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Structural damage can be identified by processing structural vibration response signals and excitation
data, and thus the suitability of signal processing methods is essential to structural damage identification.
To explore an intelligent signal processing method for structural damage identification, the paper inte-
grated wavelet real-time filtering algorithm, Adaptive Neruo-Fuzzy Inference System (ANFIS) and inter-
val modeling technique to process structural response signals and excitation data. With Wavelet
Transform (WT) algorithm filtering random noise, ANFIS was found to model the structural behavior
properly and interval modeling technique to quantify damage index accurately. The rapid identifications
of several unknown damages and small damages indicate the efficiency of this integrated method. The
comparison of these results and some other signal processing methods shows that, the proposed method
can be used to identify both the time and the location when the structural damage occurs unexpectedly.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration based damage identification approach is a common
kind of structural damage identification method. In these methods,
Wavelet Transformation (WT) method has been widely exploited in
treatment of vibration response and construction of damage feature
extractor; Adaptive Neuro-Fuzzy Inference System (ANFIS) has
been used to indicate damage characteristic. In most studies, WT
was used as an effective signal analysis tool and brings damage-in-
curred singularities into prominence, addressing features of dam-
age and enabling a solution to damage identification (Cao, Cheng,
Su, & Xu, 2012). ANFIS can be fed into extracted features in order
to identify the size and position of the damage and to estimate
structural operating conditions (Saeed, Galybin, & Popov, 2013).

One of the difficulties in identification process is the treatment
of uncertainty caused by noise and variability, which has been well
handled by WT algorithm (Peretto, Sasdelli, & Tinarelli, 2005), AN-
FIS (Ch & Mathur, 2010) or interval modeling technique (Lew,
2011). WT algorithm and ANFIS may be integrated by interval
modeling technique.

The uncertainty of vibration response in helicopter is caused by
numerous complex loading conditions, highly flexible uses and
strong randomicity in maneuvering, etc. Flap, lag, and torsion mo-
tions of rotor system in the non-symmetric flow caused by rotating
and sliding lead to complicated aerodynamic coupling load and
structural vibration load acting on moving parts and adjacent
structures. Furthermore, vibration phenomenon is the intrinsic
characteristic of helicopter, which causes 40% of the accidents.
Thus, helicopter structural damage identification using vibration
response is challenging yet plausible if the uncertainty is carefully
processed.

The main task of this paper is to deal with uncertainty using sig-
nal processing algorithm in the process of helicopter structural
damage identification, and the purpose is to explore an intelligent
approach for vibration based structural damage identification
using wavelet real-time filtering algorithm, ANFIS and interval
modeling technique cooperatively. The integrated approach takes
WT method as a real-time filtering algorithm, ANFIS as a structural
response behavior modeling tool, and interval modeling technique
as a damage feature extractor.

The proposed approach begins by filtering the sensor’s output
time series with wavelet real-time filtering algorithm. After trained
by input–output time series, ANFIS is then used to model the struc-
ture and predict the displacement response. The interval modeling
technique accepts prediction results as the input and gives uncer-
tainty coordinates as the output. Information fusion is subse-
quently accomplished and then the damage can be identified
after damage index is constructed.

This approach can be used as a structural damage identification
method, which provides new ideas for structural modeling and
structural damage feature extracting. Furthermore, this study
may cast light on parameter identification schemes.
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2. Background information

Structural damage identification (SDI) has received much
attention in the field of aerospace engineering. Numerous tech-
niques have been introduced for the damage detection of air-
craft structures, among which the vibration based approaches
have been widely exploited (Bayissa, Haritos, & Thelandersson,
2008; Budipriyanto, Haddara, & Swamidas, 2007; Duffey,
Doebling, Farrar, Baker, & Rhee, 2001). These methods are based
on the fact that any structure can be interpreted as a dynamic
system with stiffness, mass and damping. Once some damages
occur in the structure, the structural parameters will change,
and the modal parameters of the structural system and time-
history response will also shift. Thus, the change of the struc-
tural modal parameters or any other features extracted from
the vibration responses through signal processing methods can
be taken as the indications of early damage occurrence in the
structural system.

A difficulty in the procedure of damage monitoring, localization
and status identification is handling various uncertainties (Li &
Law, 2008; Zhang, Li, Duan, & Law, 2011). For vibration response
based structural damage identification methods, transmissibility
measurements are always subject to environmental, operational
and measurement variability, and the uncertainty will propagate
through to any features derived from it, leading to misinterpreta-
tion and false alarms (Mao & Todd, 2012). Uncertainty caused by
noise and variability has successfully been quantified with signal
processing methods such as WT algorithm (Tay, 2004; Wu & Deng,
2008), ANFIS (Noori, Hoshyaripour, Ashrafi, & Araabi, 2010; Theo-
doridis, Boutalis, & Christodoulou, 2010) and interval modeling
technique (Lew & Loh, 2012; Red-Horse & Paez, 2008). Further-
more, the incorporation of the three methods generates a better ef-
fect on identifying structural damage.

For signal processing methods dealing with system uncertainty,
WT, ANFIS and interval modeling technique play different roles in
structural damage identification. When time series is estimated
and predicted, modeling uncertainties are smaller if processed by
ANFIS than by ANN (Talebizadeh & Moridnejad, 2011). However,
ANFIS may not be able to cope with non-stationary data, if prepro-
cessing of the input and/or output data is not performed (Noori,
Abdoli, Farokhnia, & Abbasi, 2009), which can be effectively ad-
dressed by using WT algorithm (Manimaran, Panigrahi, & Parikh,
2009; Noori et al., 2009). Furthermore, WT algorithm can substan-
tially improve structural modeling capacity of ANFIS (Altmann &
Mathew, 2001; Catalao, Pousinho, & Mendes, 2011; Najah, El-Sha-
fie, Karim, & Jaafar, 2012). Fitting of structural vibration response
can be realized by wavelet-based ANFIS method (Mitchell, Kim, &
El-Korchi, 2012), which as a single output system (Chen, Zhang,
& Ieee, 2005; Melin, Soto, Castillo, & Soria, 2012) yet cannot di-
rectly identify damage of multi-sensor structures. This issue can
be supplemented by introducing interval modeling technique
(Lew & Horta, 2007; Red-Horse & Paez, 2008) through information
fusion (Rodger, 2012).

Interval modeling technique, a kind of parameter uncertainty
quantitative method suitable for sampling control system, has
been used for aircraft real-time structural damage identification
(Lew & Loh, 2012). The application of ANFIS or WT algorithm as
system feature extractor to structural damage detection and local-
ization under different excitations has been widely researched
(Escamilla-Ambrosio, Lieven, & Ieee, 2007; Gketsis, Zervakis, &
Stavrakakis, 2009; Nair & Kiremidjian, 2009; Noh, Lignos, Nair, &
Kiremidjian, 2012). But to the author’s knowledge, the previous
studies have not involved interval modeling technique as damage
feature extractor or ANFIS as structural modeling tool in structural
damage identification, and there is little information available in
literature about an integrated method assigning different roles
according to the specialties of its signal processing subsystems
for vibration response based structural damage identification.

This paper proposes an integrated signal processing approach
for vibration based structural damage identification using interval
modeling technique for wavelet filtered neuro-fuzzy system. This
method is demonstrated by application to an unmanned helicopter
model and the results show that the integrated approach can
greatly improve damage identification capacity. The next section
describes the basics of wavelet-based ANFIS modeling and vibra-
tion response prediction.
3. Structural system modeling and vibration response
prediction

For vibration based structural damage identification methods,
displacement response is often employed for deciding structural
damage state. The displacement response of the structure under
periodic excitation appears the same period and proportional
vibration amplitude as the excitation, when there is no noise.
The actual condition may be described as Fig. 1.

For suddenly occurred structural damage, there is an oscillation
progress initiating from damage occurring and continuing to the
moment when abnormal displacement amplitude reaches steady
state. This transient time depends on structural damage scale
and magnitude of load. Uncertainty in displacement response can
be estimated and quantified using wavelet based ANFIS and inter-
val modeling technique. Structural damage can also be treated as a
kind of uncertainty, which is steady for undamaged structure, but
is an abnormal value for damaged structure in oscillation state.
Damage feature can subsequently be extracted through processing
of displacement response.
3.1. Wavelet-based ANFIS modeling

ANFIS is an effective tool for structural system modeling and
time series prediction, whose capacity can be elevated by using
WT algorithm (Samant & Adeli, 2001), and this promoted method
has been successfully used in smart structure modeling (Mitchell
et al., 2012). Wavelet-based ANFIS is called WT-ANFIS (Noori
et al., 2009) or WANFIS (Guo, Dong, & Ma, 2009).

First proposed by Jang (1993), ANFIS is formed by combining
the adaptive learning capability of neural networks with impreci-
sion modeling capability of fuzzy logic (Samant & Adeli, 2001).
Neural network is suitable for processing unstructured informa-
tion, while fuzzy system is fit for dealing with structured knowl-
edge. Fuzzy logic and neural network achieve the non-parameter
modeling of nonlinear system by training data to input–output
map of the system (Mitchell et al., 2012).

There are two kinds of structures using neural network to real-
ize fuzzy system: fuzzy neural networks based on the Mamdani
model and on Takagi–Sugeno model (Takagi & Sugeno, 1985). AN-
FIS, adopting the latter, refers to fuzzy inference system based on
adaptive networks (Melin et al., 2012). ANFIS performs better than
single neural network or single fuzzy system (Das, Maiti, & Baner-
jee, 2010).

While ANFIS is an effective modeling tool, the adopted input/
output vibration response are usually noisy and the subsequent
feature extraction of signal components is quite difficult (Jafari-
zadeh, Hassannejad, Ettefagh, & Chitsaz, 2008). One of the solu-
tions to this problem is applying wavelet filtering algorithm in
time domain for signal denoising (Arzhantsev, Li, & Kauffman,
2011).

The essence of wavelet filtering is to process the WT coefficient
non-linearly, and then to reconstruct it (Han, Wang, Shang, & An,
2009). For wavelet transformation, useful signal energy is
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Fig. 1. Relationship between amplitude of vibration response and time depending on damage state.
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Fig. 2. Wavelet transform and filtering.

Fig. 3. Finite element model of FH-1 unmanned helicopter fuselage structure.
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centralized in a few wavelet coefficients with larger absolute value,
whilst noise signal energy is scattered with smaller absolute value.
After resetting the wavelet coefficient below the threshold value,
filtered signal can be reproduced by reconstructing it. Fig. 2
(Mohammed, Khan, El-Tallawy, Nejadpak, & Roberts, 2012) depicts
the steps of real-time filtering algorithm:

ANFIS modeling for structure:
A structural parameter identification approach using displace-

ment measurement time series has been proposed (Xu, Song, &
Masri, 2012). The dynamic displacement response of the frame
structure under the measured excitation can be used to train the
neural network to map the function from displacement vector
xk � 1, xk � 2 and excitation vector €xg;k�1 to xk of the structure. After
being trained, the neural network can be employed to forecast xk

according to xk � 1, xk � 2 and €xg;k�1:

xf
k ¼ fANN xk�2; xk�1; €xg;k�1

� �
ðk ¼ 2; . . . ;KÞ ð1Þ

where xf
k is the forecasted displacement response of the structure at

time kT.
The above formula, predicting dynamic displacement response

of the observed structure, can also be presented as the following
expression:

Xðkþ 1Þ ¼ GðxðkÞ; xðk� 1Þ; f ðkÞÞ ðk ¼ 2; . . . ; kÞ ð2Þ

When time series is estimated and predicted, modeling uncertain-
ties are smaller if processed by ANFIS than by ANN (Talebizadeh
& Moridnejad, 2011). And ANFIS has been used to obtain the input
(the location and depth of a crack)–output (the structural Eigen fre-
quencies) relation of the structural system (Shim & Suh, 2002). In
this paper, ANFIS is used to simulate the above formula in order
to accomplish the structural modeling, and to finally achieve

x̂ðkÞ ¼ fANFISðxðk� 1Þ; xðk� 2Þ; f ðk� 1ÞÞ ðk ¼ 3; � � � ;KÞ ð3Þ

The function of the above formula is to predict displacement vector
x(k) at time k from displacement vector x(k � 1) at time k � 1, dis-
placement vector x(k � 2) at time k � 2, and excitation vector f(k�1)
at time k � 1. The above formula is the realization of structural
modeling and vibration response prediction.
3.2. Vibration response prediction

3.2.1. Response prediction of structure under sinusoidal excitation
The fuselage structure of BUAA FH-1 coaxial unmanned helicop-

ter is used for example analysis, whose size and shape are shown in
Fig. 3 (Xufei, Zhongmin, & Zhitao, 2012). Young’s modulus, density
and Poisson’s ratio of the fuselage material are 207 GPa, 7780 kg/
m3 and 0.3, respectively. Rayleigh damping model is employed to
depict the structural damping of the fuselage, whose a and b are
3 and 0.0001 separately. Six degrees of freedom constraint are
added to the joint of the fuselage and the landing gear. f1 and f2

are the same in Fig. 3, and are used to simulate the cycle loading
the blade acts on the fuselage, which is 100 sin (80pt) + 100 cos
(160pt)N. The displacements are output in the tagged 14 points,
which are shown in Table 1. Fig. 4 shows the structural dynamic
response under 10% measurement noise level. Fig. 5 depicts the
excitation signal with 10% noise.

This paper studies 4 positions and 16 types of damage. Positions
of damage occurring in the four diagonal braces are respectively
S1, S2, S3 and S4. 16 types of damage, representing degree of



Table 1
Mapping from node number to displacement output number.

Node number 90 107 145 172 204 222 253 76 110 144 5 197 233 269
Output number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

300 310 320 330 340 350 360 370 380 390 400
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Fig. 4. Vibration response with 10% noise.
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Fig. 5. Excitation signal with 10% noise.

Fig. 6. Model of damage type S1-2e5.

Fig. 7. Model of damage type S4-100.
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damage, are respectively S1-2e5, S1-15, S1-50, S1-100, S4-4, S4-12,
S4-50, S4-100, S5-3, S5-12, S5-50, S5-100, S8-3, S8-12, S8-50 and
S8-100. Damages S1-2e5 and S4-100 are depicted in Figs. 6 and
7. Fig. 8 depicts the initial membership functions (MFs) for each in-
put variable and illustrates the MFs after learning. Three kinds of
MFs, namely gaussmf, gbellmf and gauss2mf, are used as input
MF type, and linear MF is used as output MF type. See Table 2.

Typical adaptive network representation of fuzzy reasoning is
shown in Fig. 9. In this simulation example, grid partition method
is used to generate ANFIS, and the number of membership func-
tions for x(k � 1), x(k � 2) and f(k � 1) is all set to be 3. Fuzzy logic
package of MATLAB R2011b is used for implementation of ANFIS.
Computing platform uses Windows XP Pack 3 as the operating sys-
tem and the computer uses Pentium Dual-Core 2.5 GHz CPU with
2G RAM. The ANFIS structure is depicted in Fig. 10(a), and mem-
bership functions of x(k � 1) are shown in Fig. 10(b). The number
of fuzzy if-then rules in the rule base is 3 � 3 � 3 = 27. The rule
base is shown in Fig. 10(c) and 7 rules of it are listed as follows:
Rule 1: If (input1 is in1mf1) and (input2 is in2mf1) and (input3
is in3mf1) then (output is out1mf1)
Rule 2: If (input1 is in1mf1) and (input2 is in2mf1) and (input3
is in3mf2) then (output is out1mf2)
Rule 3: If (input1 is in1mf1) and (input2 is in2mf1) and (input3
is in3mf3) then (output is out1mf3)
Rule 4: If (input1 is in1mf1) and (input2 is in2mf2) and (input3
is in3mf1) then (output is out1mf4)
Rule 7: If (input1 is in1mf1) and (input2 is in2mf3) and (input3
is in3mf1) then (output is out1mf7)
Rule 10: If (input1 is in1mf2) and (input2 is in2mf1) and
(input3 is in3mf1) then (output is out1mf10)
Rule 19: If (input1 is in1mf3) and (input2 is in2mf1) and
(input3 is in3mf1) then (output is out1mf19)

4. Integrated approach using interval modeling technique

To cope with the single-output property of wavelet-based AN-
FIS and construct an ensemble ANFIS model, several methods
(Chen & Zhang, 2005; Melin et al., 2012) have been proposed,
including average method and weighted average method. How-
ever, these two methods are just adjustments of outputs to reach
a comprehensive result, and they can’t act as structural damage
feature extractors for identification usage. The principal compo-
nent analysis (PCA) has been applied to extract features and reduce
the dimensionality of the obtained Frequency Response Function
(FRF) data (Saeed et al., 2013). Similar to PCA analysis, interval
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Table 2
Information of ANFIS used to predict response at output node 1 without noise:

Number of nodes 78
Number of linear parameters 108
Number of nonlinear parameters 18
Total number of parameters 126
Number of training data pairs 898
Number of checking data pairs 0
Number of fuzzy rules 27
Error after 1 training epoch 2.91792e�12
Training time 2 s

Fig. 9. Adaptive network representation of fuzzy reasoning (Jang & Sun, 1993).
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modeling technique is used in this paper as structural damage fea-
ture extractor.

Fig. 11 depicts the integration of wavelet transform, ANFIS and
interval modeling technique.

4.1. Interval modeling technique and uncertainty quantification

Interval modeling technique (Red-Horse & Paez, 2008) was pro-
posed to solve structural certification problem under various
uncertainty conditions, and has been used to quantify uncertainty
in multiple models resulting from tests and identifications (Lew &
Loh, 2012). In this paper, interval modeling technique is used for
handling the output of multiple ANFIS systems and extracting
damage feature to construct an ensemble ANFIS model.

In structural damage identification configuration, multiple sen-
sors are used to collect the information of structural vibration re-
sponse data. Data after real-time wavelet filtering and after
ANFIS prediction are the feature data reflecting the characteristics
of structural health status. Interval modeling technique is used to
analyze and synthesize feature data, thus various uncertainties in
feature data are transformed to dominant uncertainty coordinates,
and consistency interpretation and health condition description of
measured structure are finally achieved. SVD decomposition is
used in interval modeling technique for uncertainty quantification
(Lew & Loh, 2012).

In this paper, the output of ANFIS is the predicted vibration re-
sponse. For the results of n tests, the definition of Dp are as follows:

Dpj ¼ pj � p0; j ¼ 1; :::;n; p0 ¼
1
n

Xn

j¼1

pj ð4Þ

where pj is the subtraction between response vector x(j) and pre-
dicted response vector x̂ðjÞ; and p0 is the nominal vector, which is
computed as the average of all the n vectors pj.

(1) Calculate the basis matrix U
DP ¼ USVT ; S ¼ diag½S1 � � � Sk�; U ¼ ½q1 � � � qk� ð5Þ
The singular values sj are in descending order, which leads to the
descending order of perturbation distribution in qj.

(1) Compute the coordinate vector corresponding to the basis
vectors qj

aðtiÞ ¼ U�1Dpi ð6Þ
(1) Represent each parameter vector as

pðtiÞ ¼ p0 þ
Xk

j¼1

ajðtiÞqj ð7Þ

where aj(ti) is the jth element of the uncertainty coordinate vector
a(ti). aj is the uncertainty coordinate corresponding to the jth test. n
is the number of intervals used for SVD technique. k is the number
of elements both in response vector of each test and in uncertainty
vector after decomposition. For the ensemble model, it is also the
number of wavelet-based ANFIS systems.

The uncertainty in k element displacement vectors is decom-
posed into uncertainty coordinate vectors of k elements. The first
uncertainty coordinate is much bigger than other k � 1 uncertainty
coordinates (Lew & Horta, 2007), and it is called the dominant
uncertainty coordinate. Thus, various uncertainties of multiple AN-
FIS systems resulting from multiple sensors are represented by the
dominant uncertainty coordinates, and subsequently comprehen-
sive interpretation results of the ensemble model and multi-sensor
information fusion are accomplished.

4.2. Integrated method for structural damage identification

Damage index M is settled through real-time processing of the
dominant uncertainty coordinates. The occurrence of abnormal
damage index value indicates damage occurrence. The flow chart
of damage identification is shown in Fig. 12, and it also depicts
the sequence of damage detection.

The uncertainty coordinates of 11 tests gained from uncertainty
decomposition are



Fig. 10. (a): Structure of ANFIS; (b): membership function; (c): rule base of ANFIS.
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Fig. 12. Flow chart of structural damage identification.
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a1 ¼ ½a1ðt1Þ;a1ðt2Þ; . . . ;a1ðt11Þ� ð8Þ

The former 10 coordinates of uncertainty vectors are fit with a
constant:
R ¼
X10

i¼1

½b� a1ðtiÞ�2 ð9Þ

where a1(ti) is the uncertainty coordinate at time i. b is the constant
used for fitting. Then the 11 uncertainty coordinates can be directly
estimated as

â1ðtiÞ ¼ bði ¼ 1;2; . . . ;10;11Þ ð10Þ

Since there is no damage in the first 10 tests, their uncertainty coor-
dinates are considered stable and controllable. The structure in the
last test is ‘‘suspected’’ with damage, and an exception may happen
to its uncertainty coordinates. The disturbance of uncertainty coor-
dinates can be defined using

bðtiÞ ¼ a1ðtiÞ � b ði ¼ 1;2; . . . ;10;11Þ ð11Þ

The last uncertainty coordinate is compared with the first 10, and
then its abnormalities are gained. The standard deviation r of the
disturbance of the former 10 uncertainty coordinates is computed
to measure the abnormalities, which is defined as damage index:

M ¼ bðt11Þ=r ð12Þ

The above M is computed at time (i + 1)T to identify the damage at
time iT. If damage occurs at time iT, the above computed M is de-
fined as M at time iT, symbolized by MiT. Damage threshold is de-
fined as

q ¼ a �maxðMiTÞ ð13Þ

where a is safety factor. If

jMiT j > q ð14Þ
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Then MiT is the identified abnormal value, which indicates damage
at time iT is identified at time (i + 1)T.

Suppose damage time is iT and identification time is (i + 1)T.
Then, displacement difference vector at time (i + 1)T can be ex-
pressed as

pðiþ1ÞT ¼ xððiþ 1ÞTÞ � bxððiþ 1ÞTÞ ð15Þ

To identify damage location, define 50% damage as ‘‘base damage’’
Sd, and displacement difference vector as ‘‘base vector’’. Then calcu-
late the ‘‘base vector’’ pSd

j of the jth location damage by:

R ¼
Xl

i¼1

pSd
j ðiÞ � pSd

jðiþ1ÞTðiÞ
h i2

ð16Þ

where l is the number of displacement sampling points on
structure.

Fit pSd
jðiþ1ÞT of all ‘‘base damage’’ using 5 order polynomial, and get

pSd
1 ; J ¼ 1;2;3;4.

The ‘‘base vectors’’ P1-50, P4-50, P5-50, P8-50 are:

P1� 50 ¼ pSd
1 P4� 50 ¼ pSd

2 P5� 50 ¼ pSd
3 P8� 50 ¼ pSd

4

Suppose the damage at x% degree is Sx, and there is damage at each
location with S kinds of degree. There are J kinds of location and
R � S types of damage in total. The displacement difference vector
corresponding to kth type of damage is pk

ðiþ1ÞT . And subsequently
damage location can be determined by computing ‘‘location factor’’

SPj
kððiþ 1ÞTÞ ¼

pSd
j

� �T
pk
ðiþ1ÞT

� �
jjpSd

1 jj2 � jjpk
ðiþ1ÞT jj2

ð17Þ

where jjpSd
j jj2 and jjpk

ðiþ1ÞT jj2 are Euclidean lengths of vectors pSd
j and

pk
ðiþ1ÞT , respectively. The above SPj

k is between �1 and 1. If the ‘‘loca-
tion factor’’ approaches to 1, then the damage to be determined is in
the same position as the corresponding ‘‘base damage’’ Sd.
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5. Damage identification simulation results

A common proposal of structural damage identification is to
analyze structural vibration response induced by certain kinds of
damage, and to check if the proposed method can identify the pre-
defined damage. The damage type is known to the researcher and
the studies examine the difference between healthy structure and
damaged structure.

In this paper, 16 kinds of suddenly-occurred damage are prede-
fined, which are simulated to occur at time 10 s. Three unknown
kinds of suddenly-occurred damage (among the 16 kinds of dam-
age) are investigated. The results indicate that, the proposed meth-
od can identify the time and location of an unknown kind of
damage at 0.01 s after its occurrence, which is shown in
Section 5.1.

The proposed method is based on harmonic vibration response,
which facilitates fast (at 0.01 s after damage’s occurrence) and high
precision identification. The comparisons with other methods
using different excitations are depicted in Section 5.2.

Larger damage is identified more easily. This common sense is
verified in Table 7 of Section 5.3. Figs. 17–22 in Section 5.3 depict
identification results using membership function gaussmf, and in
contrast, Table 7 depicts identification results using membership
function gauss2mf. Section 5.4 discusses the possible limitations
of the proposed method when it is applied to practical helicopter
engineering.
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Fig. 17. Damage index variation for damage type S1-50 (a) and damage type S4-4 (b) using MF gaussmf under 5% noise level.

(a) gaussmf-5%-S5-12 (b) gaussmf-5%-S8-50
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Fig. 18. Damage index variation for damage type S5-12 (a) and damage type S8-50 (b) using MF gaussmf under 5% noise level.
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(a) gaussmf-10%-S1-50 (b) gaussmf-10%-S4-100
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Fig. 19. Damage index variation for damage type S1-50 (a) and damage type S4-100 (b) using MF gaussmf under 10% noise level.

(a) gaussmf-10%-S5-100 (b) gaussmf-10%-S8-50
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Fig. 20. Damage index variation for damage type S5-100 (a) and damage type S8-50 (b) using MF gaussmf under 10% noise level.

(a) gaussmf-30%-S1-100 (b) gaussmf-30%-S4-100
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Fig. 21. Damage index variation for damage type S1-100 (a) and damage type S4-100 (b) using MF gaussmf under 30% noise level.
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5.1. Dynamic identification of unknown damage time and location

In the process of simulation, three damages (among the 16
kinds of damage) with unknown time and type are applied to the
fuselage. In the total 11 s of the simulation process, the value
change of damage index M is monitored in real-time and its varia-
tion is shown in Figs. 13–15:

Seen from Figs. 13–15, abnormal value of the damage index oc-
curs at sequence point 889. Because of the difference between
computing sequence of damage index and the actual time, it is
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Fig. 22. Damage index variation for damage type S5-100 (a) and damage type S8-100 (b) using MF gaussmf under 30% noise level.

Table 3
Correspondence between damage index computing sequence and actual time.

Index sequence 1 2 . . . 888 889
Actual time 1.13 s 1.14 s . . . 10 s 10.01 s
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necessary to list the computing sequence corresponding to the ac-
tual time, which is shown in Table 3. Based on Table 3, structural
damages are identified at 10.01 s, given that all the three damages
occur at 10 s. The damages occurring at 10 s are identified at
10.01 s.

The following is to identify the damage locations. ‘‘Location fac-
tors’’ of the three kinds of damage are computed and showed in
Fig. 16. From the matching degree in Fig. 16, the results can be seen
apparently that unknown damage 1 belongs to the third kind of
Table 4
Configuration comparisons:

Methodology A B

Excitation a b
Model Cantilever beam Cantilever beam

Table 5
Identification accuracy in example analysis:

Accuracy grade (%) Damage identification accuracy

A B

10
p p

5
p

(SNR P 10)
p

2.5
p

1
p

(experiment verifie
0.5
0.1
0.05

Table 6
Localization accuracy results:

Methodology A B C

Locations 5 19 1
Full size 90 cm � 2.545 cm � 0.647 cm 98 cm � 2 cm � 0.5 cm 6 m
position; unknown damage 2 the first kind of position; unknown
damage 3 the fourth kind of position.

5.2. Comparisons of related damage identification methods

Several related damage identification methods are ANFIS-2D-
WT, CBR, ZOM, and Wavelet-Neuro-Fuzzy, which can be found in
references (Bayissa et al., 2008; Escamilla-Ambrosio, Liu, Lieven,
& Ramirez-Cortes, 2011; Kolakowski, 2006; Sunny & Kapania,
2011).

A structural damage identification approach combining adap-
tive network-based fuzzy inference system (ANFIS) and 2D wavelet
transform (2D WT) technologies (A) is proposed in (Escamilla-
Ambrosio et al., 2011). Case-based reasoning (CBR) (B) (Kolakow-
ski, 2006) is a soft-computing method utilizing wavelet transfor-
mation for signal processing and neural networks for training a
C D Present paper

c d d
Plate Membrane Helicopter Fuselage

C D Present paper
p p p
p p p
p p p

d)
p p p
p

(7% noise)
p

(–)
p
p

(30% noise)p
(10% noise)

D Present paper

16 4
� 4 m � 0.2 m 0.78 m � 0.78 m � 0.001 m 1.26 m � 0.25 m � 0.15 m



Table 9
A certain type of helicopter variable pitch lever design load spectrum (forward flight).

Flight speed i Time proportion
ti/%

Dynamic load
Sa/N

Frequency
fi/(c/min)

100 km/h 9.4 1210 304
120 km/h 21.4 1430 304
135 km/h 6.8 1720 304
150 km/h 9.3 2230 304
vNE 0.1 3160 304

vNE denotes the insurmountable flight speed.

Table 7
Damage identification effect under different noise level using MF gauss2mf.

Noise level Damage location

Brace 1 Brace 4 Brace 5 Brace 8

5% 2.5% � 4%
p

3% � 3% �
15% � 12%

p
12%

p
12% �

50%
p

50%
p

50%
p

50%
p

100%
p

100%
p

100%
p

100%
p

10% 2.5% � 4% � 3% � 3% �
15% � 12% � 12% � 12% �
50%

p
50% � 50% � 50%

p

100%
p

100%
p

100%
p

100%
p

30% 2.5% � 4% � 3% � 3% �
15% � 12% � 12% � 12% �
50% � 50% � 50% � 50% �
100%

p
100%

p
100%

p
100%

p
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base of damage cases to retrieve a similar relevant case. A new
damage identification technique based on the statistical moments
of the energy density function of vibration responses in the time-
scale (or time–frequency) domain (C) is proposed in Bayissa et al.
(2008). A damage detection method using a wavelet-based neu-
ro-fuzzy system (D) is proposed in Sunny and Kapania (2011).

The following Tables 4–6 are qualitative and quantitative com-
parisons among the four methods and the method proposed in this
paper. The identification accuracy of different methods is calcu-
lated in this paper to make contrasts. It is shown from the tables
that damage identification results possess excellent accuracy,
meaning that the proposed ANFIS based interval modeling tech-
nique is an effective method in aircraft structural health monitor-
ing and damage localization. In Table 4, band-limited (0–500 Hz)
Gauss white noise (a), windowed sine pulse (b), non-stationary
random data (c), and sinusoidal signal (d) are used as excitations
for structural damage identification.

The identification accuracy is defined as the proportion of dam-
aged part in the full structure size. Damage identification effects de-
pend on the type of excitation, structural complexity, damage type
and noise level, among which the type of excitation greatly deter-
mines the accuracy of damage identification. Because of the unique
characteristic of structural harmonic response, damage identifica-
tion results are more precise with periodic signal as excitation than
random signal as excitation. Many scholars devote themselves to
study of structural damage identification under ambient or random
excitation, which shows further prospects for engineering applica-
tions. This paper explores a structural damage identification meth-
od under a more special condition than common ambient excitation
conditions. Seen from Table 5, identification accuracy is better
when using harmonic response than random response.

The identification accuracy of localization is defined as the ratio
of the number of damaged parts with the full structure size. Obvi-
ously, the identification effect is better if more locations are deter-
mined in smaller structures. Seen from Tables 3 and 4, the
comprehensive identification effect of harmonic response based
methods is better than random response based methods.
5.3. Identification of 16 given types of damage using different MFs

The parameters that affect the identification results are the MF
type, number of fuzzy rules, wavelet type, wavelet threshold value,
Table 8
time scale of one typical small helicopter.

Flight conditions Cruise Hovering Rotatio

Time proportion/% 84 5 7
step size and number of sensors. This simulation uses db wavelet
and soft threshold method to rid the signal of its noise. The number
of fuzzy rules of ANFIS is set to be 27. Step size of abaqus is 0.01 s
and the number of sensors is 14. During the simulation process, 16
types of damage are emulated using MF gauss2mf to check if the
proposed method can identify them. The yes or no results are pro-
vided in Table 7.

Damage types, including S1-50, S4-4, S5-12 and S8-50 under 5%
noise level, S1-50, S4-100, S5-100 and S8-50 under 10% noise level,
and S1-100, S4-100, S5-100 and S8-100 under 30% noise level, are
examined using MF gaussmf in contrast with MF gauss2mf. The va-
lue change of damage index M is monitored in real-time. Figs. 17–
22 show the variation of damage index in the total 11 s of the sim-
ulation process under three kinds of noise level.

5.4. Limitations when the method is applied to engineering

This paper deals with helicopter structural damage identifica-
tion problem when frequency and magnitude of harmonic excita-
tion are invariable. Because of the complex operating
environment, this method may not be applied to some special
flight conditions, such as transient state and maneuvering. A sur-
vey of time proportion of different flight conditions in a typical
small unmanned helicopter is depicted in Table 8. Flight conditions
of large-scale helicopters are more complicated than those in
Table 8, and may be subdivided into more flight states.

For large-scale helicopters, harmonic excitation may vary with-
in the same flight condition, as depicted in Table 9. Dynamic load
varies with flight speed whereas the frequency is invariable, which
increases the difficulty of helicopter structural damage
identification.

This method may not be applied to damage identification in
some extreme external environment of helicopter operation. The
case study in this paper focuses on a small kind of unmanned heli-
copter whose flight conditions are relatively simple. The proposed
method can be used in flight states where the magnitude and fre-
quency of harmonic excitation are both invariable.

6. Discussions

Based on the research of system modeling techniques and
uncertainty quantification methods, a novel aircraft structural
damage detection and localization method mustering real-time fil-
tering algorithm, adaptive neural fuzzy inference system and inter-
val modeling technique is studied. This paper exploits
wavelet algorithm as a digital filtering tool, ANFIS as a structural
n Climb Transient state Maneuvering

3.6 0.4 0.01
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modeling tool, and interval modeling technique as a damage fea-
ture extractor. This integrated method concentrates on signal pro-
cessing function to realize vibration-based damage identification
and is demonstrated to yield efficient results for damage time
determination and damage localization.

Comprehensive damage identification effects of harmonic re-
sponse based methods are better than those of random response
based methods. The effects of damage identification depend on
excitation type, structural complexity, damage type and noise le-
vel, among which excitation type greatly determines its accuracy.
Besides the above factors, the parameters that affect the identifica-
tion results in this paper also include the MF type, number of fuzzy
rules, wavelet type, wavelet threshold value, step size and the
number of sensors. Due to the unique characteristic of harmonic
response, damage identification results are more precise with peri-
odic signal as excitation than random signal as excitation. Struc-
tural damage identification under ambient or random excitation
shows further prospects for engineering applications with its adap-
tivity to common structures. This paper explores a structural dam-
age identification method under a more special condition using
harmonic excitation to facilitate rapid identification with a high
degree of accuracy.

For wavelet filtering on real-time occasions, this paper uses
redundancy sampling frequency algorithm to process sensor out-
put time series. Sampling frequency up to 10 kHz imposes high
performance requirements on the data acquisition system. SVD
technique is used to construct uncertainty coordinates in the pro-
cess of information fusion using interval modeling technique. The
impact variable in calculation amount and decomposition effi-
ciency is the number of vibration response output sensors.
7. Conclusions

In this paper, ANFIS is used for structural modeling. After
trained by input–output response data, ANFIS acts as a real struc-
ture and outputs structural displacement vector. The structural
damage identification method proposed in this paper can realize
dynamic identification of unknown damage time and location at
0.01 s after its occurrence. Thus, we can possibly further realize
real-time identification of damage if the computer performance
meets the requirements.

This paper deals with helicopter structural damage identifica-
tion problem when the frequency and magnitude of harmonic
excitation are invariable. In extreme situations like transient state
and maneuvering, the excitations acting on helicopter fuselage are
not harmonic. Thus, structural damage occurring in these flight
conditions can not be identified using the method proposed in this
paper. The case study in this paper focuses on a small kind of un-
manned helicopter whose flight conditions are relatively simple.
Flight states with different harmonic excitations acting on the
structure may be further divided into sub-states, within which
the excitation is stable harmonic excitation. When the helicopter
transforms flight conditions or shifts sub-states among the same
flight condition, it is necessary to switch identification method cor-
responding to the frequency and magnitude of harmonic
excitation.

The proposed method can realize rapid damage identification
at 0.01 s after its occurrence if the computer performance meets
the computing requirements, and this is what makes this paper
special. In this paper, all the data during the 11s simulation are
computed integrally. So it is difficult to judge whether the com-
puter can complete the calculation of data generated in 0.01 s
simulation process within 0.01 s and to predict which kind of
computer can identify at 10.01 s the damage occurring at 10 s
in real-time.
The identification effect is relatively obvious if simulation anal-
ysis is under low noise level, whilst un-conspicuous if under high
noise level. The damage status can’t be effectively identified at
present, and it needs further study. This dynamic identification
may also be taken as a kind of real-time approach. Furthermore,
as structural damage can be regarded as a dynamic variation of
structural parameter, this structural damage identification method
may be also exploited as structural parameter identification meth-
od. The structural parameter may be updated after structural dam-
age has been identified and located.
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