
QoS-aware Web Services Composition using GRASP with Path Relinking

José Antonio Parejoa, Sergio Seguraa, Pablo Fernandeza, Antonio Ruiz-Cortésa

aDepartment of Computing Languages and Systems, University of Sevilla, Spain.

Abstract

In service oriented scenarios, applications are created by composing atomic services and exposing the resulting added
value logic as a service. When several alternative service providers are available for composition, quality of service
(QoS) properties such as execution time, cost, or availability are taken into account to make the choice, leading to the
creation of QoS-aware composite web services. Finding the set of service providers that result in the best QoS is a NP-
hard optimization problem. This paper presents QoS-Gasp, a metaheuristic algorithm for performing QoS-aware web
service composition at runtime. QoS-Gasp is an hybrid approach that combines GRASP with Path Relinking. For the
evaluation of our approach we compared it with related metaheuristic algorithms found in the literature. Experiments
show that when results must be available in seconds, QoS-Gasp improves the results of previous proposals up to
40%. Beside this, QoS-Gasp found better solutions than any of the compared techniques in a 92% of the runs when
results must be available in 100ms; i.e. it provides compositions with a better QoS, implying cost savings, increased
availability and reduced execution times for the end-user.

Keywords: QoS, Composite Web Service, SOA, GRASP, Path Relinking

1. Introduction1

Service Oriented Computing (SOC) is a software de-2

velopment paradigm based on assembling web services3

to implement dynamic business processes and agile ap-4

plications that spread across multiple organizations (Pa-5

pazoglou et al., 2007). The potential of SOC lies in6

three of the key benefits of web services: loose cou-7

pling between consumer and provider, composability of8

services, and dynamic binding. Loose coupling means9

that web services are consumed through a contract hid-10

ing implementation details to users. Composability11

means that web services can be composed to create12

more complex and valuable services, so-called Com-13

posite Web Services (CWS). Finally, dynamic binding14

provides flexibility to the applications by enabling the15

selection of the specific web services to be invoked at16

runtime.17

Web services may include information about the non18

functional properties that affect to their quality, so-19

called Quality of Service (QoS) attributes, e.g. cost,20

availability, etc. When several providers expose web21

services that are functionally equivalent through com-22

patible interfaces, QoS properties can be used to drive23

Email address: japarejo@us.es (José Antonio Parejo)

the selection of the candidate service to invoke. For in- 1

stance, one may choose the most reliable and expensive 2

service, the cheapest one, or a third service that provides 3

a balance. 4

The QoS-aware binding of CWS enables the cre- 5

ation of context-aware and auto-configurable applica- 6

tions, that can adapt itself depending on available ser- 7

vices and user preferences (Ardagna and Pernici, 2007). 8

For instance, consumers could specify constraints like 9

“The total cost per invocation must be lower than 1$” 10

and QoS criteria such as “choose the faster providers”. 11

Given a CWS, a relevant problem is how to determine 12

the optimal binding; i.e. the set of service providers to 13

invoke that meet user constraints and optimizes the QoS 14

according to some QoS criteria. This problem, named 15

QoS-aware Service Composition (QoSWSC) (Strunk, 16

2010), is NP-hard (Bonatti and Festa, 2005; Ardagna 17

and Pernici, 2005), and has been identified as a main 18

research problem in the SOC field (Papazoglou et al., 19

2007). 20

The QoSWSC problem can be solved when the com- 21

position is created (i.e. at design time), just before start- 22

ing the execution of the composition (i.e. at invocation 23

time) or while the composite web service is running (i.e. 24

at runtime). When this problem is solved at run time 25

taking into account the current state of invocations, it 26

Preprint submitted to Expert Systems with Applications December 23, 2013

is named a rebinding (Zeng et al., 2004; Ardagna and1

Pernici, 2007). Solving rebinding problems is crucial in2

dynamic services markets where providers become un-3

available, new providers emerge and QoS levels change4

frequently (Canfora et al., 2008). In this scenarios, the5

time spent to solve the QoSWSC problem is a critical6

issue that influences the overall service response time7

and it should be kept as low as possible (Canfora et al.,8

2005b).9

Metaheuristic search techniques are algorithmic10

frameworks which use heuristics to find approximate11

solutions to hard problems at an affordable compu-12

tational cost. Typical metaheuristic techniques are13

Genetic Algorithms (GA), Hill Climbing (HC), Tabu14

Search (TS), Simulated Annealing (SA), GRASP and15

Path Relinking (PR) (Gendreau and Potvin, 2010). Sev-16

eral heuristic (Berbner et al., 2006) and metaheuristic17

techniques has been proposed in the literature to solve18

the QoSWSC problem, such as GA (Canfora et al.,19

2005b) and SA(Wang et al., 2007).20

This article proposes QoS-Gasp, a novel metaheuris-21

tic algorithm for solving the QoSWSC problem. This22

algorithm is a hybrid approach that combines GRASP23

and PR. QoS-Gasp is especially suitable for rebinding24

problems where short solving times are a must. In or-25

der to evaluate our algorithm we compared it with sev-26

eral metaheuristic algorithms proposed in the literature27

(GA (Canfora et al., 2005a) and hybrid TS with SA(Koa28

et al., 2008)) in rebinding scenarios. The comparison29

was made using several experiments with two different30

optimization criteria and 22 service compositions. The31

results show that QoS-Gasp find solutions with up to32

40% higher quality than those found by related algo-33

rithms in rebinding problems that must be solved in less34

than one minute. Moreover, QoS-Gasp found better so-35

lutions than any of the runs of the techniques compared36

in a 92% of the runs when results must be available in37

100ms. As a part of our evaluation we performed a rig-38

orous statistical analysis of the data that supports our39

conclusions.40

The remainder of this article is organized as follows:41

Section 2 presents a formal description of the QoSWSC42

problem and the metaheuristics used in our proposal43

(GRASP and PR). Section 3 describes QoS-Gasp in44

depth. The empirical evaluation of our approach is pre-45

sented in section 4, along with a brief description of46

the previous proposals used for comparison. Section 547

presents the threats to validity of our work. The related48

works are presented in section 6. Finally, Section 7 de-49

scribes our conclusions and future work. An extended50

version of the article is available as a technical report51

(Parejo et al., 2013).52

1.1. A motivating example 1

In order to illustrate the QoSWSC problem, a goods 2

ordering service inspired in the example provided in 3

(Zheng et al., 2012) is depicted in Fig. 1 using BPMN. 4

The diagram specifies a business process exposed as a 5

composite web service that uses 7 services with alterna- 6

tive providers (henceforth named tasks, t1, . . . , t7). Ta- 7

ble 1 shows the available service providers for each task 8

and their corresponding QoS attributes. As illustrated, 9

two candidate services are available for each task. 10

The composition starts when a client sends an order. 11

First the order is registered. Next if the payment type of 12

the order is “Credit Card”, the card is checked (t1) and 13

the payment (t2) is performed. As depicted in Table 1, 14

two banks providers are available, A and B, and each of 15

them provide candidate services for the tasks t1 and t2, 16

denoted as s1,A, s2,A, s1,B and s2,B. Different providers 17

could be chosen in the binding of the CWS for each 18

task; e.g. A for t1, and B for t2. 19

Next the stock is checked (t3) and the products are 20

reserved for pick-up (t4). If any product in the order 21

is not in stock, the user is informed of the delay and the 22

CWS waits for some time until activities t3 and t4 are re- 23

peated (creating a loop). It is worth noting that the same 24

provider must be chosen for the tasks t3 and t4, since 25

the reservation in t4 refers to the stock of the specific 26

provider queried in t3. Once the order is ready for deliv- 27

ery two branches are performed in parallel. The pick-up 28

and delivery (t5) to the client is requested, and an e-mail 29

is sent to the client with an enclosed digitally signed in- 30

voice (t6). Once the activities on both branches are per- 31

formed, the completion of an user satisfaction survey 32

(t7) is requested. 33

Additionally, Fig. 1 shows a QoS constraint that must 34

be fulfilled. Specifically, the constraint specifies that 35

“The total execution time of the remainder activities af- 36

ter having the order ready for delivery must be lower 37

than 0.5 seconds”. 38

The QoSWSC problem can be stated as finding the 39

bindings that meet all the QoS constraints and maxi- 40

mize or minimize certain user-defined optimization cri- 41

teria, e.g. minimize cost. Note that this may become ex- 42

tremely complex as the number of candidate services in- 43

creases. In this example two providers are available for 44

each task, thus 128 (27) different bindings are possible. 45

This problem becomes especially convoluted in rebind- 46

ing scenarios where providers can become unavailable 47

and QoS levels may change unexpectedly. 48

2

Figure 1: Goods Ordering Composite Service

Table 1: Service providers per Role and their corresponding QoS Guarantees
Actor BANK PROVIDER DELIVERY DIG. SIGN. SURVEYING
Provider A B C D E F G H I J
Task t1 t2 t1 t2 t3 t4 t3 t4 t5 t5 t6 t6 t7 t7
Candidate Service s1,A s2,A s1,B s2,B s3,C s4,C s3,D s4,D s5,E s5,F s6,G s6,H s7,I s7,J

Cost (in cents) 1 2 1.5 5 1 2 1 5 1 2 1 2 1.5 5
Execution Time 0.2 0.2 0.1 0.15 0.2 0.2 0.4 0.25 0.2 0.2 0.2 0.2 0.1 0.15

2. Preliminaries1

2.1. QoS-aware Binding of Composite Web Services2

The QoS-aware binding of a CWS is performed as3

follows: When the CWS is invoked or a rebinding is4

needed (Canfora et al., 2008), the set of tasks is identi-5

fied. For each task ti, the set of service providers avail-6

able S i =
{
si,1, . . . , si,m

}
(named candidate services) is7

determined by performing a search on a service registry.8

For each candidate service si, j, the QoS information is9

retrieved; e.g. according to Table 1 the cost of invoking10

the payment service of provider A is 0.02$. Given that11

some registry technologies do not support QoS infor-12

mation, a QoS-enriched registry or alternative QoS in-13

formation source (such as a Service Level Agreements14

Repository or a Service Trading Framework (Fernandez15

et al., 2006)) is needed. The set of QoS properties taken16

into account is denoted as Q.17

Taking into account this information the expected18

QoS provided by the application can be optimized. The19

goal of this optimization is to find the binding that max-20

imizes the utility of the global QoS provided according21

to the consumers’ preferences. Such preferences de-22

termine which binding is more valuable based on the23

global QoS levels (Qq) provided for each QoS property 1

q. For instance, a total execution time of 2 seconds 2

could be fair for some users but too much for others. 3

User preferences are expressed as weights wq and util- 4

ity functions Uq for each QoS property q. The weights 5

define the relative importance of each property. For in- 6

stance, wCost = 0.2 and wExTime = 0.1 means cost is 7

twice as important as execution time for the user. Utility 8

functions Uq define which values of the specific prop- 9

erty are more useful for the user. For instance, for avail- 10

ability the utility function would be linear, since the 11

higher the availability the better. 12

Thus, our goal translates in to finding the binding χ∗ 13

that maximizes the global user utility computed as: 14

GlobUtil(χ) =
∑
q∈Q

Uq(Qq(χ)) ∗ wq (1)

having
∑

q∈Q wq = 1. Similar schemes for express- 15

ing user preferences and global utility functions have 16

been used extensively in the literature (Zeng et al., 17

2004; Ardagna and Pernici, 2007; Canfora et al., 2005b; 18

Strunk, 2010). 19

3

2.2. QoS Model1

2.2.1. QoS properties2

The set of quality properties Q = {C,T, A,R, S } con-3

sidered in this article has been used extensively in re-4

lated work (Zeng et al., 2004; Ardagna and Pernici,5

2007; Canfora et al., 2005b). It comprises of:6

Cost (C). Fee that users must pay for invoking a service.7

Execution Time (T). Expected delay between service8

invocation and the instant when result is obtained.9

Availability (A). Probability of accessing the service10

per invocation, where its domain is [0, 1].11

Reliability (R). It measures the trustworthiness of the12

service. It represents the ability to meet the quality13

guarantees for the rest of the properties. Its value is14

usually computed based on a ranking performed by end15

users. For example, in www.amazon.com, the range is16

[0, 5] where 0 means that QoS guarantees are systemat-17

ically violated, and 5 means that guarantees are always18

respected. In this article we assume its domain is [0, 1].19

Security (S). It represents the quality aspect of a ser-20

vice to provide mechanisms to assure confidentiality,21

authentication and non-repudiation of the parties in-22

volved. Consequently, this property usually implies the23

use of encryption algorithms with different strength, dif-24

ferent key sizes on underlying messages, and some kind25

of access control. In this article we use a categorization26

of the security, where the use of an encryption algorithm27

and key size in a service implies a numerical value as-28

sociated to this property for the service. Its domain is29

[0, 1], where value 0 means no security at all and value30

1 means maximum security.31

QoS properties are usually classified as negative or
positive. A quality property is positive if the higher the
value, the higher the user utility. For instance, availabil-
ity is a positive property, since the higher the availability
the better. A quality property is negative if the higher the
value, the lower the utility. For instance, cost is a neg-
ative property. We apply definitions of the utility func-
tions widely used in the literature (Zeng et al., 2004;
Ardagna and Pernici, 2007; Canfora et al., 2005b). For
instance, for positive QoS properties the utility of the
value x for a QoS property q is defined as:

Uq(x) =


1 if qmax − qmin = 0

x−qmin

qmax−qmin if q is positive
qmax−x

qmax−qmin if q is negative
(2)

where qmax and qmin are the maximum and minimum32

values of the QoS property q for all candidate services.33

2.2.2. Computing the Global QoS 1

Apart from the specific providers chosen for each 2

task, the global QoS values for the CWS depend on: 3

The workflow of the composition and the type of 4

QoS property. Global QoS is computed by recursively 5

applying a QoS aggregation function according to the 6

building blocks that define the structure of the compo- 7

sition. Table 2 summarizes the aggregation functions 8

applied for each QoS property q and type of building 9

block1. These functions are widely applied in literature 10

(Zeng et al., 2004; Ardagna and Pernici, 2007; Canfora 11

et al., 2005b; Wang et al., 2007; Strunk, 2010). For in- 12

stance, the total execution time of the parallel branches 13

is computed as the maximum execution time of any 14

branch, but the execution time of a sequence of tasks is 15

computed as the sum. In a very similar way, the aggre- 16

gation function depends on the specific QoS property to 17

be aggregated. For instance, given a specific workflow 18

such as the parallel branches of our motivating example 19

(tasks t6 and t5), the total cost is computed as the sum of 20

the costs of the tasks in each branch, but the total avail- 21

ability is computed as the product of the availability of 22

the tasks in each branch. 23

The specific branches chosen for execution and the 24

number of iterations performed in loops. Since in 25

general the specific run-time behaviour of loops and 26

alternative branches is unknown in advance, an esti- 27

mate of this behaviour is needed to perform QoS-aware 28

binding (Canfora et al., 2008). For instance, given 29

that probability of using credit card is 0.8, and 2 iter- 30

ations of stock reservation are performed, the estimated 31

global cost for the binding χ = (A, B,D,D, F,H, J) 32

is: QCost(χ) = Cost of switch(χ) + Cost of Loop(χ) + 33

Cost of fork(χ)+Cost7(χ) = 0.8∗0.025+2∗0.06+0.09 = 34

0.23$ 35

Since those values are estimations, the actual global 36

QoS values provided can differ significantly from the 37

estimations in some invocations. In the worst case 38

this deviation can lead to the violation of the global 39

QoS constraints. To avoid this problem, the re-binding 40

triggering approach proposed in (Canfora et al., 2008) 41

could be used. 42

2.3. Constraints of the QoSWSC problem 43

The QoSWSC problem has three types of constraints 44

(Zeng et al., 2004; Ardagna and Pernici, 2007): 45

Global QoS constraints. They affect the QoS of the 46

CWS as a whole; e.g. the total cost of the composition 47

must be lower than five ≡ Qcost(χ) < 5. 48

1In this table k means the average number of iterations performed
in loops and Pi means the probability of executing branch i

4

Table 2: QoS Aggregation functions
Sequence (S) Loop (L) Branch (B) Fork (F)

Cost (C)
∑m

i=1 C(ai) k ·
∑n

i=1 C(ai)
∑m

i=1 Pi ·C(sb
i)

∑p
i=1 C(s f

i)
Time (T)

∑m
i=1 T (ai) k ·

∑n
i=1 T (ai)

∑m
i=1 Pi · T (sb

i) max
{
T (s f

i)
}

Reliability (R)
∏m

i=1 R(ai) (
∏n

i=1 R(ai))k ∑m
i=1 Pi · R(sb

i)
∏p

i=1 R(s f
i)

Avaliability (A)
∏m

i=1 A(ai) (
∏n

i=1 A(ai))k ∑m
i=1 Pi · A(sb

i)
∏p

i=1 A(s f
i)

Security (S) min(S (ai))i∈{1...m} min(S (ai))
∑m

i=1 Pi · S (sb
i) minp

i=1 S (s f
i)

Custom attribute (F) fS (F(ai))i∈1...m fL(sL, k)) fB(
[
FS (sb

i)
]
,
[
pi
]
) fF(F(s f

i))i∈1...p

Figure 2: GRASP working scheme

Local QoS Constraints. They affect the QoS values1

provided by the service chosen for a specific tasks; e.g.2

the cost of payment (t2) must be lower than 1.3

Service dependence constraints. A CWS may use sev-4

eral services that must be bound to the same provider.5

This situation creates a dependence, i.e. if the provider6

is selected for one of the tasks, then it must be selected7

for the rest of tasks it implements. In our motivating8

example there exists a dependence constraint between9

tasks t3 and t4 (stock management and reservation).10

2.4. GRASP11

The Greedy Randomized Adaptive Search Procedure12

(GRASP) (Resende, 2009) is an iterative optimization13

algorithm. GRASP has been successfully applied in a14

plethora of real life applications and research problems15

(Festa et al., 2002). Its working scheme is shown in Fig.16

2. Each GRASP iteration consists of two main steps:17

(i) building a solution and (ii) improving such solution18

using a local search algorithm.19

In the building phase, GRASP begins by creating an20

empty solution. Elements are added iteratively to it un-21

til a complete and feasible solution is found. For in-22

stance, in case of the QoS-aware web service compo-23

sition problem, the empty solution contains no bindings24

to any candidate services; i.e. in our motivating example25

the empty solution would be (?, ?, ?, ?, ?, ?, ?), meaning26

that no tasks are bound to an specific candidate service.27

The elements added are specific bindings to candidate28

services for each task, for instance, for task t1 two can- 1

didate services are available, leading to partial solutions 2

(A, ?, ?, ?, ?, ?, ?) and (B, ?, ?, ?, ?, ?, ?). 3

In order to add an element to the partial solution the 4

algorithm performs three steps. First, the set of valid 5

elements that could be added to the partial solution is 6

determined. For instance, in our motivating example 7

the element D is a candidate provider for task t4, but 8

given the partial solution (B, A,C, ?, ?, ?, ?), D is not a 9

valid element, since a constraint states that tasks t3 and 10

t4 should have the same provider. Thus the single valid 11

element for task t4 in that case is C. 12

Next, a subset of promising candidates is chosen from 13

the set of valid elements. This subset is referred to as 14

the Restricted Candidate List (RCL). The selection of 15

the elements in the RCL should be greedy and adaptive. 16

By greedy we mean that criterion should promote the 17

inclusion of the most promising elements in the RCL. 18

For instance, a greedy criterion in our problem would 19

be to include the best candidate services according to 20

any of the QoS properties, the cheapest, the faster, the 21

most secure, etc. In our example, for task t7 service s7,I 22

from provider I is faster and cheaper than service s7,J 23

form provider J, thus the RCL according to this criterion 24

would be {I}. On the contrary, for task t1 service s1,A 25

from provider A is the cheapest but service s1,B from 26

provider B is the fastest, thus the RCL according to this 27

criterion would be {A, B}. 28

By adaptive we mean that the selection criterion 29

should take into account the current partial solution. As 30

an example, a greedy and adaptive criterion in our prob- 31

lem would be the inclusion of the services whose QoS 32

values are better that the average value for the elements 33

in the current partial solution for any QoS property, and 34

all the possible elements if such element does not ex- 35

ist. In our motivating example, given the partial solu- 36

tion (A, , ?, ?, ?, ?, ?, ?), the RCL for task t2 would be {B}, 37

since the execution time of corresponding service s2,B is 38

0.15, better than the average execution time in the com- 39

position (0.2). However, if the current partial solution is 40

5

Figure 3: Path Relinking working scheme

(A, , ?, ?, ?, ?, ?, I) , the RCL for task t2 would be {A, B},1

since none of the valid candidates improves the average2

value for any of the QoS properties.3

At the end of the iteration a randomly chosen element4

of the RCL is added to the current solution.5

In the improvement phase, a local search algorithm6

is executed using as starting solution the result of the7

construction phase.8

2.5. Path Relinking9

Path Relinking (PR) is an metaheuristic optimization10

technique that generates new solutions by exploring tra-11

jectories connecting promising solutions. The basic hy-12

pothesis is that by exploring the region of the search13

space between promising solutions we will find more14

promising solutions. The working scheme of PR is15

shown in Fig. 3. PR manages a set of promising so-16

lutions named the “elite set”. In each iteration, un-17

til the meeting of a termination criterion, PR randomly18

chooses two solutions from the elite set, named the ini-19

tiating and guiding solution. Then, PR generates a se-20

quence of successive solutions from the initiating to the21

guiding solution (Laguna and Martı́, 1999). Each step22

is generated by replacing elements of the initial solution23

with the corresponding elements of the guiding solu-24

tion. For instance in our motivating example, having the25

bindings (A, B,D,D, F,H, J) and (B, B,D,D, F,H, I) as26

initiating an guiding solutions respectively, the elements27

to be incorporated are B as provider for task t1, and I as28

provider for task t7. The order of element replacement29

is significant, since different orderings define different30

paths in the solution space. For instance, in our exam-31

ple we could choose to incorporate B or I first, leading32

to solutions (B, B,D,D, F,H, J) and (A, B,D,D, F,H, I)33

respectively.34

After reaching the guiding solution the elite set is op-35

tionally updated. For instance, the best solution found36

could be added, the initiating and/or guiding solutions37

could be removed, etc. The key parameters of PR are38

the number of paths explored Npaths between each pair39

of initiating and guiding solutions, and the number of 1

steps explored per path Nsteps. 2

3. QoS-Gasp 3

In this section we present QoS-Gasp a novel pro- 4

posal for solving the QoSWSC problem. It stands for 5

“QoS-aware GRASP+PR algorithm for service-based 6

applications binding”. It is an hybrid algorithm, where 7

GRASP is used for initializing the elite set used in Path 8

Relinking. 9

Next we describe how GRASP and PR have been 10

adapted for solving the QoSWSC problem. 11

3.1. Solution encoding 12

In order to apply metaheuristic optimization algo- 13

rithms to solve or problem, a suitable encoding of solu- 14

tions is needed. An encoding is the mechanism used for 15

expressing the characteristics of solutions in a form that 16

facilitates its manipulation by the algorithm. In QoS- 17

Gasp a vector-based encoding structure is used. This 18

encoding has been used extensively in literature (Can- 19

fora et al., 2005a; Gao et al., 2007). Specifically, solu- 20

tions are encoded as a vector of integer values, with a 21

size equal to the number of tasks. Thus, value j at po- 22

sition i of this vector encodes the choice of service j as 23

provider for task i. 24

For instance, in our motivating example, the vector 25

that encodes the binding (A, B,D,D, F,H, J) would be 26

[0|1|1|1|1|1|0|0]. The index of each provider is deter- 27

mined by order of appearance in table 1; e.g. for Banks 28

A ≡ 0 and B ≡ 1. Note that the values in each position 29

of the vector would be either 0 or 1, since we have only 30

two providers per task in our motivating example, the 31

encoding is not binary. 32

3.2. Constraints support 33

GRASP and PR do not directly support the optimiza- 34

tion of constrained optimization problems. In order to 35

overcome this drawback, a variant of Eq. 1 is used as 36

objective function. This variant takes into account the 37

penalization term defined in (Canfora et al., 2005b) us- 38

ing a weight wun f , and a function D f that measures the 39

distance of a binding χ from a full constraint satisfac- 40

tion. Thus our final function to be maximized is: 41

Ob jFunc(χ) = GlobUtil(χ) − (wun f ∗ D f (χ)) (3)

having 0 ≤ wun f ≤ 1. 42

6

The distance to full constraint satisfaction D f is de-
fined as:

D f (χ,C) =

∑
c∈C

Meet(c, χ)

|C|
(4)

being C the set of global and interdependence con-
straints of the problem 2. Meet(c, χ) is a function that
measures the distance to the fullfillment of a single con-
straint c by the binding χ

Meet(c, χ) =



0 if c is met

abs(Qq(χ) − Tq) if c is global
(Dist. to threshold) and unmet

#services missing
#dependant services if c is an unmet

dep. const.
(5)

In this function, we denote the threshold of each global1

constraint on QoS property q as Tq. For instance, given2

the global constraint “the total cost of the composition3

must be lower than five” ≡ Qcost(χ) < 5, then Tcost = 5.4

If the actual cost of execution the composition given a5

binding χ is 5.6, the value of Meet(c, χ), would be 0.6.6

Conversely, if the actual cost of executing the composi-7

tion is 3.5, the value of Meet(c, χ) is 0, since the con-8

straint is met. In a very similar way, when a constraint9

defines a dependency between taks for instance t3 and10

t4 in our motivating example, if the provider chosen for11

each task is different, the value of Meet(c, χ) would be12

1/2 = 0.5, since we have 1 missing service from the13

chosen provider, and the total number of dependent ser-14

vices in the constraint is 2.15

3.3. GRASP building phase16

In QoS-Gasp, GRASP elements represent a particu-17

lar choice of a candidate service for a given task. Con-18

sequently, the solution χ is built by choosing a service19

for a task at each iteration of the loop until the solution20

is a complete binding. The partial solution at iteration k21

is denoted as χk. The specific task to bind at iteration k22

is randomly chosen.23

The set of valid elements for the task ti is determined24

by the service dependence constraints. For instance, in25

our motivating example there exists a dependence con-26

straint between t3 (stock querying) and t4 (reservation27

2Local constraints are not taken into account, since they can be met
by preprocessing the set of candidate services (Ardagna and Pernici,
2007).

for pickup). Thus, if a provider has been chosen for 1

task t3 in our partial solution χk, then the same provider 2

should be chosen for t4. If conflicting dependency con- 3

straints are found the construction phase restarts, since 4

it is not possible to create a feasible solution from χk−1. 5

QoS-Gasp uses a RCL selection scheme that has been 6

applied extensively in the literature of GRASP. Specif- 7

ically, this selection is driven by an evaluation func- 8

tion g -that must be defined for the specific optimiza- 9

tion problem to solve- and a greediness parameter α 10

(between 0 and 1). Function g provides a value in R 11

for each candidate service, where gmin is the minimum 12

and gmax is the maximum of those values. A service 13

si, j will be in the RCL if g(si, j) is greater or equal than 14

gmin + α · (gmax − gmin); i.e. α defines the proportion of 15

the range [gmin, gmax] in which candidates are discarded 16

from RCL. Thus, for α = 0 all the candidates are in 17

the RCL (none is discarded), and the construction phase 18

becomes random. If α = 1 only the candidates with a 19

value in g of gmax would be in the RCL. 20

The function g and value of α are crucial for the
performance of GRASP. We defined up to seven novel
greedy functions for the QoSWSC problem. Since the
optimal values of those parameters depends on the prob-
lem to be solved, we performed a preliminary experi-
ment testing each of function g with several values of α.
All the details about the g functions and their evaluation
are reported in (Parejo et al., 2013) due to space limita-
tions. The best average results were obtained α = 0.25,
and the best performing greedy functions were G1, G2
and G6 showed below:

G1(si, j, χ
k) =

∑
q∈Q

wq · Uq(qi, j) (6)

G1 is “miopic” and unadaptive, meaning that it only 21

considers the QoS value of each service, ignoring the 22

current solution under construction χk, but its evalua- 23

tion is extremely fast. 24

G2(si, j, χ
k) = D f (χk) − D f (χk ∪ si, j) (7)

G2 uses the difference of distance to constraint satisfi-
cation of the current partial solution χk and the new par-
tial solution, denoted as χk ∪ si, j, but it ignores the QoS
weights

G6(si, j, χ
k) = Ob jFunc(χk ∪ si, j)−GlobUtil(χk) (8)

G6 is based directly on the gradient of the global QoS, 25

but ignoring the distance to constraint satisfaction of the 26

current solution. This subtle variant penalizes the selec- 27

tion of elements that generate constraint violations. 28

7

In order to evaluate D f , GlobUtil, and Ob jFunc, a1

random solution is generated at the beginning of the2

construction phase, and their elements are used to com-3

plete the choices for unassigned tasks in χk.4

3.4. GRASP improvement phase5

The GRASP improvement phase in QoS-Gasp is a lo-6

cal search procedure based on a neighbourhood defini-7

tion. The neighbourhood of a binding χ comprises of all8

possible bindings that have exactly n− 1 assignments in9

common with χ; i.e. have the same candidate services10

selected for each task except for one. QoS-Gasp uses11

Hill Climbing, where only a percentage of the neigh-12

bourhood is explored.13

3.5. Path Relinking14

QoS-Gasp uses the adaptation of GRASP described15

above to initialize the elite set used by PR. The length16

of the path between initiating and guiding solutions in17

QoS-Gasp is determined by the number of different ser-18

vice candidates. Each step of any relinking path, incor-19

porates one service candidate from the guiding solution.20

It is worth noting that the order in which service candi-21

dates are incorporated defines different paths. Conse-22

quently, for each pair of initiating and guiding solutions23

a high number of different paths could be explored. In24

order to reduce the computational cost of such explo-25

ration, QoS-Gasp restricts the number of paths gener-26

ated between each pair of solutions to Npaths. It intro-27

duces the service candidates from the guiding solution28

in a random order, and it limits the number of neigh-29

bours explored in each path to Nsteps. These parameters30

control the balance between the diversification of the ar-31

eas of the search space explored and the exhaustiveness32

of the search in those areas, which is crucial in rebind-33

ing scenarios where execution time is scarce.34

4. Experimentation35

The aim of the experimentation is to compare the36

performance of QoS-Gasp with previous metaheuris-37

tic proposals described in the literature for solving the38

QoSWSC Problem.39

4.1. Previous Proposals40

4.1.1. Genetic Algorithms41

The proposal described in (Canfora et al., 2005a) has42

been implemented for comparison since it is the most43

cited GA-based approach for this problem. In particular,44

the initial population is randomly generated. A standard45

one-point crossover operator (Dreo et al., 2003) is used.46

The mutation operator modifies the candidate to a sin- 1

gle task, both randomly chosen. Parameter values are 2

chosen according to (Canfora et al., 2005a) (as shown 3

in table 3). 4

4.1.2. Hybrid TS with SA 5

A hybrid of TS with Simulated Annealing (SA) was 6

proposed in (Koa et al., 2008) for solving the QoSWSC 7

problem. This proposal was aimed at finding feasible 8

solutions of constrained instances; thus, the search was 9

driven by the constraint meeting distance and the execu- 10

tion terminates when a feasible solution is found. In or- 11

der to enable the comparison with our proposals, and to 12

continue optimizing according to user preferences (even 13

when all constraints are met), a modification has been 14

carried out. When all the constraints are met, the dif- 15

ference between the QoS value of current solution Qq 16

and the average QoS for this property Avgq is used for 17

guiding the search. Specifically, the QoS property se- 18

lected to guide the improvement in the algorithm is the 19

one minimizing s ∗ (Qq(χ) − Avgq) ∗ wq, where s is 1 20

if q is positive and −1 if it is negative; i.e. our modi- 21

fication tries to generate neighbors improving the solu- 22

tion in the QoS property with the bigger improvement 23

room and importance for users. The pseudo-code of 24

the resulting algorithm, and a detailed explanation of its 25

working scheme is available in the additional material 26

(Parejo et al., 2013). 27

4.2. Experimental Setting 28

In order to evaluate our proposal QoS-Gasp was im- 29

plemented using FOM (Parejo et al., 2003). FOM is 30

an object oriented framework written in JAVA that re- 31

duces the implementation burden of optimization algo- 32

rithms. It also provides some experimentation capabili- 33

ties (Parejo et al., 2012). Experiments were performed 34

on a computer equipped with an Intel Core I7 Q870 35

CPU with 8 cores working at 1.87 Ghz, running Win- 36

dows 7 Professional 64bits and Java 1.6.0.22 on 8 GB 37

of memory. 38

4.3. Experiment #1 39

The aim of this experiment is to compare the perfor- 40

mance of our proposal and previous ones in terms of the 41

QoS of solutions they provide. Previous proposals (as 42

described in sec. 4.1) are compared to ours by solving a 43

number of instances of the QoSWSC problem. Specif- 44

ically, we compare Genetic Algorithms (GAs) and Hy- 45

brid Tabu Search with Simulated Annealing (TS/SA), 46

with a GRASP using G1 (GRASP(G1)), and two vari- 47

ants of GRASP with Path Relinking (GRASP+PR) that 48

8

use G2 and G6. The parameters used for each tech-1

nique are described in table 3. These values were2

chosen based on the experiments reported in literature3

for previous proposals and on another preliminary ex-4

periment performed for GRASP and GRASP+PR (de-5

scribed in detail in (Parejo et al., 2013)). Positive scal-6

ing utility function were used for Availability, Relia-7

bility and Security (we denote this set of properties as8

Q+ = {A,R, S }), cf. section 2.2. Negative scaling util-9

ity functions were used for the remaining properties10

(Q− = {C,T }). The weights used for each QoS prop-11

erty were: wun f = 0.5, wC = 0.3, wT = 0.3, wA = 0.1,12

wS = 0.2, wR = 0.1. Since FOM solves minimization13

problems, an objective function that subtracts the value14

of ObjFunc (as described in equation 3) to 1.0 was used.15

Table 3: Parameters of the techniques used in the experiment
Technique Paramenter Value
GRASP α 0.25
(G1) Greedy Function G1

LocalSearch HC (20% neig. explo-
ration)

GRASP+PR α 0.25
(G6/G2) Greedy Function G6 / G2

LocalSearch HC (20% neig. explo-
ration)

Elite Solutions 5
NPaths 2
Nsteps 50
Intial GRASP
Iter.

50

Canfora’s Population Size 100
GA (Can-
fora et al.,
2005b)

Crossover 0.70

Mutation Prob. 0.01
Survival Policy The two better individu-

als
Selector Roulette Wheel
Initial Population Randomly generated

Hybrid Initial Solution Local optimization (Koa
et al., 2008)

TS+SA Services ex-
changed

2

(Koa
et al.,
2008)

Tabu Memory Recency based memory

Tabu Mem. size 100 movements
Accept. Criterion Based on current iteration

4.3.1. Experiment design16

Since our aim is to compare the performance of tech-17

niques, the dependent variable of this experiment was18

the evaluation of 1 − Ob jFunc for the best solutions 1

found in each runt. The independent variable of exp. #1 2

was the tehnique used for optimization. The termina- 3

tion criteria was maximum execution time. Specifically, 4

the experiments were replicated using 100ms, 200ms, 5

500ms, 1000ms, 10000ms and 50000ms as maximum 6

execution times. These values cover most of rebinding 7

and binding scenarios at invocation time. 8

Eleven problem instances were generated by the algo- 9

rithm described in appendix C of (Parejo et al., 2013), 10

using the parameters shown in table 4. Those parame- 11

ters are common in the literature on the QoSWSC prob- 12

lem (cf. table 9 of (Parejo et al., 2013)). The specific 13

characteristics of each problem instance generated are 14

shown in table 5 . 15

Table 4: Problem instances generation parameters
Composition Activities Uniform distribution

between 10 and 100
Structure % control flow Uniform distribution

between 20% and
50%

Parameters % Loops 45%
% Branches 45%
% Flows 10%
Max nesting Uniform ∈ [5, 10]

Runtime Iter. per Loop Gaussian(µ = 18,
σ = 6)

inf. params Prob. of Branches Random
Candidate Candidates per Task Uniform ∈ [1, 10]
Services Cost Uniform ∈ [0.2, 0.95]
Parameters Exec. Time Gaussian(µ = 0.5,

σ = 0.4)
Reliability Uniform ∈ [0.3, 0.9]
Availability Uniform ∈ [0.9, 0.99]
Security Uniform ∈ [0.6, 0.99]

Constraints Number of Const. Uniform ∈ [0, |Q|]
Parameters % of optimality Uniform ∈ [25, 75]
Objective
Function
Parameters

wun f = 0.5, wCost = 0.3, wExecTime = 0.3,
wAvail = 0.1, wS ec = 0.2, wRel = 0.1

For each combination of technique, problem instance 16

and maximum execution time, thirty runs were per- 17

formed in order to ensure the significance of results 18

4.3.2. Results 19

Table 6 shows the mean results per problem instance 20

and execution time. Specifically, table 6 is divided into 21

four sub-tables by execution time. In each sub-table, 22

rows depict the results obtained for each problem in- 23

stance, and columns depict the results obtained by each 24

optimization technique. The best means per problem 25

9

Table 6: Means of obj. func. values for each algorithm and execution time in Experiment 1
Exec. Time 100 ms 1000 ms
Technique GA GRASP+PR (G6) GRASP+PR (G2) GRASP(G1) TS/SA GA GRASP+PR (G6) GRASP+PR (G2) GRASP (G1) TS/SA

Problem P0 0,317053066 0,31467194 0,31559766 0,31585178 0,37823648 0,31702924 0,31464257 0,31514186 0,31521718 0,37819911
Problem P1 0,832070664 0,82958546 0,83114955 0,82996641 0,90526782 0,83257414 0,82958531 0,82991653 0,82992594 0,90526782
Problem P2 0,314220241 0,30428238 0,30821952 0,30961194 0,40335166 0,31406676 0,30334250 0,30495659 0,30548735 0,40335070
Problem P3 0,786458899 0,77332510 0,77774798 0,77939848 0,87387101 0,78422132 0,77294846 0,77398728 0,77478427 0,87377022
Problem P4 0,810939436 0,81066853 0,81082234 0,81086532 0,81292188 0,81094311 0,81066853 0,81072816 0,81073885 0,81291786
Problem P5 0,345341638 0,33979296 0,34254369 0,34201717 0,39219569 0,34514013 0,33978323 0,34021847 0,34087602 0,39217004
Problem P6 0,814693606 0,79437721 0,80665351 0,79564660 0,89469352 0,81558663 0,79244253 0,79865127 0,79564660 0,89464300
Problem P7 0,755621698 0,74596884 0,74604446 0,74597200 0,82326859 0,75901268 0,74549613 0,74544938 0,74549475 0,82099777
Problem P8 0,859142490 0,85159186 0,85524606 0,85185832 0,91504732 0,85937275 0,85159186 0,85210501 0,85185832 0,91504127
Problem P9 0,802587993 0,78813945 0,79375533 0,79500608 0,88106812 0,80275109 0,78810276 0,79004525 0,79100871 0,88106812

Problem P10 0,333850406 0,33271258 0,33290040 0,33326753 0,34420161 0,33372791 0,33268621 0,33266052 0,33268679 0,34393207
Exec. Time 500 ms 50000 ms
Technique GA GRASP+PR (G6) GRASP+PR (G2) GRASP(G1) TS/SA GA GRASP+PR (G6) GRASP+PR (G2) GRASP (G1) TS/SA

Problem P0 0,316847884 0,31465716 0,31541106 0,31559366 0,37819911 0,31708794 0,31464248 0,31503530 0,31511347 0,37819911
Problem P1 0,832185790 0,82958531 0,83047811 0,82996641 0,90526782 0,83234986 0,82958531 0,82979438 0,82981234 0,90526782
Problem P2 0,314327155 0,30334881 0,30667738 0,30770218 0,40335070 0,31456350 0,30334250 0,30436232 0,30472537 0,40335070
Problem P3 0,785376182 0,77303310 0,77626168 0,77730067 0,87377022 0,78437278 0,77284804 0,77318822 0,77396728 0,87377022
Problem P4 0,810937976 0,81066853 0,81077270 0,81081414 0,81291786 0,81090575 0,81066853 0,81070306 0,81072227 0,81291786
Problem P5 0,345156788 0,33979296 0,34138343 0,34179962 0,39217004 0,34478886 0,33977041 0,33982145 0,34035985 0,39217004
Problem P6 0,815804062 0,79307634 0,80427884 0,79564660 0,89464300 0,81608455 0,79238052 0,79697338 0,79564660 0,89464300
Problem P7 0,756262913 0,74577745 0,74566567 0,74580965 0,82099777 0,75804813 0,74542966 0,74541133 0,74542556 0,82099777
Problem P8 0,859046630 0,85159186 0,85385226 0,85185832 0,91504127 0,85909064 0,85159186 0,85185755 0,85183389 0,91504127
Problem P9 0,803349334 0,78810276 0,79208361 0,79353237 0,88106812 0,80183890 0,78810276 0,78949346 0,78994663 0,88106812

Problem P10 0,334067627 0,33271171 0,33276010 0,33286655 0,34393207 0,33395456 0,33265462 0,33264226 0,33265207 0,34393207

Table 7: Mean percentage of solutions improving any obtained by other technique (Exp. #1)
Exec. Time 100 ms 1000 ms

GA GRASP+PR1(G6) GRASP+PR(G2) GRASP(G1) TS+SA GA GRASP+PR1(G6) GRASP+PR(G2) GRASP(G1) TS+SA
GA 0,00% 0,30% 0,00% 100,00% GA 0,00% 0,00% 0,00% 90,91%

GRASP+PR(G6) 92,42% 80,30% 3,94% 100,00% GRASP+PR(G6) 86,67% 68,18% 1,52% 90,91%
GRASP+PR(G2) 35,45% 0,30% 0,30% 100,00% GRASP+PR(G2) 74,85% 0,91% 4,24% 90,91%

GRASP(G1) 84,55% 0,91% 70,00% 100,00% GRASP(G1) 83,03% 0,00% 60,30% 90,91%
TS+SA 0,00% 0,00% 0,00% 0,00% TS+SA 0,30% 0,30% 0,30% 0,30%

Exec. Time 500 ms 50000 ms
GA GRASP+PR1(G6) GRASP+PR(G2) GRASP(G1) TS+SA GA GRASP+PR1(G6) GRASP+PR(G2) GRASP(G1) TS+SA

GA 0,00% 0,30% 0,00% 90,91% GA 0,91% 0,91% 0,91% 36,97%
GRASP+PR(G6) 87,27% 63,33% 1,21% 90,91% GRASP+PR(G6) 71,52% 36,06% 5,15% 89,39%
GRASP+PR(G2) 58,48% 1,21% 0,91% 90,91% GRASP+PR(G2) 72,73% 0,91% 9,09% 76,06%

GRASP(G1) 83,94% 0,61% 60,30% 90,91% GRASP(G1) 72,73% 0,00% 31,82% 90,61%
TS+SA 0,30% 0,30% 0,30% 0,30% TS+SA 0,91% 0,30% 0,30% 0,61%

(a) 1.0 − Ob jFunc (eq. 3) and problem inst. 9 (b) 1.0 − Ob jFunc (eq. 3) and problem inst. 2

Figure 4: Box plots showing the results of each technique in Experiment #1.

10

Table 5: Problem Instances information
Problem
Name

Activities Abstract
Serv.

Candid.
Serv.

Global
Const.

Problem 0 72 55 220 0
Problem 1 89 46 92 2
Problem 2 51 34 170 4
Problem 3 25 15 75 2
Problem 4 82 51 102 1
Problem 5 47 3 68 0
Problem 6 79 42 252 1
Problem 7 12 7 63 3
Problem 8 54 37 74 4
Problem 9 24 18 144 4
Problem 10 58 41 82 4

instance and execution time is highlighted in boldface.1

In this context, it is important to note that the problem2

was modelled as a minimization problem for compat-3

ibility with the experimental framework FOM which4

implies that the lower the value the better. It is no-5

ticeable that GRASP+PR(G6) obtained the best mean6

results in all cases. GA provides intermediate results,7

better than TS+SA, but not as good as GRASP+PR8

and GRASP. The performance of TS+SA was bad ex-9

cept for tightly constrained problem instances. Our10

statistical analysis revealed that the differences among11

GRAPS+PR(G6) and the other techniques are statisti-12

cally significant (with α = 0.05) except for one problem13

instance and technique. Specifically, the differences be-14

tween GRASP(G1) and GRAPS+PR(G6) are not signif-15

icant for Problem P7 when execution times are longer16

than 500ms. It is worth noting that P7 is significantly17

smaller that the others. It contains only 7 tasks and 6318

candidate services. Thus, authors infer that for small in-19

stances of the problem, GRASP(G1) can behave nearly20

as well as GRASP+PR(G6). The causes of this be-21

haviour could be: (i) the inefficiency of the intensifica-22

tion strategy of PR, since the probability of overlapping23

of paths is bigger for small problem instances; and (ii)24

the capability of GRASP for exploring the promising25

area of the search space for small problem instances.26

In order to evaluate the extent to which some tech-27

niques outperform others, we computed the percentage28

of runs where the result obtained by one technique are29

better than any result (out of the 30 runs) obtained by30

other technique (for the same problem instance and ex-31

ecution time). Table 7 summarizes these results. It is di-32

vided into four sub-tables by execution time, were each33

sub-table contains a square matrix with the optimization34

techniques in rows and columns. Specifically, the value35

of a cell is the mean of the percentage described above 1

for the problem instances. For instance, the value in 2

the second row and first column of the top-left sub-table 3

specifies that, for execution times of 100ms, on average 4

for all the problem instances, a 92.42% of the solutions 5

obtained by GRASP+PR(G6) are better than any solu- 6

tion obtained by GA. This means that the results ob- 7

tained by GRASP+PR(G6) outperform those obtained 8

by GA. Since the percentages are averaged for all the 9

problem instances and refer to different pairs of tech- 10

niques, the sum by rows and columns is not 100%. Ta- 11

ble 7 confirms the conclusions drawn above, since the 12

row of GRASP+PR(G6) has the higher percentage in 13

almost any execution time and column. However, it 14

is noticeable the small percentage of such row for the 15

column of GRASP(G1), while the transposed cell (row 16

GRASP(G1) and column GRASP+PR(G6)) has also a 17

small percentage. This means that, although on average 18

the results of GRASP+PR(G6) are better and have less 19

dispersion than those of GRASP(G1), the latter can find 20

occasionally better solutions than those usually found 21

by the former. Another noticeable finding is the progres- 22

sive decrease of the percentages of GRASP+PR(G6) 23

and GRASP(G1) when execution time increases. 24

Fig. 4 shows box plots for two problem instances 25

with a termination criterion of 100ms: each figure de- 26

picts four populations, defined as the values of Ob jFunc 27

for the best solution obtained in the runs of an op- 28

timization technique. Thus each population has 30 29

samples. Results of GRASP+PR(G6) are labelled as 30

GRASP+PR, and those of GRASP(G1) as GRASP. 31

Specifically, for each population the boxplot shows: the 32

minimum sample represented as the lower horizontal 33

line segment, lower quartile (Q1) represented as the 34

lower limit of the box, median (Q2) segment dividing 35

the box, upper quartile (Q3) represented as the top of 36

the box, and largest sample represented as the upper 37

horizontal line segment. Samples considered outliers 38

are represented as circles or stars. The distribution of 39

the results obtained by GRASP+PR is the best in both 40

figures. The small variability of the results provided by 41

TS+SA is analysed in depth in (Parejo et al., 2013). 42

The improvements provided by our proposals are sig- 43

nificant not only in a statistical sense, but also in terms 44

of the actual QoS provided. As a motivating example, 45

the QoS of solutions provided by GRASP+PR(G6) for 46

problem instance C4 are 49.25% and 28% better on av- 47

erage than those provided by GAs and TS+SA respec- 48

tively. These improvements are noteworthy when trans- 49

lated into costs savings and execution time decreases. 50

11

4.4. Experiment #21

In order to ensure that the differences between our2

proposals and the previous approaches do not depend on3

the specific fitness function and problem instances used,4

we repeated the experiment using 11 additional problem5

instances (described in (Parejo et al., 2013)), and the6

objective function defined in (Canfora et al., 2005b):7

f min
Can f (χ) =

∑
q∈Q−

(wq · Uq(Qq(χ))∑
q∈Q+

(wq · Uq(Qq(χ))
+ wun f · D f (χ) (9)

The information of these additional problem in-8

stances are shown in table 8.

Table 8: Additional problem instances information
Problem
Name

Activities Abstract
Serv.

Candid.
Serv.

Global
Const.

Problem C0 41 33 64 0
Problem C1 46 29 84 1
Problem C2 40 32 279 0
Problem C3 46 27 78 0
Problem C4 78 52 459 0
Problem C5 64 48 94 2
Problem C6 12 8 63 0
Problem C7 82 51 450 2
Problem C8 58 35 136 1
Problem C9 61 35 170 4
Problem C10 29 22 42 5

9

The results obtained for this experiment are shown in10

table 9 using the same structure and notation as in ta-11

ble 6. GRASP+PR(G6) generates the best mean results12

for most problem instances. Specifically, for execution13

times of 500ms GRASP+PR(G6) provides the best av-14

erage results for 8 out of 11 problem instances. TS+SA15

provided the best mean results for problem C2. This fact16

confirms that for tightly constrained problem instances17

it can perform better than GA and the GRASP-based18

proposal. This result is coherent, since it prioritizes19

constraint satisfaction in the search process (Koa et al.,20

2008). GRASP provided the best mean results for two21

problem instances (C5 and C6).22

Table 10 shows the mean percentages of im-23

provements in a similar way as table 7. Again,24

GRASP+PR(G6) provided the highest percentages in25

general. The capability of GRASP(G1) for finding spo-26

radically the best results is confirmed by the results in27

table 10. Moreover, the decreasing trend of the percent-28

ages of GRASP+PR(G6) when execution time increases29

is also significant. A noticeable difference regarding ta- 1

ble 7 are the percentages of TS+SA. The performance of 2

this technique is much better in this experiment. Thus, 3

the performance of TS+SA is highly influenced by the 4

specific objective function used for modelling the global 5

utility. 6

Statistical tests confirmed that the differences in the 7

group of techniques were statistically significant in al- 8

most all cases. The only exception were the differences 9

between GRASP+PR(G6) and TS+SA for problem (C2) 10

and execution times of 50000ms. 11

Figure 4.4 shows two box plots depicting the results 12

of each technique for two different problem instances 13

with eq. 9 as objective function, and a termination cri- 14

terion of 100ms. Again, the distribution of GRASP+PR 15

is the best in both figures. 16

5. Threats to validity 17

In order to clearly outline the limitations of the ex- 18

perimental study, next we discuss internal and external 19

validity threats. 20

Internal validity. This refers to whether there is suf- 21

ficient evidence to support the conclusions and the 22

sources of bias that could compromise those conclu- 23

sions. In order to minimize the impact of external fac- 24

tors in our results, QoS-Gasp was executed 30 times per 25

problem instance to compute averages. Moreover, sta- 26

tistical tests were performed to ensure significance of 27

the differences identified between the results obtained 28

by the compared proposals. Finally, the experiments 29

were executed in a dedicated computer which provided 30

us with a stable experimental platform. 31

External validity. This is concerned with how the 32

experiments capture the objectives of the research 33

and the extent to which the conclusions drawn can be 34

generalized. This can be mainly divided into limitations 35

of the approach and generalizability of the conclusions. 36

Regarding the limitations, experiments showed no 37

significant improvements when comparing QoS-Gasp 38

with a simple GRASP for small problem instances and 39

short execution times. As stated in section 4.3.2, this 40

limitation is due to: (i) the capability of GRASP to 41

explore a significant amount of the search space, and 42

(ii) the overlapping of the paths explored by PR for 43

such small problem instances. 44

45

Regarding the generalizability of conclusions, two 46

different objective functions, and two different sets of 47

problem instances were used. Additionally the param- 48

eters and size were chosen from a survey of the most 49

12

Table 9: Means of obj. func. values for each algorithm and execution time in Experiment 2
Exec. Time 100 ms 1000 ms
Technique GA GRASP+PR (G6) GRASP+PR (G2) GRASP(G1) TS/SA GA GRASP+PR (G6) GRASP+PR (G2) GRASP (G1) TS/SA

Problem C0 20,3294 18,1494 19,0278 18,8089 19,4567 20,2537 18,1294 18,7945 18,3892 19,4567
Problem C1 17546,9250 16798,8826 16892,6761 16883,4022 18028,5566 17344,5197 16795,3229 16836,7681 16799,8261 18028,5566
Problem C2 77,4635 53,3737 69,3314 50,6206 47,2274 77,8725 49,1226 62,7276 50,6205 47,2274
Problem C3 365838,7379 354607,1630 357263,5720 357324,9570 381218,1130 366237,9430 353935,1220 355399,0430 353959,6700 381218,1130
Problem C4 4660,0503 2688,8626 4032,7248 2817,3613 2758,6429 4729,2815 2379,8780 3529,8844 2817,3613 2758,6429
Problem C5 43077,7130 40087,5854 41927,6160 39712,0757 39804,2874 43157,9618 40039,7574 40893,9150 39712,0757 39804,2874
Problem C6 504,0981 353,8804 367,8332 347,8916 348,1642 499,4118 354,9664 368,2569 344,4944 348,1642
Problem C7 29445,2042 32899,8809 25257,0317 19163,0773 20070,3702 28586,1747 15381,4457 19556,9182 18875,8913 20070,3702
Problem C8 623,4833 590,7976 604,8967 605,9958 653,1621 622,9089 556,9008 581,6285 574,9983 653,1621
Problem C9 141414,7664 129780,8750 135381,2160 133877,3010 144955,3870 143082,5650 125785,1540 129145,8090 128143,6330 144955,3870

Problem C10 21682,8585 20345,8959 20448,2644 20392,9211 26421,6496 21699,4216 20183,3250 20295,5048 20228,4809 26421,6496
Exec. Time 500 ms 50000 ms
Technique GA GRASP+PR (G6) GRASP+PR (G2) GRASP(G1) TS/SA GA GRASP+PR (G6) GRASP+PR (G2) GRASP (G1) TS/SA

Problem C0 20,2267 18,1300 18,7870 18,7038 19,4567 20,5018 18,1271 18,7918 18,2799 19,4567
Problem C1 17538,6257 16793,7861 16853,8274 16814,3450 18028,5566 17444,8214 16789,8868 16841,7142 16789,4079 18028,5566
Problem C2 77,2953 50,7654 64,8281 50,6206 47,2274 79,1106 47,3028 63,4201 50,6206 47,227387
Problem C3 371234,6973 354238,9660 354854,3030 354498,9940 381218,1130 368806,7140 353530,0840 354685,5790 353517,1300 381218,1130
Problem C4 4717,7005 2522,7860 3846,3891 2817,3613 2758,6429 4591,2618 2474,0530 3550,5512 2817,3613 2758,6429
Problem C5 43167,4373 40087,5854 40992,9427 39712,0757 39804,2874 43269,8455 40228,1459 40794,3524 39712,0757 39804,2874
Problem C6 512,1532 352,3514 368,4614 347,2431 348,1642 513,9603 360,8437 377,2588 340,9694 348,1642
Problem C7 27976,6404 16228,1583 22018,1279 19156,5452 20070,3702 28453,8342 14439,0012 19615,3699 18326,1133 20070,3702
Problem C8 621,2869 565,9943 593,6641 591,7945 653,1621 623,6269 557,2021 584,9948 568,9675 653,1621
Problem C9 143803,8980 126129,2150 131166,6470 130685,0550 144955,3870 142111,7900 125284,279 129281,0100 127287,3410 144955,3870
Prolem C10 21803,1250 20189,7876 20295,9563 20295,1878 26421,6496 21672,8291 20204,3569 20282,9220 20213,8838 26421,6496

Table 10: Mean percentage of solutions improving any obtained by other technique (Exp. #2)
Exec. Time 200 ms 1000 ms

GA GRASP+PR1(G6) GRASP+PR(G2) GRASP(G1) TS+SA GA GRASP+PR1(G6) GRASP+PR(G2) GRASP(G1) TS+SA
GA 0,00% 0,00% 0,00% 41,21% GA 0,61% 0,61% 0,61% 35,15%

GRASP+PR(G6) 94,85% 59,09% 13,94% 76,97% GRASP+PR(G6) 75,45% 59,39% 2,42% 72,12%
GRASP+PR(G2) 62,73% 0,00% 1,21% 62,12% GRASP+PR(G2) 40,91% 0,30% 2,73% 54,55%

GRASP(G1) 100,00% 7,88% 62,42% 90,91% GRASP(G1) 75,45% 0,61% 57,88% 70,00%
TS+SA 45,15% 9,09% 26,97% 9,09% TS+SA 36,06% 18,18% 27,27% 27,27%

Exec. Time 500 ms 50000 ms
GA GRASP+PR1(G6) GRASP+PR(G2) GRASP(G1) TS+SA GA GRASP+PR1(G6) GRASP+PR(G2) GRASP(G1) TS+SA

GA 0,30% 0,30% 0,30% 42,73% GA 0,91% 0,91% 0,91% 35,45%
GRASP+PR(G6) 88,79% 74,24% 8,18% 73,33% GRASP+PR(G6) 71,52% 56,97% 8,48% 66,97%
GRASP+PR(G2) 61,21% 0,00% 1,21% 56,06% GRASP+PR(G2) 54,24% 0,00% 1,82% 48,79%

GRASP(G1) 90,61% 3,33% 73,94% 74,55% GRASP(G1) 72,42% 0,00% 56,06% 65,15%
TS+SA 36,06% 18,18% 36,36% 18,18% TS+SA 26,97% 18,18% 18,48% 18,18%

(a) f min
Can f (eq. 9) and problem instance C0 (b) f min

Can f (eq. 9) and problem instance C9

Figure 5: Box plots showing the results of each technique in Experiment #2.

13

common values used in the literature (cf. tables of prob-1

lem instance parameters in (Parejo et al., 2013) and2

(Strunk, 2010)). The use of bigger problem instances3

could introduce bias in the results, since it fosters the4

performance of techniques that restrict the area of the5

search space explored (such as GRASP). Finally, con-6

clusions regarding the performance of QoS-Gasp are not7

generalizable to scenarios with longer exeuctions times,8

pointing out a direction of future work.9

6. Related Work10

QoS-aware service composition brings the dynamic11

and loosely coupled service selection paradigm of ser-12

vice orientation to its maximum expression. Apart from13

its implementation in working service oriented architec-14

tures (Paik et al., 2012), this problem provides an ex-15

cellent application scenario for different methods and16

techniques, ranging from pure optimization techniques17

to artificial intelligence systems. Two kinds of algo-18

rithms have been proposed to solve this problem in lit-19

erature (Zeng et al., 2004; Ardagna and Pernici, 2005):20

global and local selection algorithms. Local selection21

algorithms choose the best candidate for each isolated22

task, without taking into account the aggregated QoS of23

the composition. Local selection algorithms have two24

main drawbacks: (i) solutions obtained are sub-optimal,25

regarding to the overall quality of the CWS; and (ii) they26

do not support global or interdependence constraints.27

Global approaches try to optimize the whole set of ser-28

vices used in the composition taking into account the29

structure of the composition, overcoming those draw-30

backs. QoS-Gasp is a global selection algorithm.31

Hybrid algorithms that combines local and global se-32

lection algorithms has also been proposed (Alrifai and33

Risse, 2009) and (Alrifai et al., 2012). The types of34

global selection algorithms for solving the QoS-aware35

web service composition problem are:36

Mathematical programming techniques, such as37

Integer (Zeng et al., 2004) (Aggarwal et al., 2004), Lin-38

ear (Cardellini et al., 2007) or Mixed (I/L) Program-39

ming techniques (Ardagna and Pernici, 2007) (Qu et al.,40

2006). These kind of approaches model the problem41

using integer and/or real variables and a set of con-42

straints. Although these approaches provide the global43

optimum of the problem, and their performance is better44

for small instances, genetic algorithms outperform these45

techniques for problem instances with an average num-46

ber of candidates per service bigger than 17(Canfora47

et al., 2005a). Moreover, those mathematical program-48

ming techniques require the linearity of constraints and49

optimization criterion. For instance, such techniques 1

could not optimize fuzzy utility functions (Wang, 2009). 2

Heuristic and Metaheuristic techniques. In (Jaeger 3

et al., 2005) and (Comes et al., 2010) some specific 4

heuristics are developed to solve the QoSWSC prob- 5

lem. Many to solve this problem are based on evolu- 6

tionary algorithms, using genetic algorithms (Canfora 7

et al., 2005b) and more recently adaptive genetic pro- 8

gramming (Yu et al., 2013). Most those approaches 9

incorporate variants to the work presented in (Canfora 10

et al., 2005a), modifying the encoding scheme, the ob- 11

jective function or QoS model (Gao et al., 2007) (Su 12

et al., 2007) (Wang et al., 2007), or using population di- 13

versity handling techniques (Zhang et al., 2006) (Zhang 14

et al., 2007). In (Claro et al., 2005) and (Wada et al., 15

2012) a multi-objective evolutionary approach is used to 16

identify a set of optimal solutions according to different 17

quality properties without generating a global ranking. 18

In (Penta and Troiano, 2005) fuzzy logic is used to relax 19

the QoS constraints that are not met and find alterna- 20

tive solutions. Using SA was proposed in (Wang et al., 21

2007), but no experimental results were provided. In 22

(Zhao et al., 2013) a negative selection algorithm, i.e. a 23

variant of artificial immune system, is applied to solve 24

this problem. In (do Prado et al., 2013) the efficiency 25

of several variants of genetic algorithms and exhaustive 26

search are compared. 27

Classical strategies & other approaches. Classi- 28

cal problem solving strategies such as branch & bound 29

(Liu et al., 2012), and divide & conquer (Qi et al., 2013) 30

have been adapted to solve this problem recently. In 31

(Zou et al., 2012) numeric temporal planning is applied 32

to generate QoS aware web service compositions (in- 33

cluding both the QoS-aware binding of the tasks and 34

the composition structure). 35

Regarding problem variants, in (Leitner et al., 2011) 36

a related problem that uses cost as the QoS property but 37

takes into account service compositions with penalty 38

clauses is solved using HC, GA, memetic algorithms 39

and GRASP. This same problem is solved in (Leitner 40

et al., 2013), adding a branch and bound algorithm to 41

the comparative. 42

Our results are in accordance with (Leitner et al., 43

2011) and (Leitner et al., 2013), where GRASP pro- 44

vides the best execution time in general, not only for the 45

cost-based optimization with penalties. We show that 46

GRASP outperforms simple genetic algorithms and hy- 47

brid tabu search with simulated annealing for the gen- 48

eral QoS-aware composition problem. Furthermore, we 49

show that the hybridization of GRASP with PR provides 50

significant QoS improvements. 51

Other variants of the problem modify the set of QoS 52

14

properties or the definition of the objective function pre-1

sented in this paper comprise: the inclusion of risk2

analysis (Ma and Yeh, 2012), and robustness (Wagner3

et al., 2012) in the objective function, the use of goal4

oriented requirements (Oster et al., 2012), or the in-5

clusion of network-specific QoS attributes (Klein et al.,6

2012) (Klein et al., 2013). Moreover, in (Ramacher and7

Mönch, 2012) the uncertainty of the values of the QoS8

attributes is taken into account, and in (Ma et al., 2013)9

their dependency on the parameters of the service invo-10

cation is addressed.11

Finally, regarding the application contexts of the12

QoS-aware web service composition, it has recently ap-13

plied to: optimize network latency in Cloud environ-14

ments (Klein et al., 2012); improve the robustness and15

flexibility of systems using data from dynamic sensor16

networks (Geyik et al., 2013) (Efstathiou et al., 2013);17

and to optimize the allocation of resources in situational18

computing applications (Sandionigi et al., 2013).19

7. Conclusion20

In this paper, a novel algorithm named QoS-Gasp21

for solving the QoSWSC Problem has been proposed.22

Experiments show that QoS-Gasp outperforms previ-23

ous metaheuristic proposals in rebinding scenarios. Our24

proposal improves the QoS of bindings found, implying25

cost savings, increased availability and reductions of ex-26

ecution times. As future work we plan to compare QoS-27

Gasp with IP/MP proposals (Zeng et al., 2004; Ardagna28

and Pernici, 2007) for instances with linear aggregation29

functions, and to use WS-Agreement for expressing the30

QoS guarantees and constraints. Additionally, we plan31

to compare the efficiency QoS-Gasp and previous pro-32

posals when using datasets based on real web services33

and QoS measurements, such as the QWS dataset (Al-34

Masri and Mahmoud, 2008).35

Acknowledgment and Materials36

This work was partially supported by the EU Com-37

mission (FEDER), the Spanish and the Andalusian38

R&D&I programmes grants SETI (TIN2009-07366),39

TAPAS (TIN2012-32273), COPAS (P12-TIC-1867)40

and THEOS (TIC-5906). All the source code, raw41

data, and statistical analysis are available at http:42

//wp.me/P2WIFP-v.43

References44

Aggarwal, R., Verma, K., Miller, J., Milnor, W., 2004. Constraint45

driven web service composition in meteor-s, in: SCC ’04: Proc.46

of the 2004 IEEE Int. Conf. on Services Computing, IEEE Comp. 1

Society. pp. 23–30. 2

Al-Masri, E., Mahmoud, Q.H., 2008. Investigating web services on 3

the world wide web, in: Proceedings of the 17th International Con- 4

ference on World Wide Web, ACM, New York, NY, USA. pp. 795– 5

804. URL: http://doi.acm.org/10.1145/1367497. 6

1367605, doi:10.1145/1367497.1367605. 7

Alrifai, M., Risse, T., 2009. Combining global optimization with local 8

selection for efficient qos-aware service composition, in: In Inter- 9

national World Wide Web Conference, ACM. pp. 881–890. 10

Alrifai, M., Risse, T., Nejdl, W., 2012. A hybrid approach 11

for efficient web service composition with end-to-end qos con- 12

straints. ACM Trans. Web 6, 7:1–7:31. URL: http: 13

//doi.acm.org/10.1145/2180861.2180864, doi:10. 14

1145/2180861.2180864. 15

Ardagna, D., Pernici, B., 2005. Global and local qos guarantee in web 16

service selection, in: BPM Workshops, pp. 32–46. 17

Ardagna, D., Pernici, B., 2007. Adaptive service composition in flex- 18

ible processes. Software Engineering, IEEE Transactions on 33, 19

369–384. 20

Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R., 21

2006. Heuristics for qos-aware web service composition. ICWS 22

’06 , 72–82. 23

Bonatti, P.A., Festa, P., 2005. On optimal service selection, in: WWW 24

’05: 14th international conference on World Wide Web, pp. 530– 25

538. 26

Canfora, G., Penta, M.D., Esposito, R., Villani, M., 2005a. Qos- 27

aware replanning of composite web services. Web Services, 2005. 28

ICWS 2005. Proceedings. 2005 IEEE International Conference on 29

1, 121–129. doi:10.1109/ICWS.2005.96. 30

Canfora, G., Penta, M.D., Esposito, R., Villani, M.L., 2005b. An 31

approach for qos-aware service composition based on genetic al- 32

gorithms, in: GECCO ’05, pp. 1069–1075. 33

Canfora, G., Penta, M.D., Esposito, R., Villani, M.L., 2008. A frame- 34

work for qos-aware binding and re-binding of composite web ser- 35

vices. Journal of Systems and Software 81, 1754–1769. 36

Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L., 2007. Effi- 37

cient provisioning of service level agreements for service oriented 38

applications, in: IW-SOSWE07, pp. 29–35. 39

Claro, D., Albers, P., Hao, J., 2005. Selecting web services for optimal 40

composition, in: ICWS05. 41

Comes, D., Baraki, H., Reichle, R., Zapf, M., Geihs, K., 2010. Heuris- 42

tic approaches for qos-based service selection, in: ICSOC’10, 43

Springer. 44

Dreo, J., Petrowski, A., Taillard, E., 2003. Metaheuristics for Hard 45

Optimization. Springer. 46

Efstathiou, D., Mcburney, P., Zschaler, S., Bourcier, J., 2013. Flexi- 47

ble QoS-Aware Service Composition in Highly Heterogeneous and 48

Dynamic Service-Based Systems, in: WiMob - The 9th IEEE In- 49

ternational Conference on Wireless and Mobile Computing, Net- 50

working and Communications - 2013, Lyon, France. URL: http: 51

//hal.inria.fr/hal-00859891. 52

Fernandez, P., Resinas, M., Corchuelo, R., 2006. Towards an auto- 53

matic service trading. Upgrade 7, 26–29. 54

Festa, P., Mauricio, Resende, G.C., 2002. Grasp: An annotated bib- 55

liography, in: Essays and Surveys in Metaheuristics, Kluwer Aca- 56

demic Publishers. pp. 325–367. 57

Gao, C., Cai, M., Chen, H., 2007. Qos-driven global optimization of 58

services selection supporting services flow re-planning, in: Adv. 59

in Web, Network Technologies, and Information Management. 60

Springer. LNCS, pp. 516–521. 61

Gendreau, M., Potvin, J., 2010. Handbook of metaheuristics. volume 62

146. Springer. 63

Geyik, S.C., Szymanski, B.K., Zerfos, P., 2013. Robust dynamic ser- 64

vice composition in sensor networks. Services Computing, IEEE 65

15

Transactions on 6, 560–572. doi:10.1109/TSC.2012.26.1

Jaeger, M.C., Mühl, G., Golze, S., 2005. Qos-aware composition of2

web services: An evaluation of selection algorithms, in: On the3

Move to Meaningful Internet Systems. Springer. LNCS, pp. 646–4

661.5

Klein, A., Fuyuki, I., Honiden, S., 2013. Sanga: A self-adaptive6

network-aware approach to service composition. Services Com-7

puting, IEEE Transactions on PP, 1–1. doi:10.1109/TSC.8

2013.2.9

Klein, A., Ishikawa, F., Honiden, S., 2012. Towards network-10

aware service composition in the cloud, in: Proceedings11

of the 21st International Conference on World Wide Web,12

ACM, New York, NY, USA. pp. 959–968. URL: http:13

//doi.acm.org/10.1145/2187836.2187965, doi:10.14

1145/2187836.2187965.15

Koa, J.M., Kima, C.O., Kwonb, I.H., 2008. Quality-of-service ori-16

ented web service composition algorithm and planning architec-17

ture. Journal of Systems and Software 81, 2079–2090.18

Laguna, M., Martı́, R., 1999. Grasp and path relinking for 2-layer19

straight line crossing minimization. INFORMS Journal on Com-20

puting 11, 44–52.21

Leitner, P., Hummer, W., Dustdar, S., 2011. Cost-based opti-22

mization of service compositions. IEEE Tran. on Serv. Comp.23

99. doi:http://doi.ieeecomputersociety.org/10.24

1109/TSC.2011.53.25

Leitner, P., Hummer, W., Dustdar, S., 2013. Cost-based optimization26

of service compositions. Services Computing, IEEE Transactions27

on 6, 239–251. doi:10.1109/TSC.2011.53.28

Liu, M., Wang, M., Shen, W., Luo, N., Yan, J., 2012. A quality of29

service (qos)-aware execution plan selection approach for a service30

composition process. Future Gener. Comput. Syst. 28, 1080–1089.31

URL: http://dx.doi.org/10.1016/j.future.2011.32

08.017, doi:10.1016/j.future.2011.08.017.33

Ma, H., Bastani, F., Yen, I.L., Mei, H., 2013. Qos-driven service34

composition with reconfigurable services. Services Computing,35

IEEE Transactions on 6, 20–34. doi:10.1109/TSC.2011.21.36

Ma, S.P., Yeh, C.L., 2012. Service composition manage-37

ment using risk analysis and tracking, in: Liu, C., Ludwig,38

H., Toumani, F., Yu, Q. (Eds.), Service-Oriented Computing.39

Springer Berlin Heidelberg. volume 7636 of Lecture Notes in40

Computer Science, pp. 533–540. URL: http://dx.doi.41

org/10.1007/978-3-642-34321-6_37, doi:10.1007/42

978-3-642-34321-6_37.43

Oster, Z., Ali, S., Santhanam, G., Basu, S., Roop, P., 2012. A service44

composition framework based on goal-oriented requirements en-45

gineering, model checking, and qualitative preference analysis, in:46

Liu, C., Ludwig, H., Toumani, F., Yu, Q. (Eds.), Service-Oriented47

Computing. Springer Berlin Heidelberg. volume 7636 of Lecture48

Notes in Computer Science, pp. 283–297. URL: http://dx.49

doi.org/10.1007/978-3-642-34321-6_19, doi:10.50

1007/978-3-642-34321-6_19.51

Paik, I., Chen, W., Huhns, M., 2012. A scalable architecture for au-52

tomatic service composition. Services Computing, IEEE Transac-53

tions on PP, 1–1. doi:10.1109/TSC.2012.33.54

Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., 2007.55

Service-oriented computing state of the art and research chal-56

lenges. IEEE Computer 40, 38–45.57

Parejo, J.A., Fernández, P., Ruiz-Cortés, A., 2013. On parameter se-58

lection and problem instances generation for QoS-aware binding59

using GRASP and Path-Relinking. Research Report 2011-4. ET-60

SII. Av. Reina Mercedes s/n. 41012. Sevilla. Spain.61

Parejo, J.A., Racero, J., Guerrero, F., Kwok, T., Smith, K., 2003.62

Fom: A framework for metaheuristic optimization, in: ICCS’03,63

pp. 886–895.64

Parejo, J.A., Ruiz-Cortés, A., Lozano, S., Fernandez, P., 2012. Meta-65

heuristic optimization frameworks: a survey and benchmarking. 1

Soft Computing 16, 527–561. 2

Penta, M.D., Troiano, L., 2005. Using fuzzy logic to relax constraints 3

in ga-based service composition, in: GECCO. 4

do Prado, P.F., Nakamura, L.H.V., Estrella, J.C., Santana, M.J., San- 5

tana, R.H.C., 2013. A performance evaluation study for qos-aware 6

web services composition using heuristic algorithms, in: ICDS 7

2013, The Seventh International Conference on Digital Society, 8

pp. 53–58. 9

Qi, L., Ni, J., Ma, C., Luo, Y., 2013. A decomposition-based method 10

for qos-aware web service composition with large-scale composi- 11

tion structure, in: SERVICE COMPUTATION 2013, Proceeding 12

of the Fifth International Conferences on Advanced Service Com- 13

puting, pp. 81–86. 14

Qu, Y., Lin, C., Wang, Y., Shan, Z., 2006. Qos-aware composite 15

service selection in grids. GCC 2006 , 458–465doi:10.1109/ 16

GCC.2006.77. 17

Ramacher, R., Mönch, L., 2012. Dynamic service selection with 18

end-to-end constrained uncertain qos attributes, in: Liu, C., Lud- 19

wig, H., Toumani, F., Yu, Q. (Eds.), Service-Oriented Comput- 20

ing. Springer Berlin Heidelberg. volume 7636 of Lecture Notes 21

in Computer Science, pp. 237–251. URL: http://dx.doi. 22

org/10.1007/978-3-642-34321-6_16, doi:10.1007/ 23

978-3-642-34321-6_16. 24

Resende, M.G.C., 2009. Greedy randomized adaptive search proce- 25

dures, in: Encyclopedia of Optimization, pp. 1460–1469. 26

Sandionigi, C., Ardagna, D., Cugola, G., Ghezzi, C., 2013. Optimiz- 27

ing service selection and allocation in situational computing appli- 28

cations. Services Computing, IEEE Transactions on 6, 414–428. 29

doi:10.1109/TSC.2012.18. 30

Strunk, A., 2010. Qos-aware service composition: A survey, in: Web 31

Services (ECOWS), 2010 IEEE 8th European Conference on, pp. 32

67 –74. 33

Su, S., Zhang, C., Chen, J., 2007. An improved genetic algorithm for 34

web services selection, in: Distributed Applications and Interoper- 35

able Systems. Springer. volume 4531 of LNCS, pp. 284–295. 36

Wada, H., Suzuki, J., Yamano, Y., Oba, K., 2012. E3: A mul- 37

tiobjective optimization framework for sla-aware service compo- 38

sition. Services Computing, IEEE Transactions on 5, 358–372. 39

doi:10.1109/TSC.2011.6. 40

Wagner, F., Kloepper, B., Ishikawa, F., Honiden, S., 2012. To- 41

wards robust service compositions in the context of functionally 42

diverse services, in: Proceedings of the 21st International Confer- 43

ence on World Wide Web, ACM, New York, NY, USA. pp. 969– 44

978. URL: http://doi.acm.org/10.1145/2187836. 45

2187966, doi:10.1145/2187836.2187966. 46

Wang, H., Tong, P., Thompson, P., Li, Y., 2007. Qos-based web ser- 47

vices selection. icebe 0, 631–637. 48

Wang, P., 2009. Qos-aware web services selection with intuitionistic 49

fuzzy set under consumer’s vague perception. Expert Systems with 50

Applications 36, 4460 – 4466. 51

Yu, Y., Ma, H., Zhang, M., 2013. An adaptive genetic programming 52

approach to qos-aware web services composition, in: Evolution- 53

ary Computation (CEC), 2013 IEEE Congress on, pp. 1740–1747. 54

doi:10.1109/CEC.2013.6557771. 55

Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnam, J., Chang, 56

H., 2004. Qos-aware middleware for web services composition. 57

IEEE Tran. Sof. Eng 30, 311–327. 58

Zhang, C., Su, S., Chen, J., 2006. Efficient population diversity han- 59

dling genetic algorithm for qos-aware web services selection, in: 60

Computational Science. Springer. volume 3994 of LNCS, pp. 104– 61

111. 62

Zhang, C., Su, S., Chen, J., 2007. Diga: Population diversity handling 63

genetic algorithm for qos-aware web services selection. Comput. 64

Commun. 30, 1082–1090. 65

16

Zhao, X., Wen, Z., Li, X., 2013. Qos-aware web ser-1

vice selection with negative selection algorithm. Knowl-2

edge and Information Systems , 1–25URL: http:3

//dx.doi.org/10.1007/s10115-013-0642-x,4

doi:10.1007/s10115-013-0642-x.5

Zheng, H., Zhao, W., Yang, J., Bouguettaya, A., 2012. Qos analysis6

for web service compositions with complex structures. Services7

Computing, IEEE Transactions on PP, 1. doi:10.1109/TSC.8

2012.7.9

Zou, G., Lu, Q., Chen, Y., Huang, R., Xu, Y., Xiang, Y., 2012. Qos-10

aware dynamic composition of web services using numerical tem-11

poral planning. Services Computing, IEEE Transactions on PP,12

1–1. doi:10.1109/TSC.2012.27.13

17

