Expert Systems with Applications 41 (2014) 6934-6944

=

Expert
Systems

with
Applications
An International
Journal

Contents lists available at ScienceDirect

Expert Systems with Applications

i
5,

journal homepage: www.elsevier.com/locate/eswa

Query join ordering optimization with evolutionary multi-agent systems

@ CrossMark

Frederico A.C.A. Gongalves ¢, Frederico G. Guimaraes **, Marcone].F. Souza®

2 Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
b Department of Computer Science, Federal University of Ouro Preto, Ouro Preto, Brazil
IT Center, Federal University of Ouro Preto, Ouro Preto, Brazil

ARTICLE INFO ABSTRACT

Article history:
Available online 17 May 2014

This work presents an evolutionary multi-agent system applied to the query optimization phase of Rela-
tional Database Management Systems (RDBMS) in a non-distributed environment. The query optimiza-
tion phase deals with a known problem called query join ordering, which has a direct impact on the
performance of such systems. The proposed optimizer was programmed in the optimization core of
the H2 Database Engine. The experimental section was designed according to a factorial design of fixed
effects and the analysis based on the Permutations Test for an Analysis of Variance Design. The evaluation
methodology is based on synthetic benchmarks and the tests are divided into three different experi-
ments: calibration of the algorithm, validation with an exhaustive method and a general comparison with
different database systems, namely Apache Derby, HSQLDB and PostgreSQL. The results show that the
proposed evolutionary multi-agent system was able to generate solutions associated with lower cost

Keywords:

Join ordering problem
Query optimization
Multi-agent system
Evolutionary algorithm
Heuristics

plans and faster execution times in the majority of the cases.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Database Management Systems (DBMS) are very complex soft-
ware systems designed to define, manipulate, retrieve and manage
data stored in a database. DBMS have an essential role in the infor-
mation based society and represent critical components of busi-
ness organization. Relational Database Management Systems
(RDBMS) are those based on the relational model, which is the
focus of this work. The information recovery depends on a data-
base query and, as in Fig. 1, this query can be formed by many rela-
tions, which can be filtered and/or connected by different
relational operators (Garcia-Molina, Ullman, & Widom, 2008) such
as: selection (0 condition)), PTOjeCtion (7riauribuces)), intersection (),
union (|), set difference (\), join (><iconditiony) and others.

When processing a query, many steps can be executed by the
RDBMS (Garcia-Molina et al., 2008; Elmasri & Navathe, 2010) until
the delivery of a result: (i) scanning/parsing/validation, (ii) query
optimization, (iii) query execution and (iv) result. The query opti-
mization step, focus of this work, has a very important optimiza-
tion task, which is ordering the relational operations of the
query. Specifically in the case of the join operations, the most
time-consuming operation in query processing (Elmasri &

* Corresponding author. Tel.: +55 (31) 3409 3419.
E-mail addresses: fred@nti.ufop.br (F.A.C.A. Gongalves), fredericoguimaraes@
ufmg.br (F.G. Guimardes), marcone@iceb.ufop.br (M.J.F. Souza).

http://dx.doi.org/10.1016/j.eswa.2014.05.005
0957-4174/© 2014 Elsevier Ltd. All rights reserved.

Navathe, 2010), the optimization task can be viewed as a combina-
torial optimization problem commonly known as join ordering
problem. The problem has similarities to the Traveling Salesman
Problem (TSP) and according to Ibaraki and Kameda (1984), it
belongs to the NP-Complete class. It is worth noting that after
the optimization phase, the executor component receives a plan
with all the instructions to its execution. Execution plans with rela-
tions ordered and accessed in a way that can cause high I/O and
CPU cycles (high cost solutions) will impact directly in the query
response time and affect the entire system. Besides, some costly
plans can make the query execution impractical, because of their
high execution times. Therefore, the use of techniques capable of
finding good solutions in lower processing time is extremely
important in a RDBMS. For instance, in one case reported in our
experiments (Section 4) the proposed optimizer (Section 3.2) was
capable to find a solution with a lower estimated cost, which
allowed the plan to be executed almost 23% faster than the solu-
tion provided by the official optimizer used in H2 in the same
experiment.

In this paper we propose an approach to query optimization
that can be classified as a non-exhaustive one. We describe an
evolutionary multi-agent system (EMAS) (see Section 3.1) for join
ordering optimization running in the core of a real RDBMS named
H2' in a non-distributed environment. The main feature of the

! http://www.h2database.com/.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.05.005&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.05.005
mailto:fred@nti.ufop.br
mailto:fredericoguimaraes@ufmg.br
mailto:fredericoguimaraes@ufmg.br
mailto:marcone@iceb.ufop.br
http://www.h2database.com/
http://dx.doi.org/10.1016/j.eswa.2014.05.005
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944 6935

o(Relation1) | () | o(Relation2) | U |o(Relation3) | X | x(Relation4)

QUERY

Fig. 1. Example query.

algorithm is having a team of intelligent agents working together in
a cooperative or competitive way to achieve the solution of the prob-
lem. The agents of the system are able to interact and evolve in par-
allel. We extend initial ideas presented in Gongalves, Guimardes, and
Souza (2013) by including the following contributions: improve-
ments in the algorithm operators; parallel implementation of the
local search heuristics; evaluation of the parameters of the algorithm
in the calibration phase; extended experiments with more realistic
data; and comparison of the proposed algorithm with the official
query planner in H2 and other DBMS, namely HSQLDB, Derby and
PostgreSQL.

We highlight as the main contribution of this paper, the devel-
opment of a technique not yet explored in the join ordering optimi-
zation field. Such method solves the join ordering problem in a
parallel way, and as will be reviewed in Section 2, most of the pro-
posed algorithms in the literature process the related problem
sequentially. Still regarding the proposed algorithm, a new cross-
over method can be highlighted. The experiment design is vali-
dated with a real Database Management System, and
consequently, a real cost model. Finally, we emphasize a more real-
istic evaluation methodology of the algorithms.

The paper is organized as follows. Section 2 discusses in more
detail the query optimization problem and some methodologies
applied to solve it. The proposed optimizer is detailed in Section
3. The evaluation methodology is introduced in Section 4. The com-
putational experiments and the conclusions/future work are pre-
sented in Sections 5 and 6, respectively.

2. Query optimization problem

The optimization problem of this work consists in defining the
best order of execution of the join operations among the relations
specified in the query to be processed. According to loannidis
(1996), the solution space can be divided into two modules: the
algebraic space and the space of structures and methods. The alge-
braic space is the focus of the discussion in this section, because
refers to the execution order of the relational operations consid-
ered. The space of structures and methods, on the other hand, is
related to the available methods for relational operators in the
RDBMS (more information about these methods can be found in
Garcia-Molina et al. (2008) and Elmasri & Navathe (2010)).

The final result of the optimizer is a plan with all the necessary
instructions to the query execution. Besides the operations order, a
query can be represented by many different shapes. Assume that,
for example, a join operator for 4 relations (multi-way join) is avail-
able and then a query with 4 relations could be expressed by only
one join operation. However, in practice, the join operation is bin-
ary (two-way join) because the combinations for multi-way joins
grow very rapidly (Elmasri & Navathe, 2010) and there are mature
and proven efficient implementations for binary join in the litera-
ture. A representation commonly used by RDBMS is called left-
deep-tree (see Fig. 2). This representation has only relations at
the leaves and the internal nodes are relational operations. Due
to this representation, the join operation is treated as binary (join

Fig. 2. Left-deep tree.

two tables only). Even with these restrictions, the number of pos-
sible solutions remains high - for a query with N + 1 relations the
number of solutions is given by (213]\])N!. Further information

about the join ordering problem can be found in Ibaraki and
Kameda (1984), Swami and Gupta (1988), loannidis (1996) and
Steinbrunn, Moerkotte, and Kemper (1997).

It is worth noting that the cost of a solution is not given neces-
sarily by the actual cost of executing the query, but instead, can be
given by a cost function F that estimates the real cost of the solu-
tion. The cost estimation can use many metrics, for instance: 1/0,
CPU and Network. The optimizer relies on the RDBMS for the task
of estimating the cost of the solution. Therefore, in the optimiza-
tion process, this function is abstracted and treated as a black
box, just receiving a candidate solution and returning its (esti-
mated) cost. Information about the cost model of relational opera-
tions are provided by Garcia-Molina et al. (2008) and Elmasri and
Navathe (2010).

Listing 1 presents a practical example with a query that returns
all marks from computer science students.

Two join operations can be extracted from the previous query:
J, = {student >« marks} and J, = {student < dept}. Besides, two
valid solutions can be identified in this simple example:
Si=1{J1,J5} and S; = {J,,J;}, one with a lower cost than the other.
In practice, the problem can have a huge combination of possible
solutions, preventing the use of exact methods or exhaustive
approaches. Nonetheless, non-exhaustive algorithms fit well in
these situations.

Given the complexity of the problem, several studies were pre-
sented for non-distributed environments along the years since the
early days of relational databases in the 1970s (Codd, 1970). The
seminal work is presented by Selinger, Astrahan, Chamberlin,
Lorie, and Price (1979), advancing an exhaustive method based
on dynamic programming (DP) with a time complexity O(N!),
where N stands for the number of relations in the query. [baraki
and Kameda (1984) presented two algorithms, named A and B,
with a time complexity O(N*) and O(N*log N), respectively. An
extension of Algorithm B named KBZ algorithm with time complex-
ity O(N?) is presented by Krishnamurthy, Boral, and Zaniolo (1986).
A simulated annealing (SA) version for the current problem is
presented in loannidis and Wong (1987). Many methods are
compared in Swami and Gupta (1988): Perturbation Walk, Quasi-
random Sampling, Iterated Improvement (II), Sequence Heuristic
and SA. Additionally, in Swami and Gupta (1988), the authors
created a new evaluation methodology to check the heuristics,

SELECT name, disc, mark FROM student ,
marks, dept WHERE id student=id marks
AND dpt student=id dept AND id dept=’
DECOM’

Listing 1. Example - query SQL.

6936 F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944

considering cardinality, selectivity of the join predicates, distinct
values and indexes. Based on the methods II and SA, an algorithm
called 2P0 has been proposed in loannidis and Kang (1990), which
combines the two techniques mentioned. A genetic algorithm (GA)
applied to the join ordering problem is presented in Bennett, Ferris,
and loannidis (1991) and compared against the DP (Selinger et al.,
1979). The authors in Swami and lyer (1993) proposed an exten-
sion of the algorithm (AB) with some improvements and a time
complexity O(N*). The meta-heuristic Tabu Search (TS) (Glover &
Laguna, 1997) is explored for this problem in Matysiak (1995).
An algorithm named blitzsplit is presented by Vance and Maier
(1996). Another comparison between many algorithms is pre-
sented in Steinbrunn et al. (1997). SA and GA algorithms were
applied again in Lee, sheng Shih, and huei Chen (2001) and Dong
and Liang (2007), respectively. In the work by Guttoski, Sunye,
and Silva (2007), an implementation of the kruskal algorithm is
described. A parallel based DP algorithm is discussed in Han,
Kwak, Lee, Lohman, and Markl (2008). Many methods in the liter-
ature are reviewed by Lange (2010) in his Master thesis.

More recently, the GPU technology in database systems was
addressed by Heimel and Markl (2012) and Heimel (2013). They
discuss about some initial ideas for the design of a GPU-assisted
query optimizer, with plans to implement a GPU-accelerated ver-
sion of the DP algorithm (Selinger et al., 1979). The generation
and use of hybrid query plans, i.e., the optimization and execution
of queries with plans that mix the use of CPU and GPU processors is
discussed in Bref3, Schallehn, and Geist (2013). Regarding distrib-
uted databases, the authors in Seving and Cosar (2011) have
proposed a new GA version (NGA) and compared it against a
previous GA method (Rho & March, 1997), exhaustive and random
algorithms. According to the authors, the NGA was capable to find
optimal results in 80% of cases and improved the results over pre-
vious GA in 50%. A review about some algorithms applied to query
optimization in distributed database systems can be found in
Tewari (2013). Lastly, in Golshanara, Rouhani Rankoohi, and
Shah-Hosseini (2014), an ant-colony optimizer (ACO) (Dorigo,
Maniezzo, & Colorni, 1996) is proposed to order the join operations
of an environment with the data replicated across multiple data-
base sites. The ACO is compared with other algorithms, among
them, a GA method (Sevin¢ & Cosar, 2011). According to the
results, the ACO reduced the optimization time in about 80% with-
out lost quality of the solutions.

The first use of GA and multi-agent systems (MAS) for query
optimization in distributed DBMS is proposed in Ghaemi, Fard,
Tabatabaee, and Sadeghizadeh (2008). They define the following
agents: Query Distributor Agent (QDA) to divide the query into
sub-queries, Local Optimizer Agents (LOAs) that applies a local
genetic algorithm and Global Optimizer Agent (GOA) responsible
for finding the best join order between the sites. In a comparison
with a dynamic programming method, the authors verified that
their approach takes less time for processing the queries. An
extension of Ghaemi et al. (2008) with focus on building an adap-
tive system is given by Zafarani, Derakhshi, Asil, and Asil (2010)
and Feizi-Derakhshi, Asil, and Asil (2010). The results have shown
a reduction of up to 29% in time response. It is worth noting the
distinctions between the present work and the work from
Ghaemi et al. (2008), Zafarani et al. (2010) and Feizi-Derakhshi
et al. (2010). First, their methods are supposed to run in a distrib-
uted environment; secondly, they are running outside of the
DBMS; and lastly, the agents have a limited and different way of
interaction. Basically, one agent (QDA) breaks the query into pieces
and distributes part of the analysis of relations of some data source
with a registered agent (LOA) that will execute a standalone
version of genetic algorithm to find a possible order to join the
associated relations. Finally, the last agent (GOA) will try to mini-
mize the network traffic, by executing the partial plan defined by

the related LOA, sending the partial result across the network to
another data source, and joining it with other partial results of
plans defined by other LOA. The process terminates when all par-
tial results are joined.

The join ordering problem is not restricted only to traditional
database systems, in the Resource Description Framework (RDF)
field (Klyne & Carroll, 2014), a typical scenario is composed by
many possible interconnected heterogeneous sources of data dis-
tributed over network. The join ordering problem arises when a
RDF query (Prud’hommeaux & Seaborne, 2008) needs to join many
sources of data. The join operation in this context is similar to the
relational databases and has impact on the response time.
Hogenboom, Frasincar, and Kaymak (2013) have compared an
ACO approach against an 2PO (Stuckenschmidt, Vdovjak,
Broekstra, & Houben, 2005) and GA (Hogenboom, Milea,
Frasincar, & Kaymak, 2009) methods in the join ordering of the
sources. The results of ACO have shown lower execution times
and better solutions quality for queries consisting of up to 15 joins.
For larger problems the GA performed better.

In relation to some RDBMS in the market, H2? uses a brute force
method for queries with up to 7 relations and a mixed algorithm
composed by an exhaustive, greedy and random search methods is
applied to queries with more than 7 relations. The PostgreSQL® has
an optimizer based on DP (Selinger et al., 1979) for ordination of
queries with up to 11 relations and a GA for queries with more than
11 relations. The RDBMS MySQL* and Apache Derby® employ a
depth-first search based algorithm.

3. Query optimizer

This section discusses the proposed optimizer applied to the
join ordering problem presented previously. Section 3.1 introduces
concepts about evolutionary multi-agent systems (EMAS) and
some of their applications. The proposed evolutionary multi-agent
optimizer is explained in Section 3.2.

3.1. Evolutionary multi-agent systems — EMAS

In this subsection we provide an overview of the use of
multi-agent systems and evolutionary algorithms in optimization.
Multi-agent systems can be defined as systems involving teams of
autonomous agents working together in a cooperative or competitive
way to achieve the solution of a given problem. Such systems differ
from purely parallel systems, because of the distinctive interaction
between the agents. The related agents have specific characteristics
such as reactivity, proactivity, sociability and so on (Wooldridge,
2009). Evolutionary algorithms, on the other hand, work with a pop-
ulation of candidate solutions and this population evolves iteratively
by means of heuristic operators inspired or motivated by concepts of
natural systems and Darwinian principles. In a typical evolutionary
algorithm, the fitness of the individuals depends only on the quality
of that individual in solving the problem.

More recently, some researchers have explored the integration
between evolutionary algorithms and multi-agent systems, trying
to take the best from both worlds. The integration between
multi-agent systems and evolutionary algorithms lead to the so-
called evolutionary multi-agent systems - EMAS ('t Hoen et al,,
2004; Hanna & Cagan, 2009; Barbati, Bruno, & Genovese, 2012).

2 H2 - Version 1.3.174 - 2013 www.h2database.com/html/performance.html.

3 PostgreSQL - Version 9.2.6 - 2013 www.postgresql.org/docs/9.2/interactive/
geqo.html.

4 MySQL - Version 5.1.72 - 2013 http://dev.mysql.com/doc/internals/en/
optimizer.html.

5 Derby - Version
optimizer.html.

10.9.1.0 - 2012 http://db.apache.org/derby/papers/

http://www.h2database.com/html/performance.html
http://www.postgresql.org/docs/9.2/interactive/geqo.html
http://www.postgresql.org/docs/9.2/interactive/geqo.html
http://dev.mysql.com/doc/internals/en/optimizer.html
http://dev.mysql.com/doc/internals/en/optimizer.html
http://db.apache.org/derby/papers/optimizer.html
http://db.apache.org/derby/papers/optimizer.html

F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944 6937

In such systems, the agents have also the ability to evolve, repro-
duce and adapt to the environment, competing for resources, com-
municating with other agents, and making autonomous decisions
(Drezewski, Obrocki, & Siwik, 2010).

Evolutionary multi-agent systems have been applied in differ-
ent contexts, among them: decision making (Dahal, Almejalli, &
Hossain, 2013; Khosravifar et al., 2013), multi-agent learning
(Enembreck & Bartheés, 2013; Van Moffaert et al., 2014, Li, Ding,
& Liu, 2014), multi-objective optimization (Drezewski et al.,
2010; Tao, Laili, Zhang, Zhang, & Nee, 2014).

3.2. Proposed optimizer

In this work we present a method based on evolutionary algo-
rithms and multi-agent systems. It employs techniques inspired
by evolutionary models and is composed by a set of agents that
work together to achieve the best possible solution for the prob-
lem, i.e., the best join order for the relations in the query. Such
methodology extends the default behavior of genetic algorithms
and multi-agent systems, since the agents can act pro-actively
and reactively. They can adopt specific interaction mechanisms
and explore the solution space in a smart way by applying genetic
operators and constructive heuristics. Drezewski et al. (2010) cites
two different evolution mechanisms: mutual selection and host-
parasite interaction. The mutual selection was the technique
adopted in this work, in which each agent chooses individually
another agent and executes the available and related actions.

The proposed evolutionary multi-agent system can be
described as EMAS = (E,T',Q), where E is the environment, I" is
the system resources set and Q is the information available to
the agents in the system.

The environment is non-deterministic and dynamic, there is no
certainty about the results of an agent action and agents can
change the environment. The environment definition is given by
E = (T, T* QF), wherein T* represents the environment topogra-
phy, I'? the resources of the environment and QF the information
available to the agents. We use only one kind of resource and infor-
mation. The resource is expressed in terms of life points of each
agent. The information about the other agents and the best current
solution corresponds to Q.

The topography is represented by the notation T = (A, I), where
A is the set of agents (population) in the environment and [is a
function that allows to locate a specific agent. Each agent a € A
can be denoted by the expression a = (sol*,Z%, "%, PR"), sol” stands
for the solution represented by the agent, which is an integer array
and each element of this array represents a relation id. This array
also defines the execution order to join the relations. The actions
set of the agent is given by Z* and its life points by I'". The current
goal of the agent is defined by its current profile PR®. The initial life
of all agents is expressed in terms of LIFE = IL x NR, where IL is the
initial life coefficient and NR is the number of relations in the
query. All actions available in the environment are listed as
follows:

o getlLife (gl) — Used to obtain life points from another agent;

o giveLife (vl) - Give life points to another agent;

o lookWorse (lw) — Search for an agent with worse fitness value;
o lookPartner (Ip) - Search for a partner in the set of agents in the
environment;

crossover (cr) — Crossover operator used to generate offspring;
mutation (mt) - Mutation operator;

o becomeBestSol (bb) — Update its solution with the best current
solution;

updateBestSol (ub) — Update the best solution;
randomDescent (rd) - Random descent local search method;

o parallelCompleteDescent (pd) - Parallel Best Improvement
local search method;

o semiGreedyBuild (gh) - Construct a solution by using a semi-
greedy heuristic;

o processRequests (pr) - Evaluate and process pending requests;

o tryChangeProfile (cp) - Tries to change the profile of the agent;

o stop (st) - Stops momentarily its execution;

e die (id) - Action of dying, when the life points of the agent ends.

Each agent is associated to an execution thread. These agents
can be classified as hybrid ones, since they are reactive with inter-
nal state and deliberative agents seeking to update the best solu-
tion and not to die. The mutation and local search methods
employ swap and reallocation movements (Fig. 3).

By default, the mutation can apply in each execution at most 5
movements (swap or reallocation) and the random descent
method has a maximum number of iterations without improve-
ment equal to RD,,,, = RDE x IL, where RDE is a coefficient of effort
and IL the initial life of an agent.

Three crossover operators were implemented: Ordered Cross-
over — OX (Davis, 1985), Sequential Constructive Crossover — SCX
(Ahmed, 2010) and a new operator proposed in this work named
Pandora-Aquiles Greedy Crossover — PAGX. The examples described
next use as input the information of the Fig. 4.

In the crossover OX, two descendants can be generated. First a
crossover point is selected at random, which defines the part of
one of the agents will go to the descendant. The rest of the
sequence is taken from the other agent in an ordered way avoiding
repetition of elements. Considering the agents in Fig. 4 and a cross-
over point comprising the 1st e 2nd relations of Agent 1, one of the
resulting descendants is presented in Fig. 5.

The strategy SCX starts by adding the first relation Rqyr of the
Agent 1 in the resulting descendant. After that, the next relation
Rnexr subsequent to Rqyr from one of the parents, not present in
the descendant and with lower join cost Rcyr b< Ryexr is chosen.
Then Ryexr becomes Ry and the process continues until all rela-
tions are added in the descendant as in Fig. 6. The cost of the join
operations between each pair of relations is stored in a cost matrix
Fig. 4(b) and ties are solved randomly.

The PAGX method mixes randomness and determinism. Initially
a crossover point is chosen as in OX. However, the resulting
descendant inherits the partial solution with lower cost from one
of the parents or from the first agent in the case of a tie. After that,
a list L with the remaining relations is created and in each iteration,
the relation with lower join cost is taken from L or the first element
in L if a tie occurs. The process ends when L becomes empty. An
example result considering a cut point with the 2nd e 3rd relations
and the agents from Fig. 4(a) is presented in Fig. 7.

The action semiGreedyBuild is based on a semi-greedy (greedy-
random) heuristic. At each iteration, a list CL containing all
relations not present in the current solution is sorted according

Y

i [T

Initial Solution

Change movement

Reallocation movement N’

Fig. 3. Movement types.

6938 F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944

Agent Sol. 1

Agent Sol. 2
(a)

Join Cost Matriz
R1 | R2 | R3 | R4
R1,199| 10| 20| 5
R2 10|99 | 15 | 35
R3 |20 | 15 | 99 | 45
R4 | 5 | 35 | 45| 99

(b)

Fig. 4. Agents informations.

to a greedy function or classification criterion. The best ranked
elements from CL form the restricted candidates list RCL. A new
relation is taken randomly from the RCL and inserted in the current
solution. The method stops when all relations have been inserted.
In this work, we adopt two different classification criteria to CL: the
ERX criterion that takes into consideration the number of links
between each relation and relations with less links are better clas-
sified and the SCX criterion that is based on the cost of links or on
the join cost of the relations, where relations with lower join costs
are better classified.

Lastly, the best current solution is refined by the parallel best
improvement method (parallelCompleteDescent) and a local opti-
mum according to the neighborhood N or N (selected at random)
will be returned. The method has a task list TL shared by the
agents, which distributes all the neighborhood analysis into dis-
tinct tasks. Thus, each task evaluated by the agents will be taken
from TL. The process ends when all tasks have been evaluated. It
is worth noting that each task will be analyzed by only one agent
and no more than one time. The method returns the best solution
of one of the agents.

Each agent can execute different goals according to specific
profiles, they can generate a solution together with another agent,
refine its own solution and so on. The designed profiles are:

e RESOURCE - The agent tries to increase his life points by
searching agents with worse fitness values and requesting part
of their life points;

o REPRODUCTION - The agent looks for partners to produce new
solutions by crossover;

e MUTANT - The agent suffers mutation and tries to explore
other parts of the solution space;

o RANDOM_DESCENT - The agent refines its own solution by
using random descent local search;

o SEMI-GREEDY - The agent builds new solutions by using the
semi-greedy heuristic.

Regarding the defined profiles, it is worth mentioning that
to avoid high randomness and high effort of refinement, the
probabilities of choosing the MUTANT and RANDOM_DESCENT

Agent 1

Fig. 5. Descendant OX.

Agent 2

Descendant 1

profiles were set as 10% for each one. On the other hand, to a smart
and effective exploration of the solution space, the REPRODUCTION
and SEMI-GREEDY profile have received a probability equal to 60%
AND 15%, respectively. Finally, in order to impose some selective
pressure to the algorithm, the probability of RESOURCE profile
was set as 5%. The set of actions of each profile is distributed as
follows:

o RESOURCE - lookWorse, processRequests, getLife, tryChange-
Profile, stop and die;

o REPRODUCTION - lookPartner, processRequests, crossover,
updateBestSol, tryChangeProfile, stop and die;

e MUTANT - mutation, processRequests, updateBestSol, try-
ChangeProfile, stop and die;

o RANDOM_DESCENT - becomeBestSol, randomDescent, pro-
cessRequests, updateBestSol, tryChangeProfile, stop and die;

o SEMI-GREEDY - semiGreedyBuild, processRequests, update-
BestSol, tryChangeProfile, stop and die.

The pseudo-code of the Evolutionary Multi-Agent Query Opti-
mizer (MAQO) is presented in Algorithm 1. This algorithm first ini-
tializes the system (line 2). Then, all agents are created with the
profile REPRODUCER. One of them (line 4) is started with an initial
solution in the order in which the relations are read during the ini-
tial parsing of the query and the other ones are filled with a solu-
tion generated by the semi-greedy heuristic. The initialization and
waiting of the agents and final parallel refinement of the best cur-
rent solution are done in lines 9, 11 and 20.

Algorithm 1. MAQO

Data: QueryRelations
Result: sol”

1 begin

2 Environment E <
initializeEnvironment(QueryRelations);

3 //Create the agents with the profile
REPRODUCTION;

4 createAgent WithInitialSolution(E,
REPRODUCTION);

5 for i=2 to E - MAXAGENTS do

6 createAgent WithSemiGreedySolution (£,

REPRODUCTION);
7 end

®

//Initialize threads;
9 initializeAgents(E);

10 //Wait threads finish;

11 waitAgents(E);

12 //A11 agents update their solutions;

13 for i=1 to E = MAXAGENTS do

14 | E —findAgent(i)—becomeBestSol();

15 end

16 //Generate the tasks that will be executed by
the agents;

17 List TASKS < generateTasks();

18 //Parallel Best Improvement in the best

current solution;
19 for i=1 to E = MAXAGENTS do

20 E —findAgent(i)—parallelCompleteDescent (T ASK S);
21 end

22 return E — bestSolution;

23 end

Once the agents have been initialized, the evolutionary process
will also start, since agents may evolve through the execution of
the associated actions, which can be individual or related to

F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944 6939

Ag.l Ag2 Agl

Fig. 6. Descendant SCX.

Descendant 2

Agent 2

Fig. 7. Descendant PAGX.

Descendant 3

another agent. At every iteration of the agent in a given profile, its
life points decrease. The agents can change their profiles only after
a minimal number of iterations in the current profile. They will
always change to RESOURCE profile when the life level reaches
10% of the initial life. Those agents with no more life points execute
the action stop. When all agents stop, the optimizer executes the
parallel best improvement action and then finally all agents die
(action die) and the algorithm terminates its execution.

4. Evaluation methodology

The evaluation methodology of the problem (Section 2) in this
work involves the optimization and execution of a group of queries
in SQL. Such process can be based on synthetic benchmarks built
according to some criteria as done in Swami and Gupta (1988),
Swami (1989), Vance and Maier (1996), Steinbrunn et al. (1997),
Brunie and Kosch (1997), Lee et al. (2001), Shapiro et al. (2001),
Dong and Liang (2007), Lange (2010) or on those benchmarks stan-
dardized by the industry, such as the TPC-DS (decision support
benchmark) from TPC (Transaction Processing Performance
Council).° The TPC-DS as well as other benchmarks from TPC were
discarded in our experiments, because our minimal number of rela-
tions in the queries starts with 12, and for example the TPC-DS has
only 7 out of 99 queries with 8 or more relations.

The methodology proposed in this work is based mainly on the
ideas presented by Swami and Gupta (1988) and Swami (1989).
We randomly create the test database and the test queries accord-
ing to some criteria. In an attempt to better approximate real prob-
lems, some of the database construction criteria were based on
observed distributions in a production database from the IT Center
of a Brazilian University. The evaluation methodology is divided in
two stages, one builds the database and another builds the queries.
To create and load the database, the following criteria were used:

e Cardinality distribution of tuples -
[100, 1000) - 27%, [1000, 1000000] - 47%;

o Distribution of distinct values of the tuples - [0, 0.2) - 30%,
[0.2,1) - 16%, 1 - 54%;

« Relations Columns - three per relation, being one reserved for
primary key;

o Probability of a column to have indexes and foreign keys -
90% and 20%, respectively.

[10,100) - 26%

The total number of relations created and loaded according to
the previous distributions was set as 60. The cardinality and the
number of distinct values of the columns were selected at random
from the given intervals. The evaluation of complex queries with
many relations fits well in decision support problems and data

8 TPC: http://www.tpc.org.

SELECT * FROM R, R7, Ry, Rio, Reo, 50 WHERE
Ri.coly = R7.coly AND R7.cols = Rs.coly AND
RQ.COll = R10.6013 AND R]O.C()ll = R60.6013 AND
RGO.COZQ = R50.CO[1

Listing 2. Example - SQL chain scheme.

Table 1
Factors and levels - calibration experiment.
Factor Level
NA 8,16
IL 1,15
DL 0.03, 0.05, 0.1
RDE 0.3,0.5
MM Change, Reallocation
RDM Change, Reallocation
M PAGX, SCX, OX
SM ERX, SCX
Table 2

Significance of the factors and their interactions.

Factor Significance Interaction Signif.
Cost Setup Cost Setup

NA Ye Yes MM MM, SM, RDM,IL and DL
IL Yes Yes - DL
DL Yes Yes - -
RDE No No - -
MM No No NA NA
RDM Yes Yes DL IL, DL
M Yes Yes SM, RDM, RDE, IL RDM, IL
SM Yes Yes RDM, IL DL

Table 3

ANOVA - efficiency comparison.
Source DF SS MS Iter Pr
DB 1 7e+28 7e+28 51 0.961
SHAPE 1 1e+33 le+33 1009 0.090-
DB:SHAPE 1 2e+26 2e+26 51 0.961
SIZE 1 2e+34 2e+34 5000 <2e—16"*
DB:SIZE 1 1e+29 1e+29 51 0.725
SHP:SIZE 1 2e+33 2e+33 2906 0.033*
DB:SHAPE:SIZE 1 3e+26 3e+26 51 0.863
Residuals 16 8e+33 5e+32

Signif. codes: 0 “*** 0.001 “** 0.01 ** 0.05 * 0.1 ** 1.

mining (Brunie & Kosch, 1997; Dong & Liang, 2007). There are
problems in the literature with up 100 relations. The number of
relations presented in the queries was fixed in: 12, 16, 20, 30, 40
and 50 relations. Besides, the generation of the test queries was
guided by three different graph shapes: chain, star and snowflake.

The generation of a query in a specific shape, first selects at
random the given number of relations from the 60 available. After
that, the join predicates are formed by randomly selecting the col-
umns from both relations. It is important to note that all projected
columns are the same of the join clauses and the predicates always
will be generated according to the graph shape. Besides, multiple
seeds can be used to generate different queries and an example
of a query built with shape chain and with the relations
Ri, R7, Ry, Rio, Reo and Rsp is presented in Listing 2.

5. Experiments

The experimental section is divided in three subsections: the
first (5.1) for the calibration of the algorithm parameters, the

http://www.tpc.org

6940 F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944
Main Effects Plot for COST
Fitted Means
DATABASE SHAPE
8,0000E+16
6,0000E+16
4,0000E+16
//.
2,0000E+16 4 o - o
! : O 1 T T T T
3 H2QO0 MAQO CHAIN STAR
z SIZE
8,0000E+16
/.
6,0000E+16 /
4,0000E+16
2,0000E+16
0 b—/
5 6 7
Fig. 8. Main effects - cost efficiency.
Table 4 Main Effects Plot for TIME
Factors and levels - general experiment. Data Means
Factor Level 5000004
DATABASE H2QO0, MAQO, HSQLDB, DERBY, POST
SHAPE Chain, Star, Snowflake 400000 4
SIZE 12, 16, 20, 30, 40 and 50
= 300000
©
[}
=
Table 5 200000 -
ANOVA - general experiment.
Source DF SS MS Iter Pr 100000
//‘\\
DB 4 6e+12 le+12 5000 <2e—-16"* _— S
SHAPE 2 5e+11 2e+11 5000 0.0008"** 0+ . Te—————
DB:SHAPE 8 3e+12 4e+11 5000 <2e—-16"* DEIIQBY HZbO HSbL MA‘QO PO|ST
SIZE 1 6e+11 6e+11 5000 <2e—16™ DATABASE
DB:SIZE 4 3e+12 8e+11 5000 <2e-16""
SHAPE:SIZE 2 3e+11 le+11 3606 0.0541- Fig. 9. Main factor - DATABASE.
DB:SHAPE: SIZE 8 2e+12 3e+11 5000 <2e—16"*
Residuals 150 9.04e+12 6.03e+10
Signif. codes: 0 *** 0,001 ** 0.01 ** 0.05 ** 0.1 ** 1. Table 6
Best execution times overview.
H2QO0 HSQL DERBY POSTGRESQL
second (5.2) to test the efficiency of the MAQO in finding global MAQO 74.78% 72.17% 100% 63.3%

optima and the last (5.3) to compare the RDBMS H2 running the
MAQO against other RDBMS. It is noteworthy that all experiments
have used a factorial design of fixed effects, the statistical analysis
used the R/Minitab softwares and was done with Permutational
ANOVA (Permutations Test for an Analysis of Variance Design by
Anderson & Braak (2003)) and all the related assumptions were
not violated by the generated models. The confidence interval for
the experiments was set as 95%, implying a significance level
o = 0.05 and all observations were randomized.

For each ANOVA table hereafter, DF represents the Degrees of
Freedom, SS represents the Sum of Squares, MS means Mean Square,
Iter is the number of iterations until the criterion is met and Pr
refers to the p-value of the related statistical test.

The queries were executed in a machine with Core i7-2600 CPU
3.40 GHz, with 16 GB RAM, operating system Ubuntu 10.10-x86_64.
The timeout for the execution of the queries was set as 2 h and the
maximum number of resulting tuples was limited in 10 million.
According to the H2 database, a query with 50 relations and 50
projected columns could generate a result with about 9 GB for
10 million tuples. We adopted the strategy of cold cache in all

executions. Thus, before the execution of each query, the OS pages
in the memory are synchronized and then freed. Each one of the
experiments have used different seeds to generate the distinct
queries.

Finally, the RDBMS chosen to implement the optimizer was the
H2 Database Engine and consequently, the cost model adopted is
the same defined by the H2. For this reason, we considered only
the method Nested-Loop-Join. We remark that the RDBMS H2
considers only the I/O operations in its cost model. Moreover, the
possible representations for the solutions in the search space is
restricted to left-depth tree.

5.1. Calibration of the algorithm

In order to calibrate the parameters of the optimizer, we have
selected 1 test query with 40 relations in the chain and star graph
shapes. The factors analyzed are: the maximum number of agents

F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944

6941

Interaction Plot for TIME

Data Means

CHAIN SNOWFLAKE STAR
1 1 1

DATABASE

SIZE

DATABASE
I 1000000 |—e— DERBY
—-m—- H2QO0
HSQL
I 500000 |—4— MAQO
POST
B i bR Y -0
SIZE
I 1000000 |—e— 12
—a—- 16
20
I 500000 |—A— 30
40
—4— 50
o

SHAPE

Fig. 10. Main effects and interactions - general experiment.

(NA), mutation type movement (MM), crossover method (CM),
random descent type movement (RDM), semi-greedy method
(SM), initial life coefficient (IL), decrement life coefficient (DL)
and random descent effort (RDE). The initial life of the agents is
given by the related coefficient times the number of relations in
the query, the life decremented in each agent iteration is expressed
by the initial life times the related coefficient and the number of
iterations of the random descent without improvement is given
by the effort times the number of relations in query. Table 1
describes the levels for each factor.

We have considered two complete replications, totaling 2304
observations. The response variables are the cost of the generated
plans and the setup time in milliseconds. The test hypotheses are
no effect for the main factors and their interactions for all levels
and significance for the main factors and/or their interactions for
at least one of the levels. The parameters were selected by combin-
ing the effect of both response variables, trying to get lower costs
but not with necessarily higher setup times. According to the
ANOVA results, the factors with significance are distributed as
follows and the related null hypotheses were rejected.

According to Table 2 and the related mean values of the factors
and their interactions, the maximum number of agents was set as
8, probability of 50% to choose one of the movement types for both
mutation and random descent methods, crossover method with
50% of chance to use PAGX or OX, semi-greedy method defined
with SCX strategy and the values 1.5, 0.1 and 0.3 for initial life
coefficient, decrement life coefficient and random descent effort,
respectively.

5.2. Comparison with the exhaustive method

The goal of this Subsection is to present the potential of MAQO
to find global optima. To accomplish that, the proposed optimizer
was compared against the official brute force method H2QO of H2
database. The comparison have used 30 different queries for prob-
lems with 5, 6 and 7 relations and chain and star graph shapes,
totaling 360 queries for each optimizer distributed into two
complete replications. The main factors studied are: the database
algorithm (MAQO and H2QO), the problem size (5, 6 and 7) and
the query shape (chain and star). The test hypotheses are no effect
for the factors/interactions for all levels and significance for at least
one of the levels in the factors/interactions. The results related to
the response variable cost are summarized in Table 3.

According to the ANOVA Table, only the factor SIZE and its
interaction with SHAPE have significance, which allows us to reject
the related null hypotheses and say that part of the variability of
the data can be explained by them. Thus, no statistical significance
was detected between the results of the algorithms. The MAQO
was capable to find the optima in 90% of the cases. Fig. 8 shows
graphically the mean costs of the main factors and its interactions.

5.3. Comparison with other database systems

This Section is intended to compute the total time spent in opti-
mization and execution of a set of queries by 4 different RDBMS.
We choose 3 databases implemented in Java language and one
native system implemented in C language, they are: H2,” HSQLDB,®
Derby® and PostgreSQL,'® respectively. A total of 2 complete
experimental replications have been considered and the test-set is
composed by 3 different queries for problems with 12, 16, 20, 30,
40 and 50 relations and the shapes distributed in chain, star and
snowflake, totaling 540 queries. The H2 database was tested with
two different optimizers, one with the official algorithm described
in Section 2 and another with the method proposed in this work,
namely H2QO and MAQO, respectively. The mains factors and its
levels are presented in Table 4.

Considering the total time as response variable in milliseconds,
the ANOVA Table 5 shows that the main factors (and some of their
interactions) have significance on data variability, allowing us to
reject the related null hypotheses with 95% degree of confidence.
The difference in the execution times is caused by the database
systems, shape and the size of the queries.

Based on the main objective of this work, that is to compare the
proposed algorithm running in a real database against different
real systems, the factor DATABASE is the focus of the analysis in
this subsection. Fig. 9 shows that the average execution time of
the DBMS Derby is the higher and the MAQO and PostgreSQL are
the lowest. These results show the superiority of the developed
algorithm in relation to the official optimizer of the H2 database.
Table 6 gives an overview of the queries executed with lower times
against the other databases.

7 H2 - Version 1.3.174, www.h2database.com.

8 HSQLDB - Version 2.0.0, http://hsqldb.org/.

9 Derby - Version 10.9.1.0, http://db.apache.org/derby.
10 postgreSQL - Version 9.2.6 - www.postgresql.org.

http://www.h2database.com
http://hsqldb.org/
http://db.apache.org/derby
http://www.postgresql.org

6942 F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944

Table 7
Best plans overview.

Query shape MAQO(%) - H2QO(%)

12 16 20 30 40 50
Chain 50-50 0-100 50-50 100-0 50-50 100-0
Star 0-100 100-0 100-0 100-0 100-0 100-0
Snowflake 50-50 100-0 100-0 100-0 100-0 100-0

Fig. 10 presents graphic information about the main factors and
their interactions. According to the average time results of all
database systems, the shape snowflake and size 30 consumed
more time in the optimization and execution of the queries. On
the other hand, the MAQO spent on average more time on queries
in the shape Star and Snowflake and size equal to 50.

Finally, Table 7 summarizes the results obtained by the H2QO
and MAQO algorithms in relation to the cost of the plans. It is clear
that the evolutionary multi-agent algorithm performed better in
the majority of cases. The H2QO overcomes the MAQO only in
the problems Chain-16 and Star-12. Additionally, out of 108
executed queries by each optimizer, only 14% of plans generated
by the default planner in H2 were better than the ones generated
by MAQO.

6. Conclusions and future work

This paper presented a novel database query optimizer based
on evolutionary algorithms and multi-agent systems and an evolu-
tion mechanism supported by mutual selection. Many actions and
profiles have been designed to provide different goals to the agents
and to explore the solution space of the query join ordering
problem in a smart way. The algorithm employs classical genetic
operators, constructive heuristics and refinement methods accord-
ing to the associated agent profiles. We proposed a new crossover
method called Pandora-Aquiles Greedy Crossover.

The execution environment can be described as accessible,
because the agents can obtain precise, updated and complete infor-
mations about the environment. Besides, it can be characterized as
deterministic and dynamic. The agents are hybrids: reactive with
internal state. The following features of the agents can be cited:
reactivity, proactivity, sociability, veracity and benevolence.

The evaluation methodology of this work follows mainly the
ideas from Swami and Gupta (1988) and Swami (1989). We
developed a benchmark according to distributions based on a real
production database of an IT Center of a Brazilian University. The
experiments were subdivided into 3 separated evaluations: cali-
bration of the algorithm, validation of the algorithm with a brute
force method and a comparison with 3 different database systems.
A factorial design was applied in all experiments with a confidence
interval set as 95%. Moreover, all the related assumptions were not
violated by the generated models.

For the calibration phase, it was used one test query with 40
relations in the chain and star graph shapes. According to the
results, the maximum number of agents was set as 8, probability
of 50% to choose one of the movement types for mutation and
random descent methods, crossover method with 50% of chance
to use PAGX or OX, semi-greedy method defined with SCX strategy
and the values 1.5, 0.1 and 0.3 for initial life coefficient, decrement
life coefficient and random descent effort, respectively.

In the comparison of the proposed optimizer MAQO against the
official H2 brute force method, we have used 30 different queries
for problems with 5, 6 and 7 relations and chain and star graph
shapes. The results showed that MAQO was capable to find the
optima in 90% of the cases.

The general test has adopted 3 different queries for problems
with 12, 16, 20, 30, 40 and 50 relations and the shapes: chain, star
and snowflake. The proposed optimizer was compared against the
official H2 official optimizer and the database systems HSQL, Derby
and PostgreSQL. According to the results, the developed algorithm
showed execution times better than the official planner H2QO in
74.78% of the cases, better than PostgreSQL in 63.3% of the cases
and in 100% of cases than Derby. Besides, in the same experiment,
compared with H2QO, the MAQO returned plans with lower costs
in 86% of the cases.

Sections 1 and 2 show the importance of the join ordering prob-
lem. It is important to say that, good execution plans, in fact, lead
to faster response times in the system. Considering that the syn-
thetic database is based on real distributions and the queries are
based on common problem representations, one can expect that
in an environment with few users (low concurrency), as the results
suggest, the use of the proposed algorithm over the official H2 opti-
mizer would improve the response times in 74.78% in possible real
world cases. Besides, the new optimizer allowed H2 to be better
than the very popular RDBMS PostgreSQL in 63.3% of the problems.
Finally, according to the superiority of H2 with the new planner in
relation to Derby, in a real situation similar to the proposed
synthetic environment, the best decision is choosing H2.

Therefore, in view of the superiority of this novel proposed
approach over others in the literature, we show the benefits of
using an evolutionary multi-agent system for query join ordering
optimization. Moreover, the set of actions, the available profiles
and interaction mechanism have proved to be an efficient tool to
explore the solution space of the related problem and the parallel
feature of the algorithm has allowed it to prepare the plans with
lower setup times. As a possible weakness of the proposed
optimizer, it is worthy to note that all experiments were executed
with only a single caller, i.e., only one query was optimized per
execution. Thus, in the calibration phase, the number of agents
was configured as equal to the total number of available CPU cores.
However, in a environment with more then one caller, such config-
uration could overload the CPU.

As future work, it is worthy to cite an extension of the experi-
ments in order to run with more than one caller. This is a interest-
ing point and could be used to explore the proposed optimizer in a
environment with high load, which can represent many real world
situations. Another very important future study is the execution of
the optimizer in a distributed environment. As pointed out in the
review presented in Section 2, distributed database systems is a
field recently explored. Consequently, the application of the
optimizer to generate plans in such environment would be another
contribution. Moreover, EMAS are naturally indicated for and
compliant with distributed environments and problems. Thus,
with new actions and ways of interaction between the agents,
the optimizer could generate plans in a distributed environment.
Another area recently studied is related to the use of GPU proces-
sors to support some database components and its operations.
Since the proposed algorithm has agents running in parallel, the
use of GPU to support its execution could be another avenue to
explore. At last, the similarities between the join ordering problem
in the RDBMS and RDF fields seems to be another possible area to
investigate. The integration of the proposed algorithm with some
RDF query engine is indicated too.

Acknowledgments

The authors would like to thank the support given by the follow-
ing Brazilian agencies: State of Minas Gerais Research Foundation -
FAPEMIG (Pronem 04611/10, PPM CEX 497/13); Coordination for
the Improvement of Higher Level Personnel — CAPES; National Coun-
cil of Scientific and Technological Development - CNPq (Grants

F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944 6943

30506/2010-2, 312276/2013-3, 306694/2013-1); and by the IT
Center (NTI) of UFOP.

We also thank the anonymous reviewers for their valuable
criticism, which have greatly contributed to the final version of
the manuscript.

References

Ahmed, Z. H. (2010). Genetic algorithm for the traveling salesman problem using
sequential constructive crossover operator. International Journal of Biometrics
and Bioinformatics, 3, 96-105.

Anderson, M. J., & Braak, C. J. F. T. (2003). Permutation tests for multi-factorial
analysis of variance. Journal of Statistical Computation and Simulation, 73,
85-113. http://dx.doi.org/10.1080/00949650215733.

Barbati, M., Bruno, G., & Genovese, A. (2012). Applications of agent-based models for
optimization problems: A literature review. Expert Systems with Applications, 39,
6020-6028. http://dx.doi.org/10.1016/j.eswa.2011.12.015<http://www.
sciencedirect.com/science/article/pii/S0957417411016861>.

Bennett, K. P., Ferris, M. C., & loannidis, Y. E. (1991). A genetic algorithm for database
query optimization. In International conference on genetic algorithms (pp. 400-
407).

BreR, S., Schallehn, E., & Geist, I. (2013). Towards optimization of hybrid CPU/GPU
query plans in database systems. In New trends in databases and information
systems (pp. 27-35). Springer.

Brunie, L., & Kosch, H. (1997). Optimizing complex decision support queries for
parallel execution. In Parallel and distributed processing techniques and
applications (pp. 858-867).

Codd, E. F. (1970). A relational model for large shared data banks. Communications of
the ACM, 13, 377-387. http://dx.doi.org/10.1145/362384.362685.

Dahal, K., Almejalli, K., & Hossain, M. A. (2013). Decision support for coordinated
road traffic control actions. Decision Support Systems, 54, 962-975. http://
dx.doi.org/10.1016/j.dss.2012.10.022<http://www.sciencedirect.com/science/
article/pii/S0167923612002771>.

Davis, L. (1985). Job shop scheduling with genetic algorithms. In Proceedings
of the first international conference on genetic algorithms (pp. 136-140).
Hillsdale, NJ, USA: L. Erlbaum Associates Inc.<http://dl.acm.org/
citation.cfm?id=645511.657084>.

Dong, H., & Liang, Y. (2007). Genetic algorithms for large join query optimization. In
Proceedings of the ninth annual conference on genetic and evolutionary
computation GECCO 07 (pp. 1211-1218). New York, NY, USA: ACM. http://
dx.doi.org/10.1145/1276958.1277193<http://doi.acm.org/10.1145/
1276958.1277193>.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 26, 29-41. http://dx.doi.org/10.1109/3477.484436.

Drezewski, R., Obrocki, K., & Siwik, L. (2010). Agent-based co-operative co-
evolutionary algorithms for multi-objective portfolio optimization. In A.
Brabazon, M. ONeill, & D. Maringer (Eds.), Natural computing in computational
finance. Studies in computational intelligence (Vol. 293, pp. 63-84). Berlin/
Heidelberg: Springer<http://dx.doi.org/10.1007/978-3-642-13950-5_5>.

Elmasri, R., & Navathe, S. (2010). Fundamentals of database systems (6th ed.). USA:
Addison-Wesley Publishing Company.

Enembreck, F., & Barthés, J.-P. A. (2013). A social approach for learning agents.
Expert Systems with Applications, 40, 1902-1916. http://dx.doi.org/10.1016/
j-eswa.2012.10.008<http://www.sciencedirect.com/science/article/pii/
S0957417412011220>.

Feizi-Derakhshi, M.-R., Asil, H., & Asil, A. (2010). Proposing a new method for query
processing adaption in database. CoRR, abs/1001.3494<http://dblp.uni-trier.de/
db/journals/corr/corr1001.html#abs-1001-3494>.

Garcia-Molina, H., Ullman,]. D., & Widom, J. (2008). Database systems: The complete
book (2nd ed.). Upper Saddle River, NJ, USA: Prentice Hall Press.

Ghaemi, R, Fard, A., Tabatabaee, H., & Sadeghizadeh, M. (2008). Evolutionary query
optimization for heterogeneous distributed database systems. World Academy
of Science, 43, 43-49.

Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic Publishers.

Golshanara, L., Rouhani Rankoohi, S., & Shah-Hosseini, H. (2014). A multi-colony ant
algorithm for optimizing join queries in distributed database systems.
Knowledge and Information Systems, 39, 175-206. http://dx.doi.org/10.1007/
s10115-012-0608-4<http://dx.doi.org/10.1007/s10115-012-0608-4>.

Gongalves, F. A. C. A, Guimardes, F. G., & Souza, M.]. F. (2013). An evolutionary
multi-agent system for database query optimization. In Proceeding of the 15th
annual conference on genetic and evolutionary computation conference GECCO '13
(pp. 535-542). New York, NY, USA: ACM. http://dx.doi.org/10.1145/
2463372.2465802<http://doi.acm.org/10.1145/2463372.2465802>.

Guttoski, P. B., Sunye, M. S., & Silva, F. (2007). Kruskal’s algorithm for query tree
optimization. In Proceedings of the 11th international database engineering and
applications symposium IDEAS '07 (pp. 296-302). Washington, DC, USA: IEEE
Computer Society. http://dx.doi.org/10.1109/IDEAS.2007.33<http://dx.doi.org/
10.1109/IDEAS.2007.33>.

Han, W.-S., Kwak, W, Lee,]., Lohman, G. M., & Markl, V. (2008). Parallelizing query
optimization. Proc. VLDB Endow., 1, 188-200<http://dl.acm.org/
citation.cfm?id=1453856.1453882>.

Hanna, L., & Cagan, J. (2009). Evolutionary multi-agent systems: An adaptive and
dynamic approach to optimization. Journal of Mechanical Design, 131, 011010.

Heimel, M. (2013). Designing a database system for modern processing
architectures. In Proceedings of the 2013 Sigmod/PODS Ph.D. symposium on PhD
symposium SIGMOD’13 PhD Symposium (pp. 13-18). New York, NY, USA: ACM.
http://dx.doi.org/10.1145/2483574.2483577<http://doi.acm.org/10.1145/
2483574.2483577>.

Heimel, M., & Markl, V. (2012). A first step towards GPU-assisted query
optimization. In The third international workshop on accelerating data
management systems using modern processor and storage architectures, Istanbul,
Turkey (pp. 1-12). Citeseer.

Hogenboom, A., Frasincar, F., & Kaymak, U. (2013). Ant colony optimization for
{RDF} chain queries for decision support. Expert Systems with Applications,
40, 1555-1563. http://dx.doi.org/10.1016/j.eswa.2012.08.074<http://www.
sciencedirect.com/science/article/pii/S0957417412010500>.

Hogenboom, A., Milea, V., Frasincar, F., & Kaymak, U. (2009). Rcq-ga: Rdf chain
query optimization using genetic algorithms. In T. Noia & F. Buccafurri (Eds.), E-
commerce and web technologies. Lecture notes in computer science (Vol. 5692,
pp. 181-192). Berlin Heidelberg: Springer. http://dx.doi.org/10.1007/978-3-
642-03964-5_18<http://dx.doi.org/10.1007/978-3-642-03964-5_18>.

Ibaraki, T., & Kameda, T. (1984). On the optimal nesting order for computing N
relational joins. ACM Transactions on Database Systems, 9, 482-502. http://
dx.doi.org/10.1145/1270.1498.

Ioannidis, Y. E. (1996). Query optimization. ACM Computing Surveys, 28, 121-123.
http://dx.doi.org/10.1145/234313.234367<http://doi.acm.org/10.1145/
234313.234367>.

lIoannidis, Y. E., & Kang, Y. (1990). Randomized algorithms for optimizing large join
queries. SIGMOD Record, 19, 312-321. http://dx.doi.org/10.1145/93605.98740
<http://doi.acm.org/10.1145/93605.98740>.

Ioannidis, Y. E., & Wong, E. (1987). Query optimization by simulated annealing.
SIGMOD Record, 16, 9-22. http://dx.doi.org/10.1145/38713.38722.

Khosravifar, B., Bentahar, ., Mizouni, R., Otrok, H., Alishahi, M., & Thiran, P. (2013).
Agent-based game-theoretic model for collaborative web services: Decision
making analysis. Expert Systems with Applications, 40, 3207-3219. http://
dx.doi.org/10.1016/j.eswa.2012.12.034<http://www.sciencedirect.com/science/
article/pii/S0957417412012754>.

Klyne, G., & Carroll, J. J. (2014). Resource description framework (RDF): Concepts and
abstract syntax. W3C Recommendations<http://www.w3.org/TR/rdf-concepts/>.

Krishnamurthy, R., Boral, H., & Zaniolo, C. (1986). Optimization of nonrecursive
queries. In Proceedings of the 12th international conference on very large data
bases VLDB '86 (pp. 128-137). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.<http://dl.acm.org/citation.cfm?id=645913.671481>.

Lange, A. (2010). Uma Avaliagdo de Algoritmos ndo Exaustivos para a Otimizacao de
Jungdes (Master’s thesis). Universidade Federal do Parana, UFPR.

Lee, C., sheng Shih, C., & huei Chen, Y. (2001). Optimizing large join queries using a
graph-based approach. IEEE Transactions on Knowledge and Data Engineering, 13,
298-315. http://dx.doi.org/10.1109/69.917567.

Li, J., Ding, C., & Liu, W. (2014). Adaptive learning algorithm of self-organizing
teams. Expert Systems with Applications, 41, 2630-2637. http://dx.doi.org/
10.1016/j.eswa.2013.11.008<http://www.sciencedirect.com/science/article/pii/
S0957417413009196>.

Matysiak, M. (1995). Efficient optimization of large join queries using tabu search.
Information Sciences - Informatics and Computer Science, 83, 77-88. http://
dx.doi.org/10.1016/0020-0255(94)00094-R<http://dx.doi.org/10.1016/0020-
0255(94)00094-R>.

Prud’hommeaux, E., & Seaborne, A. (2008). Sparqgl query language for rdf. Latest
version available as <http://www.w3.org/TR/rdf-sparql-query/>. URL: <http://
www.w3.0rg/TR/2008/REC-rdf-sparql-query-20080115/>.

Rho, S., & March, S. (1997). Optimizing distributed join queries: A genetic algorithm
approach. Annals of Operations Research, 71, 199-228. http://dx.doi.org/10.1023/
A:1018967414664<http://dx.doi.org/10.1023/A3A1018967414664>.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., & Price, T. G. (1979).
Access path selection in a relational database management system. In
Proceedings of the 1979 ACM SIGMOD international conference on management
of data SIGMOD '79 (pp. 23-34). New York, NY, USA: ACM. http://dx.doi.org/
10.1145/582095.582099<http://doi.acm.org/10.1145/582095.582099>.

Seving, E., & Cosar, A. (2011). An evolutionary genetic algorithm for optimization of
distributed database queries. Computer Journal, 54, 717-725. http://dx.doi.org/
10.1093/comjnl/bxp130<http://dx.doi.org/10.1093/comjnl/bxp130>.

Shapiro, L. D., Maier, D., Benninghoff, P., Billings, K., Fan, Y., Hatwal, K,, et al. (2001).
Exploiting upper and lower bounds in top-down query optimization. In
Proceedings of the international database engineering & applications symposium
IDEAS '01 (pp. 20-33). Washington, DC, USA: IEEE Computer Society<http://
dl.acm.org/citation.cfm?id=646290.686937>.

Steinbrunn, M., Moerkotte, G., & Kemper, A. (1997). Heuristic and randomized
optimization for the join ordering problem. The VLDB Journal, 6, 191-208. http://
dx.doi.org/10.1007/s007780050040<http://dx.doi.org/10.1007/
s007780050040>.

Stuckenschmidt, H., Vdovjak, R., Broekstra, J., & Houben, G. (2005). Towards
distributed processing of rdf path queries. International Journal of Web
Engineering and Technology, 2, 207-230. http://dx.doi.org/10.1504/
[JWET.2005.008484<http://dx.doi.org/10.1504/]JWET.2005.008484>.

Swami, A. (1989). Optimization of large join queries: combining heuristics and
combinatorial techniques. In Proceedings of the 1989 ACM SIGMOD international
conference on management of data SIGMOD ‘89 (pp. 367-376). New York,

http://refhub.elsevier.com/S0957-4174(14)00276-0/h0045
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0045
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0045
http://dx.doi.org/10.1080/00949650215733
http://www.sciencedirect.com/science/article/pii/S0957417411016861
http://www.sciencedirect.com/science/article/pii/S0957417411016861
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0065
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0065
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0065
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1016/j.dss.2012.10.022
http://www.sciencedirect.com/science/article/pii/S0167923612002771
http://www.sciencedirect.com/science/article/pii/S0167923612002771
http://dl.acm.org/citation.cfm?id=645511.657084
http://dl.acm.org/citation.cfm?id=645511.657084
http://dx.doi.org/10.1145/1276958.1277193
http://doi.acm.org/10.1145/1276958.1277193
http://doi.acm.org/10.1145/1276958.1277193
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1007/978-3-642-13950-5_5
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0120
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0120
http://dx.doi.org/10.1016/j.eswa.2012.10.008
http://www.sciencedirect.com/science/article/pii/S0957417412011220
http://www.sciencedirect.com/science/article/pii/S0957417412011220
http://dblp.uni-trier.de/db/journals/corr/corr1001.html#abs-1001-3494
http://dblp.uni-trier.de/db/journals/corr/corr1001.html#abs-1001-3494
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0145
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0145
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0150
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0150
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0150
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0155
http://dx.doi.org/10.1007/s10115-012-0608-4
http://dx.doi.org/10.1007/s10115-012-0608-4
http://dx.doi.org/10.1145/2463372.2465802
http://doi.acm.org/10.1145/2463372.2465802
http://dx.doi.org/10.1109/IDEAS.2007.33
http://dx.doi.org/10.1109/IDEAS.2007.33
http://dl.acm.org/citation.cfm?id=1453856.1453882
http://dl.acm.org/citation.cfm?id=1453856.1453882
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0200
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0200
http://doi.acm.org/10.1145/2483574.2483577
http://doi.acm.org/10.1145/2483574.2483577
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0215
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0215
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0215
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0215
http://www.sciencedirect.com/science/article/pii/S0957417412010500
http://www.sciencedirect.com/science/article/pii/S0957417412010500
http://dx.doi.org/10.1007/978-3-642-03964-5_18
http://dx.doi.org/10.1007/978-3-642-03964-5_18
http://dx.doi.org/10.1145/1270.1498
http://dx.doi.org/10.1145/1270.1498
http://doi.acm.org/10.1145/234313.234367
http://doi.acm.org/10.1145/234313.234367
http://dx.doi.org/10.1145/93605.98740
http://doi.acm.org/10.1145/93605.98740
http://dx.doi.org/10.1145/38713.38722
http://dx.doi.org/10.1016/j.eswa.2012.12.034
http://www.sciencedirect.com/science/article/pii/S0957417412012754
http://www.sciencedirect.com/science/article/pii/S0957417412012754
http://www.w3.org/TR/rdf-concepts/
http://dl.acm.org/citation.cfm?id=645913.671481
http://dx.doi.org/10.1109/69.917567
http://dx.doi.org/10.1016/j.eswa.2013.11.008
http://www.sciencedirect.com/science/article/pii/S0957417413009196
http://www.sciencedirect.com/science/article/pii/S0957417413009196
http://dx.doi.org/10.1016/0020-0255(94)00094-R
http://dx.doi.org/10.1016/0020-0255(94)00094-R
http://dx.doi.org/10.1016/0020-0255(94)00094-R
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://dx.doi.org/10.1023/A:1018967414664
http://dx.doi.org/10.1023/A3A1018967414664
http://dx.doi.org/10.1145/582095.582099
http://doi.acm.org/10.1145/582095.582099
http://dx.doi.org/10.1093/comjnl/bxp130
http://dx.doi.org/10.1093/comjnl/bxp130
http://dl.acm.org/citation.cfm?id=646290.686937
http://dl.acm.org/citation.cfm?id=646290.686937
http://dx.doi.org/10.1007/s007780050040
http://dx.doi.org/10.1007/s007780050040
http://dx.doi.org/10.1007/s007780050040
http://dx.doi.org/10.1504/IJWET.2005.008484
http://dx.doi.org/10.1504/IJWET.2005.008484

6944 F.A.CA. Gongalves et al./Expert Systems with Applications 41 (2014) 6934-6944

NY, USA: . http://dx.doi.org/10.1145/67544.66961<http://doi.acm.org/10.1145/
67544.66961>.

Swami, A., & lyer, B. (1993). A polynomial time algorithm for optimizing join
queries. In Proceedings. Ninth international conference on data engineering, 1993
(pp. 345-354). http://dx.doi.org/10.1109/ICDE.1993.344047.

Swami, A., & Gupta, A. (1988). Optimization of large join queries. SIGMOD Record, 17,
8-17. http://dx.doi.org/10.1145/971701.50203<http://doi.acm.org/10.1145/
971701.50203>.

Tao, F., Laili, Y. J., Zhang, L., Zhang, Z. H., & Nee, A. C. (2014). Qmaea: A quantum
multi-agent evolutionary algorithm for multi-objective combinatorial
optimization. Simulation, 90, 182-204. http://dx.doi.org/10.1177/0037549713-
485894<http://sim.sagepub.com/content/90/2/182.abstract>. arXiv: <http://
sim.sagepub.com/content/90/2/182.full.pdf+html>.

Tewari, P. (2013). Query optimization strategies in distributed databases.
International Journal of Advances in Engineering Sciences, 3, 23-29.

't Hoen, P. J., & Jong, E. D. (2004). Evolutionary multi-agent systems. In X. Yao, E. K.
Burke, J. A. Lozano,]. Smith, J. J. Merelo-Guervés, J. A. Bullinaria, J. E. Rowe, P.

Tino, A. Kaban, & H.-P. Schwefel (Eds.), Parallel problem solving from nature -
PPSN VIII. Lecture notes in computer science (Vol. 3242, pp. 872-881). Berlin,
Heidelberg: Springer<http://dx.doi.org/10.1007/978-3-540-30217-9_88>.

Vance, B., & Maier, D. (1996). Rapid bushy join-order optimization with cartesian
products. SIGMOD Record, 25, 35-46. http://dx.doi.org/10.1145/235968.-
233317<http://doi.acm.org/10.1145/235968.233317>.

Van Moffaert, K., Brys, T., Chandra, A., Esterle, L., Lewis, P. R., & Nowé, A. (2014). A
novel adaptive weight selection algorithm for multi-objective multi-agent
reinforcement learning. In Proceedings of the 2014 IEEE world congress on
computational intelligence.

Wooldridge, M. (2009). An Introduction to MultiAgent Systems. John Wiley & Sons
<http://books.google.com.br/books?id=X3ZQ7yeDn2IC>.

Zafarani, E., Derakhshi, M. F,, Asil, H., & Asil, A. (2010). Presenting a new method for
optimizing join queries processing in heterogeneous distributed databases. In
International workshop on knowledge discovery and data mining (pp. 379-382).
doi: <http://doi.ieeecomputersociety.org/10.1109/WKDD.2010.122>.

http://doi.acm.org/10.1145/67544.66961
http://doi.acm.org/10.1145/67544.66961
http://dx.doi.org/10.1109/ICDE.1993.344047
http://doi.acm.org/10.1145/971701.50203
http://doi.acm.org/10.1145/971701.50203
http://dx.doi.org/10.1177/0037549713-485894
http://sim.sagepub.com/content/90/2/182.abstract
http://sim.sagepub.com/content/90/2/182.full.pdf+html
http://sim.sagepub.com/content/90/2/182.full.pdf+html
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0405
http://refhub.elsevier.com/S0957-4174(14)00276-0/h0405
http://dx.doi.org/10.1007/978-3-540-30217-9_88
http://dx.doi.org/10.1145/235968.-233317
http://doi.acm.org/10.1145/235968.233317
http://books.google.com.br/books?id=X3ZQ7yeDn2IC
http://doi.ieeecomputersociety.org/10.1109/WKDD.2010.122

	Query join ordering optimization with evolutionary multi-agent systems
	1 Introduction
	2 Query optimization problem
	3 Query optimizer
	3.1 Evolutionary multi-agent systems – EMAS
	3.2 Proposed optimizer

	4 Evaluation methodology
	5 Experiments
	5.1 Calibration of the algorithm
	5.2 Comparison with the exhaustive method
	5.3 Comparison with other database systems

	6 Conclusions and future work
	Acknowledgments
	References

