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Abstract. Ensemble methods have been shown to be an effective tool for solving multi-label classification 

tasks. In the RAndom k-labELsets (RAKEL) algorithm, each member of the ensemble is associated with a 

small randomly-selected subset of k labels. Then, a single label classifier is trained according to each combi-

nation of elements in the subset. In this paper we adopt a similar approach, however, instead of randomly 

choosing subsets, we select the minimum required subsets of k labels that cover all labels and meet additional 

constraints such as coverage of inter-label correlations. Construction of the cover is achieved by formulating 

the subset selection as a minimum set covering problem (SCP) and solving it by using approximation algo-

rithms. Every cover needs only to be prepared once by offline algorithms. Once prepared, a cover may be 

applied to the classification of any given multi-label dataset whose properties conform with those of the cov-

er. The contribution of this paper is two-fold. First, we introduce SCP as a general framework for construct-

ing label covers while allowing the user to incorporate cover construction constraints. We demonstrate the 

effectiveness of this framework by proposing two construction constraints whose enforcement produces co-

vers that improve the prediction performance of random selection. Second, we provide theoretical bounds 

that quantify the probabilities of random selection to produce covers that meet the proposed construction cri-

teria. The experimental results indicate that the proposed methods improve multi-label classification accura-

cy and stability compared with the RAKEL algorithm and to other state-of-the-art algorithms.  
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1    Introduction 

An inducer is an algorithm that constructs classifiers by learning a set of labeled examples (training set) whose 

classification (label value) is known a-priori. The classifier (also known as a classification model) can then be 

used to label unclassified instances. Commonly, the examples are associated with a single label which can as-

sume either two (binary) or more (multiclass) distinct values. However, there are many cases where each in-

stance needs to be associated with a number of labels. In these cases, there is a set of labels � = ����	 that is as-

sociated with the training set. The classification of each training instance is given as values in a subset of labels 

taken from L. The subsets are not necessarily disjoint. For simplicity, it is usually assumed that every label is bi-

nary. Multi-label classification is employed in a wide range of applications such as text categorization [20, 47] 

(e.g., books associated with multiple genres) and medical diagnosis [8] (e.g., patients with multiple diseases) 

etc.  



    Tsoumakas and Katakis [41] divided multi-label classification methods into two main categories:  problem 

transformation and algorithm adaptation. Problem transformation methods, which are the focus of this paper, 

transform the multi-label classification problem into several single-label classification problems while algorithm 

adaptation methods adjust single-label classifiers to handle multi-label data. The main weakness of methods that 

belong to the latter category is that they are mostly tailored for a specific classifier (e.g., SVM, decision tree), 

and thus lack generality. The first group, on the other hand, is more general and suits many cases and classifiers.  

    Two known multi-label classification methods that belong to the first group of methods are: binary relevance 

(BR) [5] and label powerset (LP) [4]. The BR method builds independent binary classifiers for each label (λi). 

Each classifier maps the original dataset to a single binary label with values λi, ¬λi. The classification of a new 

instance is given by the concatenation of the labels λi that are produced by the classifiers. The major disad-

vantage of this approach is that it does not take into account inter-label correlations. Conversely, the LP method 

takes into account inter-label correlations by building a single classifier in which every unique combination of 

labels values constitutes a single label. The set of all combinations is also known as the powerset of � and it is 

denoted by �	�
. One of the main drawbacks of this approach is that each combination may be associated with a 

very small number of instances since the number of all possible combinations is exponential in the number of 

labels. 

    In order to take into account inter-label correlations while avoiding the disadvantage of the LP method, it was 

suggested to construct an ensemble of single-label classifiers. A new instance is classified by integrating the 

outputs of the single-label classifiers. Tsoumakas and Vlahavas [45] and Tsoumakas et al. [43] presented the 

RAndom k-labELsets (RAKEL) algorithm - an effective ensemble method for solving multi-label classification 

tasks. Each ensemble member constructs an LP classifier based on a randomly chosen subset of k labels. These 

subsets are referred to as k-labelsets. The classification of a new instance is achieved by thresholding the aver-

age of the binary decisions of each model for each label. The authors showed that RAKEL achieved high predic-

tive performance compared to BR and LP methods. The simplicity of RAKEL together with its predictive per-

formance made it the algorithm of choice for solving multi-label classification tasks. However, the random 

selection of subsets in RAKEL may negatively affect the ensemble's performance. We investigate this in Section 

2. Specifically, the chosen subsets may not cover all labels and inter-label correlations. The importance of inter-

label correlations can be demonstrated by the following scenario. Suppose that the behavior of two certain labels 

is similar in all of the instances of the training set e.g., whenever one label is associated with a certain instance, 

the other is associated with it as well and vice versa. Not considering the correlation between these labels may 

result in associating a test instance to only one of the labels and not the other. In Section 4.1 we provide analyti-

cal bounds on the coverage of inter-label correlation. Note that since each ensemble member is constructed as an 

LP classifier, high values of k make this construction impractical due to the exponential number of enumerations 

required by the LP classifier. Accordingly, k needs to be bounded by a moderate value – a guideline which is 

followed by the methods proposed in this paper.  

     The main challenge in the construction of an effective multi-label ensemble of classifiers that uses subset se-

lection is to determine the label subsets for each ensemble member. Ideally, we would like to choose the mini-

mal number of subsets that cover all labels and produce the best predictive performance. We denote the number 

of label subsets by �. Two methods that consider inter-label correlations were previously proposed by us [24, 

36]. Rather than randomly choosing the subsets [41], the subset selection problem was formulated as a set cov-



ering problem (SCP) and an approximation algorithm was employed to derive the subsets. The SCP solution 

produced a compact ensemble that covered all possible labels using label sets of size k while including all inter-

label correlations between label subsets [36] of size r < k.  The ensemble classifies a new sample by averaging 

the classification confidence of the base classifiers for each of the labels. The average is then compared to a 

threshold in order to derive the final decision for each label. The threshold value is tailored to the dataset in hand 

using a cross validation procedure. 

      In this paper we generalize our previous work [24, 36] and propose SCP as a general framework for the con-

struction of multi-label ensemble classifiers. This formulation allows the application of a wide variety of opti-

mization criteria to the subset construction process - thus, resulting in different covers of the original set of la-

bels. We propose three algorithms for choosing the subsets. All three algorithms try to cover all labels by a 

minimal number of subsets or by a given number of label subsets. The algorithms differ by additional criteria 

they take into account. Specifically, each algorithm considers one or more of the following criteria: (a) label oc-

currence frequency in the ensemble; and (b) inter-label correlations coverage. The first algorithm chooses the 

subsets so that all labels will have an equal contribution to the ensemble. We refer to this algorithm as the BAl-

anced Label COntribution approach (BALCO). The second algorithm focuses on covering the highest possible 

number of inter-label correlations. This algorithm is referred to as the INter-LAbel Correlations algorithm 

(INLAC). The third algorithm combines the criteria of the first two algorithms i.e. it covers as much inter-label 

correlations as possible while maintaining an even number of label occurrences. We refer to this algorithm as 

the BALANced label contribution inter-label CORrelations (BALANCOR) algorithm. The INLAC and 

BALANCOR algorithms receive as input the level r of inter-label correlation to cover e.g. correlations among 

label pairs 	� = 2
, triplets 	� = 3
, quartets 	� = 4
, etc. Additionally, we propose a data driven post pro-

cessing algorithm (DD-BALANCOR) which maximizes the number of inter-label correlations that are taken in-

to account. This is achieved by permuting the set of labels (which correspond to columns) of the constructed 

matrix according to the label dependencies of the dataset in hand. All four algorithms use a revised version of 

RAKEL (called RAKEL++ ) which averages the classifications confidence values (instead of using voting as in 

[41]) and employs a built-in procedure for deriving the best threshold value to the dataset in hand. 

     The rest of this paper is organized as follows: Section 2 describes the ensemble algorithm that is used for the 

various subset selection strategies. Section 3 describes the set cover problem and a greedy algorithm for approx-

imating its solution. In Section 4, we show how the set cover problem can be used as a general framework for 

the construction of label subsets. We then propose three strategies for choosing the subsets by enforcing various 

constraints on the selection process. Experimental results are presented and discussed in Section 5. We conclude 

and suggest future research in Section 6. 

2   The Ensemble Algorithm 

2.1 Label subsets representation 
 

     In order to represent the label subsets that constitute each ensemble, we construct a binary matrix in which 

the columns correspond to the classes � = ���� and the each row corresponds to an ensemble member. The i-th 

row contains 1 in its j-th column if the label �� 	is included in the subset of the i-th ensemble member. Table 1 il-



lustrates a table which represents an ensemble of 8 members and 9 labels. For example, the sixth ensemble 

member is constructed based on the label subset ���, ��, ���	. 
 

Table 1: An example of a binary matrix that represents subsets of labels that are used to construct the ensemble 
members. 

 �� �� �� �� �� �� �� �� �� 
S1 1 0 0 0 0 1 1 1 0 
S2 0 1 0 1 1 0 1 1 0 
S3 1 0 1 0 0 1 0 1 0 
S4 1 1 0 0 1 0 0 0 0 
S5 0 1 0 1 1 0 1 1 0 
S6 1 0 1 0 0 1 0 0 0 
S7 0 1 0 1 1 1 1 0 0 
S8 1 1 1 0 1 1 1 1 0 

  

     This representation is highly effective for deriving properties that can quantify the quality of the ensemble. 

For example, summing the rows can reveal the coverage level of each label where a zero sum indicates that the 

label is not covered by any of the subsets (λ� in Table 1). Furthermore, two columns that complement one an-

other indicate that none of the ensemble members cover both of the labels associated with these columns. Thus 

any possible correlation between these labels is ignored by the ensemble (columns ��	and	�� in Table 1). 

 

2.2 Ensemble construction 

    Given a matrix representation, each ensemble member is constructed as a multi-class classifier using the LP 

approach.  Specifically, the i-th ensemble member is constructed based on the enumeration of all possible com-

binations of the selected classes (contain 1 in their corresponding column at the i-th row). Algorithm 1 presents 

the required steps for the construction of the ensemble. The input to the algorithm is a binary matrix M repre-

senting the subsets that were chosen according to a set of given criteria. Note that unlike the RAKEL algorithm, 

we separate between the subset selection and the ensemble construction. This allows the offline construction of 

optimal cover matrices which excludes the matrix construction from the complexity of the ensemble construc-

tion. This separation is advisable since finding an optimal set covering is NP-hard and even finding a sub-

optimal solution might be computationally intensive. 

 

Algorithm 1: Construction of the ensemble classifier 
 
 

Input: k-labelset matrix – M 
           The training set - T 

Output: An ensemble of LP classifiers hi 
 
 

1.   for  i � 1 to the number of rows in M do 
2.         Yi � the labelset represented by the i-th row in M; 
3.         train an LP classifier hi : T � P(Yi) on D; 
4.   end for 
 

   

Since each ensemble member constructs an LP classifier, large label subsets need to be avoided. Otherwise the 

number of training instances associated with each class is relatively small which makes it harder for the base-

learning algorithm to differentiate among the classes. Accordingly, as in RAKEL, we are interested in binary 

constant weight codes in which all codewords share the same Hamming weight of k (i.e. the number of 1's is 

constant in all rows of the matrix). Due to this reason, one cannot simply use binary matrices that were con-



structed for multi-class classification such as error-correcting output coding (ECOC) [13,19]. However, certain 

codes such as Orthogonal array [23] can be used for this purpose. An orthogonal array OA(m, �, d, t) is a matrix 

of � rows and m columns, with every element being one of the d values. The array has strength t if, in every t by 

n submatrix, all the possible d t distinct rows appear the same number of times. In multiclass learning, a certain 

type of orthogonal arrays, known as Hadamard matrix, is found to be useful [48]. This binary square matrix has 

the following properties: � = � and  = ! = 2. Table 2 presents an example of such a matrix.  Note that any 

possible combination of any two columns of the matrix appears exactly the same number of times. Except for 

the first row, all the other rows have a constant Hamming weight of 4. In fact, it has been shown that Hadamard 

matrices are equivalent to certain constant weight codes [51].  In particular, a Hadamard matrix of order � is 

equivalent to a constant weight code with � columns and a constant Hamming weight of " = �/2.  However, 

there is no way to set the Hamming weight to any desired value (such as � = 11, " = 3) . Moreover, it should 

also be mentioned that constructing a Hadamard matrix is not a simple task and in some cases is even impossi-

ble. 

 On the other hand, the literature focuses on 	�,  , "
 constant weight codes with � columns, a constant 

weight of " and a minimum Hamming distance of 	 	 between any two rows. These matrices are not always 

suitable for our goal as they do not guarantee that all pairs of labels are covered. For example, Table 3 illustrates 

the matrix %	19,10,8
. One can note that the labels �� and �� are not covered  (i.e. there is no row in which both �� and �� are equal to 1).  Nevertheless, we assume that it is possible to construct qualified matrices by revising 

existing algorithms that were designed to construct constant weight codes (Östergård [31] provides an updated 

classification of such algorithms). Alternatively, one can use readymade constant weight codes as a starting 

point for searching the qualified matrices.  These ideas are beyond the scope of this article, and we leave them 

for future research.  

 

Table 2: Illustration of a Hadamard matrix (� = � and  = ! = 2). 

					�� 				�� 				�� 				�� 				�� 				�� 				�� 				�� 
0 0 0 0 0 0 0 0 
1 1 1 0 1 0 0 0 
1 0 1 1 0 1 0 0 
1 0 0 1 1 0 1 0 
1 0 0 0 1 1 0 1 
1 1 0 0 0 1 1 0 
1 0 1 0 0 0 1 1 
1 1 0 1 0 0 0 1 

 

Table 3: Illustration of constant weight code %	19,10,8
 
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13 λ14 λ15 λ16 λ17 λ18 λ19
1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1
1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0
0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 1 1
0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1
0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0
0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0
0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0
0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0  



  

      In RAKEL the classification of a new sample x is performed by the steps that are listed in Algorithm 2. 

Namely, each ensemble member returns a binary decision about the relevance of each label in L. The decisions 

are averaged for each label, and the labels whose average exceeds a given threshold t are associated with x. 

     The complexities of both the construction and classification are linear with respect to the number of ensem-

ble members (rows in the matrix M), as in most ensemble methods, and the total complexity depends on the 

complexity of the inducer that is used. The number of members can either be given as a parameter or it can be 

determined according to the given subset selection criteria. In the latter case, this number can be determined or 

estimated using combinatorial analysis. We provide such an estimate for the INLAC algorithm in Section 4.1. 

 
 

Algorithm 2: RAKEL classification phase 
Input: new instance– x,  
           An ensemble of LP classifiers– hi,  
           k-labelset matrix – M 

Output: Multi-label classification vector  
 

1.    for  j � 1 to |L| do 
2.           Sumj � 0; 
3.           Votesj � 0; 
4.    end for 

5.    for  i � 1 to the number of rows in M  do 
6.           Yi � a labelset selected from M; 
7.           for  each labels λj∈ Yi  do 
8.                  Sumj � Sumj + ℎ�*+, ��,; 
9.                  Votesj � Votesj + 1; 
10.         end for 
11.  end for 

12.  for  j � 1 to |L| do 
13.         Avgj � Sumj / Votesj 
14.         if  Avgj > t then 
15.                Resultj � 1; 
16.         else  
17.                Resultj � 0; 
18.         end if 
19. end for 
 

 

  



2.3  RAKEL++ 

In addition to the original implementation of RAKEL, in this paper we also examine a variant of RAKEL, de-

noted as RAKEL++ which implements two additional features: 

1. Incorporation of the classification confidence - It has already been shown that for multi-class problems, er-

ror-correcting output codes perform much better when confidence is taken into consideration [1]. The origi-

nal RAKEL implementation uses a simple voting scheme and ignores the confidence values attached to the 

predictions provided by the base-classifiers. In RAKEL++, instead of voting, the confidence values are tak-

en into account by thresholding the average of the probabilities provided by the base-classifier for each la-

bel.  

2. Data-driven derivation of the threshold . - Instead of manually setting up the threshold value by  the user, 

RAKEL++ determines ! according to the dataset in hand by employing five-fold cross validation (see [15] 

for details). The value of ! is set to the average of the threshold values obtained by this cross validation pro-

cedure.  

 

     All the methods presented in the following sections use RAKEL++. From the practitioner's point of view, re-

vising RAKEL to support the new features of RAKEL++ is very easy in the MULAN1 package version 1.3. The 

confidence values are collected by the RAKEL implementation in the package when the base-classifier provides 

this information. In other cases the classifiers can be retrofitted to produce confidence values [30]. Moreover, 

the OneThreshold class can be used for finding the best threshold value. It operates in two stages. First, it evalu-

ates the target measure using cross-validation at equally spaced points based on the user-defined step size (such 

as 0.1). Then when the proximity of the optimal threshold value is found, it uses fine-grained steps (such as 

0.01) to converge to a smaller optimum interval. Following Tsoumakas and Vlahavas [45], the cross validation 

procedure first tests 9 different threshold values ranging from 0.1 to 0.9 in 0.1 steps. This procedure can be im-

proved by using more efficient line search methods such as the golden section search method [27].  Moreover, 

in order to improve the efficiency of the evaluation procedure one can follow the procedure presented by Kohavi 

and John [28]. Instead of using a fixed number of cross validation folds, they suggest to repeat the cross valida-

tion procedure several times. The number of repetitions is determined on the fly by looking at the standard devi-

ation of the estimated measure.  If the standard deviation of the estimated measure is above certain value (for 

example 1%) another cross-validation is performed. Furthermore, in order to prevent the internal cross-

validation from being too intensive, the CV procedure is performed only on a portion (10%) of the RAKEL's en-

semble size when the ensemble size is indeed large enough (i.e. σ >100). 

 

2.4 Other Ensemble Algorithms 
 

In this section we briefly review several recently proposed ensemble algorithms for multi-label classification. 

The data sparseness problem of the LP approach was addressed in [34]. The authors propose Pruned Sets (PS) 

and Ensemble of Pruned Sets (EPS) methods in order to focus on the most important correlations. This is 

achieved by pruning away examples with infrequently occurring label sets. Some of the pruned examples are 

then partially reintroduced into the data by decomposing them into more frequently occurring label subsets. Fi-

                                                           
1 http://mulan.sourceforge.net/ 



nally, a process similar to the regular LP approach is applied to the new dataset. The authors show empirically 

that the proposed methods are often superior to other multi-label methods. However, these methods are likely to 

be inefficient in domains which contain a large percentage of distinct label combinations where examples are 

evenly distributed over those combinations [34]. Another limitation of the PS and EPS methods is the need to 

balance the trade-off between information loss (caused by pruning training examples) and adding too many de-

composed examples with smaller label sets. For this purpose there is a need to choose some non-trivial parame-

ter values before applying the algorithm or, alternatively, to perform calibration tests for parameters adjustment. 

Another limitation is that the inter-label correlations within the decomposed label sets are not considered. 

     Another approach for multi-label classification in domains that contain a large number of labels was pro-

posed by Tsoumakas et al. [42]. The proposed algorithm (HOMER) organizes all labels in a tree-shaped hierar-

chy where each node contains a set of labels that is substantially smaller than the entire set of labels. A multi-

label classifier is then constructed at each non-leaf node, following the BR approach. The multi-label classifica-

tion is performed recursively, starting from the root and proceeding to the child nodes only if the child's labels 

are among those predicted by the parent’s classifier. One of the main HOMER processes is the clustering of the 

label set into disjoint subsets so that similar labels are placed together. This is accomplished by applying a bal-

anced k-means clustering algorithm to the label part of the data. However, this approach also ignores possible 

correlations among the labels within each tree node. 

     A recent paper argues in defense of the BR method [35]. It presents a method for chaining binary classifiers – 

Classifier Chains (CC) – in a way that overcomes the label independence assumption of BR. According to the 

proposed method, a single binary classifier is associated with each one of the predefined labels in the dataset and 

all these classifiers are linked in an ordered chain. The feature space of each classifier in the chain is extended 

with the 0/1 label associations of all previous classifiers. Thus, each classification decision for a certain label in 

the chain is augmented by all prior binary relevance predictions in the chain. In this manner correlations among 

labels are considered. The CC method has been shown to improve the classification accuracy of the BR method 

on a number of regular (not large-size) datasets. One of the disadvantages of this method, noted by authors, is 

that the order of the chain itself has an effect on accuracy. This can be solved either by a heuristic for selecting 

the order of the chain members or by using an ensemble of chain classifiers. Any of these solutions increases the 

required computation time. Another disadvantage of this approach is that in datasets that contain many features 

the effect of the proposed label augmentation to the large feature space is very small. It might even be neglected 

in datasets where the number of features is much higher than the number of labels.  

      Recently, a probabilistic extension of the CC algorithm was proposed [11]. According to the probabilistic 

classifier chains (PCC) approach, the conditional probability of each label combination is computed using the 

product rule of probability. In order to estimate the joint distribution of labels, a model is constructed for each 

label based on a feature space augmented by previous labels as additional attributes. The classification predic-

tion is then explicitly derived from the calculated join distributions. 

      A few works on multi-label learning have directly identified dependent labels explicitly from the dataset. 

One such method where the degree of label correlation is explicitly measured was presented recently in [44]. In 

this paper, the authors use stacking of BR classifiers to alleviate the label correlations problem [46]. The idea in 

stacking is to train a second (or meta) level of models that consider as input the output of all first (or base) level 

models.  In this way, correlations between labels are modeled by a meta-level classifier [52]. To avoid the noise 



that may be introduced by modeling uncorrelated labels in the meta-level, the authors prune models participat-

ing in the stacking process by explicitly measuring the degree of label correlation using the phi coefficient. They 

empirically showed that detected correlations are meaningful and useful. The main disadvantage of this method 

is that the identified inter-label correlations are utilized only by the meta-level classifier. 

 A recent paper by Zhang and Zhang [49] exploited conditional dependencies among labels.  For this purpose 

the authors construct a Bayesian network to represent the joint probability of all labels conditioned by the fea-

ture space such that dependency relations among labels are explicitly expressed by the network structure. Zhang 

and Zhang [49] learn the network structure from classification errors of independent binary models which are 

constructed for all labels. Next, a new binary classifier is constructed for each label by augmenting its parent la-

bels in the network to the feature space (similarly to the Classifier Chains approach). The labels of new exam-

ples are predicted using these classifiers where the ordering of the labels is implied by the Bayesian network 

structure. Zhang and Zhang [49] showed empirically that their method is highly comparable to the state-of-the-

art approaches over a range of datasets using various multi-label evaluation measures. Note that the augmented 

parent labels have an equal influence as the rest of the features during the construction of the new classifiers. 

This may considerably reduce the potential benefit from utilizing the discovered inter-label dependencies.  

      Tenenboim et al. [39] proposed to discover existing dependencies among labels prior to the construction of 

any classifier and then to use the discovered dependencies to construct a multi-label classifier. Specifically, they 

defined methods for estimating the conditional and unconditional dependencies between labels in a given train-

ing set and then apply a new algorithm that combines the LP and BR methods to the results of each one of the 

dependence identification methods. The empirical results show that in many cases this approach outperforms 

many existing multi-label classification methods. 

3   The Set Covering Problem framework for Labelset Selection  

The set cover problem (SCP) is one of the 21 problems that were originally shown to be NP-complete by Karp 

[26]. In its simplest form, the problem is described as follows:  given a set Ω, a family Σ of subsets of Ω and an 

integer p, does Σ contain p subsets which cover Ω i.e. whose union is equal to Ω. When each element is covered 

exactly once, the cover is called a prime cover. The optimization version of the SCP problem appears in many 

areas such as scheduling and is known to be NP-hard [17, 26]. The general optimization SCP assigns a weight to 

each subset and looks for a cover whose total weight is minimal. This version is called the weighted set cover 

problem (WSCP). A particular case of the WSCP limits the size of each subset by a given value k and is referred 

to as the weighted k-set cover problem. This formulation is of particular interest to the problem of k-labelset se-

lection due to the need to limit the size of each labelset by a moderate value k (Section 2).  

3.1   WSCP as a Zero-One Integer Programming (IP) Problem 

In the following we give a formal description of the weighted set cover problem as a zero-one integer program-

ming problem. Let Ω = �2���3�4  be a set containing m elements and let Σ = �5���3�6  be a group of n subsets of Ω, 

where |5�| ≥ 1 and 9� is a weight associated with 5�. We say that : ⊆ �1, … , =� is a cover of Ω if Ω = ⋃ 5��∈@ . 



The cost of the cover I is given by A	:
 = ∑ C*5�,�∈@  where C	5�
 measures the cost of including 5� in the cover 

I. Usually,  C	5�
 is a function of 9� . 
     The weighted set cover problem can be formulated as a zero-one integer programming (IP) problem [18] as 

follows: 

minimize  A	:
 = ∑ C*5�,EF3� ⋅ +�           
subject to  ∑ H��EF3� ⋅ +� ≥ 1,			I = 1, … ,�	 

  +� ∈ �0,1�, J = 1,… , = 

where 

+� = K1 if	J ∈ :			5� 	is	in	the	cover	of	V
0 otherwise  

and   

H�� = K1 if	2� ∈ 5�0 otherwise. 

This zero-one IP problem can be directly solved by enumerating all 26 zero-one vectors of I [29]. The algorithm 

performs the enumeration by iterating through the following steps: 

1. Choose a free variable +� and fix it to the value 1. 

2. Enumerate each of the completions of the partial solution. 

3. Fix the variable +� to the value 0. 

4. Repeat the process for the sub-problem with +� equal to 0. 

     The algorithm uses an effective branching test to choose which free variable +� to set to 1 in such a way that 

the sum of the absolute values of the amount by which all constraints are violated is maximally reduced. Since 

the algorithm enumerates implicitly all the possible vectors of :, it guarantees an optimal solution if one exists. 

Nevertheless, this algorithm is only practical for small scale problems due its exponential time complexity. Con-

sequently, a heuristic algorithm is required in order to find a sufficiently good solution for large scale problems. 

Using the AMPL (A Mathematical Programming Language) environment together with the CPLEX package, 

we were able to find an exact solution only for small scale SCP problems which correspond to multilabel prob-

lems of less than 15 labels. 

3.2   Approximation algorithms for solving the WSCP  

Many heuristics have been proposed for approximating the solution of the SCP. Grossman and Wool [21] con-

ducted a comparative study of nine approximation algorithms for the unweighted set covering problem. The au-

thors showed that the empirical performances of the randomized greedy algorithm [7] and the randomized 

rounding algorithm [33] are better than the performance of the other algorithms.  In each iteration of the ran-

domized greedy algorithm, the variable that appears in the largest number of unsatisfied inequalities is picked 

(ties are broken at random). The randomized rounding algorithm first solves the fractional version of the prob-

lem, and then uses randomization to obtain an approximate solution for the integer problem. Namely, each frac-



tional value is multiplied by a scaling factor greater than 1. Then a biased coin is tossed for each variable and if 

the coin is "1" the variable is picked. 

     In a recent paper [20] a comparison is conducted between the theoretical and experimental performance of 

several approximation algorithms. The results showed that the greedy algorithm performed extremely well on all 

of the tested instances when it was applied to the unweighted and weighted versions of the SCP. Moreover, the 

results indicated that changing between the weighted and unweighted settings has very little effect on the greedy 

algorithm compared to the rounding algorithm. Given the findings of this study, we chose to focus on the greedy 

algorithm.  

     The basic idea of the greedy algorithm [7] is to pick the subset from Σ that covers the highest number of un-

covered elements at the lowest cost. The process is repeated until all of the elements in Ω are covered. This algo-

rithm is described in Algorithm 3. The algorithm initializes the solution I to an empty set. Then the algorithm 

finds the subset 5X whose cost is minimal, where the cost of each subset 5� is calculated as the ratio between its 

associated weight and its size. Next, the subset 5X 	is added to the solution I, and the elements covered by 5X 	are 

removed from all of the subsets in Σ. This process is repeated until the subsets in I cover all of the elements in Ω. 

Note that due to the element removal step, the size of each subset 5� 	 is updated to be the number of unique, un-

covered elements contained in it. 

 
 

Algorithm 3: The Greedy Algorithm for weighted set cover 

Input:  Finite set  Ω = �2���3�4   
            A group of subsets of Ω ;  Σ = �5���3�6     
            Subset weights W = �9���3�6   
            A cost function C: Σ → ℝ 
Output: A set covering I 

1. : ⟵ ^ 
2. for  i=1 to n do 
3.       5�∗ ⟵ 5�    
4. end for 

5. while Ω ≠ ⋃ 5��∈@  do 

6.       a ⟵ argminF:de∗fg heide∗i 
7.       : ⟵ : ∪ �a� 
8.       for  l=1 to n do 
9.               5k∗ ⟵ 5k∗\5X  
10.       end for 
11. end while  

4   The Labelset Selection Problem as a Set Covering Problem 

We propose three strategies for selecting k-labelsets in order to construct a multi-label ensemble classifier. Each 

proposed strategy is formulated as a k-set cover problem having its own cost function and Ω, Σ sets. Each pro-

posed strategy employs additional heuristic criteria to improve the predictive performance of the produced en-

semble classifier.  

     Contrary to the RAKEL algorithm in which the ensemble size � is determined by the user, in our case the en-

semble size can be either determined by the user or it can be determined according to the outcome of the SCP 



solution. Following the formal SCP description in Section 3.1, the ensemble size is simply � = ∑ +�Em3� . We are 

looking for the smallest � that satisfies all criteria.  

4.1   The INter-LAbel Correlations (INLAC) Strategy 

In many datasets, some of the labels are correlated. In the task of classifying movies in genres, a movie that is 

labeled with the genre "Animation" has a high chance to be also labeled with the genre "Adventure" but relative-

ly low chance to be additionally labeled with the genre "Horror". It is important that the codeword matrix will 

cover the positively correlated pair ("Animation", "Adventure") as well as the negatively correlated pair ("Ani-

mation","Horror"). In Section 4.4 we use the notion of statistical dependency to examine which labels it is im-

portant to cover.   

The need to cover inter-label correlations motivates a strategy for constructing a cover matrix that in-

cludes all possible pairs and triplets. Accordingly, the algorithm needs to receive as input � - the order of inter-

label correlations that are sought after. Setting � = 2 covers inter-label correlations between pairs of labels. In 

order to cover inter-label correlations among triplets, � is set to 3 and so forth.  

     The SCP formulation of this strategy initializes the sets Ω and Σ with all r-labelsets and k-labelsets of �, re-

spectively. A certain k-labelset Sj covers a certain r-labelset r i  if �� ⊆ 5�. For example the triplets		�� =���, ��, ��� and		�� = ���, ��, ��� are all covered by		5� = ���, ��, ��, ���. Thus, we construct a cover of all r-

labelsets instead of individual labels. This will also cover all individual labels. Note that each label is always 

covered together with � − 1 other labels. This way, if the r labels that are covered in a given iteration are corre-

lated, they will be included in the cover. We set a uniform weight to each of the k-labelsets, since there is no a-

priori preference of one k-labelset over another. The cost function C	5�
 is defined as the negation of the number 

of uncovered r-labelsets that are covered by 5� (the negation is taken in order to be consistent with the formula-

tion of the SCP as a minimization problem). Note that the lowest possible cost is  −o"�p. The steps for obtaining 

a solution employing the INLAC strategy are given in Algorithm 4.  

 
Algorithm 4: The INLAC Greedy Algorithm  

Input:  The set of r-labelsets of � ; Ω = �����3�q   
            The group of k-labelsets of � ;  Σ = �5���3�6     
            The ensemble size σ 
Output: A set covering I 

1. : ⟵ ^ 
2. for  i=1 to n do 
3.       5�∗ ⟵ all r-labelsets that are covered by 5�   
4. end for 

5. Do  
6.       a ⟵ argmaxF*s5�∗s, 
7.       : ⟵ : ∪ t5Xu 
8.       Ω = Ω − 5X∗ 
9.       for  l=1 to n do 
10.               5k∗ ⟵ 5k∗\5X  
11.       end for 
12. Until (� = ∞ AND Ω = ∅ ) OR 	|:| = �)  

 



 
Initially, we set 5�∗ to all r-labelsets that are covered by the k-labelset 5�. Then, we iteratively find the k-labelset 5X that covers the highest number of uncovered r-labelsets. The r-labelsets that are covered by 5X are then re-

moved from the set of all r-labelsets �5�∗�. We use the binary matrix representation that was described in Section 

2 in order to illustrate a covering. Table 4 displays the result of this algorithm for a set of	� = 4 labels which is 

covered by 3-labelsets (" = 3) including all pair-wise correlations 	� = 2
. 
Table 4: Matrix set of � = |�| = 4 labels which is covered by 3-labelsets (" = 3) including all pair-wise 

correlations. 
 

 � 1 � 2 � 3 � 4 
S1 1 1 1 0 
S2 1 1 0 1 
S3 1 0 1 1 

 Inter-label correlation can also be covered by RAKEL. However, since the k-labelsets are randomly chosen, 

some correlations may be missed. Lemma 1 quantifies the ability of randomly chosen k-labelsets to cover inter 

correlations between pairs of labels. 

Lemma 1: The probability that all pairs in a label set � = �����3�4  will be covered by � random k-labelsets is 

bounded by: 

x ≤ 1 − 2ℎ + 15� + 2ℎ	ℎ + 1
 5� 
where:  

5� = o�2p{o
� − 2" p + 2 o� − 2" − 1po�" p |

}
= �	� − 1
2 ⋅ ~	� − "
	� + " − 1
�	� − 1
 �} 

 

5� = 3o�4p{o
� − 4" p + 4 o� − 4" − 1p + 4 o� − 4" − 2po�" p | + 3 o�3p{o

� − 3" p + 3 o� − 3" − 1p + o� − 3" − 2po�"p |
}

 

and  

 

ℎ = 1 + �25�5� �. 
 

      The proof of Lemma 1 is provided in the appendix. For the sake of simplicity, Lemma 1 assumes random se-

lection of k-labelsets with replacement while the RAKEL algorithm selects labelsets without replacement. Fig-

ure 1 presents the coverage probability p (y-axis), with respect to the number of ensemble members � (x-axis), 

number of labels (L) and subset size (k). As expected,  the coverage probability asymptotically converges to 1 as � increases. It can be seen that: (a) The convergence rate is slower for larger values of |�|; and (b) The conver-

gence is faster for higher values of k. Nevertheless, increase in k also increases the complexity of the classifier.  

From a computational cost perspective, smaller ensembles are preferred. Moreover, larger ensembles do not 

necessarily improve predictive performance (see for instance [50]). Yet there are other reasons for preferring 

small ensembles: 



• Smaller ensembles require less memory for storing their members. 

• Smaller ensembles are considered to be more comprehensible to the end-users. 

• Compact ensembles provide higher classification speed. It is particularly crucial in real-time applica-

tions, such as worm detection in PC's, that not only need to pursue the highest possible accuracy, but 

are also required to respond as fast as possible. The focus of a recent paper which uses the ECOC ap-

proach for solving multi-class problems is minimizing the number of classifiers that are used during the 

classification [32]. 

     Algorithm 4 is designed to work in two different modes. In the first mode, the algorithm constructs an en-

semble whose size is set explicitly by the user via the parameter σ. In the second mode (σ = ∞
 the algorithm 

stops when all r-labelsets are covered. If �	 is set to a value that is greater than the size needed to cover all r-

labelsets, then the surplus elements in I are arbitrarily selected.  

 

 

 
 

Figure 1: Coverage probability p for covering � = |�| labels by k-labelsets using � ensemble 
members.  

Complexity Analysis 

The dominant steps in the algorithm are 3, 6 and 10. Step 3 requires � ~o�" p ⋅ o"�p� = �	�� ⋅ "�
	time and 

space. Step 6 requires � �o�" p ⋅ o�� p� = �	����
 and the entire loop takes �	� ⋅ ����
. Step 10 requires 

� �o�" p� = �	��
.  Since "�	 ≪ �� and � ≪ ��, the overall complexity is �	����
.  
The storage complexity is O	�� +��
, since we need to maintain all k-labelsets and r-labelsets in memory. It 

is important to emphasize that the labelsets preparation can be performed offline and is done only once for each 

given values of �, ", � and �.  

Analysis of the cover size 

Lemma 2 estimates how many k-labelsets are required to cover all inter-label correlations of order	�.  

Lemma 2 

Given a set of labels � = �����3�4 , the number of k-labelset required to cover all inter-label correlations of 

der		� is given by:  

Models (�) 

C
overage probability (p) 

 



o�� po"�p ≤ � ≤ �" + o�� p −�" o"�p 
Proof of Lemma 2 

We represent every inter-label correlation by an r-labelset. Each k-labelset can cover at most  o"�p new previ-

ously uncovered r-labelsets. For complete coverage we need to cover o�� p  r-labelsets. Therefore, the size of � 

must be at least 
o4� po��p 	. 

    On the other hand, we can construct at least  
4� 	 mutually exclusive k-labelsets such that each one of them co-

vers o"�p new r-labelsets (for the sake of simplicity, we assume that �	�� 	" = 0). The rest of the k-labelsets 

will cover at least one r-labelset each (otherwise this labelset will not be included in the cover). There are 

 o�� p − 4� o"�p  r- labelsets that will be covered in this manner. Therefore � cannot exceed: 

�" + o�� p −�" o"�p∎ 

 

It should be emphasized that the matrix representing the constructed cover is different from the covering ar-

rays and orthogonal arrays [25]. It is different since each line in the matrix is required to represent a k-labelset as 

in RAKEL. This ensures that the training complexity of all classifiers will be similar. If the value of " is not 

identical for all the labelsets (=classifiers), then one classifier can be much more difficult to train than the others 

(see for example [22] for an explanation how the number of classes affects the training).  

 

4.2   The BAlanced Label COntribution (BALCO) Strategy 

Recall that the classification algorithm (Algorithm 2) employs a voting scheme in order to derive the prediction 

of a new sample. In a randomly constructed matrix (as in RAKEL) certain labels may appear more than others. 

Assuming that all labels are equally difficult to be learnt, there is a greater chance that we misclassify instances 

of undersampled labels because these labels are described by a smaller number of classifiers. To take it to the 

extreme if a certain label does not appear at all in the matrix, then we cannot decide if a certain instance belongs 

to that label. Let P denote the probability that at least one label out of � labels is not represented by none of the � randomly selected k-labelsets. Employing the same proof strategy that we used in Lemma 1, it can be shown 

that  

� ≥ ����5� − ��	���
5�   

where: 

ℎ = 1 + ��d�d� �; 5� = 	4��
�4��� ; 5� = *	4��
	4����
,��*4	4��
,���  



    For small values of �, this probability cannot be neglected. For example, given an ensemble of � = 100 la-

belsets, " = 3 and number of labels � = 100, the misrepresentation probability is greater than 0.86. 

     In order to prevent any misrepresentation, one must select the labelsets such that all labels will be evenly rep-

resented. This labelset selection problem can be formulated as a set cover problem, such that the set Ω will be 

composed of the set of all labels � while the set Σ will be initialized to all k-labelsets of �. The subsets weights 

will all be set to 1. We define the frequency of a label as the number of labelsets in the cover that include it. Let I��	:
 be the imbalance level of a cover I, which we define as the frequency difference between the most fre-

quent label and the least frequent label in :. Accordingly, the cost function C	5�
 is defined as I��	5� ∪ :
, 
which penalizes a labelset 5� 	according to the amount of imbalance it adds to the cover. Algorithm 5 lists the 

steps for obtaining a cover according to the BALCO strategy.  

Algorithm 5: The BALCO Greedy Algorithm  

Input:  The set of labels  Ω = � = �����3�4   
            The group of k-labelsets of Ω ;  Σ = �5���3�6     
            A cost function C: Σ → ℝ 
            The size of the cover σ 
Output: A set covering I 

1. : ⟵ ^ 
2. while |:| < � do 
3.       a ⟵ argminm C	5�
 
4.       : ⟵ : ∪ �a� 
5.       Σ = Σ − 5X 
6. end while  

Complexity Analysis 

The dominant step in the analysis is step 3, since it searches all o�" p possible k-labelsets. Consequently, the time 

and space complexities of the algorithm are �	���
.  
Analysis of the cover size 
 
Recall that the complexity of the ensemble is linear in the number of ensemble members. It is easy to see that at 

any given stage I��	:
 ≤ 1 and I��	:
 = 0 when �� 	|:| ⋅ ", =
 = = for |:| ≥ 1	where ��  is the greatest 

common divisor. A prime cover, i.e. a cover where each label is covered exactly once, can only be obtained if 	�	mod	"
 = 0. If 	�	mod	"
 ≠ 0, we need σ = ���	",�
/"  k-labelset to obtain a balanced cover where ��� is the least common multiple.  

 

 

4.3 The BALANced label contribution inter-label CORrelations (BALANCOR) strategy  

The BALCO and INLAC strategies enforce criteria that are both important for obtaining an ensemble classifier 

whose predictive performance is better than RAKEL. Accordingly, a hybrid strategy that simultaneously enforc-

es both criteria should benefit from their advantages. When using the SCP as the algorithmic framework, this 

strategy can be enforced by merely changing the cost function in step 6 of Algorithm 4 to 

	a ⟵ argmaxF os5�∗s − I��*: ∪ 5�,p. Thus, the cost is composed of the number of r-labelsets that are covered 



and it is being penalized by the contribution to the imbalance of the cover. The time and space complexity anal-

ysis is similar to the one in the INLAC strategy since calculating the imbalance in step 6 can be done in constant 

time for each inspected k-labelset.  

 
 

4.4 Data Driven BALANCOR Strategy (DD-BALANCOR) 
 

So far the matrix design methods ignored the dataset in hand.  By examining the data, it should be possible to 

estimate which k-labelsets contribute more to the ensemble.  One possibility is to revise the lableset selection 

criterion (step 6) in Algorithm 4 to take the labels dependency into account. However, implementing this ap-

proach will require a different construction process for every classification task which will prevent us from sep-

arating the matrix construction from the ensemble training. Therefore, we adopt a different approach. Given a 

matrix that was constructed using the BALANCOR strategy as described in Section 4.3, we add a pre-

processing step prior to the ensemble training that adjusts the matrix according to the dataset in hand. Specifical-

ly, the adjustments will permute the labels according to a given objective function. 

     Note that a matrix of power � < ", covers all r-labelsets but only a portion of the 	� + 1
-labelsets. Thus, a 

possible adjustment of the matrix can be to find a label permutation (which is equivalent to permuting the matrix 

columns) in which the highest number of 	� + 1
	dependent labels is covered. Specifically, we aim to maximize 

the total sum of weighted dependency levels of all 	� + 1
 labelsets covered by the matrix. The dependency lev-

el weight of a certain 	� + 1
 labelset is set to the number of times its labels co-occur in the training set (i.e. the 

number of instances that correspond to this labelset).  Recall the matrix presented in Table 4. If the data in hand 

implies that the labels in the triplet ���, ��, ��� are strongly dependent but the labels ���, ��, ��� are independent 

then a better columns ordering is given by the permutation	���, ��, ��, ���.  
     To this end, we first calculate the statistical dependencies among all 	� + 1
 labelsets based on the training 

set. We apply the chi-square test for independence for all 	� + 1
 labelsets.  For example in case that � = 2		we 

evaluate the dependency among all label triplets: �� , �� , ��. Calculating the dependency begins by creating a 

three- way contingency table that stores the labels co-occurrences counts in the dataset in hand as illustrated in 

Table 5 (note that for the sake of presentation we are using two tables of two dimensions). 

 

Table 5 General contingency table for three labels  

 �� 
 �� ¬�� �� =�,�,� =�,�,� 

¬�� =�,�,� =�,�,� 
 

 ¬�� 
 �� ¬�� �� =�,�,� =�,�,� 

¬�� =�,�,� =�,�,� 



 
 

Given the contingency table, the �� score can be computed as follows: 

�� =   *¡��� − =���,�¡������  

 

where ¡��� is the expected cell count, defined as: 
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     A high �� score indicates that the three labels are strongly dependent. Practically, there is no need to calcu-

late the inter-dependency of all possible 	� + 1
	labelsets. We take into account a certain 	� + 1
 labelset if its 

labels co-occur at least 5 times in the dataset. The threshold value of 5 was chosen since it is used in statistics as 

a common practice for guarantying the correctness of the �� statistics. Specifically, the standard �� test should 

be used only if the total number of observations is greater than 40 and the expected frequency in each cell is at 

least 5 [9].   

 In order to search for the best permutation we employ a simulated annealing algorithm. We begin with a ran-

dom permutation and calculate its merit i.e. the total sum of weighted dependency levels of all 	� + 1
 labelsets 

covered by the matrix under this permutation. In every iteration, we look for an improved permutation which is 

a neighbor of the current permutation.  We define a neighborhood to be the set of all permutations that can be 

obtained by interchanging the position of any pair of labels. According to this definition of neighborhood, each 

permutation has 
4	4��
�  neighbors.  We select a neighbor if its merit is higher than that of the current permuta-

tion. Otherwise, the new neighbor is accepted with probability of  2�∆	∙	¤e, where ¥� is a parameter known as the 

temperature and ∆ is the merit difference between the current permutation and its candidate neighbor. The tem-

perature is high in the initial iterations to allow non-improving solutions to be accepted and then it decreases un-

til it is close to zero. We used the following simple and common exponential schedule to update ¥:  ¥� = ¦¥��� 
where the parameter 0 ≤ ¦ ≤ 1 controls the rate of the decay (in this paper we used ¦ = 0.85). In either case, 

the selected new neighbor is set as the current permutation, its neighbors are generated and the process is repeat-

ed. In order to bound the number of iterations, we observed the number of iterations during which a significant 

improvement in the permutation merit took place for various values of m and ensemble sizes �. Fitting a regres-

sion equation, we recommend setting the number of iterations to: 

¨ = max�1368�=	�
 + 12�=	�	
 − 2179, 2000�. 
 



5   Experimental Study 

5.1   Experimental Setup 

The three proposed strategies were empirically compared with RAKEL. We developed a software package in 

Matlab in order to generate various k-labelset covers of m labels. For the classification tasks, we used WEKA 

[16] and MULAN2 (a software package for multilabel classification and ranking that is based on the WEKA 

framework). We used WEKA's SMO and J48 as our baseline classifiers for single-label classification in all en-

semble models. The parameter values of both base-classifiers were set to the defaults provided by WEKA.  

      The following datasets3 were used for the evaluation: Scene, Emotions, Yeast, Slashdot, OHSUMED, Gen-

base, Medical, Enron [14], Delicous and MediaMill. Table 6 presents certain properties of these datasets. The 

label cardinality is the average number of labels per example while the label density is the label cardinality di-

vided by |L|. 

Table 6: Properties of the datasets used in the experiments. 
 

 Instances Attributes Labels 
Dataset Train Test Nominal Numeric Labels Label 

Cardinality 
Label 

Density 
Scene 2407 CV 0 294 6 1.074 0.179 

Emotions 593 CV 0 72 6 1.869 0.311 
Yeast 2417 CV 0 103 14 4.237 0.303 

Slashdot 3782 CV 1079 0 22 1.18 0.041 
OHSUMED 13929 CV 1002 0 23 1.66 0.082 

Genbase 662 CV 1186 0 27 1.252 0.046 
Medical 978 CV 1449 0 45 1.245 0.028 
Enron 1702 CV 1001 0 53 3.378 0.064 

Delicous 12920 3185 500 0 983 19.020 0.019 
MediaMill 30993 12914 0 120 101 4.376 0.043 

   5.2 Evaluation Measures  

In this paper we consider the most commonly used multi-label evaluation measures from (Tsoumakas and Vla-

havas, 2007), namely multi-label example-based classification accuracy, subset-accuracy, Hamming loss, and 

label-based micro-averaged F-measure. Their formal definition and analysis are presented below.  

Let ª be a multi-label evaluation dataset, consisting of |ª| multi-label examples	(«� , ¬�), I = 1… |ª|, 	¬� ⊆[�]. Let ℎ be a multi-label classifier.  

Hamming loss computes the percentage of labels whose relevance is predicted incorrectly. For the two label 

subsets %, ¯	 ⊆ [�], their Hamming distance is  

 ℓ±²4(%, ¯) = 1� 1��∈³�´
�3� ≠ 1��∈µ�. (1)  

Over all dataset examples the Hamming loss is averaged as follows:  

                                                           
2 http://mulan.sourceforge.net/ 
3The datasets can be obtained from http://mulan.sourceforge.net/datasets.html and from 
  http://meka.sourceforge.net/#datasets 
 



¶H��I=�	��··(ℎ, ª) = 1|ª| ¬�∆ℎ(«�)|�|
|¸|
�3�  

where ∆ stands for the symmetric difference between two sets. 

Hamming loss is very sensitive to the label set size L. It measures the percentage of incorrectly predicted la-

bels both positive and negative. Thus, in cases where the percentage of positive labels is low relative to L, the 

low values of the Hamming loss measure do not give an indication of high predictive performance. Thus, as the 

empirical evaluation results demonstrate below, the accuracy of the classification algorithm on two datasets with 

similar Hamming loss values may vary from about 30 to above 70 percent (as,  for example,  in the "bibtex" and 

"medical" datasets). However, the Hamming loss measure can be useful for certain applications where errors of 

all types (i.e., incorrect prediction of negative labels and missing positive labels) are equally important. 

Subset accuracy computes the number of exact predictions, i.e., when the predicted set of labels exactly 

matches the true set of labels. This measure is the opposite of the zero-one loss, which for the two binary vectors %, ¯	 ⊆ [�] is defined as follows:  

 ℓ¹�(%, ¯) = º�³fµ�. (2)  

Over all dataset examples the Subset accuracy is averaged as follows: 

5»�·2!	H��»�H�¼(ℎ, ª) = 1|ª| :(¬� = ℎ(«�))|¸|
�3� . 

It should be noted also that subset accuracy is a very strict measure since it requires the predicted set of labels 

to be an exact match of the true set of labels, and equally penalizes predictions that may be almost correct and/or 

totally wrong. However, it can be useful for certain applications where classification is only one step in a chain 

of processes and the exact performance of the classifier is highly important (Vilar, 2004) 

Accuracy computes the percentage of correctly predicted labels among all predicted and true labels. Accuracy 

averaged over all dataset examples is defined as follows: 

%��»�H�¼(ℎ, ª) = 1|ª| ¬� ∩ ℎ(«�)¬� ∪ ℎ(«�)
|¸|
�3� . 

Accuracy seems to be a more balanced measure and better indicator of an actual algorithm's predictive per-

formance for most standard classification problems than Hamming loss and subset accuracy. However, it should 

be noted that it also is relatively sensitive to dataset label cardinality (average number of labels per example). 

This means that for two classification problems (i.e., datasets) of the same complexity, accuracy values would 

be lower in the dataset with the higher label cardinality. The empirical evaluation experiment below supports 

this conclusion (consider, for example accuracy and F-measure values on "emotions", "scene" and "yeast" da-

tasets). 

The F-measure is the harmonic mean between precision (¾) and recall (¿) and is commonly used in infor-

mation retrieval. Precision and recall are defined as follows: 

¾À = ¥�À¥�À + Á�À , ¿À = ¥�À¥�À + Á À̈,	 
where ¥�À, Á�Àand Á À̈ stands for the number of true positives, false positives and false negatives corre-

spondingly after binary evaluation for a label λ. 
The micro-averaged precision and recall are calculated by summing over all individual decisions: 



¾ = ∑ ¥�ÀÀ́3�∑ (¥�À + Á�À)À́3� , ¿ = ∑ ¥�ÀÀ́3�∑ (¥�À + Á À̈)À́3� , 
where L is the number of labels. The micro-averaged F-measure score of the entire classification problem is 

then computed as:  

Á(�I��� − HÂ2�H�2 ) = 2¾¿¾ + ¿ 

Note that micro-averaged F-measure gives equal weight to each document and is therefore considered as an 

average over all the document/label pairs. It tends to be dominated by the classifier’s performance on common 

categories and is less influenced by the classifier’s performance on rare categories. 

Of the various measures that are discussed here, the micro-averaged F-measure seems to be the most bal-

anced and the least dependent on dataset properties. Thus it could be the most useful indicator of classifier gen-

eral predictive performance for various classification problems. However it is more difficult for human interpre-

tation, as it combines two other measures (precision and recall).  

Summarizing the above analysis of some of the most commonly used evaluation measures,  we conclude that 

accuracy and micro-averaged F-measure are better suited for general evaluation of algorithm performance for 

most regular multi-label classification problems while the Hamming loss and subset accuracy measures may be 

more appropriate for some specific multi-label classification problems. 

Actually the accuracy measure, where the number of true labels among the predicted ones is important,  can 

be considered as a "golden mean" between Hamming loss where all labels are equally important and subset-

accuracy where only the whole set of positive labels is important. Thus, in this research we aim at improving the 

accuracy measure. 

Some other evaluation measures, such as one-error, coverage, ranking loss and average precision, which are 

specially designed for multi-label ranking do exist (Schapire & Singer, 2000). This category of measures, 

known as ranking-based, is often used in the literature (although not directly related to multi-label classifica-

tion), and is nicely presented in (Tsoumakas et al., 2010) among other publications. These measures are tailored 

for evaluation of specific-purpose ranking problems and are of a less interest for our research. 

5.3 Evaluation Procedure 

      In order to estimate the generalization performance, a 10-fold cross-validation (CV) procedure was used. For 

each 10-fold cross-validation, the training set was randomly partitioned into 10 disjoint instances subsets. Each 

subset was utilized once as a test set and nine times as part of a training set. All algorithms were applied to the 

same cross-validation folds. We used train/test splits for evaluation of the two largest datasets (Delicious and 

MediaMill) as indicated in Table 6 since cross validation is too computational intensive in these cases. 

      In order to determine which algorithm performs best over multiple datasets, we followed the procedure pro-

posed in [12]. We first used the adjusted Friedman test in order to test the null hypothesis that all methods per-

form the same and then the Nemenyi test to examine whether the new algorithm performs significantly better 

than existing algorithms. 

The input parameters of the algorithm are: 



• � – Labels subset size. Our parameter k corresponds to the user-specified parameter k – the size of the 

labelsets as defined in the RAKEL algorithm. 

• � – Ensemble size – defined according to the output of the minimum SCP method. The � parameter 

corresponds to the ensemble size parameter in RAKEL. However, in contrast to RAKEL, the number 

of members in our ensemble is constant for each k and m, since it is defined by the solution of the 

BALANCOR algorithm. The ensemble size of the two other strategies has been adjusted to that of 

BALANCOR. 

• Ã – Coverage power. In this paper we examine � = 2 and � = 3, i.e. ensembles that cover all pairs and 

all triplets of labels, respectively. 

• . – Threshold – In RAKEL the value is set by the user. Recall that in RAKEL++ and in our derived 

methods, we use an internal cross validation procedure for selecting the most promising threshold val-

ue. 

 

    We compared the results achieved by the proposed strategies with those achieved by RAKEL where all algo-

rithms used the same k and � settings. We examined various k values. However, not all values of k are meaning-

ful. For example, in case of datasets with 6 labels, the only meaningful values for comparison are k=3 and k=4. 

Note, that the cases in which k=1 and k=6, correspond to building a binary model and LP model, respectively. 

When k=2, INLAC and RAKEL obtain the same results, since the INLAC strategy produces all possible label-

sets. When k=5, the number of possible models is too small. 

 

5.4   Results 

Table 7 presents the results obtained by averaging the 10-fold cross-validation experiments using SMO as the 

base classifier. The second and third columns specify the k and  � settings, respectively. The next set of columns 

presents the micro-Á�	performance. The last set of columns reports the Hamming Loss. Finally, the last line in-

dicates the average ranking of the various methods. The results of the experimental study are encouraging. First 

of all, they indicate that RAKEL++ consistently improves RAKEL. Specifically, RAKEL++ obtains higher mi-

cro-Á� values in 25 out of 32 cases. The BALANCOR strategy improves both the micro-averaged F-measure 

and the Hamming loss results of RAKEL++. The BALCO strategy mainly improves the micro-averaged F-

measure compared to RAKEL++ while the INLAC strategy mainly obtains a lower Hamming loss. Thus, the 

BALANCOR strategy has the best of both worlds. Furthermore, the percentage improvement of DD-

BALANCOR strategy over the BALANCOR strategy in terms of the micro-Á� measure and Hamming Loss is 

3% and 7%, respectively. Moreover, the percentage improvement of DD-BALANCOR strategy over the origi-

nal RAKEL algorithm in terms of micro-averaged F-measure and Hamming Loss is 6% and 24%, respectively.  

In absolute terms, the improvement in Hamming Loss seems to be insignificant (approximately 0.01). 

However, it should be noted that improving the Hamming Loss performance of any ensemble method is chal-

lenging since ensemble methods achieve excellent Hamming Loss performance to begin with. For example, the 

recently introduced EPCC algorithm [11] improved the Hamming loss of ECC by 0.003. The LEAD algorithm  

provides an absolute improvement of 0.003 over ECC in terms of Hamming Loss [49]. The original paper of 



ECC [35] does not report Hamming Loss performance, but in a recent comparative study we have performed [6] 

we notice that ECC provides an absolute Hamming Loss improvement of 0.004 when compared to RAKEL. 

While each of the above comparisons has been performed using different settings and datasets mix, it still pro-

vides clear evidence that Hamming loss improvement is not easily achieved and that the improvement presented 

in this paper is not inferior to the improvements obtained by recently presented state-of-the-art algorithms. 

Table 7: Comparative results using SMO as the base classifier. 

 

      The results that are obtained when the C4.5 (using WEKA's J48 implementation) is used as the base classifi-

er are given in Table 8. As in Table 7, we notice a similar dominance of the DD-BALANCOR strategy over all 

other methods. Specifically, the DD-BALANCOR strategy improves both the micro-averaged F-measure and 

the Hamming loss results of RAKEL by 18% and 1.3%, respectively. The BALANCOR and INLAC strategies 

obtained a more moderate improvement. It should be noted that while in most of the datasets the new methods 

obtain better results than RAKEL, in the Genbase dataset none of the proposed methods offer any improvement. 

This might be explained by the fact that the original RAKEL algorithm has already achieved excellent results in 

this dataset. 

      The micro-averaged F-measure results in Table 7 and Table 8 indicate that the DD-BALANCOR strategy 

outperforms RAKEL in 57 out of 64 cases -- mostly for relatively small values of " (compared to the number of 

labels in the dataset). On the other hand, RAKEL has not outperformed DD-BALANCOR strategy in none of 

the cases. 



Table 8: Comparative results using J48 as the base classifier. 

 

      Following the procedure presented by Demsar [12], we compared the various algorithms according to their 

average rank. Noticeably, the DD-BALANCOR strategy obtained the highest average rank both in the micro-Á�	and the Hamming Loss cases. The BALANCOR strategy achieved the second best average rank. The null 

hypothesis that all methods have the same micro-Á�	 measure performance was rejected by the adjusted Fried-

man test with a confidence level of 95% and (5, 315) degrees of freedom (specifically F(5,315)=139.46 > 2.24 

and p-value<0.0001). 

     As the null hypothesis was rejected, we proceeded to the Nemenyi post-hoc test. In this case two classifiers 

are significantly different with a confidence level of 95% if their average ranks differ by at least 0.942. Thus, we 

observe that DD-BALANCOR significantly outperforms all other methods.  However, we could not reject the 

null hypothesis that RAKEL and RAKEL++ have the same micro F-Measure performance at confidence levels 

of 95%.  Additionally, we could not reject the null hypothesis that BALANCOR and INLAC have the same mi-

cro F-Measure. 

     In case of the Hamming loss, the null hypothesis that all methods have the same Hamming loss performance 

was rejected by the adjusted Friedman test with a confidence level of 95% and (5, 315) degrees of freedom 

(specifically, F(5,315)=86.15 > 2.24 and p-value<0.0001). Using the Nemenyi post-hoc test we concluded that 

DD-BALANCOR significantly outperforms all other methods in terms of Hamming loss. Moreover RAKEL++ 

significantly outperformed RAKEL.  

 



5.5 Comparison to Other Ensembles Methods 

Table 9 compares the predictive performance of the DD- BALANCOR with two state-of-the-art ensemble algo-

rithms: ECC (Ensembles of Classifier Chains) and Ensembles of Pruned Sets (EPS).  These two algorithms were 

chosen due to their popularity and their availability in the MULAN package. To reduce the computational cost 

of the experiments, we tested these algorithms using only J48 as the base classifier. The ensemble size of ECC 

and EPS algorithms was adjusted to that of the DD-BALANCOR algorithm. Specifically, in the case of ECC, 

the ensemble size is an integer product of the number of labels. Thus, we selected the smallest ensemble size 

which is greater or equal to the ensemble size obtained by DD-BALANCOR.  

      The results presented in Table 9 are very encouraging. It can be seen that DD-BALANCOR succeeded to 

improve the performance of RAKEL to the level of ECC. In particular, in 7 out of 10 cases, DD-BALANCOR 

obtained the lowest Hamming Loss while in the remaining datasets the performance of DD-BALANCOR was 

only slightly worse than the performance of ECC.  

 We compared the various algorithms according to their average rank. Noticeably, the DD-BALANCOR 

strategy obtained the highest average rank in both the micro-Á� and the Hamming Loss measures. The ECC al-

gorithm achieved the second best average rank. The null hypothesis that all methods have the same Hamming 

Loss performance was rejected by the adjusted Friedman test with a confidence level of 95% and (2, 20) degrees 

of freedom (specifically F(2,20)= 53.068 > 3.492 and p-value<0.0001). Since the null hypothesis was rejected 

and since we wanted to examine whether our newly proposed method is better than existing ones, following 

Demsar [12] we used Bonferroni correction post-hoc test instead of Nemenyi post-hoc test that was used in the 

previous section. Using the Bonferroni test, we found that DD-BALANCOR significantly outperforms ECC and 

EPS with p<9% and p<1%, respectively. 

 The last two columns in Table 9 compare the training time of the algorithms. Note that the training time of 

DD-BALANCOR includes only the time required for deriving the best permutation together with the training of 

the ensemble of classifiers. It does not include the time required for the matrix construction as we assume that 

this task is performed off-line only once and in advance. As we can see, the training time of ECC and DD-

BALANCOR are mostly the same order of magnitude.  However, the training time of EPS is consistently lower 

than that of the two other methods. The last column in Table 9 presents the computational cost required for con-

structing the BALANCOR matrix. It can be seen that the matrix construction time is not negligible for large ma-

trices. This emphasizes the need to separate the matrix construction from the ensemble training. 

 



Table 9: Comparing DD-BALANCOR with ECC using J48 as the base classifier. 

       

 
5.6 Using higher power values 

 
As Lemma 2 indicates, using higher values of �, has a direct impact on the matrix size and consequently on the 

computational cost required for training the ensemble. Thus, using matrices based on � = 3 is practical only for 

datasets with a relatively small label set. In Table 10 we present the predictive performance obtained by the DD-

BALANCOR algorithm for � � 3 and compare it to the performance obtained for � � 2. In addition we present 

the performance of RAKEL++ using the same ensemble sizes of � � 2 and � � 3.  Note that we have tested 

� � 3 only on small datasets since the training time for larger datasets could not be completed within one week 

given the resources that were used for the experiments. The results in Table 10 indicate that using higher values 

of � improve the classification accuracy. One can notice that RAKEL++ improves the Hamming Loss by 7% on 

average. Similarly, the average improvement of DD-BALANCOR is approximately 9%.  Thus, the DD-

BALANCOR algorithm is still better than its equivalent RAKEL++ for � � 3. Moreover, one can see that by 

increasing the ensemble size of RAKEL++ (equivalent to � � 3), we succeeded to outperform the performance 

of DD-BALANCOR with � � 2. Thus, if computational cost is not a concern, one can use random strategy and 

simply increase the ensemble size in order to improve the predictive performance until it reaches an asymptotic 

value. However, if the computational cost is important, strategies such as DD-BALANCOR can assist in finding 

a compact ensemble.  

  



 

Table 10: Comparative results for Ã = Ä and Ã = Å	using J48 as the base classifier. 

Dataset k � – Ensemble Size Micro F1 Hamming Loss 
DD-
BALANCOR  
with r=2  

DD-
BALANCOR  
with r=3 

DD-
BALANCOR 
with r=2  

DD-
BALANCOR  
with r=3 

RAKEL++ 
equivalent 
to r=2 

RAKEL++ 
equivalent 
to r=3 

DD-
BALANCOR  
with r=2 

DD-
BALANCOR  
with r=3 

RAKEL++ 
equivalent 
to r=2 

RAKEL++ 
equivalent 
to r=3 

Emotions 4 3 6 0.6138 0.6296 0.6077 0.6280 0.2266 0.2132 0.2313 0.2260 
Ohsumed 4 48 443 0.5110 0.7088 0.3310 0.5657 0.0591 0.0552 0.0620 0.0562 

5 28 178 0.5172 0.7452 0.3620 0.5944 0.0584 0.0566 0.0607 0.0581 
6 23 89 0.4760 0.7517 0.2995 0.6101 0.0591 0.0577 0.0602 0.0580 
7 17 51 0.4000 0.4963 0.3170 0.4252 0.0594 0.0585 0.0603 0.0588 

Scene 4 3 6 0.6720 0.6823 0.6380 0.6740 0.1062 0.0896 0.1196 0.1012 
Slashdot 4 45 386 0.4974 0.6223 0.4011 0.5359 0.0420 0.0409 0.0430 0.0420 

5 27 155 0.4666 0.5228 0.3923 0.4811 0.0420 0.0320 0.0420 0.0370 
6 21 78 0.4392 0.5538 0.3849 0.4918 0.0420 0.0320 0.0420 0.0380 
7 14 45 0.4080 0.4568 0.3470 0.4343 0.0430 0.0330 0.0430 0.0360 

Yeast 4 18 92 0.6230 0.6684 0.5880 0.6340 0.2180 0.1893 0.2280 0.1990 
5 12 37 0.6440 0.6358 0.6088 0.6270 0.2190 0.2041 0.2160 0.2030 
6 9 19 0.6510 0.6302 0.6279 0.6170 0.2160 0.2124 0.2140 0.2120 
7 7 11 0.6430 0.6061 0.6340 0.6000 0.2081 0.1929 0.2130 0.2020 

 

 

5.7 Discussion 

The proposed strategies perform in a highly efficient and stable manner where in many cases they obtain better 

results than RAKEL, especially for small values of "	relatively to the number of labels. These results are con-

sistent with Lemma 1 and Lemma 2. The ensemble size � has a direct impact on the training time cost as it indi-

cates the number of base-classifiers that are trained. Thus, if the parameter " is kept fixed, increasing the value 

of � will usually increase the training time linearly.  On the other hand, it is well known that the parameter " al-

lows a trade-off between predictive performance and training time costs [35]. To some extent, using higher val-

ues of " for the same ensemble size � increases the training time cost but also improves the predictive perfor-

mance. In this context, a property that is shared by all four proposed construction strategies is that increasing the 

subset size " results in a decrease in the ensemble size � required to ensure coverage. The number of classes ad-

dressed by each ensemble member is bounded by �I=�2� , |¥|� where |¥| is the training set size. Practically, the 

actual number of classes depends on the characteristics of the dataset in hand (such as the Label Density).  

     As the actual number of classes approaches the upper bound, it might negatively affect the learning proce-

dure in two aspects:  First, the training time increases because, at the very least, it is linear in the number of clas-

ses. Second, the number of training instances associated with each class is relatively small which makes it hard-

er for the base-learning algorithm to differentiate among the classes.  In fact, within the PAC framework, Ben-

David et al. [3] showed how the required sample size depends on the dimensionality of the classes. Clearly, eve-

ry ensemble should be large enough to include a sufficient number of votes for each label. This insight might 

explain the clear difference in results for the smallest datasets (in terms of labels) for k=3 and k=4. On the other 

hand, for datasets with a higher number of labels such as Slashdot, the number of models is large enough and 

thus there is no such difference in the results.    

Given all readymade matrices that were constructed using the abovementioned strategies, the user can choose 

the matrix (and consequently also the value of " and �) according to various criteria. From the computational 



cost perspective, one can estimate the cost based on the number of rows in the matrix (ensemble size), the asso-

ciated " value, and how the computational complexity of the intended base inducer is affected by k and the 

training set size (number of instances and number of attributes). From the accuracy point of view, one can use 

the dataset characteristics, such as label cardinality, as a hint for selecting the matrix. It can be presumably 

claimed that higher values of " should be preferred when the label cardinality is high. However, recall that high-

er values of " result in smaller ensemble sizes which in turn can potentially decrease the predictive performance. 

The experimental results in Tables 7 and 8 show that higher values of " do not necessarily result in better per-

formance. Thus, we suggest using the data driven objective function presented in Section 4.4 also as a means for 

choosing the matrix. Namely, from all available matrices that fit the current problem, one should choose the ma-

trix which maximizes the total dependency that is addressed by the matrix. We put this idea to the test. For each 

dataset4 in Tables 7 and 8 we tested if the suggested procedure could correctly choose between the lowest and 

the highest value of " (i.e. binary selection). The selection is considered to be correct if it selects the matrix con-

figuration with the lowest Hamming Loss. The suggested procedure selected the correct matrix in 64 out of 80 

cases in Table 7 (8 datasets times 10 folds) and 59 out of 80 cases in Table 8. This indicates a mean accuracy of 

75%. While this is not perfect, it is still much better than a random guess.  

As for the value of �, we showed analytically (Lemma 2) and experimentally (see Section 5.4) that higher 

values of � increase sustainably the ensemble size. Nonetheless, using higher values of � improves the predic-

tive performance as demonstrated in Section 5.4.  Since computational cost is usually a constraint, we recom-

mend determining the values of � and " using the lower bound of Lemma 2 multiplied by the base inducer com-

putational cost for inducing a single classifier. The product should not exceed the given constraint. 

 

 From the practitioner point of view, given RAKEL++, using BALANCOR requires neither any additional 

learning time nor any significant revisions to the RAKEL++ code. Simply instead of using random label-set, one 

should use the predefined label-set matrices. The Matlab code for generating the matrices can be obtained from 

http://www.ise.bgu.ac.il/faculty/liorr/matlab.rar. 

6.   Conclusions and Future Work 

In this paper we presented a new ensemble method for multi-label classification. We examined the hypothesis 

that constructing compact ensembles which obey certain constraints may achieve predictive results that are bet-

ter than the results obtained by RAKEL. Namely, find a minimal number of label-sets of predefined size for a 

given number of labels and a set of constraints. We introduced the set cover problem as a general framework for 

constructing such ensembles and demonstrated its effectiveness when the following constraints were enforced: 

(a) equal representation of each individual label; (b) coverage of inter-label correlations; and (c) combination of 

(a) and (b). Finally, we presented a data-driven method which adjusts the matrix according to the dataset in 

hand. 

     Our experimental study shows that the method performs in a highly efficient and stable manner in many cas-

es better than RAKEL and other ensemble methods. The proposed method resolves two main problems of the 

                                                           
4 Except for Delicous, MediaMill which due to their computational intensive cost we were able to test only one configuration 



RAKEL algorithm: (1) random selection of label-sets that may produce fluctuations in the result values; and (2) 

the need to define the number of models in an ensemble. 

    The ability to enforce constraints during the cover construction along with the results achieved in this paper 

motivate the investigation of other constraints which may produce more powerful coverage schemes that will 

further improve the predictive performance.  
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Appendix 

 
Lemma 1: The probability that all pairs in a label set � = �����3�4  will be covered by � random k-labelsets is 

bounded by: 

x ≤ 1 − 2ℎ + 15� + 2ℎ(ℎ + 1) 5� 
where:  

5� = o�2p{o
� − 2" p + 2 o� − 2" − 1po�" p |

}
= �(� − 1)2 ⋅ ~(� − ")(� + " − 1)�(� − 1) �} 

5� = 3o�4p{o
� − 4" p + 4 o� − 4" − 1p + 4 o� − 4" − 2po�" p |

}
+ 3o�3p{o

� − 3" p + 3 o� − 3" − 1p + o� − 3" − 2po�" p |
}

 and  

ℎ = 1 + �25�5� �. 
Proof 

Let ei,j denote the event that the interaction of labels �� and �� (we assume J > I) are not covered by the cover 

:. We are interested in bounding the probability for the case which not all interactions of labels-pairs are cov-

ered. Namely we need to look into the expression  1 − ��(⋃ 2�,�)∀�,�;�È� . 
Using the Dawson-Sankoff  [10] inequality, the probability of the union of events is bounded by: 

��( É 2�,�) ≥ 2ℎ + 15� − 2ℎ(ℎ + 1) 5�∀�,�;�È�
 

where 

5� =   ��*2�,�,∀�,�:�È�  

5� =   ��*2�,� ∩ 2Ê,Ë,∀�,�,Ê,Ë�È�;ËÈÊ;�fÊ;�fË
	

 

and 









+=

1

22
1

S

S
h . 

Note that 5� looks into covering of individual pairs of labels while 5� looks into combinations of covered pairs. 

In order to calculate ��*2�,�,, we first calculate the probability that a single k-labelset does not cover a certain 

pair of labels. This is given by: 

��*�� , ��, = o� − 2" p + 2 o� − 2" − 1po�"p  

Thus, the probability that none of � randomly chosen k-labelsets cover a certain pair of labels is given by: 



��*2�,�, = {o� − 2" p + 2 o� − 2" − 1po�"p |
}
 

Since we have  o�2p  pairs of labels in 5�, its value is: 

5� = o�2p{o
� − 2" p + 2 o� − 2" − 1po�" p |

}
= �(� − 1)2 ⋅ ~(� − ")(� + " − 1)�(� − 1) �} 

 

The value of S2 can be decomposed into two complementary cases:  5� 	= 	 5�,� 	+ 	5�,�	
Case 1: The two pairs are mutually exclusive (I ≠ J, J ≠ ·, I ≠ !, J ≠ !). 
We first calculate the probability that a single k-labelset does not to cover the two pairs (�� , ��) and (�Ê, �Ë): 

��*(�� , ��) ∩ (�Ê, �Ë), = o� − 4" p + 4 o� − 4" − 1p + 4 o� − 4" − 2po�" p  

Note that the first element in the enumerator refers to all cases in which none of the subject labels is covered 

by a k-labelset. The second element refers to all cases in which exactly one of the labels is covered. The third el-

ement refers to all cases in which exactly two labels are covered (one from each pair). Since there are � k-

labelsets we obtain: 

��*2�,� ∩ 2Ê,Ë, = {o� − 4" p + 4 o� − 4" − 1p + 4 o� − 4" − 2po�" p |
}
 

 

In case 1, there are 3 o�4p  couples of label-pairs. Note that we multiply the number of combinations by 3 

since there are exactly three different ways to partition four labels into two pairs. Thus we conclude that: 

5�,� = 3o�4p{o
� − 4" p + 4 o� − 4" − 1p + 4 o� − 4" − 2po�"p |

}
 

 

 

Case 2: The two pairs are not mutually exclusive. 

Using the same argument as in case 1: 

��*(�� , ��) ∩ (�Ê, �Ë), = o� − 3" p + 3 o� − 3" − 1p + o� − 3" − 2po�" p  

 

Therefore: 

5�,� = 3o�3p{o
� − 3" p + 3 o� − 3" − 1p + o� − 3" − 2po�" p |

}
∎ 


