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Joint moment is one of the most important factors in human gait analysis. It can 
be calculated using multi body dynamics but might not be straight forward. This 
study had two main purposes; firstly, to develop a generic multi-dimensional 
wavelet neural network (WNN) as a real-time surrogate model to calculate lower 
extremity joint moments and compare with those determined by multi body 
dynamics approach, secondly, to compare the calculation accuracy of WNN with 
feed forward artificial neural network (FFANN) as a traditional intelligent 
predictive structure in biomechanics. 

To aim these purposes, data of four patients walked with three different conditions 
were obtained from the literature. A total of 10 inputs including eight 
electromyography (EMG) signals and two ground reaction force (GRF) 
components were determined as the most informative inputs for the WNN based 
on the mutual information technique. Prediction ability of the network was tested 
at two different levels of inter-subject generalization. The WNN predictions were 
validated against outputs from multi body dynamics method in terms of 
normalized root mean square error (NRMSE (%)) and cross correlation coefficient 
(ȡ). 

Results showed that WNN can predict joint moments to a high level of accuracy 
(NRMSE<10%, ȡ>0.94) compared to FFANN (NRMSE<16%, ȡ>0.89).A generic 
WNN could also calculate joint moments much faster and easier than multi body 
dynamics approach based on GRFs and EMG signals which released the necessity 
of motion capture.  It is therefore indicated that the WNN can be a surrogate 
model for real-time gait biomechanics evaluation. 
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1. Introduction1 

Human movement prediction has been one of the most interesting and challenging fields in biomechanics. 2 
Predictions from such studies can be used in surgical intervention planning (Reinbolt et al., 2009, Reinbolt et al., 3 
2008), athletes training (Iyer and Sharda, 2009, Pfeiffer and Hohmann, 2012, Schmidt, 2012) and prosthesis and 4 
orthosis design (Au et al., 2008, Joshi et al., 2011, Rupérez et al., 2012).In addition joint moments are important 5 
factors in order to investigate joint reaction forces, which in turn affect joint functions such as tribology 6 
characteristics of the joint including friction, wear and lubrication of the articulating surfaces. 7 
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Joint loading can be determined by instrumented prosthesis (Fregly et al., 2012) which is not feasible most of 

the time. It can also be calculated based on multi body dynamics method using the measured gait data in a gait 

laboratory equipped with 3D motion capture system and force plate. Measured kinematics and kinetics as well as 

anthropometric data are then used in an inverse dynamics analysis to calculate joint moments (Robert et al., 2013). 

However multi body dynamics approach is generally time-consuming which prevents it from serving as a real-time 

technique especially in gait retraining programs where the real-time calculation of joint moments is needed to 

evaluate the efficiency of the rehabilitation program. There are also some major difficulties using multi body 

dynamics analysis. Such musculoskeletal models are sensitive to muscle-tendon geometry, muscle origin and 

insertion (Ackland et al., 2012, Carbone et al., 2012).On the other hand it is not always straight forward to validate 

and verify the models. Numerical methods are also important considerations in multi body dynamics analysis which 

may result in the failure of solutions.  18 
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According to the above limitations, artificial intelligence has been recruited in this area due to its ability in 

pattern recognition and signal prediction. For a complete review on neural network application in biomechanics one 

can refer to (Schöllhorn, 2004).Especially in the field of joint moment prediction, for example, Uchiyama et al, used 

a three-layer feed forward artificial neural network (FFANN) to predict the elbow joint torque using 

electromyography (EMG) signals , shoulder and elbow joint angles for constant muscle activation(Uchiyama et al., 

1998).Luh et al, also used a three-layer FFANN  to predict elbow joint torque using EMG signals , joint angle and 

elbow joint angular velocity(Luh et al., 1999) .(Wang and Buchanan, 2002) proposed to calculate muscle activities 

using EMG signals  based on  a four-layer FFANN. Predicted muscle activities were then used by a Hill-type model 

in order to estimate muscle forces and elbow joint torque. (Song and Tong, 2005) also investigated a recurrent 

artificial neural network (RANN) for elbow torque estimation using EMG data, elbow joint angle and angular 

velocity. (Hahn, 2007) used a three-layer FFANN to predict isokinetic knee extensor and flexor torque based on age, 

gender, height, body mass, EMG signals, joint position and joint velocity. However this study predicted only net 

knee flexion extension torque and did not predict other lower extremity joint moments. Liu et al, presented a FFANN 

to predict lower extremity joint torques in the sagittal plane using GRFs and related parameters measured during 

vertical jumping(Liu et al., 2009). This study also predicted ankle, knee and hip joint moments only in the sagittal 

plane for vertical jump. Favre et al, proposed to use a three-layer FFANN to predict the external knee adduction 

moment based on force plate data and anthropometric measurements (Favre et al., 2012). This paper also 

investigated only knee adduction moments and did not consider other lower extremity joint moments. In a recent 

study Oh et al, also successfully predicted the three dimensional GRFs and moments based on three-layer FFANN 

using fourteen inputs of body parts trajectories and accelerations. This study also proved the possibility of calculating 

joint forces and moments based on the GRFs predicted with the intelligent network(Oh et al., 2013). 39 

http://www.google.com.hk/search?hl=zh-CN&safe=strict&q=prosthesis+and+orthosis&spell=1&sa=X&ei=d-Q2Uc_hHOeKmQWDooCYCA&ved=0CC4QBSgA
http://www.google.com.hk/search?hl=zh-CN&safe=strict&q=prosthesis+and+orthosis&spell=1&sa=X&ei=d-Q2Uc_hHOeKmQWDooCYCA&ved=0CC4QBSgA
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All of the above studies have used traditional neural network to predict joint moments. However a major 

disadvantage of neural network is that local data structures are discarded in FFANN learning process (Cordova et al., 

2012). In addition, the initial weights are adjusted randomly at the beginning of the training algorithm which can 

slow down the training process (Haykin et al., 2009). Another disadvantage is that the network may fall in to a local 

minimum during the training procedure so the network output never converges to the target (Van Der Smagt and 

Hirzinger, 1998).  45 
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In order to cope with these disadvantages, wavelet neural network (WNN) has been introduced as an 

alternative method. WNN combines the theory of wavelet with ANN structure in order to benefit general 

approximation ability of neural networks as well as localization property of wavelets. A WNN is a three-layer 

FFANN with a hidden layer in which neurons are activated by wavelets as activation functions so the local data 

structures are considered in both time and frequency domains. This type of intelligent networks has been used 

successfully in pattern classification (Subasi et al., 2005, Subasi et al., 2006), function estimation (Zainuddin and 

Pauline, 2011), system identification (Billings and Wei, 2005, Wei et al., 2010), signal prediction (Chen et al., 2006, 

Pourtaghi, 2012, Zhang and Wang, 2012)and especially in bankrupting and price forecasting (Chauhan et al., 2009, 

Mingming and Jinliang, 2012)which has significantly nonlinear dynamic patterns. According to the above studies, it 

may be possible to design WNN for joints moments prediction. To the best of our knowledge WNN has not been 

used before in human gait biomechanics prediction.  56 
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This study had two main purposes; first to develop a generic multi-dimensional WNN as a real-time 

surrogate model for joint moment prediction; second, to compare the prediction accuracy of WNN with three-layer 

FFANN. To aim the purposes, four subjects walked with three different conditions (normal gait as well as two 

different knee rehabilitation programs) were obtained from the literature. A generic multi-dimensional WNN was 

designed and trained at two different levels of inter-subject generalization. To avoid time consuming procedure of 

marker trajectory collection and processing, and consider the previous studies(Favre et al., 2012, Hahn, 2007, Liu et 

al., 2009) ,EMG and GRFs were considered as network inputs. WNN predictions were validated against inverse 

dynamics analysis and compared with those predicted by a three-layer FFANN.  64 

2. Materials and methods65 

2.1. Subjects 66 
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Four different patients unilaterally implanted with knee prostheses including three males and one female 

(height: 168.25±2.63 cm; mass: 69.18±6.24kg) were taken from a previously published data base 

(https://simtk.org/home/kneeloads ; accessed on, 5 September 2013). Three different sessions were considered for 

each subject including normal, medial thrust and walking pole patterns. In each session, five gait trials were recorded 

under the same walking condition. For a complete description of sessions and trials one can refer to (Fregly et al., 

2012). In brief, medial thrust pattern, a successful rehabilitation pattern for knee joint off-loading, included a slight 

decrease in pelvis obliquity and a slight increase in pelvis axial rotation and leg flexion compared to normal 

gait(Fregly et al., 2007). In addition walking pole included two lateral poles as walking aids which has been effective 

to reduce knee joint loading(Willson et al., 2001). It should be pointed out that although several gait cycles were 

measured in each gait trial, only two complete gait cycles of each trial were used, leading to  a total of 120 data sets 

(four subjects * three sessions *five trials* two gait cycles). 77 

2.2.  Data pre-processing 78 

Due to high frequency rate of GRFs and EMG signals (1000-1200 Hz) and low frequency rate of calculated 79 
joint moments (100-120 Hz), data were preprocessed before using as WNN inputs. GRFs were down sampled 80 
according to the calculated joint moments and then re-sampled to 100 points for a complete gait cycle using the 81 
nearest neighbor interpolation method. GRF amplitudes were also normalized by body weight (BW). 82 

https://simtk.org/home/kneeloads
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A total of 14 EMG signals were recorded  including semimembranosus(semimem), biceps femuris(bifem), 83 

vastus intermedius (vasmed), vastus lateralis (vaslat), rectus femoris (rf), medial gastrocnemius (medgas), lateral 84 
gastrocnemius (latgas), tensor fasciae latae (tfl), tibia anterior(tibant), peroneal, soleus, adductor magnus 85 
(addmagnus), gluteus maximus (gmax) and gluteus medius (gmed). In order to deal with high rate variation of EMG 86 
signals, root mean square (RMS) was used as one of the most accepted techniques to represent EMG signals in time 87 
domain (Staudenmann et al., 2010).EMG signals were divided in to 50msec intervals to calculate RMS features of 88 
EMG signals based on the following equation: 89 

21
( ( ))1

NRMS EMG nnN
    ྄ 90 

Where N=20 and shows the number of samples within each interval (Arslan et al., 2010). Butterworth filter of 91 
order 10 with a cut off frequency of 1 Hz was also applied to RMS features. Preprocessed EMG signals were re-92 
sampled to 100 points for one complete gait cycle. 93 

2.3. Input variable selection: mutual information 94 

Using redundant or little informative inputs can yield to a more complicated network with a decreased level 95 
of prediction ability. Therefore network inputs were chosen according to mutual information criteria which was 96 
calculated based on the following equation:  97 

     
   

,
; , log
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In which X refers to input variables (GRFs and RMS features of EMG signals) and Y refers to the outputs 99 
(joint moments). P(x,y) is the joint probability density function of X and Y, while p(x) and p(y) are the marginal 100 
probability density functions of X and Y respectively (May et al., 2011). 101 

2.4. Artificial neural network 102 

 Due to the successful application of three-layer feed forward artificial neural network for joint moment 103 
prediction, this structure was adopted to approximate the highly nonlinear relation between GRFs and EMG features 104 
as inputs and  lower extremity joint moments as outputs. FFANN was implemented using the Neural Network 105 
Toolbox of Matlab (v. 2009, The MathWorks, Inc., Natick, MA). Prediction ability of the network was tested at two 106 
different levels of inter-subject generalization (Liu et al., 1999): 107 

(i) Level 1: specific inter-subject 108 
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 A three-layer FFANN with a given number of inputs (to be determined from the mutual information technique 

in Section 2.3)  was trained with the walking patterns of three subjects out of four walked under a given gait pattern. 

This network was then tested to predict the joint moments corresponding to the fourth subject for the same walking 

condition (specific training data space). 112 

(ii)  Level 2:non-specific inter subject 113 

114 
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 The network was trained with all of the available walking patterns corresponding to three subjects out of four. 

The network was then tested to predict the joint moments of the fourth subject for a given walking condition (non-

specific training data space). In other words, at this level network was trained based on all of the walking conditions 

(normal, medial thrust and walking pole) corresponding to three subjects at the same time. 117 



According to this fact that in back propagation algorithm, descent gradient may fall in to local minimum and 118 
the outputs never converge to targets, this network was trained based on Levenberg-Marquardt algorithm with an 119 
adaptive learning rate. Training data space was randomly divided into three parts including train (65%), validation 120 
(15%) and test (15%). Train and validation parts were used to train the network and adjust the connection 121 
weights/biases. The optimal number of hidden neurons and epochs were determined according to the test and 122 
validation error. Increasing the number of neurons and epochs reduce the validation error however using too many 123 
hidden neurons and epochs decrease the network generalization ability due to over fitting and yield to test error 124 
increment. Hidden and output neurons were activated by “tansig” and “purlin” functions respectively. It should be 125 
noted that the intelligent network had one output node which was used to predict one component of joint moments at 126 
time in order to increase the prediction accuracy. 127 
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  Training procedure was continued to achieve an error goal of 0.0001 or reach 3000 epochs. Once the network 

was trained, it was employed to calculate the joints moments associated with the test data set (fourth 

subject) .According to (Iyer and Rhinehart, 1999) the network was trained and run 100 times for each test data set 

and the average of these 100 runs was considered as the network prediction on that test data set. Network 

performance was investigated based on Pearson correlation coefficient (ȡ) and normalized root mean square error 

(NRMSE %).  133 

2.5. Wavelet neural network 134 

Taking advantage of the localization property of wavelets (Alexandridis and Zapranis, 2013) and 135 
generalization ability of the neural network, a multi-dimensional WNN with Ni input nodes, No output nodes (No =1) 136 
and M number of hidden neurons (wavelons) was developed in which hidden neurons were activated by wavelets as 137 
activation functions (Figure 1). Each input node was related to each wavelon, with a special value of shift, scale and 138 
input weight parameters. Therefore, input weights, scaling and shifting parameters formed M* Ni matrices. 139 
Accordingly, each wavelon was activated by a multi-dimensional wavelet which was defined as the multiplication of 140 
one-dimensional wavelets as below: 141 
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In which ȥ(t) is Morlet wavelet function:143 

 
2-t

2 cosȥ t =e (5t) ྇ 144 

Where Ni indicates the number of input nodes and wik ,tik and Ȝik are the input weight ,shift and scale 145 
parameters relating kth input to the ith hidden wavelon respectively. It should be pointed out that each neuron acted on 146 
each input signal by a shifted and scaled version of mother wavelet (Morlet). The output of each wavelon was fed in 147 
to each output neuron with a special value of weight led to a No*M output weight matrix. Consequently the output of 148 
the proposed network was defined as follows:  149 

 j ji i 1

M

i=
2 3 N ji

1

= , , , y +w ȥ x x x . . .,x y 1,2,...., ; 1,2,...., oi M j N   ྈ 150 

Where 1 32 Ni i
( , , . . , )ȥ ,xx x x  is defined in equation (3) and wji is the output weight relating ith hidden wavelon 151 

to jth output node. The jy was also needed as a bias value to deal with nonzero mean functions (Zhang and 152 

Benveniste, 1992). Due to the above equations, five groups of parameters (input weights, shift, scale, output weights 153 
and bias values) were adjusted in WNN training. It should be pointed out that unlike the FFANN; in the case of 154 
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WNN it is important to initialize the adjustable parameters properly before training in order to guarantee that the 155 

daughter wavelets (shifted and scaled versions of mother wavelet) cover the entire of the input data space. 156 
Accordingly the WNN was trained in two main steps. First the adjustable parameters were initialized according to 157 
(Zhang and Benveniste, 1992); second, the network was trained based on batch gradient descent algorithm since the 158 
data vectors were not too large and included only 100 samples describing one complete gait cycle. The batch gradient 159 
descent algorithm developed for training the WNN is presented in Appendix 1. The error goal, number of training 160 
epochs and hidden neurons were determined based on the same procedure with the FFANN. All of the above analysis 161 
were conducted in Matlab (v. 2009, The MathWorks, Inc., Natick, MA).  162 

2.6. Inverse dynamics analysis 163 

A valid three dimensional musculoskeletal model with 23 degrees of freedom (DOF) and 92 muscles was 164 
recruited, available in Opensim software library (Delp et al., 2007). The model had three-DOF ball-and-socket hip joint, 165 
a hinge knee joint, universal joint for ankle-subtalar complex and hinge metatarsal joint. The model was first scaled 166 
using experimental marker trajectories. Scaled model was then used in the inverse kinematics (IK) analysis to 167 
calculate joint angles. In order to calculate joint moments, the scaled model was first imported to reduced residual 168 
analysis (RRA) in which musculoskeletal center of mass was modified so as the calculated joint angles would be in 169 
consistence with experimental GRFs. 170 

The modified scaled model, calculated joint angles and experimental GRFs were then imported to compute 171 
muscle control (CMC) module in which muscle activities were calculated. Finally lower extremity joint moments 172 
were calculated using inverse dynamics analysis (ID) based on the CMC module calculations. Calculated joint 173 
moments were considered as WNN and ANN outputs to train the networks and validate the predictions.  174 

3. Results175 

Prediction capability of a generic multi-dimensional WNN was investigated at two different generalization 176 
levels; (i) level 1;specific inter-subject and (ii) level 2;non-specific inter-subject. WNN predictions were validated 177 
against inverse dynamics calculations and compared with those obtained from a three-layer FFANN.  178 

MI criterion was calculated between 18 potential inputs (three dimensional GRFs, moment of vertical GRF 179 
around center of pressure and a total of 14 EMG signals represented with 14 RMS features in time domain) and six 180 
joint moments outputs (hip abduction/adduction, hip flexion/extension, hip rotation, knee flexion/extension, and 181 
ankle flexion/extension and subtalar eversion moments).According to the results (Table 1) eight EMG signals, 182 
including semimembranosus (semimem), biceps femuris (bifem), vastuslateralis (vaslat), rectus femoris (rf), tibia 183 
anterior (tibant), peroneal, gluteus maximus (gmax) and gluteus medius (gmed) as well as two ground reaction 184 
components including anterior-posterior and vertical components of GRFs provided significant amount of 185 
information about joint moments and were chosen as the network (WNN and FFANN) inputs. 186 

3.1. Level 1: specific inter-subject 187 

 Inverse dynamics calculations are compared with FFANN predictions (Figure 2) and WNN calculations 188 
(Figure 3) for medial thrust pattern of subject 4 as the test data set. According to Figure 2, a three-layer FFANN with 189 
20 hidden neurons, 10 inputs and one output could predict the general pattern of lower extremity joint moments. 190 
However the predicted waveforms had different maximum and minimum values compared to the reference joint 191 
moments (inverse dynamics calculations). For example, FFANN output could not predict the pattern of knee flexion-192 
extension moment (NRMSE=11.01%, ȡ=0.88) (Figure 2-d). Moreover FFANN output overestimated the local 193 
maximum and minimum variation on the hip flexion-extension joint moment (NRMSE=11.93% ȡ=0.89). 194 



  On the other hand according to Figure 3 the three-layer WNN network with 15 hidden neurons could predict 195 
the overall pattern of lower extremity joint moments as well as local minimums and maximums on each waveform. 196 
The maximum error occurred in prediction of the hip abduction moment (NRMSE =5.69%, ȡ=0.99) which was much 197 
lower than the maximum error for FFANN moment prediction (hip adduction moment: NRMSE =12.72%, ȡ=0.97). 198 
Figure 4 summarizes the accuracy of predictions for FFANN and WNN. According to the results, FFANN could 199 
predict joint moments to a certain level of accuracy for normal pattern (NRMSE  7.70%,  =0.93) medial thrust (200 
NRMSE  8.68%,  =0.95) and walking pole (NRMSE  8.25%,  =0.94) patterns. Cross correlation values ranged 201 

from ȡ=0.86 to ȡ=0.98 and all the errors (NRMSE) were less than 13%.  202 

 By comparison, WNN could predict the joint moments more accurately than FFANN (normal pattern: 203 
NRMSE  5.00%,  =0.97; medial thrust: NRMSE  5.10%,  =0.96; and walking pole: NRMSE  5.98%,  =0.96). All 204 

of the cross correlation coefficients were higher than the corresponding values of FFANN and all errors were also 205 
lower than 10%. It is also noteworthy that the optimal WNN structure required less number of hidden neurons (15 206 
wavelons) compared to the FFANN structure (20 hidden neurons) used to predict joints moments for the same test 207 
data set. Detailed information about the NRMSE % and cross correlation coefficients (ȡ) is presented in the Appendix 208 
(Table 1.A and Table 2.A) for FFANN and WNN predictions. 209 

3.2. Level 2:non- specific inter-subject 210 

 Inverse dynamics calculated joint moments are compared against FFANN predictions (Figure 5) and WNN 211 
calculations (Figure 6). According to the results (Figure7) errors were slightly increased at this level compared to the 212 
corresponding errors at level 1. Due to non-specific inter subject training space with higher pattern variation at this 213 
level compared to level 1, the number of hidden neurons was increased .For FFANN with 25 hidden neurons, cross 214 
correlation values ranged from ȡ=0.84 to ȡ=0.96 and all the NRMSE values were less than 20% (normal pattern: 215 
NRMSE  12.32%,  =0.91; medial thrust: NRMSE  12.50%,  =0.91; and walking pole: NRMSE  14.04%,  =0.91) 216 

 For WNN with 19 hidden neurons, the average prediction errors were also increased compared to level 1 217 
(normal pattern: NRMSE  7.6%,  =0.96; medial thrust: NRMSE  7.30%,  =0.96; and walking pole: NRMSE  8.90%, 218 

 =0.95). However all of the cross-correlation values were still higher than those obtained from FFANN and all of 219 

the errors were also lower than corresponding FFANN prediction errors. 220 

 Moreover it should be pointed out that although the prediction errors were increased slightly at level 2 221 
compared to level 1, the error increase in WNN predictions at level 2 were still smaller than the corresponding error 222 
increment in FFANN calculations (Figure 8).Compared to level 1, more hidden neurons were required for both 223 
FFANN and WNN; however the number of hidden neurons in WNN were still lower than in FFANN which was 224 
hired for the prediction of the same test data set. Detailed information about the NRMSE % and cross correlation 225 
coefficients is presented in the Appendix (Table 3.A and Table 4.A) for FFANN and WNN predictions. 226 

4. Discussion227 

228 
229 
230 
231 
232 
233 
234 
235 

 This study demonstrated that a multi-dimensional wavelet neural network (WNN) trained with inter-subject 

data space can be employed as a real-time surrogate model to predict lower extremity joint moments associated with 

different gait patterns. The present study differed from the previous researches on joint moment’s prediction using 
neural network in two main aspects. First, a wavelet neural network was developed for the first time in this study to 

address the disadvantages of the traditional neural network .WNN predicted joint moments more accurately than feed 

forward artificial neural network used in the previous studies. Second, unlike previous studies, the data base adopted 

in this study included two different knee rehabilitation programs (medial thrust and walking pole) as well as normal 

gait. Due to this fact that knee rehabilitation programs mainly aim to reduce knee joint loading, a thorough real-time 

calculation of joint moments can provide useful information about the efficiency of rehabilitation plans. 236 
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 Reviewing the previous research (Favre et al., 2012, Liu et al., 2009) used GRFs and related parameters to 237 

predict joint moments successfully, additionally (Hahn, 2007) employed EMG signals to predict joint moments and 238 
forces using artificial intelligence. This is consistent with our study using EMG and GRFs contributions to predict 239 
joint moments. Such an approach also avoids the use of marker trajectories which need special equipment and can be 240 
time consuming. 241 

 In order to improve the prediction ability of the intelligent networks (WNN and ANN), mutual information 242 
technique was recruited to measure the amount of information provided by potential inputs (RMS representations of 243 
EMG signals and GRFs) about the outputs (joint moments). This technique is noise robust and insensitive to data 244 
transformation. It also measures the dependency between variables without any pre-assumption about the data 245 
structure which makes it suitable for nonlinear data bases(May et al., 2011). MI-based chosen EMG signals were also 246 
consistent with those signals used by (Zhang et al., 2012) and (Hahn, 2007) for lower extremity joint angles and 247 
moments predictions respectively. 248 

At level 1(specific inter-subject), the network was tested for the walking condition that has been specifically 249 
trained on it .On the other hand all of the walking patterns were included in the training data space at level 2(non-250 
specific inter-subject) .By comparison, training the WNN on specific data space with fewer number of training 251 
patterns led to slightly better prediction accuracy than training on non-specific gait patterns with higher number of 252 
training sets.  253 

 Comparing the presented WNN approach with multi body dynamics, the latter needs a comprehensive data 254 
base of markers as its inputs that should be provided by motion capture. However motion capture is not always 255 
available in all laboratories. This approach also required musculoskeletal model to be scaled based on subject-256 
specific anthropometric characteristics. Although multi body dynamics approach can provide physics-based insights 257 
into human walking and investigate casual relationships in gait analysis, such an approach is generally time 258 
consuming which prevents it to serve as a real-time method. 259 

260 
261 
262 
263 
264 
265 
266 
267 

 Unlike inverse dynamics analysis, WNN could predict joint moments based on GRFs and a few number of 

EMG signals which released the necessity of motion capture. It also did not need musculoskeletal model or subject-

specific scaling of the model. Once the network was trained based on inter-subject data base  it could predict joint 

moments for a new subject with a high level of accuracy. Consequently WNN proposed a much easier and faster 

method for joint moment prediction which can serve as a real-time surrogate model for human gait analysis. 

Especially in gait rehabilitation where the real-time calculations of joint moments provide useful information about 

the efficiency of the rehabilitation plans and unwanted moment increment that may occur in adjacent joints which is 

one of the major concerns in gait rehabilitation. Therefore  wavelet neural network has the potential of executing of a 

more effective rehabilitation program with minimum effort involved. 268 

 As mentioned earlier, (Liu et al., 2009) proposed a three-layer FFANN to predict sagittal lower extremity 269 
joint torques associated with two different vertical jumping conditions. The network was trained based on non-270 
specific inter-subject data space similar to the level 2 of the present study; however their training data space included 271 
18 data sets (9 subjects * 2 conditions). All of the NRMSE (%) values were below 10% (except for ankle moment in 272 
counter movement jump with NRMSE =14.6%). Compared to their study, the present three-layer FFANN had higher 273 
prediction errors since it was trained based on a smaller data base (three subjects instead of nine subjects) included 274 
larger patterns variation (three different gait patterns instead of two different jumping condition).However the 275 
proposed WNN could predict joints moments to a higher level of accuracy and all of the NRMSE (%) values obtained 276 
from the WNN were below 11% (Table 2.A and Table 4.A).Two previous studies by (Liu et al., 2009) and (Favre et 277 
al., 2012) supported this idea that a three-layer FFANN trained based on inter-subject data space is sufficient to 278 
predict joint moments using force plate data. This paper proposed that a generic WNN is also capable, and more 279 



accurate to predict three dimensional joint moments using GRFs and EMG signals for a subject that was not seen by 280 
the network before.  281 

282 
283 
284 
285 

Although WNN could predict joint moments based on GRFs and EMG signals successfully, it did not 

provide physical insights of human gait since it modeled the input-output relationship as a black box. This study did 

not aim to provide such understanding and should not be compared with inverse dynamics analysis in this aspect. 

Despite the computational cost of multi body dynamics, it is still one of the most accepted computational approaches 

in biomechanics due to its ability for physical modeling (Ren et al., 2008). 286 

Finally it should be pointed out that there were also some limitations within the present study. One limitation 287 
was that the relatively small data pool of four subjects was used. It would be valuable to test the prediction capacity 288 
of multi-dimensional WNN for a larger subject pool. As another limitation, WNN was trained based on joint 289 
moments which were calculated by inverse dynamics analysis. Accordingly WNN could not be more accurate than 290 
inverse dynamics approach. Due to available experimental knee reaction force in the present data base, it would be 291 
valuable to recruit WNN to predict experimental joint reaction force based on GRFs and EMG signals and compare 292 
the results with inverse dynamics calculations. 293 

294 
295 
296 
297 
298 

For the future application, wavelet neural network can be employed in conjunction with inverse dynamics 

analysis to decrease the computational cost. Intelligent surrogate models can learn the dynamics of the patterns and 

respond to a change in environment (adopt to a new subject for example) .Accordingly trained intelligent networks 

can release the necessity of calculation repetitions, hence intelligent surrogates can be used jointly with inverse 

dynamics analysis. A recent study for example used artificial neural network to solve the static optimization 

equations as part of inverse dynamics calculation procedure to speed up the calculation process (van den Bogert et al., 299 
2013). 300 

301 
302 
303 
304 

The generalization ability of the proposed wavelet neural network can also benefit what-if studies in which 

sensitivity of joint moments would be investigated due to changes in joint kinematics. Once the intelligent network is 

trained based on inverse dynamics calculated joint moments, it can be used to predict joint moments in response to 

kinematic variations in order to conduct sensitivity analysis and release the necessity of inverse dynamics repetitions. 

All these will be conducted in future studies. 305 

5. Conclusion306 

307 
308 
309 
310 
311 
312 
313 
314 

This study demonstrated the feasibility of the wavelet neural network to calculate lower extremity joint 

moments using ground reaction forces and electromyography signals; easier and faster than multi body dynamics and 

more accurate than feed forward artificial neural network. For specific inter-subject training , all of the prediction 

errors were lower than 9.00% with correlation coefficients ȡ>0.89 .For non-specific inter-subject , all of the 

prediction errors were still lower than 11% with ȡ>0.91.Accordingly compared to the traditional feed forward neural 

network ,the proposed structure was more stable and robust  due to large variations in input patterns. The high level 

of accuracy and low computational cost at one hand, capability of joint moment calculation without marker 

trajectories at another hand, suggest the proposed network as a real-time surrogate model that benefit gait 

biomechanics analysis and rehabilitation execution. 315 
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Table 1 MI calculations between RMS features of EMG signals and GRFs (inputs) and lower extremity joint moments (outputs) 

for subject 4 walked with normal gait pattern as an example. MI criteria measure the amount of relevancy between potential inputs 

and outputs; higher MI values means more informative the input is regarding to the joint moments. Muscle abbreviations have 

been defined in the text. 

 Hip abduction Hip flexion Hip rotation Knee flexion Ankle plantar flexion Subtalar eversion 

semimem 5.54 8.12 7.11 8.71 7.02 7.32 

bifem 6.83 7.92 8.40 8.09 7.02 7.76 

vasmed 5.02 4.07 2.73 3.04 6.66 6.81 

vaslat 8.09 7.11 8.75 8.36 6.95 7.81 

rf 8.50 6.68 7.53 7.83 6.31 6.8 

medgas 2.37 1.38 3.86 2.29 2.35 1.43 

latgas 5.81 1.57 2.92 3.78 1.93 2.99 

tfl 4.14 2.79 3.82 3.55 1.34 1.69 

tibant 7.25 7.57 6.55 6.48 8.72 8.41 

peroneal 9.32 7.94 7.40 8.14 7.73 7.69 

soleus 8.29 2.21 1.39 5.34 5.18 4.99 

addmagnus 5.28 3.63 2.22 4.70 1.94 2.48 

gmax 7.07 7.77 6.07 6.46 8.59 8.28 

gmed 7.02 8.71 6.70 6.96 8.42 8.70 

Anterior-posterior GRF 0.66 0.70 0.78 0.71 0.60 0.61 

Medial-lateral GRF 0.35 0.33 0.17 0.14 0.11 0.18 

Vertical GRF 0.72 0.99 0.78 0.79 0.59 0.87 

GRF torque(vertical) 0.41 0.39 0.39 0.27 0.16 0.22 
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Figure 1 WNN structure with Ni inputs, M hidden wavelons and one output which was used to predict each component of 

lower extremity joint moments. 
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   a. Hip abduction-adduction moment      b. Hip flexion-extension moment 

 

     c. Hip rotation moment             d. Knee flexion-extension moment 

 

e. Ankle plantar flexion moment        f. Subtalar eversion moment 

  

Figure 2 Predicted joint moments (dashed line) versus inverse dynamics calculations (solid line) using three-layer FFANN for 

subject 4 walked with medial thrust pattern corresponding to specific inter-subject training (level 1). 
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a. Hip abduction-adduction moment     b. Hip flexion-extension moment 

 

 

     c. Hip rotation moment             d. Knee flexion-extension moment 

 

 

e. Ankle plantar flexion moment       f. Subtalar eversion moment 

 

Figure 3 Predicted joint moments (dashed line) versus inverse dynamics calculations (solid line) using three-layer WNN for 

subject 4 walked with medial thrust pattern corresponding to specific inter-subject training (level 1).  
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Figure 4 NRMSE (mean ± standard deviation) for FFANN and WNN predictions corresponding to three walking patterns as 

normal, medial thrust and walking pole at level 1 (specific inter-subject training). 
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a. Hip abduction-adduction moment         b. Hip flexion-extension moment 

    

  c. Hip rotation moment                 d. Knee flexion-extension moment 

 

e. Ankle plantar flexion moment         f. Subtalar eversion moment 

 

Figure 5 Predicted joint moments (dashed line) versus inverse dynamics calculations (solid line) using three-layer FFANN for 

subject 4 walked with medial thrust pattern corresponding to non-specific inter-subject training (level 2). 
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a. Hip abduction-adduction moment          b. Hip flexion-extension moment 

 

  c. Hip rotation moment             d. Knee flexion-extension moment 

 

e. Ankle plantar flexion moment           f. Subtalar eversion moment 

 

Figure 6 Predicted joint moments (dashed line) versus inverse dynamics calculations (solid line) using three-layer WNN for 

subject 4 walked with medial thrust pattern corresponding to non-specific inter-subject training (level 2). 
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Figure 7 NRMSE (mean ± standard deviation) for FFANN and WNN predictions corresponding to three walking patterns as 

normal, medial thrust and walking pole at level 2 (non-specific inter-subject training). 
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Figure 8 Comparing the error increment between FFANN and WNN over level 1 (specific inter-subject) and level 2(non-specific 

inter-subject).At level 2 , the prediction errors were increased due to the higher variety in the training data space; however the 

error increments in WNN predictions over level 1 and level 2 were generally lower than FFANN. 
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