths concatenated among them, if it happens

that vh
′

m′ is at the same time generator of a local packet.
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Figure 6: Graph G in its final form (after second phase).

• Isolated vertices vhm that correspond to packets sent which did not get to

their final destination. With respect to the EG Γ, this fact means either

that there is not possible journey in Γ from vm to its destination with

τm = h, or that for each possible journey in Γ from vm to its destination

with τm = h, there exists a vertex vm′ in its path with its corresponding

time τm′ such that in the subgraph Gτm′
there are at least two entering

arcs considered by the algorithm, that is, two or more packets arrive to

the same node at the same time.

Therefore, two paths in G corresponding to different packets will be vertex-

disjoint, except in the case that they are concatenated. In this last case they

will have in common the last vertex of the former and the first vertex of the

latter.

From the algorithm design and some basic properties of graph theory, it

is easy to prove the following statements, which we have included in a unique

theorem:
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Theorem 1. Given an SWN, described with all the parameters of Section 2

and given the graph G and the set of vectors N obtained applying the algorithm,

it is verified that:

a) A packet generated and sent by vs at instant t will not get to its destination

if and only if vts ∈ V and d+(vts) = 0.

b) A packet that was scheduled to be generated and sent by vs at instant t to

vd, will be definitively sent by vs at instant t′, where t′ ≥ t if vt
′

s ∈ V and

tet
′

s = (vs, t
′, vd, t).

c) A packet that was scheduled to be generated and sent by vs at instant t to

vd, will not be sent by vs at any instant of time if a vector (vs, t
′, vd, t) ∈ N

for some t′ ≥ t.

d) If vs generates and sends a packet at instant t to vd, this packet will get

to its destination at instant t′ if it exists in G a path from vts to vt
′+rd
d .

In this case, the number of components of vector patht′+rd
d indicates the

number of hops made by this path.

e) Given a maximum path in G that starts at vts and ends at vt
′

d , then either

tets(3) = vd or two vertices exist inside that path in G, vhi and vh
′

j with

t < h ≤ h′ < t′ (possibly i = j and h = h′) so that tets(3) = vi and

teh
′

j (3) = vd.

Through the information stored into vectors tetd we know which, if any,

packet gets at each instant to vd. For example, if we want to know at which

instant the packet sent from vs at instant m will get to vd, we will have to

look for the vertex vhd in V , if it exists, so that h = min{l | vld ∈ V and

teld = (s,m, d,m′)}. This packet will get to vd at instant h − rd. Since it left

vs at instant m, the time required by the packet is h − rd −m time units. It

was initially scheduled to be sent at m′, where m > m′ means that the packet

suffered a delay of m−m′ time units. The information about the path followed

by the packet is stored in pathh
d , and checking the super-indexes of the vertices

in the path we can determine at which instant of time the packet has been
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forwarded by each node in the path. Also we can easily obtain the cost of this

path and the number of hops made.

Item e of the previous theorem means that given a maximum path in G that

starts from vts and ends at vt
′

d , two situations can occur: either vs generates and

send a packet at instant t to vd, which will receive it at t′−rd, or this maximum

path is made of various concatenated paths, as if for example node vi receives

a packet being the final destination at instant h − ri and at the same time it

generates and send a packet at instant h (vertex vhi inside the path).

In our example, from Figure 6 we have:

• The packets sent from v1 at t = 0 and from v5 at t = 3 will not get to

their destination because v01 and v35 are isolated vertices in G.

• The unique packet that will suffer a delay is the one sent from v5 at t = 5,

which was initially scheduled to be sent at t = 4. It will get to v10 at t = 8

(9− r10), through path (v5, v6, v10) and at t = 10 (11− r10), through path

(v5, v6, v9, v10).

• The rest of the sent packets will get only once to their final destination:

– The packet sent from v1 at t = 1 will get to v11 at t = 10 (11− r11),

through path (v1, v2, v3, v7, v8, v11).

– The packet sent from v1 at t = 2 will get to v11 at t = 11 (12− r11),

through path (v1, v5, v6, v9, v10, v11).

– The packet sent from v3 at t = 3 will get to v8 at t = 6 (7 − r8),

through path (v3, v7, v8).

– The packet sent from v3 at t = 4 will get to v8 at t = 7 (8 − r8),

through path (v3, v7, v8).

Note that each one of the paths followed by these last packets corresponds to a

possible journey in Γ. For example, the packet sent from v1 at t = 1 follows the

possible journey ({(v1, v2), (v2, v3), (v3, v7), (v7, v8), (v8, v11)}, {1, 3, 5, 7, 9}).
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To finish this section, we determine an upper bound for the complexity of

the provided algorithm, that is polynomial with respect to the input parameters

n and T . To our aim we define σi =
∑pi

j=1(t
i
2j − ti2j−1) where i ∈ {1, 2, . . . , n}

(then σ =
∑n

i=1 σi).

Theorem 2. The algorithm has complexity O(nT 2).

Proof. The number of iterations made by the algorithm in the first phase is

bounded above by σ since at each iteration it sets a different vts and it removes

it from Q. To know the vertex we have to choose at each iteration, it is enough

to order in a list all the vertices vji , first by superindex and then by subindex,

and to label a vertex when it enters to Q. It is easy to see that the construction

of this list is O(nT ).

Once vba is selected, the procedures that impact the complexity of the algo-

rithm are:

• Compute |{vla ∈ V | l < b and tela = steba}| and, if it is the case, delaying

the sending of a locally generated packet. The set of this two procedures

requires a number of basic operations O(σa) (we have to check a number

of instants l bounded by σa).

• Once the EG Γ is constructed (remember that this process is O(nσ)), the

subroutine Forward (see detailed pseudo-code) requires just a few oper-

ations for each node vm such that (va, vm) ∈ Ab, therefore the complexity

of this subroutine is O(n).

Thus, once we have the ordered list, the number of basic operations made

in the first phase is upper bounded by O(
∑n

i=1 σ
2
i ).

Regarding the second phase, a few checks must be done for each vertex in

V , where |V | ≤ σ to determine P (see detailed pseudo-code in Appendix B).

P will have less vertices than |V | and to know the vertex we have to choose at

each iteration in this phase, we can make use of the ordered list made in the

first phase but going from the end to the beginning. As each iteration in the
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second phase requires just a few basic operations, the complexity of this phase

is O(σ).

Note that
∑n

i=1 σ
2
i ≤ nT 2 and the construction of the EG Γ is O(n2T ). As

in real situations T is much more greater than n, the complexity of the whole

process (EG construction and execution of the algorithm) is O(nT 2).

5. A study case

We have designed an implementation of the above described algorithm and

done a preliminary evaluation of the behaviors of a SWN to better illustrate

the possibility of our proposal. The generation of the instances has been done

following previous works about the behavior of MANETs (see e.g., (Ferreira

et al., 2007; Monteiro et al., 2006)), both in static and dynamic test scenarios.

The two basic metrics that we took into consideration were the percentage of

delivered packets and the number of hops.

All data corresponding to the generated instances, as well as additional

information, have been uploaded to the website http://www.grc.upv.es/stpa,

to make them easily available to any researcher. The algorithm was implemented

in Fortran 95 and was executed on a Pentium Core 2 Quad 2.33 Ghz computer.

5.1. Static case results

The generation of each instance is done randomly. N nodes are generated

randomly inside a rectangle of 1000x500 u2. The chosen radio range is of 250

m. Thus, if the distance between two nodes i and j is less than or equal to

250, node i is in the transmission range of node j and vice versa. Among the

n nodes generated m are selected at random to be transmitters and other m to

be receivers; m pairs are created so that no node sends to itself, nor we have

repeated pairs.

The total study time in each instance is 900 s, being the unit of a millisecond

time, so as to have 900,000 time units. Other fixed values for all the instances

are: tij(t) = 1 ∀i, j, t, rj = 10 ∀j and gj = 2 ∀j.
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Figure 7: Percentage of delivered packets when varying the overall number of nodes.

A transmission vector of 900,000 positions is created for each node to indicate

respectively whether or not to transmit in that moment of time. Each node can

transmit its own packets for 10′′ and cannot during 50′′ for randomly starting a

case or the other one. Moreover each node i alternates periods of activity and

inactivity, starting with one of them randomly and immediately switches to the

opposite state.

First, for a fixed activity/inactivity ratio for nodes of 1.5/0.5 seconds and

5 communication pairs, we generated 5 sets of 20 instances with 10, 20, 30,

40 and 50 nodes respectively. Second, for a fixed number of 50 nodes and 5

communication pairs, we generated 6 sets of 20 instances with activity/inactivity

ratios of 1.5/0.5, 3/0.5, 10/0.5, 1.5/1,5, 1.5/3 and 1.5/5 respectively. As in both

groups there is a set with the same characteristics (50 nodes and 1.5/0.5 ratio)

a total of 200 instances were generated for the static case.

Figures 7 and 8 were obtained from the instance sets corresponding to the

variation of the number of nodes; in Figure 7 is represented the average per-

centage of delivered packets in each set of 20 instances, while in Figure 8 it

is represented the average of the maximum, minimum and average number of

hops of the delivered packets in each set. We observe that when increasing the
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Figure 8: Maximum, minimum and average number of hops of the delivered packets when
varying the overall number of nodes.

number of nodes the percentage of delivered packet increases as expected, but

the percentage of arrived packet is generally low, the maximum being at 34.5%

with 40 nodes. Moreover the path length increases quickly reaching in some

situation more that 4 hops, which is a critical value in wireless networks.

Figures 9 and 10 were obtained from the instance sets corresponding to

the variation of active/inactive ratios; in Figure 9 it is represented the average

percentage of delivered packets in each set, while in Figure 10 it is represented

the average of the maximum, minimum and average number of hops of the

delivered packets in each set.

We observe that, as a general rule, when keeping the devices active most of

the time the percentage of delivered packets increases as expected, even if with

a very low percentage of arrived packet. Most importantly, the path length

increases when keeping the devices active most of the time, reaching in some

situation up to 6 hops, which is a critical value in wireless networks.

Note that the running time of the algorithm was similar in all the instances,

and in the worst case less than two seconds.
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Figure 9: Percentage of delivered packets when varying the ratio between active periods and
off periods.

Figure 10: Maximum, minimum and average number of hops of the delivered packets when
varying the ratio between active periods and off periods.

5.2. Dynamic case

It is basically the same as in the static case except obviously for connections

between nodes that vary every 5′′; i.e., every 5′′ each position is recalculated

for every node taking into account that each node moves with random speed

generated by a normal distribution with mean 10 and deviation 4, heading

straight to a destination also generated randomly within the grid 1000x500 in

which nodes are generated.
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Figure 11: Percentage of delivered packets when varying the overall number of nodes.

We know if a node has reached its destination or not at any given time

(multiple of 5′′) by determining if the Euclidean distance between the point

of origin and the destination is less than or equal to the Euclidean distance

between the point of origin and the point at which “find” according to the rated

speed. If at that time the node has not reached its destination, will continue in

that direction with the same speed, otherwise it will create a new destination

and a new speed to start another journey.

As in the static case, we generated 5 sets of 20 instances with 10, 20, 30, 40

and 50 nodes respectively, all of them with fixed activity/inactivity ratio 1.5/0.5

and 5 communication pairs, and also 6 sets of 20 instances with 50 nodes, 5 com-

munication pairs and with activity/inactivity ratios of 1.5/0.5, 3/0.5, 10/0.5,

1.5/1,5, 1.5/3 and 1.5/5 respectively. Thus, a total of 200 instances were also

generated for the dynamic case.

Figures 11 and 12 were obtained from the instance sets corresponding to

the variation of the number of nodes; in Figure 11 is represented the average

percentage of delivered packets while in Figure 12 it is represented the average

of the maximum, minimum and average number of hops of the delivered packets.

We again observe that, as a general rule, when increasing the number of nodes
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Figure 12: Maximum, minimum and average number of hops of the delivered packets when
varying the overall number of nodes.

the percentage of delivered packet increases as expected, but the percentage of

arrived packet is generally low, the maximum being at 32,90% with 30 nodes.

Moreover the maximum path length increases quickly reaching in some situation

more that 11 hops, which is an extremely critical value in wireless networks.

Figures 13 and 14 were obtained from the instance sets corresponding to

the variation of active/inactive ratios; in Figure 13 it is represented the average

percentage of delivered packets while in Figure 14 it is represented the average

of the maximum, minimum and average number of hops of the delivered packets.

Again, we observe that when keeping the devices active most of the time the

percentage of delivered packet increases as a general rule, even if with a very

low percentage of arrived packet. Most importantly the path length increases

when keeping the devices active most of the time, reaching in some situation up

to 9 hops.

Note that in the dynamic case, the execution of the algorithm was obvi-

ously more time consuming than in the static case, due to the recalculations of

positions and connectivity. The worst case had a running time of less than 5

minutes.
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Figure 13: Percentage of delivered packets when varying the ratio between active periods and
off periods.

Figure 14: Maximum, minimum and average number of hops of the delivered packets when
varying the ratio between active periods and off periods.

What we do extract from these computation results is that in SWNs with the

conditions given in this section, routing protocols must deal well with 2 issues:

a low percentage of delivered packets and with long paths. Of course, these

conclusions cannot be extrapolated to other SWNs with different conditions,

but the idea of our model is that it can be configured and “personalized” around

a specific problem under study. We have varied the number of nodes and the

active/inactive ratios, but the variation of all other parameters involving the
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behavior of a SWN cans also be studied with this tool: radio range, transmission

range type, periods of transmission, number of times a packet can be resent by

the same node, etc. Moreover, the algorithm can be modified to be adapted to

other conditions, for example to the existence of buffers, such that a node can

store a given number of received packets and resend them, when possible, in the

receiving order or in other order depending on preferences.

6. Conclusions

In this paper we proposed an analytical model based on evolving graphs

correlated to specifically defined network conditions. This tool provides an ex-

haustive evaluation of the routing conditions, and its aim is to allow designers

to determine the best combination for routing strategies and parameters tak-

ing into consideration the network conditions in SWNs, mainly the possible

switching-off mechanisms adopted to save energy.

The proposed algorithm determines factors like: how many complete mes-

sages get to the destination, which is the smallest amount of time required by

a packet to get to the destination, and the fluctuations of the number of hops

observed by a packet to get to its destination. Thus, for example, applying this

algorithm to different switching-off patterns, through the obtained results with

respect to the factors cited above, we can determine the best routing strategy

to maintain an adequate performance while still saving energy.

We demonstrated that the complexity of the algorithm is O(nT 2), n being

the number of nodes, and T being the width of the time interval studied.

Finally, to better illustrate the possibility of our proposal, we showed some

computational results on a set of 400 randomly generated instances, whose data

are available to any researcher through the website http://www.grc.upv.es/stpa.

Overall we think that our proposal is a flexible tool that could help routing

protocols designers to fine tune their proposals. The flexibility of this work

stands in the fact that the assumption that we took for its development can

easily be adapted to other different context or scenarios. For example, our
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future research will focus on adapting our proposal to model Delay Tolerant

Network (DTN) conditions for Intelligent Transport Systems (ITS) settings.
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Appendix A: Algorithm pseudo-code
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Algorithm 1:

First Phase;
Initialization();
while Q 6= ∅ do

vba := vhm so that vhm ∈ Q and h = min{l | vls ∈ Q};
Q← Q ∼

{

vba
}

;
if teba(1) = a and teba(2) = b then

if (recba 6= 1) or (recba = 1 and steba(3) = a) or (recba = 1 and
steba(1) = a) or (recba = 1 and |{vla ∈ V | l < b and
tela = steba}| = ga) or (recba = 1 and a ∈ pathb

a) then
Forward();

else

tteba = teba and teba = steba ;
Forward();
delay the sending of va at b′ > b, where b′ is the first available
instant so that va is active at b′;
if vb

′

a /∈ Q then

Q← Q ∪
{

vb
′

a

}

;

V ← V ∪
{

vb
′

a

}

;

recb
′

a = 0 and teb
′

a = (a, b′, tteba(3), tte
b
a(4));

if vb
′

a ∈ Q then

if (teb
′

a (1) 6= a) or (teb
′

a (1) = a and teb
′

a (2) < b′) then

if etiqb
′

a = 1 then

recb
′

a = 2, steb
′

a = teb
′

a , te
b′

a = (a, b′, tteba(3), tte
b
a(4));

A← A ∼
{

(u, vb
′

a ) | (u, v
b′

a ) ∈ A
}

and pathb′

a = ∅;

if etiqb
′

a = 0 then

recb
′

a = 1, steb
′

a = teb
′

a ;
teb

′

a = (a, b′, tteba(3), tte
b
a(4));

if teb
′

a (1) = a and teb
′

a (2) = b′ then

tteb
′

a = teb
′

a and teb
′

a = (a, b′, tteba(3), tte
b
a(4));

Delay(va)

if (teba(1) 6= a) or (teba(1) = a and teba(2) < b) then

if (etiqba = 1) or (etiqba = 0 and teba(1) = a) then

V ← V ∼
{

vba
}

;

A← A ∼
{

(u, vba) | (u, v
b+tam(b)+rm
m ) ∈ A

}

;

if (etiqba 6= 1 and teba(1) 6= a) then

if teba(3) 6= a then

if |{vla ∈ V | l < b and tela = teba}| = ga or a ∈ pathb
a then

V ← V ∼
{

vba
}

;

A← A ∼
{

(u, vba)
}

being (u, vba) the unique arc
entering in vba;

else
Forward();

SecondPhase();
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Procedure Forward

begin

forall vm with (va, vm) ∈ Ab do

if v
b+cbam
m ∈ Q then

if (te
b+cbam
m (1) 6= m) or (te

b+cbam
m (1) = m and

te
b+cbam
m (2) < b+ cbam) then

A← A ∪
{

(vba, v
b+cbam
m )

}

;

etiq
b+cbam
m = 1;

if te
b+cbam
m (1) = m and te

b+cbam
m (2) = b + cbam then

if rec
b+cbam
m = 0 then

ste
b+cbam
m = teba;

rec
b+cbam
m = 1;

A← A ∪
{

(vba, v
b+cbam
m )

}

;

path
b+cbam
m = pathb

a ⊕ a;

c(vba, v
b+cbam
m ) := c′bam;

if rec
b+cbam
m = 1 then

rec
b+cbam
m = 2, path

b+cbam
m = ∅;

A← A ∼
{

(u, v
b+cbam
m )

}

being (u, v
b+cbam
m ) the unique

arc entering in v
b+cbam
m ;

if rec
b+cbam
m = 2 then

do nothing

if v
b+cbam
m /∈ Q then

Q← Q ∪
{

v
b+cbam
m

}

;

V ← V ∪
{

v
b+cbam
m

}

;

A← A ∪
{

(vba, v
b+cbam
m )

}

;

path
b+cbam
m = pathb

a ⊕ a;

c(vba, v
b+cbam
m ) := c′bam;

te
b+cbam
m = teba;

end
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Procedure Initialization

begin

Q := {vhm | so that vm belongs to the subset of nodes that generate
local messages and h is the instant of time when vm should send one
of its packets};
V := Q;
A := ∅;
tehm = (m,h, m̃, h) ∀vhm ∈ Q, where vm̃ is the destination node of the
packet that vm wants to send at instant h;

end

Procedure Delay(va)

begin
Delay the sending of the local packet of va forecasted for instant b′ to
the next instant b′′ > b′ so that va is active at b′′, doing exactly as
with vba, changing b for b′ and b′ for b”, and so successively until there
is no need to delay any local packet of va that was to be sent after b;
If, as a consequence of this process, a packet that was to be sent from
va, cannot be sent because delayed too long and va becomes inactive;
the vector corresponding to this packet must be stored in N ;

end

Procedure SecondPhase

begin

P := {vhm ∈ V | d+(vhm) = 0, tehm(3) 6= m and tehm(1) 6= m};
while P 6= ∅ do

vba := vhm so that h = max{l | vlm ∈ P};
P ← P ∼

{

vba
}

;

V ← V ∼
{

vba
}

;

A← A ∼
{

(u, vba)
}

being (u, vba) the unique arc entering in vba;
update P ;

end
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Appendix B: Execution of the algorithm in the example

To simplify the text, we will indicate subroutine Forward with SF.

First Phase

Initialitation

Q := {v01 , v
1
1 , v

2
1 , v

3
3 , , v

4
3 , , v

3
5 , v

4
5} V := Q A := ∅

te01 = (1, 0, 11, 0) te11 = (1, 1, 11, 1) te21 = (1, 2, 11, 2) te33 =

(3, 3, 8, 3)

te43 = (3, 4, 8, 4) te35 = (5, 3, 10, 3) te45 = (5, 4, 10, 4)

Iteration 1

vba = v01 Q← Q− {v01}

te01(1) = 1, te01(2) = 0 and rec01 = 0 → SF

Only (v1, v2) ∈ A0 and v22 /∈ Q →

Q← Q ∪ {v22} V ← V ∪ {v22} A← A ∪ {(v01 , v
2
2)} path2

2 = (1)

c(v01 , v
2
2) = 2 te22 = (1, 0, 11, 0)

Iteration 2

vba = v11 Q← Q− {v11}

te11(1) = 1, te11(2) = 1 and rec11 = 0 → SF

Only (v1, v2) ∈ A1 and v32 /∈ Q →

Q← Q ∪ {v32} V ← V ∪ {v32} A← A ∪ {(v11 , v
3
2)} path3

2 = (1)

c(v11 , v
3
2) = 2 te32 = (1, 1, 11, 1)

Iteration 3

vba = v21 Q← Q− {v21}

te21(1) = 1, te21(2) = 2 and rec21 = 0 → SF

Only (v1, v3), (v1, v5) ∈ A2

moreover, v43 ∈ Q and v45 ∈ Q. As te43(1) = 3 and te45(1) = 5
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with te43(2) = 4, te45(2) = 4 and with rec43 = rec45 = 0 →

ste43 = (1, 2, 11, 2) rec43 = 1

ste45 = (1, 2, 11, 2) rec45 = 1

A ← A ∪ {(v21 , v
4
3), (v

2
1 , v

4
5)} path4

3 = (1) = path4
5 c(v21 , v

4
3) =

c(v21 , v
4
5) = 2

Iteration 4

vba = v22 Q← Q− {v22}

te22(1) 6= 2, etiq22 = 0, te22(3) 6= 2

|{vl2 ∈ V | l < 2 and tel2 = te22}| = 0 < g2 and 2 /∈ path2
2 = (1) → SF

Only (v2, v3) ∈ A2 and v43 ∈ Q

As te43(1) = 3, te43(2) = 4 and rec43 = 1 →

rec43 = 2 path4
3 = ∅ A← A− {(v21 , v

4
3)}

Iteration 5

vba = v32 Q← Q− {v32}

te32(1) 6= 2, etiq32 = 0, te32(3) 6= 2

|{vl2 ∈ V | l < 3 and tel2 = te32}| = 0 < g2 and 2 /∈ path3
2 = (1) → SF

Only (v2, v3) ∈ A3 and v53 /∈ Q →

Q← Q∪{v53} V ← V ∪{v53} A← A∪{(v32 , v
5
3)} path5

3 = (1, 2)

c(v32 , v
5
3) = 2 te53 = (1, 1, 11, 1)

Iteration 6

vba = v33 Q← Q− {v33}

te33(1) = 3, te33(2) = 3 and rec33 = 0 → SF

Only (v3, v4), (v3, v7) ∈ A3,

moreover v54 /∈ Q and v57 /∈ Q →
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Q ← Q ∪ {v54 , v
5
7} V ← V ∪ {v54 , v

5
7} A ← A ∪ {(v33 , v

5
4), (v

3
3 , v

5
7)}

path5
4 = (3) = path5

7 c(v33 , v
5
4) = c(v33 , v

5
7) = 2 te54 = te57 =

(3, 3, 8, 3)

Iteration 7

vba = v35 Q← Q− {v35}

te35(1) = 5, te35(2) = 3 and rec35 = 0 → SF

Only (v5, v4), (v5, v6) ∈ A3,

moreover v54 ∈ Q and v56 /∈ Q

Q← Q ∪ {v56} V ← V ∪ {v56} A← A ∪ {(v35 , v
5
6)} path5

6 = (5)

c(v35 , v
5
6) = 2 te56 = (5, 3, 10, 3)

And as te54(1) 6= 4 →

A← A ∪ {(v35 , v
5
4)} etiq54 = 1

Iteration 8

vba = v43 Q← Q− {v43}

te43(1) = 3, te43(2) = 4 and rec43 = 2 6= 1 → SF

Only (v3, v4), (v3, v7) ∈ A4,

moreover v64 /∈ Q and v67 /∈ Q →

Q ← Q ∪ {v64 , v
6
7} V ← V ∪ {v64 , v

6
7} A ← A ∪ {(v43 , v

6
4), (v

4
3 , v

6
7)}

path6
4 = (3) = path6

7 c(v43 , v
6
4) = c(v43 , v

6
7) = 2 te64 = te67 =

(3, 4, 8, 4)

Iteration 9

vba = v45 Q← Q− {v45}

te45(1) = 5, te45(2) = 4, rec45 = 1, ste45(3) 6= 5, ste45(1) 6= 5

|{vl5 ∈ V | l < 4 and tel5 = te45}| = 0 < g5 and 5 /∈ path4
5 = (1) →

tte45 = te45 and te45 = ste45 = (1, 2, 11, 2) and SF

35



Only (v5, v4), (v5, v6) ∈ A4,

moreover v64 ∈ Q and v66 /∈ Q

Q← Q∪{v66} V ← V ∪{v66} A← A∪{(v45 , v
6
6)} path6

6 = (1, 5)

c(v45 , v
6
6) = 2 te66 = (1, 2, 11, 2)

And as te64(1) 6= 4 →

A← A ∪ {(v45 , v
6
4)} etiq64 = 1

By other hand, as v55 /∈ Q, Q← Q ∪ {v55} V ← V ∪ {v55}

rec55 = 0 te55 = (5, 5, tte45(3), tte
4
5(4)) = (5, 5, 10, 4)

Iteration 10

vba = v53 Q← Q− {v53}

te53(1) 6= 3, etiq53 = 0, te53(3) 6= 3

|{vl3 ∈ V | l < 5 and tel3 = te53}| = 0 < g3) and 3 /∈ path5
3 = (1, 2) → SF

Only (v3, v7) ∈ A5 and v77 /∈ Q →

Q← Q∪{v77} V ← V ∪{v77} A← A∪{(v53 , v
7
7)} path7

7 = (1, 2, 3)

c(v53 , v
7
7) = 2 te77 = (1, 1, 11, 1)

Iteration 11

vba = v54 Q← Q− {v54}

te54(1) 6= 4 and etiq54 = 1→ V ← V−{v54} A← A−{(v33 , v
5
4), (v

3
5 , v

5
4)}

Iteration 12

vba = v55 Q← Q− {v55}

te55(1) = 5, te55(2) = 5 and rec55 = 0 → SF

Only (v5, v6), (v5, v9) ∈ A5,

moreover v76 /∈ Q and v79 /∈ Q →
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Q ← Q ∪ {v76 , v
7
9} V ← V ∪ {v76 , v

7
9} A ← A ∪ {(v55 , v

7
6), (v

5
5 , v

7
9)}

path7
6 = (5) = path7

9 c(v55 , v
7
6) = c(v55 , v

7
9) = 2 te76 = te79 =

(5, 5, 10, 4)

Iteration 13

vba = v56 Q← Q− {v56}

te56(1) 6= 6, etiq56 = 0, te56(3) 6= 6

|{vl6 ∈ V | l < 5 and tel6 = te56}| = 0 < g6 and 6 /∈ path5
6 = (5) → SF

Only (v6, v9) ∈ A5 and v79 ∈ Q. As te79(1) 6= 9 →

A← A ∪ {(v56 , v
7
9)} etiq79 = 1

Iteration 14

vba = v57 Q← Q− {v57}

te57(1) 6= 7, etiq57 = 0, te57(3) 6= 7

|{vl7 ∈ V | l < 5 and tel7 = te57}| = 0 < g7 and 7 /∈ path5
7 = (3) → SF

Only (v7, v8) ∈ A5 and v78 /∈ Q →

Q← Q∪{v78} V ← V ∪{v78} A← A∪{(v57 , v
7
8)} path7

8 = (3, 7)

c(v57 , v
7
8) = 2 te78 = (3, 3, 8, 3)

Iteration 15

vba = v64 Q← Q− {v64}

te64(1) 6= 4 and etiq64 = 1→ V ← V−{v64} A← A−{(v43 , v
6
4), (v

4
5 , v

6
4)}

Iteration 16

vba = v66 Q← Q− {v66}

te66(1) 6= 6, etiq66 = 0, te66(3) 6= 6

|{vl6 ∈ V | l < 6 and tel6 = te66}| = 0 < g6 and 6 /∈ path6
6 = (1, 5) → SF

Only (v6, v9), (v6, v10) ∈ A6,
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moreover v89 /∈ Q and v810 /∈ Q →

Q← Q∪{v89 , v
8
10} V ← V ∪{v89 , v

8
10} A← A∪{(v66 , v

8
9), (v

6
6 , v

8
10)}

path8
9 = (1, 5, 6) = path8

10 c(v66 , v
8
9) = c(v66 , v

8
10) = 2 te89 = te810 =

(1, 2, 11, 2)

Iteration 17

vba = v67 Q← Q− {v67}

te67(1) 6= 7, etiq67 = 0, te67(3) 6= 7

|{vl7 ∈ V | l < 6 and tel7 = te67}| = 0 < g7 and 7 /∈ path6
7 = (3) → SF

Only (v7, v8) ∈ A6 and v88 /∈ Q →

Q← Q∪{v88} V ← V ∪{v88} A← A∪{(v67 , v
8
8)} path8

8 = (3, 7)

c(v67 , v
8
8) = 2 te88 = (3, 4, 8, 4)

Iteration 18

vba = v76 Q← Q− {v76}

te76(1) 6= 6, etiq76 = 0, te76(3) 6= 6

|{vl6 ∈ V | l < 7 and tel6 = te76}| = 0 < g6 and 6 /∈ path7
6 = (5) → SF

Only (v6, v9), (v6, v10) ∈ A7,

moreover v99 /∈ Q and v910 /∈ Q →

Q← Q∪{v99 , v
9
10} V ← V ∪{v99 , v

9
10} A← A∪{(v76 , v

9
9), (v

7
6 , v

9
10)}

path9
9 = (5, 6) = path9

10 c(v76 , v
9
9) = c(v76 , v

9
10) = 2 te99 = te910 =

(5, 5, 10, 4)

Iteration 19

vba = v77 Q← Q− {v77}

te77(1) 6= 7, etiq77 = 0, te77(3) 6= 7

|{vl7 ∈ V | l < 7 and tel7 = te77}| = 0 < g7 and 7 /∈ path7
7 = (1, 2, 3) → SF

Only (v7, v8) ∈ A6 and v98 /∈ Q →
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Q ← Q ∪ {v98} V ← V ∪ {v98} A ← A ∪ {(v77 , v
9
8)} path9

8 =

(1, 2, 3, 7) c(v77 , v
9
8) = 2 te98 = (1, 1, 11, 1)

Iteration 20

vba = v78 Q← Q− {v78}

te78(1) 6= 8, etiq78 = 0 but te78(3) = 8 (arrival to its destination)

Iteration 21

vba = v79 Q← Q− {v79}

te79(1) 6= 9 and etiq79 = 1→ V ← V−{v79} A← A−{(v55 , v
7
9), (v

5
6 , v

7
9)}

Iteration 22

vba = v88 Q← Q− {v88}

te88(1) 6= 8, etiq88 = 0, but te88(3) = 8 (arrival to its destination)

Iteration 23

vba = v89 Q← Q− {v89}

te89(1) 6= 9, etiq89 = 0, te89(3) 6= 9

|{vl9 ∈ V | l < 8 and tel9 = te89}| = 0 < g9 and 9 /∈ path8
9 = (1, 5, 6) → SF

Only (v9, v10) ∈ A8 and v1010 /∈ Q →

Q← Q ∪ {v1010} V ← V ∪ {v1010} A← A ∪ {(v89 , v
10
10)} path10

10 =

(1, 5, 6, 9) c(v89 , v
10
10) = 2 te1010 = (1, 2, 11, 2)

Iteration 24

vba = v810 Q← Q− {v810}

te810(1) 6= 10, etiq810 = 0, te810(3) 6= 10

|{vl10 ∈ V | l < 8 and tel10 = te810}| = 0 < g10 and 10 /∈ path8
10 = (1, 5, 6)

→ SF

Only (v10, v9) ∈ A8 and v109 /∈ Q →
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Q← Q∪{v109 } V ← V ∪ {v109 } A← A∪{(v810, v
10
9 )} path10

9 =

(1, 5, 6, 10) c(v810, v
10
9 ) = 2 te109 = (1, 2, 11, 2)

Iteration 25

vba = v98 Q← Q− {v98}

te98(1) 6= 8, etiq98 = 0, te98(3) 6= 8

|{vl8 ∈ V | l < 9 and tel8 = te98}| = 0 < g8 and 8 /∈ path9
8 = (1, 2, 3, 7) →

SF

Only (v8, v11) ∈ A9 and v1111 /∈ Q →

Q← Q ∪ {v1111} V ← V ∪ {v1111} A← A ∪ {(v98 , v
11
11)} path11

11 =

(1, 2, 3, 7, 8) c(v98 , v
11
11) = 2 te1111 = (1, 1, 11, 1)

Iteration 26

vba = v99 Q← Q− {v99}

te99(1) 6= 9, etiq99 = 0, te99(3) 6= 9

|{vl9 ∈ V | l < 9 and tel9 = te99}| = 0 < g9 and 9 /∈ path9
9 = (5, 6) → SF

Only (v9, v10) ∈ A9 and v1110 /∈ Q →

Q← Q ∪ {v1110} V ← V ∪ {v1110} A← A ∪ {(v99 , v
11
10)} path11

10 =

(5, 6, 9) c(v99 , v
11
10) = 2 te1110 = (5, 5, 10, 4)

Iteration 27

vba = v910 Q← Q− {v910}

te910(1) 6= 10, etiq910 = 0 but te910(3) = 10 (arrival to its destination)

Iteration 28

vba = v109 Q← Q− {v109 }

te109 (1) 6= 9, etiq109 = 0, te109 (3) 6= 9

|{vl9 ∈ V | l < 10 and tel9 = te109 }| = 1 < g9 and 9 /∈ path10
9 = (1, 5, 6, 10)

→ SF
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Only (v9, v10) ∈ A10 and v1210 /∈ Q →

Q← Q∪{v1210} V ← V ∪{v1210} A← A∪{(v109 , v1210)} path12
10 =

(1, 5, 6, 10, 9) c(v109 , v1210) = 2 te1210 = (1, 2, 11, 2)

Iteration 29

vba = v1010 Q← Q− {v1010}

te1010(1) 6= 10, etiq1010 = 0, te1010(3) 6= 10

|{vl10 ∈ V | l < 10 and tel10 = te1010}| = 1 < g10 and 10 /∈ path10
10 =

(1, 5, 6, 9) → SF

Only (v10, v11) ∈ A10 and v1211 /∈ Q →

Q← Q∪{v1211} V ← V ∪{v1211} A← A∪{(v1010 , v
12
11)} path12

11 =

(1, 5, 6, 9, 10) c(v1010 , v
12
11) = 2 te1211 = (1, 2, 11, 2)

Iteration 30

vba = v1110 Q← Q− {v1110}

te1110(1) 6= 10, etiq1110 = 0 but te1110(3) = 10 (arrival to its destination)

Iteration 31

vba = v1111 Q← Q− {v1111}

te1111(1) 6= 11, etiq1111 = 0 but te1111(3) = 11 (arrival to its destination)

Iteration 32

vba = v1210 Q← Q− {v1210}

te1210(1) 6= 10, te1210(3) 6= 10 and |{vl10 ∈ V | l < 12 and tel10 = te1210}| = 2 =

g10 → V ← V − {v1210} A← A− {(v109 , v1210)}

Note that in this case 10 ∈ path12
10 = (1, 5, 6, 10, 9), so even if node 10

would not forwarded two times the corresponding packet before, to avoid

loops it would not forwarded the packet anyway.

Iteration 33

41



vba = v1211 Q← Q− {v1211} = ∅

te1211(1) 6= 11, etiq1211 = 0 but te1211(3) = 11 (arrival to its destination)

Q = ∅ ← end of the first phase.

Second Phase

P := {v109 , v56 , v
2
2}

Iteration 1

vba = v109 P ← P −{v109 } V ← V −{v109 } A← A−{(v810, v
10
9 )}

P ← P ∪ {v810}

Iteration 2

vba = v810 P ← P − {v810} V ← V − {v810} A← A− {(v66 , v
8
10)}

Iteration 3

vba = v56 P ← P − {v56} V ← V − {v56} A← A− {(v35 , v
5
6)}

Iteration 4

vba = v22 P ← P −{v22} = ∅ V ← V −{v22} A← A−{(v01 , v
2
2)}

P = ∅ ← END.

Some comments about the obtained results

Regarding the packets sent we observe that:

• v3 has to send a packet at t = 4 and receives 2 packets simultaneously at

t = 4 − r3 without being the destination. Due to interferences it will not

forward at t = 4 any of these packets, sending its own (see iterations 3, 4

and 8).

• v4 receives 2 packets at t = 5− r4 without being the destination. Since it

had no local packet to be sent at t = 5, it will not forward any packet at

t = 5 (see iterations 6, 7 and 11).

• v5 must send a packet at t = 4, but receives a packet without being the

destination at t = 4 − r4; it did not forward this packet previously. It

forwards the packet received at t = 4 (which was send from v1 at t = 2),
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delaying the sending of its own packet at t = 5, that is the first available

instant of time (see iterations 3 and 9).

• v4 receives 2 packets at t = 6− r4 without being the destination. Since it

had no local packet to be sent at t = 6, it will not forward any packet at

t = 6 (see iterations 8, 9 and 15).

• v9 receives 2 packets at t = 7− r9 without being the destination. Since it

had no local packet to be sent at t = 7, it will not forward any packet at

t = 7 (see iterations 12, 13 and 21).

• v9 receives twice the same packet (sent from v1 at t = 2) at t = 8 and

t = 10 (see iterations 16, 23, 24 and 28).

• v10 receives twice the same packet, being the destination (sent from v5 at

t = 5) at instants t = 9 − r10 and t = 11 − r10 (see iterations 18, 26, 27

and 30).

• v10 receives three times and at three different instants of time the same

packet (sent from v1 at t = 2). It forwards it at t = 8 and t = 10 but not

at t = 12 since g10 = 2. At the same time at t = 12 the loop avoidance

condition for not forwarding a received packet holds too, since v10 exist in

a component of vector path12
10. (see iterations 16, 23, 24, 28, 29 and 32).
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- An analytical model based on evolving graphs of smartphones based wireless networks is proposed. 
- We present an algorithm that provides an exhaustive evaluation of routing conditions when dealing 
with ON-OFF behavior. 
- The presented algorithm can help routing protocol designers to determine the best recurring 
strategies and parameters. 
- Computational results are given, both on static and dynamic scenarios. 
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