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ARTICLE INFO ABSTRACT

Article history: Joint moment is one of the most important factors in human gaitsssdt car
Received be calculated using multi body dynamics but mightbmstraight forward This
Received in revised form study had two main purposes; flystto develop a generic multi-dimensic
Accepted wavelet neural network (WNN) as a real-time surrogate model to calculate
Available online extremity joint moments and compare with those determined by mudty

dynamics approach, secondly, to compare the calculation accuracy of WN
feed forward artificial neural network (FFANN) as a traditional intelli
predictive structure in biomechanics.

To aim these purposes, data of four patients walked with three different conditions
were obtained from the literature. A total of 10 inputs including eight
electromyography (EMG) signals and two ground reaction force (GRF)
components were determined as the most informative inputs for the WNN based
on the mutual information technique. Prediction ability of the networktested

at two different levels of inter-subject generalization. The WNN predictions wer
validated against outputs from multi body dynamics method in terms of
normalized root mean square error (NRMSE (%)) and cross correlatfficiemt
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Wavelet neural network
Artificial neural network
Ground reaction force
Marker trajectory (0)-
Results showed that WNbBkn predict joint moments to a high level of accuracy
(NRMSE<10%,0p>0.94) compared to FFANN (NRMSE<16%3>0.89).A generic
WNN could also calculate joint moments much faster and easier than multi body
dynamics approach based on GRFs and EMG signals which released the necessity
of motion capture. It is therefore indicated that the WNN can be a surrogate
model for real-time gait biomechanics evaluation.
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1. Introduction

Human movement prediction has been one of the most interesting and challenging fistaadchanics.
Predictions from such studies can be used in surgical intervention plainning (Reindlg ZOOﬂ, Reinbolt et al.
200§), athletes traininh (lyer and Sharda, :tbog, Pfeiffer and Hohmanr“ 2012, Schmiblt, 2¢nﬂ)sﬂmi;is anfl
orthosi desigrl (Au et al., 20|¢8, Joshi et al., ﬂl)?lﬂpérez et al., 201.2).In addition joint moments are important
factors in order to investigate joint reaction forces, which in turn affgiot functions such as tribology
characteristics of the joint including friction, wear and lubrication of the &ating surfaces.

Joint loading can be determined by instrumented prosthesis (Fregly et al 2012) whidkasibta most of
the time. It can also be calculated based on multi body dynamics methodthesingeasured gait data in a gait
laboratory equipped with 3D motion capture system and force plate. Measured kinematosetacsl as well as
anthropometric data are then used in an inverse dynamics analysis to calculate joint rjpoments (Robert 43t al., 20
However multi body dynamics approaishgenerally time-consuming which prevents it from serving as a real-time
technique especially in gait retraining programs where the real-time calculation of joint maesneaeded to
evaluate the efficiency of the rehabilitation program. There are also some major difficulties using multi bod:
dynamcs analysis. Such musculoskeletal models are sensitive to muscle-tendon geometry, mgisclandri
insertion|(AckIand et al., 20”2, Carbone et al., 1012).On the other hand itabvags straight forward to validate
and verify the models. Numerical methods are also important considerations in multiylmadyics analysis which
may result in the failure of solutions.

According to the above limitations, artificial intelligence has breenuited in this area due to its ability in
pattern recognition and signal prediction. For a complete review on neural network application in biomechanics o
can refer td (Schollhorn, 20b4).EspecialIy in the field of joint moment prediction, for example, Uchiyama et al, use
a three-layer feed forward artificial neural networkFANN) to predict the elbow joint torque using
electromyography (EMG) signals , shoulder and elbow joint angles for constant muscle a{:tivation(Uchiyarha et a
).Luh et al, also used a three-layer FFANN predict elbow joint torque using EMG signals , joint angle and
elbow joint angular veIocilIy(Luh et al., 19|9¢) .(Wang and Buchanan,| 2002) proposed to calculate muscle activitie
using EMG signals based on a four-layer FFANN. Predlictescle activities were then used by a Hill-type model
in order to estimate muscle forces and elbow joint tor{ﬁ:‘leng and Tong, 201)5) also investigated a recurrent
artificial neural network (RANN) for elbow torque estimation using EMG data, elbow joint angle and angular
velocity. ) used a three-layer FFANN to predict isokinetic knee extensor and flexor torque based on a
gender, height, body mass, EMG signals, joint position and joint velocity. However this study predicted only ne
knee flexion extension torque and did not predict other lower extremity joint moments. Liu et al, presented a FFAN
to predict lower extremity joint torques in the sagittal plane using GRFs and related parameters measured dur
vertical jumpind(Liu et al., 20d9). This study also predicekle, knee and hip joint moments only in the sagittal
plane for vertical jump. Favre et al, proposed to use a three-layer FFANN to predict the external knee adducti
moment based on force plate data and anthropometric m|easurements (F|avre et al.,, 2012). This paper
investigated only knee adduction moments and did not consider other lower extremity joint moments. In a rece
study Oh et al, also successfully predicted the three dimensional GRFs and moments based on three-layer FFAI
using fourteen inputs of body parts trajectories and accelerations. This study also proved the possibility of calculati

joint forces and moments based on the GRFs predicted with the ork(Oh et al., 2013).
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All of the above studies have used traditional neural nétwoipredict joint moments. However a major
disadvantage of neural network is that local data structures are discaFde&8NN learning proces|s (Cordova et alil.,
). In addition, the initial weights are adjusted randomly at the beginning titieg algorithm which can
slow down the training proce#s (Haykin et al., 2009). Another disadvantage is thatwioek may fall in to a local
minimum during the training procedure so the network output never converges togmd(%nn Der Smagt arid
Hirzinger, 19913).

In order to cope with these disadvantages, wavelet neural network (WNN) has bedocedras an
alternative method. WNN combines the theory of wavelet with ANN structure ir eoddenefit general
approximation ability of neural networks as well as localization property avelets. A WNN is a three-layer
FFANN with a hidden layer in which neurons are activated by wavelets as activatidgiofisngo the local data
structures are considered in both time and frequency domains. This type ofeintefliiworks has been used
successfully in pattern classificati¢n (Subasi et al., HOOS, Subasi et al}, goagion estimatiod (Zainuddin a|1|d
Pauline, 201|1), system identificatiti)n Billings and Wei, 21b05, Wei et al.,| 2010), p‘@uﬁ!ttionkChen et al., 20P6
Pourtaghi, 201|:I:, Zhang and Wang, 2012)and especially in bankrupting and price fore}casting (CherlyH2008t
Mingming and Jinliang, 2012)which has significantly nonlinear dynamic patterns. According to the above studies,
may be possible to design WNN for joints moments prediction. To the best of our knowledge WNN has not bee
used before in human gait biomechanics prediction.

This study had two main purposes; first to develop a generic multi-dimen3dNal as a real-time
surrogate model for joint moment prediction; second, to compare the prediction pazfuvdbIN with three-layer
FFANN. To aim the purposes, four subjects walked with three different conditions (normal gait as well as twi
different knee rehabilitation programs) were obtained from the literature. A generic multi-dimensional WNN was
designed and trained at two different levels of inter-subject generalization. To avoid time consuming procedure
marker trajectory collection and processing, and consider the previous|studies(Favre et|hl., 2012, I—”ahn, 2(])07, Lit
) ,EMG and GRFs were considered as network inputs. WNN predictions were validated against inver
dynamics analysis and compared with those predicted by a three-layer FFANN.

2. Materials and methods

2.1. Subjects

Four different patients unilatehalimplanted with knee prostheses including three males and one female
(height: 168.25+2.63 cm; mass: 69.18+x&@4 were taken from a previously published data base
[https://simtk.org/home/kneeloa{ds , accessedsoBeptember 2013). Three different sessions were considered for
each subject including normal, medial thrust and walking pole patternshrsession, five gait trials were recorded
under the same walking condition. For a complete description of sessions and trieds oater t.,
). In brief, medial thrust pattermsuccessful rehabilitation pattern for knee joint off-loading, included a slight
decrease in pelvis obliquity and a slight increase in pelvis axial rotation anftexémn compared to normal
gaithreeg et al., 20d7). In addition walking pole included two lateral poles as walking aids which has been effectiv
to reduce knee joint Ioadilhg(WiIIson et al., 24)01). It should be pointed out that although several gait cycles we
measured in each gait trianly two complete gait cyclesf each trial were used, leading to a total of 120 data sets
(four subjects * three sessions *five trials* two gait cycles).

2.2. Data pre-processing

Due to high frequency rate of GRFs and EMG signals (1000-1200 Hz) and low frequerafycedtellated
joint moments (100-120 Hz), data were preprocessed before using as WNN inpHs.wéfe down sampled
according to the calculated joint moments and tteesampled to 100 points for a complete gait cycle using the
nearest neighbor interpolation method. GRF amplitudes were also normalized by body weight (BW).
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A total of 14 EMG signals were recordedcluding semimembranosus(semimem), biceps femuris(hifem)
vastus intermedius (vasmed), vastus lateralis (vaslat), rectus fenfprimddial gastrocnemius (medgas), lateral
gastrocnemius (latgas), tensor fasciae latae (tfl), tibia antds@n(} peronal, soleus, adductor magnus
(addmagnus), gluteus maximus (gmax) and gluteus medius (gmed). In order to deghwidltehvariation of EMG
signals, root mean square (RMS) was used as one of the moseddeephiques to represent EMG signals in time
domain |(Staudenmann et al., 2p10).EMG signals were divided in to 50msec intervals toecRIbifiafeatures of
EMG signals based on the following equation:

1
RMS = Jﬁzr'}': 1(EMG(n))? (1)

Where N=20 and shows the number of samples within each interval (Arslan et all.,mﬂﬂé})/vorth filter of
order 10 with a cut off frequency of 1 Hz was also applied to RMS featuresoéeeged EMG signals were re-
sampled to 100 points for one complete gait cycle.

2.3. Input variable selection: mutual information

Using redundant or little informative inputs can yield to a more complicattydork with a decreased level
of prediction ability. Therefore network inputs were chosen accordinguimal information criteria which was
calculated based on the following equation:

L(X;Y) :ij (x.y) Iog%dxdy (2)

In which X refers to input variables (GRFs and RMS features of EMG sigmads) refers to the outputs
(joint moments). P(x,y) is the joint probability density function of X afy while p(x) and p(y) are the marginal
probability density functions of Xand Y respectively (May et al., 2011).

2.4. Artificial neural network

Due to the successful application of three-layer feed forward aiftifieiaral network for joint moment
prediction, this structure was adopted to approximate the highly nonlinear réletworen GRFs and EMG features
as inputs and lower extremity joint moments as outputs. FFANN was implemasitegl the Neural Network
Toolbox of Matlab (v. 2009, The MathWorks, Inc., Natick, MA). Prediction ability ofnistevork was testedt two

different levels of inter-subject generalization (Liu et al., 1999):

(1) Level 1: specific inter-subject

A three-layer FFANN with a given number of inputs (to be determined from the mutual information technique
in Section 2.3) was trained with the walking patterns of three subjects out of four walked under a given gait pattel
This network was then tested to predict the joint moments corresponding to the fourth subject for the same walki
condition (specific training data space).

(i) Level 2:non-specific inter subject

The network was trained with all of the available walking patterns corresponding to three subjects out of fou
The network was then tested to predict the joint moments of the fourth subject for a given walking condition (not
specific training data space). In other words, at this level network was trained based on all of the walking conditio
(normal, medial thrust and walking pptrresponding to three subjects at the same time.
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According to this fact that in back propagation algorithm, descent gradantall in to local mininmm and
the outputs never converge to targets, this network was trained based on Lekaniggigydt algorithm with an
adaptive learning rate. Training data space was randomly divided into thteenphlrding train (65%), validation
(15%) and test (15%). Train and validation parts were used to traimetfneork and adjust the connection
weights/biases. The optimal number of hidden neurons and epochs were determined accotdingdb and
validation error. Increasing the number of neurons and epochs reduce the validatitoweer using too many
hidden neurons and epochs decrease the network generalization ability due tcatingearfd yield to test error
increment.Hidden and output neurons were activated by “tansig’ and “purlin” functions respectively. It should be
noted that the intelligent network had one output node which was used to predict one cowifgoir@gnhoments at
time in order to increase the prediction accuracy.

Training procedure was continued to achieve an error goal of 0.0001 or reach 3000 epochs. Once the netw
was trained, it was employed to calculate the joints moments associated with the test data set (fout
subject) .According t¢ (lyer and Rhinehart, 1|999) the network was trained and run 100 times for each test data
and the average of these 100 runs was considered as the network prediction on that test data set. Netv
performance was investigated based on Pearson correlation coeffigiamd(normalized root mean square error
(NRMSE %).

2.5. Wavelet neural network

Taking advantage of the localization property of wavellets (Alexandridis aptads, 201B) and
generalization ability of the neural network, a multi-dimensional WNN Nitimput nodesNo output nodesNo =1)
and M number of hidden neurons (wavelons) was developed in which hidden neurons wateddoyiwaveletas
activation functios (Figure 1). Each input node was related to each wavelon, with a speciab¥ahi#t, scale and
input weight parameters. Therefore, input weights, scaling and shifting paranfetmed M*Ni matrices.
Accordingly, each wavelon was activated by a multi-dimensional wavelet whictlefiasd as the multiplication of
one-dimensional wavelets as below:

Ni it _
" (xl,xz,xg, " )ZHW(MJ k=12,...N j=123.... M 3)

k=1 kik
In which Y® is Morlet wavelet function:

v(t) :e-t% cos(5t) (4)

Where N indicates the number of input nodes angd ,%¢ andJy are the input weight ,shift and scale
parameters relating"knput to the f hidden wavelon respectively. It should be pointed out that each neuron acted on
eachinput signal by a shifted and scaled version of mother wavelet (Morletpufpat of each wavelon was fed in
to each output neuron with a special value of weight led\o*® output weight matrix. Consequently the output of
the proposed network was defined as follows:

M —
YJ:ZWji‘Vi (xl,xz,x3,. - Xy )+yj i=12,..Mj=12.N, (5)

i=1

Where y;(x1.X, x3 - - xy; ) iS defined in equation (3) and; v the output weight relating' ihidden wavelon

to " output node. They, was also needed as a bias value to deal with nonzero mean farjetiang anc

|Benveniste, 19§12). Due to the above equations, five groups of parameters (input wefghdsakd) output weights
and bias values) were adjusted in WNN training. It should be pointed out that tinalikEANN; in the case of
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155 WNN it is important to initialize the adjustable parameters prggdegfore training in order to guarantee that the
156 daughter wavelets (shifted and scaled versions of mother wavelet) cover theoérttie input data space.
157 Accordingly the WNN was trained in two main steps. First the adjustatdenpters were initialized according to
158  {zhang and Benveniste, 1992pcond, the network was trained based on batch gradient descent algoriarhei
159 data vectors were not too large and included only 100 samples describing one complete gait cycle. Gitzelieatich
160 descent algorithm developed for training the WNN is presented in Appendix 1. Thgaalonumber of training
161 epochs and hidden neurons were determined based on the same procedure with the FFANN. All of the above anal
162  were conducted in Matlab (v. 2009, The MathWorks, Inc., Natick, MA).

163 2.6. Inversedynamicsanalysis

164 A valid three dimensional musculoskeletal model with 23 degrees of freedom (DOF) and 92 mwwascles
165 recruited, available in Opensim softwditerary kDeIp et al., 20d7)l’he model had threBOF ball-and-socket hip joint,
166 a hinge knee joint, universal joint for ankle-subtalar complex and hinge rsatgtant. The model was first scaled
167 using experimental marker trajectories. Scaled model was then used in thee ikivematics (IK) analysis to
168 calculate joint angles. In order to calculate joint moments, the scalddl was first imported to reduced residual
169 analysis (RRA) in which musculoskeletal center of mass was modified so ascihiatedl joint angles would be in
170 consistence with experimental GRFs.

171 The modified scaled model, calculated joint angles and experimental GRFs wemagbeied to compute
172 muscle control (CMC) module in which muscle activities were calculated.lfFioaler extremity joint moments
173 were calculated using inverse dynamics analysi§ &sed on the CMC module calculations. Calculated joint
174 moments were considered as WNN and ANN outputs to train the networks and validate the predictions.

175 3. Results

176 Prediction capability of a generic multi-dimensional WNN was investigatégo different generalization
177 levels (i) level 1;specific inter-subject and (ii) level 2;non-specific irgebject. WNN predictions were validated
178 against inverse dynamics calculations and compared with those obtained from a thrieEA&ipéer

179 MI criterion was calculated between 18 potential inputs (three dimengidiias, moment of vertical GRF
180 around center of pressure and a total of 14 EMG signals represented with 14 &M&sfan time domain) and six
181 joint moments outputs (hip abduction/adduction, hip flexion/extension, hip rot&tee, flexion/extension, and
182 ankle flexion/extension and subtalar eversion moments).According to the rdalite (1) eight EMG signals,
183 including semimembranosus (semimem), biceps femuris (bifem), vastakiatgaslat), rectus femoris (rf), tibia
184 anterior (tibant), peroneal, gluteus maximus (gmax) and gluteus medius (gmed)l @s two ground reaction
185 components including anterior-posterior and vertical components of GRFs providedcangnémount of

186 information about joint moments and were chosen as the network (WNN and FFANN) inputs.

187 3.1.Level 1: specific inter-subject

188 Inverse dynamics calculations are compared WHANN predictions (Figure 2) and WNN calculations
189 (Figure 3 for medial thrust patteraf subject 4 as the test data set. According to Figure 2, a thred~RAMN with
190 20 hidden neurons, 10 inputs and one output could predict the general pattern of losveityeydint moments.
191 However the predicted waveforms had different maximum and minimum values conpahedreference joint
192 moments (inverse dynamics calculations). For exanfHA&NN output could not predict the pattern of knee flexion-
193 extension moment (NRMSE=11.01%+0.88) (Figure 2-d). MoreoveFFANN output overestimated the local
194  maximumand mininum variation on the hip flexion-extension joint moment (NRMSE=11.93%89.
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On the other hand according to Figure 3 the three-layer WNN netwdrlk &itidden neurons could predict
the overall pattern of lower extremity joint moments as well as locahmimis and maximums on each waveform.
The maximum error occurred in prediction of the hip abduction moment (NRMSE¥£560.99) which was much
lower than the maximum error f6fFANN moment prediction (hip adduction moment: NRMSE =12.72860.97)
Figure 4 summarizes the accuracy of predictionsFlekNN and WNN. According to the result6FANN could
predict joint moments to a certain level of accuracy for normal patieRwsg = 7.70% , =0.93) medial thrust (
NRMSE = 8.68%,, =0.99 and walking pole (RvSE=8.25% , =0.94 patterns. Cross correlation values ranged

from p=0.8610 p=0.98 and all the errors (NRMSE) were less than 13%.

By comparison, WNN could predict the joint moments more acdyratean FFANN (normal pattern:
NRMSE = 5.00%, » =0.97; medial thrustNrRmsE =5.10% , =0.96; and walking polenrmsE = 5.98%, , =0.96). All
of the cross correlation coefficients were higher than the corresponding g&l6GEANN and all errors were also
lower than 10%. It is also noteworthy that the optimal WNN structure redi@iseschumber of hidden neurons (15
wavelons) compared to t&ANN structure (20 hidden neurons) used to predict joints moments for the same test
data set. Detailed information about the NRMSE % and cross correlation evesfig) is presented in the Appendix
(Table 1.A and Table 2.A) for FFANN and WNN predictions.

3.2.Level 2:non- specific inter-subject

Inverse dynamics calculated joint moments are compared ag&#siN predictions (Figure 5) and WNN
calculations (Figure)é According to the results (Figure7) errors were slightly increasedsdethél compared to the
corresponding errors at level 1. Due to non-specific inter subject trapange with higher pattern variation at this
level compared to level 1, the number of hidden neurons was increased .For FRANIS Widden neurons, cross
correlation values ranged fropx0.841t0 p=0.96 and all the NRMSE values were less than 20% (normal pattern:
NRMSE = 12.32% , =0.91; medial thrustNrRmsE = 12.50%, , =0.91; and walking polenrmsE = 14.04%, , =0.91)

For WNN with 19 hidden neurons, the average prediction errors were also increased comparedlto |
(normal patternNRMSE = 7.6%, », =0.96; medial thrustNRmsE = 7.30%, » =0.96; and walking polenrmsE = 8.90%
»=0.95). However all of the cross-correlation values were still highertttzme obtained frorfFANN and all of
the errors were also lower than correspon@RNN prediction errors.

Moreover it should be pointed out that although the prediction errors weresiextrebghtly at level 2
compared to level 1, the error increase in WNN predictions at level 2 werenstiiésthan the corresponding error
increment iINFFANN calculations (Figure 8).Compared to level 1, more hidden neurons were refjuireoth
FFANN and WNN; however the number of hidden neurons in WNN were still lower th&RANN which was
hired for the prediction of the same test data set. Detailed informeltiomt the NRMSE % and cross correlation
coefficients is presented in the Appendix (Table 3.A and Table 4.A) for FFANN and WNN predictions.

4. Discussion

This study demonstrated that a multi-dimensional wavelet neural network (\tvdihNdd with inter-subject

data space can be employed as a real-time surrogate model to predict lower extremity joint moments associated
different gait patterns. The present study differed from the previous reseaicjaént moment’s prediction using

neural network in two main aspects. First, a wavelet neural network was developed for the first time in this study
address the disadvantages of the traditional neural network .WNN predicted joint moments more accurately than f
forward artificial neural network used in the previous studies. Second, unlike previous studies, the data base adoy
in this study included two different knee rehabilitation programs (medial thrust and walking pole) as well as normg
gait. Due to this fact that knee rehabilitation programs mainly aim to reduce knee joint loading, a thorough real-tin
calculation of joint moments can provide useful information about the efficiency of rehabilitation plans.
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Reviewing the previous researbh (Favre et al., 12012, Liu et aI.| 2009) used GRERmadparameters to
predict joint moments successfully, additioneilly (Hahn, 2007) employed EMG sigraisdiot joint moments and
forces using artificial intelligence. This is consistent with oudytusing EMG and GRFs contributions to predict
joint moments. Such an approach also avoids the use of marker trajectoriem@ddcspecial equipment and can be
time consuming.

In order to improve the prediction ability of the intelligent netwof®/NN and ANN, mutual information
technique was recruited to measure the amount of information provided by potgnital (RMS representations of
EMG signals and GRFs) about the outputs (joint moments). This technique is noise robustresitivense data
transformation. It also measures the dependency between variables without -asgupnption about the data
structure which makes it suitable for nonlinear data li)ases(May E();h]l).MI -based chosen EMG signals were also
consistent with those signals used |by (Zhang et aI.,|2012} and (Hahri], 2007) foextnearity joint angles and
moments predictions respectively.

At level 1(specific inter-subject), the network was tested for thikimg condition that has been specifically
trained on it .On the other hand all of the walking patterns weredieglin the training data space at level 2(non-
specific inter-subject) .By comparison, training the WNN on specific dateeswith fewer number of training
patterns led to slightly better prediction accuracy than training on nonispgmuif patterns with higher number of
training sets.

Comparing the presented WNN approacthwulti body dynamics, the latter needs a comprehensive data
base of markers as its inputs that should be provided by motion capture. Homagi@r capture is not always
available in all laboratories. This approach also required musculoskeletal mdoelsaled based on subject-
specific anthropometric characteristics. Although multi body dynamics approagitadde physics-based insights
into human walking and investigate casual relationships in gait analysis, suapbperach is generally time
consuming which prevents it to serve as a real-time method.

Unlike inverse dynamics analysis, WNN could predict joint moments based on GRFs and a few number
EMG signals which released the necessity of motion capture. It @smdneed musculoskeletal model or subject-
specific scaling of the model. Once the network was trained based on inter-subject data base it could predict jc
moments for a new subject with a high level of accuracy. Consequently WNN proposed a much easier and fas
method for joint moment prediction which can serve as a real-time surrogate model for human gait analysi
Especially in gait rehabilitation where the real-time calculations of joint moments provide useful information abou
the efficiency ofthe rehabilitation plans and unwanted moment increment that may occur in adjacent joints which i
one of the major concerns in gait rehabilitation. Therefoeselet neural network has the potential of executing of a
more effective rehabilitation program with minimum effort involved.

As mentioned earlieI{Liu et al., 20019) proposed a three-laygANN to predict sagittal lower extremity
joint torques associated with two different vertical jumping conditiong fA¢twork was trained based on non-
specific inter-subject data space similar to the level 2 of the present savdsyver the training data space included
18 data sets (9 subjects * 2 conditions). All of the NRMSE (%) values wieng 08% (except for ankle momeimt
counter movement jump with NRMSE =14.6%). Compared to their study, ésentrthree-layéfFANN had higher
prediction errors since it was trained based on a smaller data Imese gtibjects instead of nine subjects) included
larger patterns variation (three different gait patterns insteamvafdifferent jumping condition).However the
proposed WNN could predict joints moments to a &idgvel of accuracy and all of the NRMSE (%) values obtained
from the WNN were below P4 (Table 2.A and Table 4.A).Two previous studiesI by (Liu et al., |2009] and (Fe{vre et
) supported this idea that a three-ld&5©&NN trained based on inter-subject data space is sufficient to
predict joint moments using force plate data. This paper proposed thatra &N is also capable, and more
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accurate to predict three dimensional joint moments USRBs and EMG signals for a subject that was not seen by
the network before.

Although WNN could predict joint moments based on GRFs and EMG signals successfdity,not
provide physical insights of human gait since it modeled the input-output relati@ssalglack box. This study did
not aim to provide such understanding and should not be compared with inverse dynamics analysis in this asp
Despite the computational cost of multi body dynamics, it is still one of the most accepted computational approact
in biomechanics due to its ability for physical mode|ing (Ren et al.,| 2008).

Finally it should be pointed out that there were also some limitations wlihipresent study. One limitation
was that the relatively small data pool of four subjects was usedultl be valuable to test the prediction capacity
of multi-dimensional WNN for a larger subject pool. As another limitat@NN was trained based on joint
moments which were calculated by inverse dynamics analysis. Accordingly WNN coudd naire accurate than
inverse dynamics approach. Due to available experimental knee reaction forcgiestt® data base, it would be
valuable to recruit WNN to predict experimental joint reaction force based &3 @il EMG signals and compare
the results with inverse dynamics calculations.

For the future application, wavelet neural network can be employed in conjunction with inverse dynamic
analysis to decrease the computational cost. Intelligent surrogate models can learn the dynamics of the patterns
respond to a change in environment (adopt to a new subject for example) .Accordingly trained intelligent networ
can release the necessity of calculation repetitions, hence intelligent surrogates can be used jointly with inve
dynamics analysis. A recent study for example used artificial neural network to solve the static optimizatic
equations as part of inverse dynamics calculation procedlspeed up the calculation proceizss (van den Bogert bt al.,

2013).

The generalization ability of the proposed wavelet neural network can also benefit what-if studies in whicl
sensitivity of joint moments would be investigated due to changes in joint kinematics. Once the intelligent network
trained based on inverse dynamics calculated joint moments, it can be used to predict joint moments in respons
kinematic variations in order to conduct sensitivity analysis and release the necessity of inverse dynamics repetitio
All these will be conducted in future studies.

5. Conclusion

This study demonstrated the feasibility of the wavelet neural network to calculate lower extremity joint
moments using ground reaction forces and electromyography signals; easier and faster than multi body dynamics
more accurate than feed forward artificial neural network. For specific inter-subject training , all of the predictiot
errors were lower than 9.00% with correlation coefficies#9.89 .For non-specific inter-subject , all of the
prediction errors were still lower than 11% wjith0.91.Accordingly compared to the traditional feed forward neural
network ,the proposed structure was more stable and robust due to large variations in input patterns. The high le
of accuracy and low computational cost at one hand, capability of joint moment calculation without marke
trajectories at another hand, suggest the proposed network as a real-time surrogate model that benefit
biomechanics analysis and rehabilitation execution.
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Table(s)

Table 1 Ml calculations between RMS features of EMG signals and GRFs (inputi)vegrdextremity joint moments (outputs)
for subject 4 walked with normal gait pattern as an example. MI criteria meéhswmount of relevancy between potential inputs
and outputs; higher Ml values means more informative the input is regaodine joint momentsviuscle abbreviations have
been defined in the text.

Hip abduction  Hip flexion Hip rotation Kneeflexion Ankle plantar flexion Subtalar eversion
semimem 5.54 8.12 7.11 8.71 7.02 7.32
bifem 6.83 7.92 8.40 8.09 7.02 7.76
vasmed 5.02 4.07 2.73 3.04 6.66 6.81
vaslat 8.09 7.11 8.75 8.36 6.95 7.81
rf 8.50 6.68 7.53 7.83 6.31 6.8
medgas 2.37 1.38 3.86 2.29 2.35 1.43
latgas 5.81 1.57 2.92 3.78 1.93 2.99
tfl 4.14 2.79 3.82 3.55 1.34 1.69
tibant 7.25 7.57 6.55 6.48 8.72 8.41
peroneal 9.32 7.94 7.40 8.14 7.73 7.69
soleus 8.29 2.21 1.39 5.34 5.18 4.99
addmagnus 5.28 3.63 2.22 4.70 1.94 2.48
gmax 7.07 7.77 6.07 6.46 8.59 8.28
gmed 7.02 8.71 6.70 6.96 8.42 8.70
Anterior-posterior GRF 0.66 0.70 0.78 0.71 0.60 0.61
Medial-lateral GRF 0.35 0.33 0.17 0.14 0.11 0.18
Vertical GRF 0.72 0.99 0.78 0.79 0.59 0.87

GRF torque(vertical) 0.41 0.39 0.39 0.27 0.16 0.22




Figure 1

Morlet wavelet

Input layer Hidden layer Output layer

Figure 1 WNN structure with Ni inputs, M hidden wavelons and one butipich was used to predict each component of
lower extremity joint moments.
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Figure 2 Predicted joint moments (dashed line) versus inverse dynamics calsyltia@hline) using three-layer FFANN for
subject 4 walked with medial thrust pattern corresponding to specific iritgres training (level L
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Figure 4

Hip abduction-adduction moment Hip flexion-extension moment Hip external rotation
10 T 12
10 L
8
—~ —~ 8r —~
S 6 S S
g g g
) " 6 %)
= = =
x a+ [i4 o
z z z
ab
2 A
0 L 0 | |
FFANN WNN FFANN WNN FFANN WNN
Knee flexion-extension moment Ankle plantar flexion moment Subtalar eversion moment
10 12 10
8 10 T 8
—~ —~ 8 —~
g o g S
w w w
0 n 6 %)
= = =
o o4 4 o 4
z z z
4
2r N 2
0 0 ——— 0
FFANN WNN FFANN WNN
Il Normal Medial thrust Il Walking pole
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Figure 5 Predicted joint moments (dashed line) versus inverse dynamics calsystiahline) using three-layer FFANN for
subject 4 walked with medial thrust pattern corresponding to non-sgatdfiesubject training (level)2
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