Ensemble Methods for Multi-label Classification
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Abstract. Ensemble methods have been shown to be an effecdl for solving multi-label classification
tasks. In the RAndork-labELsets (RAKEL) algorithm, each member of theemble is associated with a
small randomly-selected subsetkdfibels. Then, a single label classifier is traimedording to each combi-
nation of elements in the subset. In this papemdept a similar approach, however, instead of rango
choosing subsets, we select the minimum requirbdets ok labels that cover all labels and meet additional
constraints such as coverage of inter-label cdiogls. Construction of the cover is achieved by fadating
the subset selection as a minimum set coveringl@miSCP) and solving it by using approximation algo
rithms. Every cover needs only to be prepared dayceffline algorithms. Once prepared, a cover may b
applied to the classification of any given multdéh dataset whose properties conform with thosbetov-

er. The contribution of this paper is two-fold. tjrwe introduce SCP as a general framework fostcoat-
ing label covers while allowing the user to incarlge cover construction constraints. We demonstrege
effectiveness of this framework by proposing twastouction constraints whose enforcement produoes ¢
vers that improve the prediction performance ofdman selection. Second, we provide theoretical beund
that quantify the probabilities of random selectiorproduce covers that meet the proposed constructi-
teria. The experimental results indicate that treppsed methods improve multi-label classificataaura-

cy and stability compared with the RAKEL algorithmdato other state-of-the-art algorithms.
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1 Introduction

An inducer is an algorithm that constructs classsfiby learning a set of labeled examples (traisety whose
classification (label value) is knovwarpriori. The classifier (also known as a classificatiordeipcan then be
used to label unclassified instances. Commonly ett@mples are associated with a single label wbérhas-
sume either two (binary) or more (multiclass) distivalues. However, there are many cases whete inac
stance needs to be associated with a number déldhdhese cases, there is a set of labeis{1;} that is as-
sociated with the training set. The classificatidreach training instance is given as values igleset of labels
taken fromL. The subsets are not necessarily disjoint. Fopltity, it is usually assumed that every labebis

nary. Multi-label classification is employed in ade range of applications such as text categoamd0, 47]

(e.g., books associated with multiple genres) aedioal diagnosis [8] (e.g., patients with multiglseases)
etc.



Tsoumakas and Katakis [41] divided multi-labkssification methods into two main categoriggpblem
transformationandalgorithm adaptation Problem transformation methods, which are theidoaf this paper,
transform the multi-label classification problenirseveral single-label classification problemsle/aigorithm
adaptation methods adjust single-label classitetsandle multi-label data. The main weakness dhods that
belong to the latter category is that they are mdatlored for a specific classifier (e.g., SVMedsion tree),
and thus lack generality. The first group, on tlleeohand, is more general and suits many caseslasslfiers.

Two known multi-label classification methodsitbelong to the first group of methods dimary relevance
(BR) [5] andlabel powerse(LP) [4]. The BR method builds independent binelassifiers for each label;).
Each classifier maps the original dataset to alsibmary label with value, —4,. The classification of a new
instance is given by the concatenation of the khbethat are produced by the classifiers. The majsadt
vantage of this approach is that it does not take account inter-label correlations. Conversdig, tP method
takes into account inter-label correlations by dini) a single classifier in which every unique camation of
labels values constitutes a single label. The fatl@ombinations is also known as the powerset ahd it is
denoted byP(L). One of the main drawbacks of this approach iséhah combination may be associated with a
very small number of instances since the nhumbeligfossible combinations is exponential in the hamof
labels.

In order to take into account inter-label ctatiens while avoiding the disadvantage of the Léthod, it was
suggested to construct an ensemble of single-lkelaskifiers. A new instance is classified by ingigrg the
outputs of the single-label classifiers. Tsoumadad Viahavas [45] and Tsoumakeisal. [43] presented the
RAndom k-labELsets (RAKEL) algorithm - an effectigasemble method for solving multi-label classiima
tasks. Each ensemble member constructs an LPfidassised on a randomly chosen subsdt labels. These
subsets are referred to ledabelsetsThe classification of a new instance is achievedhbesholding the aver-
age of the binary decisions of each model for dalobl. The authors showed that RAKEL achieved Ipigddic-
tive performance compared to BR and LP methods.shelicity of RAKEL together with its predictiveep-
formance made it the algorithm of choice for sodvimulti-label classification tasks. However, thexdam
selection of subsets in RAKEL may negatively afféxet ensemble's performance. We investigate tHgeation
2. Specifically, the chosen subsets may not coléatzels and inter-label correlations. The impoda of inter-
label correlations can be demonstrated by thewidtlg scenario. Suppose that the behavior of twtagetabels
is similar in all of the instances of the trainiset e.g., whenever one label is associated wittrtaio instance,
the other is associated with it as well and vicesaeNot considering the correlation between thaisels may
result in associating a test instance to only drteelabels and not the other. In Section 4.1 vexide analyti-
cal bounds on the coverage of inter-label corr@matNote that since each ensemble member is cobstiras an
LP classifier, high values &fmake this construction impractical due to the exguial number of enumerations
required by the LP classifier. Accordingly,needs to be bounded by a moderate value — a gudshich is
followed by the methods proposed in this paper.

The main challenge in the construction of Hiective multi-label ensemble of classifiers thaks subset se-
lection is to determine the label subsets for eatdemble member. Ideally, we would like to chodserini-
mal number of subsets that cover all labels andywre the best predictive performance. We denoteudhger
of label subsets by. Two methods that consider inter-label correlaiarere previously proposed by us [24,

36]. Rather than randomly choosing the subsets [h#&]subset selection problem was formulated st aov-



ering problem (SCP) and an approximation algorithas employed to derive the subsets. The SCP solutio
produced a compact ensemble that covered all dedaifiels using label sets of sikkevhile including all inter-
label correlations between label subsets [36] zéisk k. The ensemble classifies a new sample by aveyagin
the classification confidence of the base clagsiffer each of the labels. The average is then epetpto a
threshold in order to derive the final decisiondach label. The threshold value is tailored toddaset in hand
using a cross validation procedure.

In this paper we generalize our previous wark 36] and propose SCP as a general framewaorthéocon-
struction of multi-label ensemble classifiers. Tlosmulation allows the application of a wide vayief opti-
mization criteria to the subset construction precethus, resulting in different covers of the ora set of la-
bels. We propose three algorithms for choosingstiitesets. All three algorithms try to cover all lsbley a
minimal number of subsets or by a given numbembgl subsets. The algorithms differ by additiorréteda
they take into account. Specifically, each alganittonsiders one or more of the following crite(&} label oc-
currence frequency in the ensemble; and (b) irtieell correlations coverage. The first algorithmades the
subsets so that all labels will have an equal dautipn to the ensemble. We refer to this algorithsnthe BAI-
anced Label COntribution approach (BALCO). The selcalgorithm focuses on covering the highest pdessib
number of inter-label correlations. This algoritisnreferred to as the INter-LAbel Correlations aition
(INLAC). The third algorithm combines the criteé the first two algorithms i.e. it covers as muncter-label
correlations as possible while maintaining an enember of label occurrences. We refer to this dtligor as
the BALANced label contribution inter-label CORnétms (BALANCOR) algorithm. The INLAC and
BALANCOR algorithms receive as input the levedf inter-label correlation to cover e.g. correda among
label pairs(r = 2), triplets (r = 3), quartets(r = 4), etc. Additionally, we propose a data driven posi-
cessing algorithm (DD-BALANCOR) which maximizes thember of inter-label correlations that are taken
to account. This is achieved by permuting the $dafmels (which correspond to columns) of the carded
matrix according to the label dependencies of @agkt in hand. All four algorithms use a revisetsion of
RAKEL (called RAKEL++ ) which averages the clagsifiions confidence values (instead of using vo#isdn
[41]) and employs a built-in procedure for derivihg best threshold value to the dataset in hand.

The rest of this paper is organized as follo8exction 2 describes the ensemble algorithm thased for the
various subset selection strategies. Section itdescthe set cover problem and a greedy algorftrrapprox-
imating its solution. In Section 4, we show how #&t cover problem can be used as a general frarkdao
the construction of label subsets. We then propluse strategies for choosing the subsets by enfpr@rious
constraints on the selection process. Experimeesailts are presented and discussed in Sectiorexdntlude

and suggest future research in Section 6.

2 The Ensemble Algorithm

2.1 Label subsets representation

In order to represent the label subsets thastitute each ensemble, we construct a binaryixmatwhich
the columns correspond to the claskes {1;} and the each row corresponds to an ensemble mefrieith

row contains 1 in itg-th column if the label; is included in the subset of théh ensemble member. Table 1 il-



lustrates a table which represents an ensemblerné®bers and 9 labels. For example, the sixth engem

member is constructed based on the label siladget;, 1.} .

Table 1 An example of a binary matrix that representsssetdof labels that are used to construct the dsisem

members.

M A A3 M A5 Ae A Ay Ao
Ss[1 o 0o 0 o0 1 1 1 o0
/0 1 0 1 1 0 1 1 ©
%1 0 1 0 0 1 0 1 O
/1 1 0o 0 1 0 0 0 o©
/0 1 0 1 1 0 1 1 O
/1 0 1 0o 0 1 0 0 O
/0 1 0 1 1 1 1 0 O
S|/ 1 1 1 0o 1 1 1 1 0

This representation is highly effective foridimg properties that can quantify the qualitytbé ensemble.
For example, summing the rows can reveal the cgeelevel of each label where a zero sum indicdtasthe
label is not covered by any of the subsatsif Table 1). Furthermore, two columns that comm@atrone an-
other indicate that none of the ensemble membarsrdmoth of the labels associated with these cofurhus

any possible correlation between these labelsisrig by the ensemble (columhsand 4, in Table 1).

2.2 Ensemble construction

Given a matrix representation, each ensemblabre is constructed as a multi-class classifiengishe LP
approach. Specifically, thieth ensemble member is constructed based on theezation of all possible com-
binations of the selected classes (contain 1 im tweresponding column at theh row). Algorithm 1 presents
the required steps for the construction of the erde. The input to the algorithm is a binary matviixrepre-
senting the subsets that were chosen accordingét af given criteria. Note that unlike the RAKElgorithm,
we separate between the subset selection and skeenble constructiorhis allows theoffline construction of
optimal covermatrices which excludes the matrix constructionrfrine complexity of the ensemble construc-
tion. This separation is advisable since findingogtimal set covering is NP-hard and even findingué-

optimal solution might be computationally intensive

Algorithm 1: Construction of the ensemble classifie

Input: k-labelset matrix -M
The training set T

Output: An ensemble of LP classifiers

1. for i €« 1 to the number of rows i do

2. Y; € the labelset represented by tkta row inM;
3. train an LP classifiér: T 2 P(Y)) onD;

4. end for

Since each ensemble member constructs an LP aaskifge label subsets need to be avoided. Otkerthie
number of training instances associated with eda$sds relatively small which makes it harder tloe base-
learning algorithm to differentiate among the csssAccordingly, as in RAKEL, we are interestedbinary
constant weight codes in which all codewords shiagesame Hamming weight &f(i.e. the number of 1's is

constant in all rows of the matrix). Due to thissen, one cannot simply use binary matrices thaé wen-



structed for multi-class classification such a®eoorrecting output coding (ECOC) [13,19]. Howevegrtain
codes such adrthogonal array[23] can be used for this purpose. An orthogonayeOA(m o, d, t)is a matrix
of o rows andm columns, with every element being one of thealues. The array has strengify in everyt by
n submatrix, all the possibkg' distinct rows appear the same number of timesnutticlass learning, a certain
type of orthogonal arrays, known as Hadamard maifound to be useful [48]. This binary squarenraas
the following propertiesin = ¢ andd =t = 2. Table 2 presents an example of such a matrix.e hwt any
possible combination of any two columns of the madppears exactly the same number of times. Exioept
the first row, all the other rows have a constaatrithing weight of 4. In fact, it has been shown thatlamard
matrices are equivalent to certain constant wetghies [51]. In particular, a Hadamard matrix alesm is
equivalent to a constant weight code withcolumns and a constant Hamming weighkof m/2. However,
there is no way to set the Hamming weight to arsirdd value (such ag = 11,k = 3) . Moreover, it should
also be mentioned that constructing a Hadamardixriatnot a simple task and in some cases is evgs$si-
ble.

On the other hand, the literature focuses(mnd, k) constant weight codesith m columns, a constant
weight of k and a minimum Hamming distance df between any two rows. These matrices are not alway
suitable for our goal as they do not guaranteeahaairs of labels are covered. For example, & &billustrates
the matrix4(19,10,8). One can note that the labdlsandA, are not covered (i.e. there is no row in whicthbo
1, andl, are equal to 1). Nevertheless, we assume tigpdssible to construct qualified matrices by seang
existing algorithms that were designed to constooctstant weight codes (Ostergard [31] providesizaated
classification of such algorithms). Alternativelyne can use readymade constant weight codes astiagst
point for searching the qualified matrices. Thiglsas are beyond the scope of this article, andtearxe them

for future research.

Table 2 lllustration of a Hadamard matrixi(= ¢ andd =t = 2).

Z A2 A3 Ay As As A7 Ag
0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0
1 0 1 1 0 1 0 0
1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1
1 1 0 0 0 1 1 0
1 0 1 0 0 0 1 1
1 1 0 1 0 0 0 1

Table 3 lllustration of constant weight cod&19,10,8)
MO AL A2 M3 A4 A5 A6 A7 M8 A9

>
=
>
N
>
w
X
>
o1
&
>
]
>
oo
&

1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1
1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0
0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 1 1
0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1
0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0
0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0
0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0
0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0



In RAKEL the classification of a new samplés performed by the steps that are listed in Atpar 2.
Namely, each ensemble member returns a binaryideadout the relevance of each labeLinThe decisions
are averaged for each label, and the labels whegage exceeds a given threshiodde associated with

The complexities of both the construction afabsification are linear with respect to the numifeensem-
ble members (rows in the matrM), as in most ensemble methods, and the total eoatpldepends on the
complexity of the inducer that is used. The numifamembers can either be given as a parametercanibe
determined according to the given subset selectiberia. In the latter case, this number can kerdgned or

estimated using combinatorial analysis. We prosgigieh an estimate for the INLAC algorithm in Sectibh.

Algorithm 2: RAKEL classification phase

Input: new instancex,
An ensemble of LP classifieds;-
k-labelset matrix -M

Output: Multi-label classification vector

1. forj< 1to||do
2 Sum < 0;

3 Votes € 0;
4. end for
5

6

7

8

for i € 1 to the number of rows M do
Y; € a labelset selected frokf;
for each labelg; e Y; do

Sunﬂ < Sunﬂ*' hl(x,l]),

9. Votes € Votes+ 1;
10. end for
11. end for

12. forj< 1to || do
13. Avg € Sum/ Votes
14. if Avg >t then

15. Result< 1;
16. else

17. Resyl& 0;
18. end if

19.end for




2.3 RAKEL++

In addition to the original implementation of RAKEIn this paper we also examine a variant of RAKHé&;

noted as RAKEL++ which implements two additionaltfees:

1. Incorporation of the classification confidene#t has already been shown that for multi-clasbfems, er-
ror-correcting output codes perform much bettermbenfidence is taken into consideration [1]. Thigie
nal RAKEL implementation uses a simple voting sceeand ignores the confidence values attached to the
predictions provided by the base-classifiers. INKIRA++, instead of voting, the confidence values tate
en into account by thresholding the average optiobabilities provided by the base-classifier facte la-
bel.

2. Data-driven derivation of the threshotd- Instead of manually setting up the thresholdigdly the user,
RAKEL++ determineg according to the dataset in hand by employing-fold cross validation (see [15]
for details). The value afis set to the average of the threshold valuesrdaaby this cross validation pro-

cedure.

All the methods presented in the followingtgets use RAKEL++. From the practitioner's pointvadw, re-
vising RAKEL to support the new features of RAKEListvery easy in the MULANpackage version 1.3. The
confidence values are collected by the RAKEL impatation in the package when the base-classif@riges
this information. In other cases the classifiers ba retrofitted to produce confidence values [30¢reover,
the OneThresholalass can be used for finding the best threshaldev It operates in two stages. First, it evalu-
ates the target measure using cross-validatiogually spaced points based on the user-definedsitep(such
as 0.1). Then when the proximity of the optimaletiirold value is found, it uses fine-grained stepsi as
0.01) to converge to a smaller optimum intervalldwaing Tsoumakas and Vlahavas [45], the crossdagion
procedure first tests 9 different threshold valtsegging from 0.1 to 0.9 in 0.1 steps. This procedtan be im-
proved by using more efficient line search methsuaish as the golden section search method [27].eM@r,
in order to improve the efficiency of the evaluatjgrocedure one can follow the procedure presdmdtbhavi
and John [28]. Instead of using a fixed numberros validation folds, they suggest to repeat thescvalida-
tion procedure several times. The number of rapattis determined on the fly by looking at thenstard devi-
ation of the estimated measure. If the standaviatien of the estimated measure is above certalnev(for
example 1%) another cross-validation is performedtthermore, in order to prevent the internal cross
validation from being too intensive, the CV proceglis performed only on a portion (10%) of the RAKEen-

semble size when the ensemble size is indeed ¢éargegh (i.ec >100).

2.4 Other Ensemble Algorithms

In this section we briefly review several recemiypposed ensemble algorithms for multi-label classtion.
The data sparseness problem of the LP approacladaeasssed in [34]. The authors propose Pruned(B8{s
and Ensemble of Pruned Sets (EPS) methods in dodfrcus on the most important correlations. Tisis i
achieved by pruning away examples with infrequenttgurring label sets. Some of the pruned examgules

then partially reintroduced into the data by decosipg them into more frequently occurring labelsaib. Fi-

1 http://mulan.sourceforge.net/



nally, a process similar to the regular LP approacipplied to the new dataset. The authors shopiraally
that the proposed methods are often superior tr athulti-label methods. However, these methoddikedy to
be inefficient in domains which contain a largegegrtage of distinct label combinations where exasgire
evenly distributed over those combinations [34]other limitation of the PS and EPS methods is hednto
balance the trade-off between information loss geduby pruning training examples) and adding tooyne-
composed examples with smaller label sets. Forptlnipose there is a need to choose some non-tpaialme-
ter values before applying the algorithm or, akirrely, to perform calibration tests for paramstadjustment.
Another limitation is that the inter-label corrétats within the decomposed label sets are not densil.

Another approach for multi-label classificatiomn domains that contain a large number of labels pro-
posed by Tsoumakas et al. [42]. The proposed digor{HOMER) organizes all labels in a tree-shapedain-
chy where each node contains a set of labels shahistantially smaller than the entire set of b multi-
label classifier is then constructed at each nan+ede, following the BR approach. The multi-lablelssifica-
tion is performed recursively, starting from thetr@and proceeding to the child nodes only if thid&hlabels
are among those predicted by the parent’s classfiiee of the main HOMER processes is the clusjesirthe
label set into disjoint subsets so that similaelalare placed together. This is accomplished imyap a bal-
ancedk-means clustering algorithm to the label part & ttata. However, this approach also ignores passibl
correlations among the labels within each tree node

A recent paper argues in defense of the BRioaef35]. It presents a method for chaining bingassifiers —
Classifier Chains (CC) — in a way that overcomesléiel independence assumption of BR. Accordintihé¢o
proposed method, a single binary classifier is@ased with each one of the predefined labels éendhtaset and
all these classifiers are linked in an orderedrch@ihe feature space of each classifier in therclsaextended
with the 0/1 label associations of all previoussslfers. Thus, each classification decision faedain label in
the chain is augmented by all prior binary releapredictions in the chain. In this manner corretet among
labels are considered. The CC method has been stwoimprove the classification accuracy of the BBtimod
on a number of regular (not large-size) dataset® € the disadvantages of this method, noted liyoas, is
that the order of the chain itself has an effechoouracy. This can be solved either by a heurfistiselecting
the order of the chain members or by using an ebkeai chain classifiers. Any of these solutionsré@ases the
required computation time. Another disadvantagéhisf approach is that in datasets that contain nfiaayires
the effect of the proposed label augmentation ¢ddhge feature space is very small. It might dvemeglected
in datasets where the number of features is mugthehithan the number of labels.

Recently, a probabilistic extension of the @l@orithm was proposed [11]. According to the miobstic
classifier chains (PCC) approach, the conditiomabpbility of each label combination is computeéthgsthe
product rule of probability. In order to estimake fjoint distribution of labels, a model is constad for each
label based on a feature space augmented by pseldbals as additional attributes. The classifcafredic-
tion is then explicitly derived from the calculat@ih distributions.

A few works on multi-label learning have ditly identified dependent labels explicitly fromethlataset.
One such method where the degree of label comal&iexplicitly measured was presented recent[y4j. In
this paper, the authors use stacking of BR classifio alleviate the label correlations problem.[4®e idea in
stacking is to train a second (or meta) level oflets that consider as input the output of all fisstbase) level

models. In this way, correlations between labedsraodeled by a meta-level classifier [52]. To avibie noise



that may be introduced by modeling uncorrelate@l&in the meta-level, the authors prune modelsgiaat-
ing in the stacking process by explicitly measuting degree of label correlation using (e coefficient. They
empirically showed that detected correlations aeamngful and useful. The main disadvantage ofrieshod
is that the identified inter-label correlations atéized only by the meta-level classifier.

A recent paper by Zhang and Zhang [49] exploiteaditional dependencies among labels. For thipqae
the authors construct a Bayesian network to reptabe joint probability of all labels conditionéy the fea-
ture space such that dependency relations amoastslake explicitly expressed by the network stmgctdhang
and Zhang [49] learn the network structure fronssification errors of independent binary modelsclhare
constructed for all labels. Next, a new binary sifér is constructed for each label by augmentisgarent la-
bels in the network to the feature space (similtslyhe Classifier Chains approach). The labelseaf exam-
ples are predicted using these classifiers whereotering of the labels is implied by the Bayesi@twork
structure. Zhang and Zhang [49] showed empiricdist their method is highly comparable to the strdtthe-
art approaches over a range of datasets usinguganmlti-label evaluation measures. Note that thgrmeented
parent labels have an equal influence as the fesiedfeatures during the construction of the néasgsifiers.
This may considerably reduce the potential befigfin utilizing the discovered inter-label dependeac

Tenenboim et al. [39] proposed to discovastarg dependencies among labels prior to the cocisdn of
any classifier and then to use the discovered dbgpenes to construct a multi-label classifier. Sjedly, they
defined methods for estimating the conditional andonditional dependencies between labels in angran-
ing set and then apply a new algorithm that conbihe LP and BR methods to the results of eachobiize
dependence identification methods. The empiricallte show that in many cases this approach owutpasf

many existing multi-label classification methods.

3 The Set Covering Problem framework for LabelseSelection

The set cover problem (SCP) is one of the 21 problthat were originally shown to be NP-complete<iayp
[26]. In its simplest form, the problem is descdtees follows:given a sefl, a familyX of subsets ofd and an
integerp, doesx containp subsets which covet i.e. whose union is equal fo. When each element is covered
exactly once, the cover is callegpame cover The optimization version of the SCP problem appé&amany
areas such as scheduling and is known to be NPFhar@6]. The general optimization SCP assignemght to
each subset and looks for a cover whose total wesgiminimal. This version is called theeighted set cover
problem(WSCP) A particular case of the WSCP limits the sizeattesubset by a given valkendis referred

to as theweighted k-set cover problehis formulation is of particular interest to theblem ofk-labelset se-

lection due to the need to limit the size of eadlelset by a moderate valkéSection 2).

3.1 WSCP as a Zero-One Integer Programming (IP)mblem

In the following we give a formal description okthveighted set cover problem as a zero-one inf@ggram-
ming problem. Lef) = {¢;}[%, be a set containingy elements and & = {S;}}-, be a group oh subsets of},

where|S;| = 1 andw; is a weight associated wiff). We say thaf < {1, ...,n} is a cover of2 if Q = Uj¢; S;.



The cost of the covdris given byZ(I) = ¥ ¢, C(S]-) whereC (S;) measures the cost of includifigin the cover
I. Usually, C(S;) is a function oiw;.
The weighted set cover problem can be forredlas aero-one integer programmir({P) problem [18] as

follows:

minimize Z(I) = ¥, C(S;) - x;
subjectto};i a;-x =1, i=1,..,m

x€{01}, j=1,..,n

where

_ {1 ifj € I (S; is in the cover of 2)
j

0 otherwise
and

aij = . .
0 otherwise

This zero-one IP problem can be directly solveegtbymerating alk™ zero-one vectors df[29]. The algorithm

performs the enumeration by iterating through tilofving steps:

Choose a free variablg and fix it to the value 1.
Enumerate each of the completions of the partiatien.

1
2
3. Fix the variable; to the value 0.
4

Repeat the process for the sub-problem witbqual to 0.

The algorithm uses an effective branching testhoose which free variabig to set to 1 in such a way that
the sum of the absolute values of the amount bghvall constraints are violated is maximally rediicgince
the algorithm enumerates implicitly all the possilkctors of, it guarantees an optimal solution if one exists.
Nevertheless, this algorithm is only practical $omall scale problems due its exponential time cexipl. Con-
sequently, a heuristic algorithm is required inesrtb find a sufficiently good solution for largeate problems.
Using the AMPL (A Mathematical Programming Languagavironment together with the CPLEX package,
we were able to find an exact solution only for Breeale SCP problems which correspond to multilgiveb-

lems of less than 15 labels.

3.2 Approximation algorithms for solving the WSCP

Many heuristics have been proposed for approximgatie solution of the SCP. Grossman and Wool [21} ¢
ducted a comparative study of nine approximatigodthms for theunweighted set covering probleifhe au-
thors showed that the empirical performances ofrémelomized greedy algorithrfY] and therandomized
rounding algorithm[33] are better than the performance of the o#tigorithms. In each iteration of the ran-
domized greedy algorithm, the variable that app@athe largest number of unsatisfied inequaliteepicked
(ties are broken at random). The randomized roundigorithm first solves the fractional versiontbé prob-

lem, and then uses randomization to obtain an appede solution for the integer problem. Namelyle&ac-



tional value is multiplied by a scaling factor geyathan 1. Then a biased coin is tossed for eaohble and if
the coin is "1" the variable is picked.

In a recent paper [20] a comparison is coretuttetween the theoretical and experimental pedoom of
several approximation algorithms. The results shbtliat the greedy algorithm performed extremelyl welall
of the tested instances when it was applied taitiveeighted and weighted versions of the SCP. Maredhe
results indicated that changing between the weibhtel unweighted settings has very little effecttengreedy
algorithm compared to the rounding algorithm. Gitles findings of this study, we chose to focuslmgreedy
algorithm.

The basic idea of threedyalgorithm [7] is to pick the subset frointhat covers the highest number of un-
covered elements at the lowest cost. The procespéated until all of the elements(irare covered. This algo-
rithm is described in Algorithm 3. The algorithnitializes the solutiort to an empty set. Then the algorithm
finds the subsef, whose cost is minimal, where the cost of eachedifhss calculated as the ratio between its
associated weight and its size. Next, the sufjsist added to the solutioin and the elements covered $yare
removed from all of the subsetsinThis process is repeated until the subsetcover all of the elements i
Note that due to the element removal step, thedfieach subsef; is updated to be the number of unicquie;

coveredelements contained in it.

Algorithm 3: The Greedy Algorithm for weighted setcover

Input: Finite setQ = {e;}i%,
A group of subsets af; T = {S;}-,
Subset weightd = {w;}%,
A cost functiof: X —» R

Output: A set covering

1. ¢

2. fori=1ltondo

3 Sl'* «— Si

4. end for

5. while Q # U;¢; S; do

6 q < arg minj:sj’f¢¢ %
J

7 I —1u{q}

8 for I=1to ndo

9. Sy — S\,

10. end for

11. end while

4 The Labelset Selection Problem as a Set CovegiProblem

We propose three strategies for seleckitgbelsets in order to construct a multi-label eniske classifier. Each
proposed strategy is formulated ak-set cover problem having its own cost function &ni sets. Each pro-
posed strategy employs additional heuristic catéoi improve the predictive performance of the pomdl en-
semble classifier.

Contrary to the RAKEL algorithm in which thesemble size is determined by the user, in our case the en-

semble size can be either determined by the usiércan be determined according to the outcoméef3SCP



solution. Following the formal SCP description iecBon 3.1, the ensemble size is simply YL, x;. We are

looking for the smallest that satisfies all criteria.

4.1 The INter-LAbel Correlations (INLAC) Strategy

In many datasets, some of the labels are correlfietie task of classifying movies in genres, avimdhat is
labeled with the genre "Animation” has a high cleatacbe also labeled with the genre "Adventure'rblative-
ly low chance to be additionally labeled with thenge "Horror". It is important that the codewordtrmawill

cover the positively correlated pair ("AnimatiofiAdventure") as well as the negatively correlatedt " Ani-
mation”,"Horror"). In Section 4.4 we use the notiminstatistical dependency to examine which laltelks im-
portant to cover.

The need to cover inter-label correlations motisaestrategy for constructing a cover matrix that i
cludes all possible pairs and triplets. Accordinghe algorithm needs to receive as inputtheorder of inter-
label correlations that are sought after. Settirg 2 covers inter-label correlations between pairsabgls. In
order to cover inter-label correlations among &ig)r is set to 3 and so forth.

The SCP formulation of this strategy initiakzthe set€ andX with all r-labelsets an#é-labelsets of., re-
spectively. A certairk-labelset§ covers a certaim-labelsetr; if r; € S;. For example the triplets, =
{14, g, A9} andr, = {14, 44,4} are all covered by; = {44, 4¢,4g,49}. Thus, we construct a cover of al
labelsets instead of individual labels. This wik@acover all individual labels. Note that eachelals always
covered together with — 1 other labels. This way, if thelabels that are covered in a given iteration aneec
lated, they will be included in the cover. We setniform weight to each of thelabelsets, since there is no a-
priori preference of onk-labelset over another. The cost functi®(s;) is defined as the negation of the number

of uncovered-labelsets that are covered $y(the negation is taken in order to be consistétit the formula-
tion of the SCP as a minimization problem). Notat the lowest possible cost is(l:) The steps for obtaining

a solution employing the INLAC strategy are givarAlgorithm 4.

Algorithm 4: The INLAC Greedy Algorithm

Input: The set of-labelsets of. ; Q = {r;}{_;
The group délabelsets of. ; £ = {S;}1-,
The ensemble siae

Output: A set covering

1. I—¢

2. fori=ltondo

3. S; « all r-labelsets that are covered §jy
4. end for

5. Do

6. q «— argmaxj( S; )
7. I—1u{s;}

8. Q=0-5;

9. for I=1to ndo

10. Sy — S\,
11. end for

12. Until (6 = o AND Q = @) OR(JI| = o)




Initially, we setS; to allr-labelsets that are covered by KakabelsetS;. Then, we iteratively find thike-labelset
S, that covers the highest number of uncovertabelsets. The-labelsets that are covered fjyare then re-
moved from the set of altlabelset{S;}. We use the binary matrix representation that desxribed in Section
2 in order to illustrate a covering. Table 4 diggléhe result of this algorithm for a setrof= 4 labels which is

covered by 3-labelset & 3) including all pair-wise correlationg = 2).

Table 4: Matrix set ofm = |L| = 4 labels which is covered by 3-labelsdts< 3) including all pair-wise
correlations.

A, A, As A

LY v
[
[EEN
o
[

Inter-label correlation can also be covered by EAKHowever, since thk-labelsets are randomly chosen,
some correlations may be missed. Lemma 1 quanttiesbility of randomly choseglabelsets to cover inter

correlations between pairs of labels.

Lemma 1 The probability that all pairs in a label det= {4;}/2, will be covered by randomk-labelsets is

bounded by:
2 2
e A F DR
where:
51=(m) (m;2)+2(71?__12) Uzm(m_l),<(m_k)(m+k—1)>“
’ (%) 2 mGm — D
o oay(CEV G G o () 2GR
4 @ : ()
and
h=1+l25—5;2.

The proof of.emma 1is provided in the appendix. For the sake of sioitg] Lemma lassumes random se-
lection ofk-labelsets with replacement while the RAKEL aldumit selects labelsets without replaceméing-
ure 1 presents the coverage probabplitfy-axis), with respect to the number of ensemble neah (x-axis),
number of labelsl() and subset siz&)( As expected, the coverage probability asymeadii converges to 1 as
o increases. It can be seen that: (a) The convergaeés slower for larger values [dff; and (b) The conver-
gence is faster for higher valueskoNevertheless, increasekralsoincreases the complexity of the classifier.
From a computational cost perspective, smaller rabtes are preferred. Moreover, larger ensemblesado
necessarily improve predictive performance (seeirfstance [50]). Yet there are other reasons fefegpring

small ensembles:



e Smaller ensembles require less memory for stohieg tmembers.

e Smaller ensembles are considered to be more compsitthe to the end-users.

e Compact ensembles provide higher classificatioredp# is particularly crucial in real-time applica
tions, such as worm detection in PC's, that noy aeked to pursue the highest possible accuracy, but
are also required to respond as fast as possihkefdcus of a recent paper which uses the ECOC ap-
proach for solving multi-class problems is minimigithe number of classifiers that are used dutieg t
classification [32].

Algorithm 4 is designed to work in two diffetemodes. In the first mode, the algorithm condtwn en-
semble whose size is set explicitly by the userth@parametes. In the second mode = «) the algorithm
stops when alf-labelsets are covered. df is set to a value that is greater than the sizsle to cover all-

labelsets, then the surplus elementsane arbitrarily selected.
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Figure 1: Coverage probabilitp for coveringm = |L| labels byk-labelsets using ensemble
members.

Complexity Analysis
The dominant steps in the algorithm are 3, 6 andSt€p 3 require® ((r:) . (f)) = 0(m* - k") time and

space. Step 6 require%((r]?) . (T)) = 0(m**") and the entire loop take®(o - m**"). Step 10 requires

0 ((TI?)) = 0(m*). Sincek” « m* ando « m*, the overall complexity i®(m**").

The storage complexity 8(m* + m™), since we need to maintain &llabelsets and-labelsets in memory. It
is important to emphasize that the labelsets pegjosr can be performed offline and is done onlyeofor each

given values ofn, k,r ando.
Analysis of the cover size
Lemma 2 estimates how makyabelsets are required to cover all inter-labeteations of order-.

Lemma 2
Given a set of labeld = {4;}7%,, the number ok-labelset required to cover all inter-label cortielas of

der r is given by:
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Proof of Lemma 2

We represent every inter-label correlation by dabelset. Eack-labelset can cover at moé{:) new previ-

ously uncovered-labelsets. For complete coverage we need to ((orgér r-labelsets. Therefore, the sizeoof

.)
must be at Iea%(kL .
v)

On the other hand, we can construct at Ié:ashutually exclusivek-labelsets such that each one of them co-

vers (f) newr-labelsets (for the sake of simplicity, we assutra i mod k = 0). The rest of th&-labelsets
will cover at least one-labelset each (otherwise this labelset will notibeuded in the cover). There are

(T) - %(1;) r- labelsets that will be covered in this mannereréfores cannot exceed:
m m m ck
P (7)- * (r) .

It should be emphasized that the matrix represgntia constructed cover is different from the cowgmar-
rays and orthogonal arrays [25]. It is differemicg each line in the matrix is required to repreadrlabelset as
in RAKEL. This ensures that the training complexityall classifiers will be similar. If the valud & is not
identical for all the labelsets (=classifiers),rtene classifier can be much more difficult torirdian the others

(see for example [22] for an explanation how theber of classes affects the training).

4.2 The BAlanced Label COntribution (BALCO) Strategy

Recall that the classification algorithm (Algoriti2h employs a voting scheme in order to derivepttesliction

of a new sample. In a randomly constructed maa&iQ RAKEL) certain labels may appear more thédmeist
Assuming that all labels are equally difficult te kearnt, there is a greater chance that we ma&tfaastances

of undersampled labels because these labels acelib by a smaller number of classifiers. To tdke the
extreme if a certain label does not appear ahaté matrix, then we cannot decide if a certastance belongs
to that label. LeP denote the probability that at least one labelout labels is not represented by none of the
o randomly selecteli-labelsets. Employing the same proof strategy Weatised in Lemma 1, it can be shown
that

h+1S1 " h(h+D) Sz
where:

25, . (m—k)°. ((m-k)(m—-k—1))°
h=1 =28, = S, = -
s = s, < oy




For small values of, this probability cannot be neglected. For examgieen an ensemble of = 100 la-
belsetsk = 3 and number of labela = 100, the misrepresentation probability is greater th&6.

In order to prevent any misrepresentation,onst select the labelsets such that all labelsbeikevenly rep-
resented. This labelset selection problem can baulated as a set cover problem, such that th€ setl be
composed of the set of all labdlavhile the sef will be initialized to allk-labelsets of.. The subsets weights
will all be set to 1. We define the frequency débel as the number of labelsets in the coverititdtide it. Let
imb(I) be the imbalance level of a codemhich we define as the frequency difference betwdhe most fre-
qguent label and the least frequent label.iAccordingly, the cost functiod (S;) is defined asmb(S; U I),
which penalizes a labels§t according to the amount of imbalance it adds tocineer. Algorithm 5 lists the

steps for obtaining a cover according to the BALSIfategy.

Algorithm 5: The BALCO Greedy Algorithm

Input: The set of label€) = L = {4;}7%,
The group délabelsets of) ; T = {S;}1-;
A cost functiof: X - R
The size of the cover
Output: A set covering
1. ¢
2. while |I| < o do
3. q < argmin; C(S;)
4, I —1u{q}
5
6

T=X-8,
end while

Complexity Analysis
The dominant step in the analysis is step 3, sireearches a@l) possiblek-labelsets. Consequently, the time

and space complexities of the algorithm @tem*).

Analysis of the cover size

Recall that the complexity of the ensemble is lineghe number of ensemble members. It is easgéothat at
any given stagémb () < 1 andimb(I) = 0 whengcd(|I| - k,n) = n for |I| = 1 where gcd is the greatest
common divisor. A prime cover, i.e. a cover wheaetelabel is covered exactly once, can only beiobdaif
(mmod k) = 0. If (mmod k) # 0, we needs = Icm(k,m)/k k-labelset to obtain a balanced cover where

lem is the least common multiple.

4.3 The BALANCced label contribution inter-label CORrelations (BALANCOR) strategy

The BALCO and INLAC strategies enforce criteriattheeboth important for obtaining an ensemble classifier
whose predictive performance is better than RAKEtcordingly, a hybrid strategy that simultaneoushforc-
es both criteria should benefit from their advaetgag/NVhen using the SCP as the algorithmic framewbik

strategy can be enforced by merely changing thet daosction in step 6 of Algorithm 4 to

q — argmax; (|S]-*| — imb(I U S]-)). Thus, the cost is composed of the numberlabelsets that are covered



and it is being penalized by the contribution te timbalance of the cover. The time and space cotityplenal-
ysis is similar to the one in the INLAC strateggcs calculating the imbalance in step 6 can be @donenstant

time for each inspectddlabelset.

4.4 Data Driven BALANCOR Strategy (DD-BALANCOR)

So far the matrix design methods ignored the dataseand. By examining the data, it should besjizs to
estimate whicrk-labelsets contribute more to the ensemble. Omsibpitity is to revise the lableset selection
criterion (step 6) in Algorithm 4 to take the labelependency into account. However, implementiig) dp-
proach will require a different construction proeésr every classification task which will preverst from sep-
arating the matrix construction from the ensembdining. Therefore, we adopt a different approdgiven a
matrix that was constructed using the BALANCOR tetlggt as described in Section 4.3, we add a pre-
processing step prior to the ensemble trainingabatsts the matrix according to the dataset irdh&pecifical-

ly, the adjustments will permute the labels acamgdd a given objective function.

Note that a matrix of power< k, covers allr-labelsets but only a portion of tlfe + 1)-labelsets. Thus, a
possible adjustment of the matrix can be to fihakel permutation (which is equivalent to permuting matrix
columns) in which the highest number(ef+ 1) dependent labels is covered. Specifically, we aimaximize
the total sum ofveighted dependency levelsall (r + 1) labelsets covered by the matrix. The dependeney le
el weight of a certailir + 1) labelset is set to the number of times its label®ccur in the training set (i.e. the
number of instances that correspond to this label$®ecall the matrix presented in Table 4. If ta¢a in hand
implies that the labels in the triplgt,, 15, 1,} are strongly dependent but the lakdgls 1,, 13} are independent
then a better columns ordering is given by the pgaton{1,, 13, 14, 1, }.

To this end, we first calculate the statidtib@pendencies among it + 1) labelsets based on the training
set. We apply the chi-square test for independéorcall (r + 1) labelsets. For example in case that 2 we
evaluate the dependency among all label triplétst;, ,. Calculating the dependency begins by creating a
three- way contingency table that stores the lab@lsccurrences counts in the dataset in handuss$réted in

Table 5 (note that for the sake of presentatiorameusing two tables of two dimensions).

Table 5 General contingency table for three labels

A

Ay N1,1,1 Ni121

Ay Ni1,1,2 Ni,2,2
_'}Li

Ay Ny11 N721

—Ag Ny1,2 N2,2,2




Given the contingency table, tiyé score can be computed as follows:

= z z Z (Eyjx U:uk)

whereE;, is the expected cell count, defined as:

A highy? score indicates that the three labels are strosgbendent. Practically, there is no need to calcu-
late the inter-dependency of all possibtet 1) labelsets. We take into account a cerf@ir- 1) labelset if its
labels co-occur at least 5 times in the datased.tfiteshold value of 5 was chosen since it is ussthtistics as
a common practice for guarantying the correctnésbegy? statistics. Specifically, the standgyd test should
be used only if the total number of observationgresater than 40 and the expected frequency in egltis at
least 5 [9].

In order to search for the best permutation weleyn@ simulated annealing algorithm. We begin waittan-
dom permutation and calculate its merit i.e. thaltsum of weighted dependency levels of(all- 1) labelsets
covered by the matrix under this permutation. largiteration, we look for an improved permutatighich is
a neighbor of the current permutation. We defineehborhood to be the set of all permutations ¢ha be

obtained by interchanging the position of any ditabels. According to this definition of neighbood, each
permutation has— neighbors. We select a neighbor if its meritighlr than that of the current permuta-

tion. Otherwise, the new neighbor is accepted pitbability of e ™7/, whereT; is a parameter known as the
temperature and is the merit difference between the current peatiort and its candidate neighbor. The tem-
perature is high in the initial iterations to allemn-improving solutions to be accepted and theedreases un-
til it is close to zero. We used the following simand common exponential schedule to updatd; = yT;_,
where the parameté& < y < 1 controls the rate of the decay (in this paper sedy = 0.85). In either case,
the selected new neighbor is set as the currentygation, its neighbors are generated and the psasaepeat-
ed. In order to bound the number of iterations,olveerved the number of iterations during whichgaificant
improvement in the permutation merit took placevarious values afn and ensemble sizes Fitting a regres-

sion equation, we recommend setting the numbeerdtions to:

N = max{1368In(m) + 12in(c ) — 2179, 2000}.



5 Experimental Study

5.1 Experimental Setup

The three proposed strategies were empirically @agpwith RAKEL. We developed a software package in
Matlab in order to generate variokdabelset covers ai labels. For the classification tasks, we used WEKA
[16] and MULAN? (a software package for multilabel classificateomd ranking that is based on the WEKA
framework). We used WEKA's SMO and J48 as our baselassifiers for single-label classificationath en-
semble models. The parameter values of both bassiikrs were set to the defaults provided by WEKA

The following datasetsvere used for the evaluatioBcene Emotions Yeast Slashdot OHSUMED Gen-
base Medical Enron[14], DelicousandMediaMill. Table 6 presents certain properties of thesesdttaThe
label cardinality is the average number of lab&ls gxample while the label density is the labetiality di-
vided by |L]|.

Table 6: Properties of the datasets used in the experiments.

Instances Attributes Labels
Dataset Train Test | Nominal [ Numeric | Labels Label Label
Cardinality | Density
Scene 2407 CcVv 0 294 6 1.074 0.179
Emotions 593 CcVv 0 72 6 1.869 0.311
Yeast 2417 CV 0 103 14 4,237 0.303
Slashdot 3782 CV 1079 0 22 1.18 0.041
OHSUMED | 13929 CV 1002 0 23 1.66 0.082
Genbase 662 CV 1186 0 27 1.252 0.046
Medical 978 CcVv 1449 0 45 1.245 0.028
Enron 1702 CV 1001 0 53 3.378 0.064
Delicous 12920 | 3185 500 0 983 19.020 0.019
MediaMill 30993 | 12914 0 120 101 4.376 0.043

5.2 Evaluation Measures

In this paper we consider the most commonly uselfi+abel evaluation measures from (Tsoumakas afed V
havas, 2007), namely multi-label example-basedsifleation accuracy, subset-accuracy, Hamming lass,
label-based micro-averaged F-measure. Their fodef@hition and analysis are presented below.

Let D be a multi-label evaluation dataset, consistingdf multi-label example¢X;,Y;), i=1..|D|, Y; €
[L]. Leth be a multi-label classifier.

Hamming loss computes the percentage of labels evielevance is predicted incorrectly. For the taioel

subsets4, B < [L], their Hamming distance is

AN 1)
tham(4,B) = zz Lgieay # lgeny-

i=1

Over all dataset examples the Hamming loss is geeras follows:

2 http://mulan.sourceforge.net/
3The datasets can be obtained frioitp://mulan.sourceforge.net/datasets. amd from
http://meka.sourceforge.net/#datasets




YiAh(X;)

|D|

1
Hamming loss(h,D) = —Z
D14 1L

whereA stands for the symmetric difference between tws. se

Hamming loss is very sensitive to the label set kiZit measures the percentage of incorrectly predita-
bels both positive and negative. Thus, in casegevtie percentage of positive labels is low retativl, the
low values of the Hamming loss measure do not givindication of high predictive performance. Thas the
empirical evaluation results demonstrate belowgait®iracy of the classification algorithm on twaadets with
similar Hamming loss values may vary from about®@@bove 70 percent (as, for example, in thet&siband
"medical" datasets). However, the Hamming loss mreasan be useful for certain applications wherersrof
all types (i.e., incorrect prediction of negatiebéls and missing positive labels) are equally ita.

Subset accuracy computes the number of exact pi@thic i.e., when the predicted set of labels dyact
matches the true set of labels. This measure isghesite of the zero-one loss, which for the twtby vectors

A,B c [L] is defined as follows:
401(14. B) = 1{A¢B}' (2)
Over all dataset examples the Subset accuracyeraged as follows:

ID|
1
Subset accuracy(h,D) = mz 1(Y; = h(X))).
i=1

It should be noted also that subset accuracy eastrict measure since it requires the predisttdf labels
to be an exact match of the true set of labels eapally penalizes predictions that may be almostect and/or
totally wrong. However, it can be useful for cemtapplications where classification is only ongpstea chain
of processes and the exact performance of theifeags highly important (Vilar, 2004)

Accuracy computes the percentage of correctly ptedilabels among all predicted and true labelsuracy

averaged over all dataset examples is definedllasvio

ID|
Accuracy(h,D) = 1y hnh) h(Xi).
DI &Y, U (X))

Accuracy seems to be a more balanced measure #ed ibdicator of an actual algorithm's predictjwer-
formance for most standard classification problémas Hamming loss and subset accuracy. Howevehnoild
be noted that it also is relatively sensitive téadat label cardinality (average number of labelsgxample).
This means that for two classification problems.(idatasets) of the same complexity, accuracyegalould
be lower in the dataset with the higher label czaliy. The empirical evaluation experiment beloupgorts
this conclusion (consider, for example accuracy Brdeasure values on "emotions”, "scene" and "yekst
tasets).

The F-measure is the harmonic mean between pradisipand recall(p) and is commonly used in infor-

mation retrieval. Precision and recall are defiaedollows:
TP, TP,
ETR A FR PAT TR+ FN
whereTP,, FP,and FN, stands for the number of true positives, falseitpes and false negatives corre-
spondingly after binary evaluation for a lahel

The micro-averaged precision and recall are catedlby summing over all individual decisions:



i TR b= Yi-1Th
Zﬁ=1(TP,1 + FP)’ Zﬁ:l(TPA + FN,)’

whereL is the number of labels. The micro-averaged F-omeascore of the entire classification problem is

I

then computed as:

2mp

F(micro — d) =
(micro — averaged) ——

Note that micro-averaged F-measure gives equalhivéigeach document and is therefore considerethas
average over all the document/label pairs. It tandse dominated by the classifier's performanceommon
categories and is less influenced by the clas&sfrformance on rare categories.

Of the various measures that are discussed heranitro-averaged F-measure seems to be the mast bal
anced and the least dependent on dataset propédities it could be the most useful indicator oksléier gen-
eral predictive performance for various classifmatproblems. However it is more difficult for humanterpre-
tation, as it combines two other measures (pratigia recall).

Summarizing the above analysis of some of the wmsimonly used evaluation measures, we conclude tha
accuracy and micro-averaged F-measure are befted dor general evaluation of algorithm performarfor
most regular multi-label classification problemsilwlthe Hamming loss and subset accuracy measuagm
more appropriate for some specific multi-label sifisation problems.

Actually the accuracy measure, where the numbérueflabels among the predicted ones is importaat
be considered as a "golden mean" between Hammagyudere all labels are equally important and dubse
accuracy where only the whole set of positive Isliimportant. Thus, in this research we aim growving the

accuracy measure.

Some other evaluation measures, such as one-eowerage, ranking loss and average precision, waieh
specially designed for multi-label ranking do ex{Schapire & Singer, 2000). This category of measur
known as ranking-based, is often used in the liteea(although not directly related to multi-latdhssifica-
tion), and is nicely presented in (Tsoumakas e8l10) among other publications. These measuectaéored

for evaluation of specific-purpose ranking probleansl are of a less interest for our research.

5.3 Evaluation Procedure

In order to estimate the generalization pennce, a 10-fold cross-validation (CV) procedueswsed. For
each 10-fold cross-validation, the training set wasdomly partitioned into 10 disjoint instancebsets. Each
subset was utilized once as a test set and nirestas part of a training set. All algorithms weppleed to the
same cross-validation folds. We used train/testssfir evaluation of the two largest datasets i@&ls and
MediaMill) as indicated in Table 6 since cross dation is too computational intensive in these sase

In order to determine which algorithm perferbrest over multiple datasets, we followed the @dace pro-
posed in [12]. We first used the adjusted Friedmeshin order to test the null hypothesis thanathods per-
form the same and then the Nemenyi test to examfrether the new algorithm performs significantlyttee

than existing algorithms.

The input parameters of the algorithm are:



o k — Labels subset size. Our paraméteorresponds to the user-specified paranietethe size of the
labelsets as defined in the RAKEL algorithm.

e ¢ — Ensemble size — defined according to the outpdihe minimum SCP method. Tleparameter
corresponds to the ensemble size parameter in RAKEBWwever, in contrast to RAKEL, the number
of members in our ensemble is constant for daaimd m, since it is defined by the solution of the
BALANCOR algorithm. The ensemble size of the twhent strategies has been adjusted to that of
BALANCOR.

e r — Coverage power. In this paper we examire 2 andr = 3, i.e. ensembles that cover all pairs and
all triplets of labels, respectively.

e t — Threshold — In RAKEL the value is set by the ug&call that in RAKEL++ and in our derived
methods, we use an internal cross validation prnaeetbr selecting the most promising threshold val-

ue.

We compared the results achieved by the prapsisategies with those achieved by RAKEL whereakgjb-
rithms used the sankeando settings. We examined varioksalues. However, not all valueslore meaning-
ful. For example, in case of datasets with 6 lgkibls only meaningful values for comparison kx@ andk=4.
Note, that the cases in whikhlk1 andk=6, correspond to building a binary model and LP ehpdespectively.
Whenk=2, INLAC and RAKEL obtain the same results, sinte INLAC strategy produces all possible label-

sets. Wherk=5, the number of possible models is too small.

5.4 Results

Table 7 presents the results obtained by averapmd 0-fold cross-validation experiments using SkkOthe
base classifier. The second and third columns pie k and o settings, respectively. The next set of columns
presents the micré; performance. The last set of columns reports theiag Loss. Finally, the last line in-
dicates the average ranking of the various methblas.results of the experimental study are encongadrirst

of all, they indicate that RAKEL++ consistently inopes RAKEL. Specifically, RAKEL++ obtains higheri-m
cro-F; values in 25 out of 32 cases. The BALANCOR strategproves both the micro-averaged F-measure
and the Hamming loss results of RAKEL++. The BALG®ategy mainly improves the micro-averaged F-
measure compared to RAKEL++ while the INLAC strategainly obtains a lower Hamming loss. Thus, the
BALANCOR strategy has the best of both worlds. Reriore, the percentage improvement of DD-
BALANCOR strategy over the BALANCOR strategy inres of the micraf; measure and Hamming Loss is
3% and 7%, respectively. Moreover, the percentagedvement of DD-BALANCOR strategy over the origi-

nal RAKEL algorithm in terms of micro-averaged Fasare and Hamming Loss is 6% and 24%, respectively.

In absolute terms, the improvement in Hamming Lsessms to be insignificant (approximatély1).
However, it should be noted that improving the Hangri_oss performance of any ensemble method is chal
lenging since ensemble methods achieve excellemnilag Loss performance to begin with. For examitie,
recently introduced EPCC algorithm [11] improved thHamming loss of ECC b§.003. The LEAD algorithm

provides an absolute improvement®®03 over ECC in terms of Hamming Loss [49]. The oraipaper of



ECC [35] does not report Hamming Loss performabogjn a recent comparative study we have perforféed
we notice that ECC provides an absolute Hammings liogprovement 0f).004 when compared to RAKEL.
While each of the above comparisons has been peefbusing different settings and datasets mix;jlitpso-

vides clear evidence that Hamming loss improveritenbt easily achieved and that the improvemerggmed

in this paper is not inferior to the improvemenigained by recently presented state-of-the-artralyos.

Table 7. Comparative results using SMO as the base deassif

Dataset k o Micro F1 Hamming Loss
RAKEL | RAKEL++ |DD- BALANCOR| INLAC BALCO RAKEL | RAKEL++ (DD- BALANCOR| INLAC BALCO
BALANCOR BALANCOR
Delicious 6 12441 0.1804 0.1961 0.1995 0.1991 0.1963 0.1962 0.092 0.0486 0.0331 0.0392 0.0463 0.0485
Emotions 3 7 0.679 0.685 0.6852 0.6851 0.6852 0.685 0.189 0.187 0.171 0.1845 0.1774 0.1865
4 3 0.716 0.716 0.721 0.719 0.718 0.714 0.191 0.184 0.174 0.1755 0.179 0.1837
Enron 3 496 0.5307 0.5371 0.5476 0.5392 0.5376 0.5385 0.0553 0.0546 0.0546 0.0546 0.0546 0.0546
4 253 0.5377 0.5394 0.5455 0.5412 0.5415 0.5392 0.054 0.0544 0.0541 0.0544 0.0544 0.0544
5 213 0.5443 0.5495 0.5649 0.5543 0.556 0.5483 0.0527 0.0511 0.0495 0.0506 0.0508 0.0511
Genbase 3 125 0.981 0.981 0.9922 0.9888 0.9842 0.982 0.003 0.001 0.0007 0.0009 0.0008 0.001
4 66 0.9918 0.9918 0.9922 0.992 0.992 0.9918 0.002 0.001 0.0007 0.001 0.0008 0.001
5, 44 0.9918 0.9918 0.9922 0.9921 0.9918 0.9919 0.003 0.001 0.0007 0.0008 0.0008 0.001
6 31 0.9922 0.9922 0.9922 0.9922 0.9922 0.9922 0.003 0.001 0.0007 0.0008 0.0009 0.001
7 22 0.988 0.988 0.9922 0.9882 0.9882 0.988 0.002 0.001 0.0007 0.0009 0.0009 0.001
MediaMil 5 1187 0.551 0.553 0.5604 0.5544 0.5544 0.5532 0.023 0.019 0.015 0.0173 0.0163 0.0189
Medical 3 372 0.7944 0.8039 0.8173 0.8081 0.8039 0.8064 0.0108 0.0079 0.0059 0.0065 0.0065 0.0078
4 183 0.7937 0.8023 0.8156 0.806 0.8031 0.8044 0.0102 0.0104 0.0103 0.0104 0.0104 0.0104
5 121 0.853 0.858 0.858 0.858 0.858 0.858 0.0112 0.007 0.0059 0.0066 0.0069 0.007
Ohsumed B 95 0.3147 0.3238 0.3365 0.3352 0.3295 0.3252 0.0432 0.0429 0.0429 0.0429 0.0429 0.0429
4 48 0.3138 0.3146 0.3328 0.3322 0.3233 0.3163 0.0433 0.0421 0.0411 0.0412 0.0415 0.042
5 28 0.3118 0.3199 0.3398 0.3306 0.3306 0.3201 0.0441 0.0411 0.0398 0.0401 0.0407 0.041
6 23 0.3076 0.3138 0.3305 0.3233 0.3233 0.3192 0.0446 0.0428 0.0421 0.0424 0.0423 0.0428
7 17 0.301 0.3053 0.3276 0.3247 0.3114 0.3185 0.0459 0.039 0.0227 0.0304 0.0344 0.0387
Scene 3 7 0.7288 0.7288 0.7288 0.7288 0.7288 0.7288 0.0959 0.0914 0.0761 0.0789 0.087 0.0907
4 3 0.7303 0.7304 0.7347 0.7335 0.7313 0.7306 0.0998 0.0927 0.0798 0.0891 0.0921 0.0927
Slashdot 3 88 0.7378 0.7379 0.7523 0.747 0.7387 0.7441 0.0311 0.0327 0.0299 0.0301 0.0319 0.0326
4 45 0.7411 0.7412 0.7512 0.7484 0.7454 0.742 0.0287 0.0281 0.0284 0.0283 0.0283 0.0281
5 27 0.7417 0.7435 0.7561 0.7539 0.7491 0.7465 0.0265 0.0264 0.0211 0.0242 0.0249 0.0263
6 21 0.7489 0.7496 0.7638 0.7585 0.7498 0.7505 0.024 0.0235 0.0233 0.0233 0.0234 0.0235
7 14 0.7467 0.7474 0.7688 0.7581 0.7552 0.7483 0.0331 0.0312 0.0301 0.031 0.0312 0.0312
Yeast 3 35 0.663 0.668 0.6698 0.6683 0.6684 0.6679 0.211 0.199 0.186 0.1972 0.1952 0.1985
4 18 0.6934 0.6948 0.6963 0.6961 0.6961 0.6952 0.1968 0.1859 0.1766 0.1782 0.1851 0.1857
5 12 0.6608 0.6628 0.6674 0.6638 0.6638 0.6628 0.199 0.1888 0.1773 0.1784 0.1857 0.1883
6 9 0.654 0.661 0.6638 0.662 0.6622 0.6609 0.195 0.193 0.1762 0.19 0.1916 0.1924
7 7 0.657 0.66 0.6622 0.6619 0.6619 0.6604 0.197 0.189 0.1795 0.1873 0.1867 0.189
Rank 5.2 4.83 1.39 2.52 3.02 4.05 5.59 4.88 1.19 2.44 291 4

The results that are obtained when the Qg WEKA's J48 implementation) is used as the lotessifi-
er are given in Table 8. As in Table 7, we noticgrailar dominance of the DD-BALANCOR strategy owir
other methods. Specifically, the DD-BALANCOR stggeimproves both the micro-averaged F-measure and
the Hamming loss results of RAKEL by 18% and 1.38&spectively. The BALANCOR and INLAC strategies
obtained a more moderate improvement. It shoulddied that while in most of the datasets the nethous
obtain better results than RAKEL, in the Genbadeas# none of the proposed methods offer any ingonant.
This might be explained by the fact that the o¢iRAKEL algorithm has already achieved excellersuits in
this dataset.

The micro-averaged F-measure results in Talded Table 8 indicate that the DD-BALANCOR stepte
outperforms RAKEL in 57 out of 64 cases -- mosty ifelatively small values df (compared to the number of
labels in the dataset). On the other hand, RAKE% mat outperformed DD-BALANCOR strategy in none of
the cases.



Table 8 Comparative results using J48 as the base ckssif

Dataset k c Micro F1 Hamming Loss
RAKEL | RAKEL++ [DD- BALANCOR| INLAC BALCO | RAKEL | RAKEL++ (DD- BALANCOR| INLAC | BALCO
BALANCOR BALANCOR
Delicious 6 12441 0.209 0.212 0.215 0.2137 0.212 0.212 0.0912 0.0626 0.02 0.0352 0.0611 0.0611
Emotions 8 7 0.6159 0.644 0.6742 0.6601 0.6482 0.6453 0.233 0.2232 0.2092 0.2101 0.2165 0.2234
4 3 0.6102 0.6077 0.6138 0.6107 0.6085 0.6082 0.2563 0.2313 0.2266 0.2298 0.2296 0.2413
Enron 3 496 0.544 0.554 0.5602 0.5563 0.5551 0.5544 0.049 0.041 0.0407 0.041 0.0409 0.041
4 253 0.553 0.567 0.581 0.5685 0.5688 0.5679 0.048 0.043 0.041 0.0425 0.0418 0.0427
5 213 0.555 0.571 0.587 0.5804 0.5715 0.5718 0.047 0.042 0.0404 0.0415 0.0413 0.0419
Genbase 3 125 0.988 0.988 0.988 0.988 0.988 0.988 0.001 0.001 0.001 0.001 0.001 0.001
4 66 0.988 0.988 0.988 0.988 0.988 0.988 0.001 0.001 0.001 0.001 0.001 0.001
5 44 0.988 0.988 0.988 0.988 0.988 0.988 0.001 0.001 0.001 0.001 0.001 0.001
6 31 0.988 0.988 0.988 0.988 0.988 0.988 0.001 0.001 0.001 0.001 0.001 0.001
7/ 22 0.988 0.988 0.988 0.988 0.988 0.988 0.001 0.001 0.001 0.001 0.001 0.001
MediaMil 5 1187 0.551 0.553 0.5604 0.5531 0.5568 0.55 0.033 0.03 0.025 0.0292 0.0264 0.032
Medical 3 372 0.817 0.815 0.843 0.8279 0.8398 0.826 0.011 0.009 0.008 0.0089 0.0088 0.0089
4 183 0.787 0.788 0.7953 0.7917 0.7902 0.7887 0.013 0.011 0.011 0.0111 0.0111 0.011
5 121 0.821 0.819 0.864 0.8287 0.8203 0.8204 0.009 0.009 0.009 0.009 0.009 0.009
Ohsumed 8 95 0.276 0.3731 0.485 0.3914 0.408 0.3743 0.065 0.063 0.0622 0.0627 0.0626 0.063
4 48 0.285 0.331 0.511 0.3465 0.3887 0.3364 0.065 0.062 0.0591 0.059 0.0618 0.0617
5 28 0.286 0.362 0.5172 0.3752 0.4152 0.3638 0.066 0.0607 0.0584 0.06 0.0603 0.0602
6 23 0.281 0.2995 0.476 0.314 0.3288 0.3092 0.066 0.0602 0.0591 0.0601 0.0594 0.06
7 17 0.269 0.317 0.4 0.3323 0.3236 0.306 0.067 0.0603 0.0594 0.0595 0.0599 0.0602
Scene 3 7 0.6798 0.6804 0.7044 0.6917 0.683 0.6814 0.1145 0.1068 0.0982 0.1019 0.1014 0.106
4 B 0.6327 0.638 0.672 0.6472 0.6413 0.6388 0.1476 0.1196 0.1062 0.1076 0.1116 0.1195
Slashdot 3 88 0.338 0.3834 0.4814 0.3988 0.4124 0.3838 0.043 0.043 0.041 0.0414 0.0421 0.0431
4 45 0.342 0.4011 0.4974 0.4234 0.4183 0.4029 0.044 0.043 0.042 0.0426 0.0427 0.0429
5 27 0.355 0.3923 0.4666 0.4196 0.4101 0.395 0.045 0.042 0.042 0.042 0.042 0.042
6 21 0.353 0.3849 0.4392 0.4081 0.4033 0.389 0.044 0.042 0.042 0.042 0.042 0.042
7 14 0.336 0.347 0.408 0.3696 0.3576 0.351 0.046 0.043 0.043 0.043 0.043 0.043
Yeast 8] 35 0.596 0.592 0.611 0.6001 0.5981 0.5939 0.242 0.236 0.219 0.2167 0.2341 0.2362
4 18 0.591 0.588 0.623 0.6002 0.59 0.5903 0.236 0.228 0.218 0.2175 0.2229 0.228
5 12 0.601 0.6088 0.644 0.627 0.619 0.6122 0.245 0.216 0.219 0.2163 0.2178 0.2161
6 9 0.62 0.6279 0.651 0.6338 0.6315 0.63 0.233 0.214 0.216 0.2151 0.2144 0.2144
7 7 0.614 0.634 0.643 0.6347 0.6363 0.624 0.221 0.213 0.2081 0.211 0.2128 0.2123
Rank 5.67 4.77 1.16 2.41 2.94 4.06 5.52 4.08 2.06 2.8 2.97 3.64

Following the procedure presented by Demsa}, [we compared the various algorithms accordintheir
average rank. Noticeably, the DD-BALANCOR stratagptained the highest average rank both in the micro
F; and the Hamming Loss cases. The BALANCOR strataijjesed the second best average rank. The null
hypothesis that all methods have the same nfigcroneasure performance was rejected by the adjusted-F
man test with a confidence level of 95% and (5,)3l¢grees of freedom (specifically F(5,315)=139248.24
and p-value<0.0001).

As the null hypothesis was rejected, we prdedeo the Nemenyi post-hoc test. In this casedassifiers
aresignificantly differentvith a confidence level of 95% if their averagaksdiffer by at leas?t.942. Thus, we
observe that DD-BALANCOR significantly outperforra#i other methods. However, we could not rejeet th
null hypothesis that RAKEL and RAKEL++ have the gamicro F-Measure performance at confidence levels
of 95%. Additionally, we could not reject the nhifpothesis that BALANCOR and INLAC have the sanie m
cro F-Measure.

In case of the Hamming loss, the null hypathtsat all methods have the same Hamming los®peéance
was rejected by the adjusted Friedman test witlordidence level of 95% and (5, 315) degrees ofdoae
(specifically, F(5,315)=86.15 > 2.24 and p-valu@dDl). Using the Nemenyi post-hoc test we conclutiat
DD-BALANCOR significantly outperforms all other ntetds in terms of Hamming loss. Moreover RAKEL++
significantly outperformed RAKEL.



5.5 Comparison to Other Ensembles Methods

Table 9 compares the predictive performance obtbhe BALANCOR with two state-of-the-art ensemble @lg
rithms: ECC (Ensembles of Classifier Chains) anddambles of Pruned Sets (EPS). These two algorittens
chosen due to their popularity and their availabiin the MULAN package. To reduce the computaticuest
of the experiments, we tested these algorithmsgusinly J48 as the base classifier. The ensembdecsiECC
and EPS algorithms was adjusted to that of the BDANCOR algorithm. Specifically, in the case of ECC
the ensemble size is an integer product of the euroblabels. Thus, we selected the smallest enleesite
which is greater or equal to the ensemble sizemddeby DD-BALANCOR.

The results presented in Table 9 are verpaaging. It can be seen that DD-BALANCOR succeeied
improve the performance of RAKEL to the level of EQn particular, in 7 out of 10 cases, DD-BALANCOR
obtained the lowest Hamming Loss while in the renmg datasets the performance of DD-BALANCOR was

only slightly worse than the performance of ECC.

We compared the various algorithms according ®&r thverage rank. Noticeably, the DD-BALANCOR
strategy obtained the highest average rank in th@hmicro#; and the Hamming Loss measures. The ECC al-
gorithm achieved the second best average ranknuilhdnypothesis that all methods have the same Hamm
Loss performance was rejected by the adjusted Raadest with a confidence level of 95% and (2, &@rees
of freedom (specifically F(2,20)= 53.068 > 3.4921 grivalue<0.0001). Since the null hypothesis wéescted
and since we wanted to examine whether our newdpgeed method is better than existing ones, foligwi
Demsar [12] we used Bonferroni correction post-test instead of Nemenyi post-hoc test that was urséae
previous section. Using the Bonferroni test, wenfibthat DD-BALANCOR significantly outperforms EC@d
EPS with p<9% and p<1%, respectively.

The last two columns in Table 9 compare the trgjrtime of the algorithms. Note that the trainimge of
DD-BALANCOR includes only the time required for déng the best permutation together with the tnagnof
the ensemble of classifiers. It does not includetiine required for the matrix construction as wsuane that
this task is performed off-line only once and irvaicce. As we can see, the training time of ECC @bd
BALANCOR are mostly the same order of magnitudewver, the training time of EPS is consistenthkydo
than that of the two other methods. The last colimifable 9 presents the computational cost reddie con-
structing the BALANCOR matrix. It can be seen ttiegt matrix construction time is not negligible farge ma-

trices. This emphasizes the need to separate thixmwanstruction from the ensemble training.



Table 9: Comparing DD-BALANCOR with ECC using J48 as thedaksssifier.

Dataset Ensemble |micro-averaged F-measure Hamming loss Training Time (in seconds) BALANCOR
Size ¢
Matrix
DD- ECC EPS DD- ECC EPS DD- ECC EPS Designing
BALANCOR BALANCOR BALANCOR Time
Delicious 12441 0.215 0.199 0.187 0.02 0.09295 0.06628 153769.8 76224.74 44163.86 94776.3
Emotions 1/ 0.6742 0.6684 0.6678 0.2092 0.2124 0.2162 283 223 1453 0.055042
Enron 496 0.5602 0.5451 0.4792 0.0407 0.0394 0.0494 3559.22 2587.06 65.263 6604.55
Genbase 66 0.988 0.9877 0.9839 0.001 0.001 0.0015 12.12 16.67 1.465 213.37
MediaMill 1187 0.5604 0.5621 0.5619 0.025 0.031 0.0318 63198.29 180737 39759 37314.23
Medical 183 0.7953 0.7866 0.7649 0.011 0.0112 0.0126 25557 240.66 9.643 12636.84
Ohsumed 48 0.511 0.5172 0.4439 0.0591 0.059 0.0612 11650.31 12138.95 674.346 50.44
Scene 7 0.7044 0.6839 0.684 0.0982 0.1035 0.1076 31.52 38.42 21.056 0.055042
Slashdot 88 0.4814 0.4825 0.4667 0.041 0.0425 0.0473 1792.8 2210.63 514.931 1134
Yeast 7/ 0.643 0.6291 0.6178 0.2081 0.215 0.2276 68.82 46.81 30.053 0.055042
Rank 1.4 1.8 2.8 1.3 1.9 2.9 2.5 2.5 1

5.6 Using higher power values

As Lemma 2 indicates, using higher valuesdfias a direct impact on the matrix size and camseity on the
computational cost required for training the ensembhus, using matrices basedros 3 is practical only for
datasets with a relatively small label set. In Eald we present the predictive performance obtdiyetie DD-
BALANCOR algorithm forr = 3 and compare it to the performance obtained-fer2. In addition we present
the performance of RAKEL++ using the same ensersides ofr = 2 andr = 3. Note that we have tested
r = 3 only on small datasets since the training timeldoger datasets could not be completed withinweek
given the resources that were used for the expatsn&he results in Table 10 indicate that usirghér values

of r improve the classification accuracy. One can edfi@t RAKEL++ improves the Hamming Loss by 7% on
average. Similarly, the average improvement of DEL-BNCOR is approximately 9%. Thus, the DD-
BALANCOR algorithm is still better than its equieslt RAKEL++ forr = 3. Moreover one can see that by
increasing the ensemble size of RAKEL++ (equivatent = 3), we succeeded to outperform the performance
of DD-BALANCOR with r = 2. Thus if computational cost is not a concern, one canrasdom strategy and
simply increase the ensemble size in order to ingtbe predictive performance until it reaches syntotic
value. However, if the computational cost is impatt strategies such as DD-BALANCOR can assisinidirig

a compact ensemble.



Table 10 Comparative results far= 2 andr = 3 using J48 as the base classifier.

Dataset | k| & — Ensemble Size Micro F1 Hamming Loss
DD- DD- DD- DD- RAKEL++ | RAKEL++ |DD- DD- RAKEL++ | RAKEL++
BALANCOR | BALANCOR [BALANCOR | BALANCOR | equivalent | equivalent | BALANCOR |BALANCOR |equivalent | equivalent
with r=2 with r=3 with r=2 with r=3 tor=2 to r=3 with r=2 with r=3 to r=2 to r=3
Emotiong 4 3 6 0.6138 0.6296 0.6077  0.6280 0.2266 0.21B32 6.243D.2260
Ohsumed 4 48 443 0.5110 0.7088 0.3310 0.5657 0.0591 0.0552 0620.| 0.0562
5 28 178 0.5172 0.7452 0.3620 0.5944 0.0584 0.0566 0600.| 0.0581
6 23 89 0.4760 0.7517 0.2995 0.6101 0.0591 0.0577 602.0 0.0580
7 17 51 0.4000 0.4963 0.3170 0.425%2 0.0594 0.0585 603.0 0.0588
Scene 4 3 6 0.6720 0.6823 0.6380 0.6740 0.1062 0.08P6 6.119.1012
Slashdot| 4 45 386 0.4974 0.6223 0.4011  0.5359 0.0420 0.0409 0430.| 0.0420
5 27 155 0.4666 0.5228 0.3923 0.4811 0.0420 0.0320 0420.| 0.0370
6 21 78 0.4392 0.5538 0.3849 0.4918 0.0420 0.0320 420.0 0.0380
7 14 45 0.4080 0.4568 0.3470 0.4343 0.0430 0.0330 430.0 0.0360
Yeast 4 18 92 0.6230 0.6684 0.5880 0.6340 0.2180 0.1893 280.2 0.1990
5 12 37 0.6440 0.6358 0.6088 0.6270 0.2190 0.2041 160.2 0.2030
6 9 19 0.6510 0.6302 0.6279 0.6170 0.2160 0.21p4 40.210.2120
7 7 11 0.6430 0.6061 0.634D  0.6000 0.2081 0.1929 30.210.2020

5.7 Discussion

The proposed strategies perform in a highly efficend stable manner where in many cases theynobédier
results than RAKEL, especially for small valueskaklatively to the number of labels. These resuléscn-
sistent with Lemma 1 and Lemma 2. The ensemblesstz@s a direct impact on the training time cost ai-
cates the number of base-classifiers that areetlaifhus, if the parametéris kept fixed, increasing the value
of o will usually increase the training time linearl@n the other hand, it is well known that the paetank al-
lows a trade-off between predictive performance @aithing time costs [35]. To some extent, usinghler val-
ues ofk for the same ensemble sizencreases the training time cost but also imprdtiespredictive perfor-
mance. In this context, a property that is shagedlbfour proposed construction strategies is thateasing the
subset sizé& results in a decrease in the ensemble simquired to ensure coverage. The number of clagbes
dressed by each ensemble member is boundeditf2®, |T|} where|T| is the training set size. Practically, the
actual number of classes depends on the chargicten$ the dataset in hand (such as the Label iBgns

As the actual number of classes approachesgper bound, it might negatively affect the leagnproce-

dure in two aspects: First, the training time @ages because, at the very least, it is linedeimtimber of clas
ses. Second, the number of training instances iassdavith each class is relatively small which emk hard-
er for the base-learning algorithm to differentiateong the classes. In fact, within the PAC framdgwBen-
David et al. [3] showed how the required sample sigpends on the dimensionality of the classesirig|esve-
ry ensemble should be large enough to include ficeuft number of votes for each label. This insighight
explain the clear difference in results for the basa datasets (in terms of labels) k3 andk=4. On the other
hand, for datasets with a higher number of labeth s Slashdot, the number of models is large ginand
thus there is no such difference in the results.

Given all readymade matrices that were construgsing the abovementioned strategies, the userteaose

the matrix (and consequently also the valué @ndr) according to various criteria. From the comp otadil



cost perspective, one can estimate the cost bastteacumber of rows in the matrix (ensemble sitte),asso-
ciatedk value, and how the computational complexity of imended base inducer is affected bgnd the
training set size (number of instances and numbattobutes). From the accuracy point of view, aaa use
the dataset characteristics, such as label caityinabk a hint for selecting the matrix. It can fesumably
claimed that higher values bfshould be preferred when the label cardinalityigh. However, recall that high-
er values ok result in smaller ensemble sizes which in turnpatentially decrease the predictive performance.
The experimental results in Tables 7 and 8 showttiggner values ok do not necessarily result in better per-
formance. Thus, we suggest using the data drivggctibe function presented in Section 4.4 also aseans for
choosing the matrix. Namely, from all available rizags that fit the current problem, one should cotihe ma-
trix which maximizes the total dependency thatddrassed by the matrix. We put this idea to the Eex each
datasetin Tables 7 and 8 we tested if the suggested duweecould correctly choose between the lowest and
the highest value df (i.e. binary selection). The selection is consdetio be correct if it selects the matrix con-
figuration with the lowest Hamming Loss. The sudgégrocedure selected the correct matrix in 6406@0
cases in Table 7 (8 datasets times 10 folds) aralb8f 80 cases in Table 8. This indicates a naeauracy of
75%. While this is not perfect, it is still muchttez than a random guess.

As for the value of-, we showed analytically (Lemma 2) and experimént@ee Section 5.4) that higher
values ofr increase sustainably the ensemble size. Nonethalesg higher values afimproves the predic-
tive performance as demonstrated in Section 5iiceScomputational cost is usually a constraint,reem-
mend determining the valuesofindk using the lower bound of Lemma 2 multiplied by Hese inducer com-

putational cost for inducing a single classifieheTproduct should not exceed the given constraint.

From the practitioner point of view, given RAKEL;+#tsing BALANCOR requires neither any additional
learning time nor any significant revisions to RAKEL++ code. Simply instead of using random labet; one
should use the predefined label-set matrices. Tatalld code for generating the matrices can be mddairom

http://www.ise.bgu.ac.il/faculty/liorr/matlab.rar.

6. Conclusions and Future Work

In this paper we presented a new ensemble methroahdtii-label classification. We examined the hypasis
that constructing compact ensembles which obeyiceconstraints may achieve predictive results gnatbet-
ter than the results obtained by RAKEL. Namelydfan minimal number of label-sets of predefined $irea
given number of labels and a set of constraintsifeduced the set cover problem as a generalewark for
constructing such ensembles and demonstratedféstigéness when the following constraints wereoss€d:
(a) equal representation of each individual lafi®l;,coverage of inter-label correlations; and @bination of
(@) and (b). Finally, we presented a data-drivethogt which adjusts the matrix according to the skttan
hand.

Our experimental study shows that the methexbpms in a highly efficient and stable mannemiany cas-

es better than RAKEL and other ensemble methods.prbposed method resolves two main problems of the

4 Except for Delicous, MediaMill which due to theimmputational intensive cost we were able to talt one configuration



RAKEL algorithm: (1) random selection of label-s#iat may produce fluctuations in the result valzes (2)
the need to define the number of models in an eblgem

The ability to enforce constraints during tlower construction along with the results achievethis paper
motivate the investigation of other constraints abhinay produce more powerful coverage schemesaitiat

further improve the predictive performance.
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Appendix

Lemma 1 The probability that all pairs in a label det= {4;}/2, will be covered by randomk-labelsets is
bounded by:

25+ 2 S
h+1"' " hth+1)7?

p=<1

where:
5= (D) (’",22)+2(’,?_‘f) J_m(m—l)‘<(m—k)(m+k—1)>a
te (T]?) B 2 m(m—1)
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S, =3(] m +3(T) [k &)1 k-2
and
1
Proof

Lete; denote the event that the interaction of laldgland4; (we assumg > i) are not covered by the cover
1. We are interested in bounding the probabilitytfoe case which not all interactions of labelspaire cov-
ered. Namely we need to look into the expression Pr(Uy; j;jsi €; ;)-

Using the Dawson-Sankoff [10] inequality, the pabliity of the union of events is bounded by:

2 2
S > —
Pr( U %) 2 S T hr D

Vi jij>i
where
Sl = z Pr(ei,j)
Vi, jij>i
S, = z Pr(ei‘j N esrt)
Vi, j,s,t
J>it>s;i#s; j#t
and
2
h=1+ \\% .

Note thatS; looks into covering of individual pairs of labeldile S, looks into combinations of covered pairs.
In order to caIcuIaté’r(eiJ-), we first calculate the probability that a singiabelset does not cover a certain

pair of labels. This is given by:

(" *2( )
m
(k)

Thus, the probability that none efrandomly chosek-labelsets cover a certain pair of labels is gilvgn

PT'(AL',A]') =



)oY

(i)

Pr(ei‘j) =

Since we have(gl) pairs of labels s, its value is:

s z(m) (m;2)+2(r]:1_—12) U:m(m—l).<(m—k)(m+k—1)>g
! 2 (7:) 2 m(m —1)

The value of5, can be decomposed into two complementary cases:
Sy = Sn0 + S22
Case 1:The two pairs are mutually exclusivie# j,j # s,i #t,j # t).

We first calculate the probability that a singHabelset does not to cover the two péits 4;) and(As, 4,):

(") D G )

(k)

Note that the first element in the enumerator geferall cases in which none of the subject lalsetovered

Pr((Au4) 0 (A5, 20)) =

by ak-labelset. The second element refers to all casesich exactly one of the labels is covered. Thiltel-
ement refers to all cases in which exactly two Iklze covered (one from each pair). Since theeerak-
labelsets we obtain:

("D GI)Y

(k)

Pr(ei,j N es,t) =

In case 1, there a&(TZ) couples of label-pairs. Note that we multiply tiember of combinations by 3

since there are exactly three different ways taitpar four labels into two pairs. Thus we conclutiat:

o ma((CE G 4G

a
k k—1 k—2

(k)

Case 2:The two pairs are not mutually exclusive.

Using the same argument as in case 1:
(") 3G+ ()

(k)

Pr((Au4) 0 (A5, 20)) =

Therefore:

() ()
#=2(3) @



