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 2 
Abstract  

Gait modification strategies play an important role in the overall success of total knee arthroplasty. There are a 

number of studies based on multi-body dynamic (MBD) analysis that have minimized knee adduction moment to 

offload knee joint. Reducing the knee adduction moment, without consideration of the actual contact pressure, has its 

own limitations. Moreover, MBD-based framework that mainly relies on iterative trial-and-error analysis, is fairly 

time consuming. This study embedded a time-delay neural network (TDNN) in a genetic algorithm (GA) as a cost 

effective computational framework to minimize contact pressure. Multi-body dynamic and finite element analyses 

were performed to calculate gait kinematics/kinetics and the resultant contact pressure for a number of experimental 

gait trials. A TDNN was trained to learn the nonlinear relation between gait parameters (inputs) and contact pressures 

(output). The trained network was then served as a real-time cost function in a GA-based global optimization to 

calculate contact pressure associated with each potential gait pattern. Two optimization problems were solved: first, 

knee flexion angle was bounded within the normal patterns and second, knee flexion angle was allowed to be 

increased beyond the normal walking. Designed gait patterns were evaluated through multi-body dynamic and finite 

element analyses. 

 The TDNN-GA resulted in realistic gait patterns, compared to literature, which could effectively reduce contact 

pressure at the medial tibiofemoral knee joint.  The first optimized gait pattern reduced the knee contact pressure by 

up to 21% through modifying the adjacent joint kinematics whilst knee flexion was preserved within normal walking.  

The second optimized gait pattern achieved a more effective pressure reduction (25%) through a slight increase in the 

knee flexion at the cost of considerable increase in the ankle joint forces.  The proposed approach is a cost-effective 

computational technique that can be used to design a variety of rehabilitation strategies for different joint replacement 

with multiple objectives.  

 

 

Keywords: Gait modification, Tibiofemoral knee joint, Time delay neural network, Genetic algorithm, Contact 
pressure 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction:1 
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Following  total knee arthroplasty (TKA), rehabilitation strategies are of significant importance to accelerate 

patient recovery(Isaac et al., 2005, Klein et al., 2008), reinforce joint functionality(Moffet et al., 2004, Rahmann et 

al., 2009), decrease gait asymmetry(Zeni Jr et al., 2011), and augment the durability and life time of knee 

prostheses(Fransen, 2011, Mont et al., 2006). Gait rehabilitations mainly aim to decrease knee joint loading through 

minor changes in human gait patterns. However, recognizing the synergistic kinematic changes, required for joint 

offloading, is a challenging task, hence; computational approaches have been used to facilitate the design procedure. 

To best of our knowledge, most of the current literature on gait modification strategies have been designed through 

multi-body dynamic (MBD) analysis (Barrios et al., 2010, Barrios and Davis, 2007, Fregly et al., 2009, Hunt et al., 

2008, Mündermann et al., 2008, Willson et al., 2001, Ackermann and van den Bogert, 2010, Anderson and Pandy, 

2001, Fregly et al., 2007) . However, iterative “trial-and-error” MBD analysis, that has been performed in such 

studies, is fairly time demanding which limits the applicability and generality of the method. Hence, a cost-effective 

computational framework that minimizes the computational cost is of particular interest. 13 
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Besides the computational cost, there are a number of aspects that have not been well addressed by the 

conventional MBD-based framework. First , MBD-based approach attempts to reduce the peak values of knee 

adduction moment (KAM) which is not always a reliable measure since decreasing KAM may not necessarily 

decrease knee joint loading  (Walter et al., 2010);  and the results of such approach are sensitive to  the chosen 

reference frame (e.g. laboratory, floating reference frames) (Lin et al., 2001, Shull et al., 2012). Second , joint-

offloading gait patterns are likely to decrease the contact area of articulating surfaces that unfavorably may increase 

the contact pressure at the knee joint (D'Lima et al., 2008). Therefore, reducing the contact pressure should be 

concerned as the principal goal of rehabilitation design. Conventional computational frameworks however are 

inherently unable to consider the contact pressure in the design procedure since the conventional methods require an 

explicit cost function whilst the relation between gait kinematics and the resultant contact pressure has not been 

stated explicitly before. Also, predicting the contact pressure requires implementing finite element analysis (FEA) 

which in turn increases the computational cost (Halloran et al., 2010). A cost-effective surrogate which releases the 

necessity of iterative FEA is therefore of significant advantage. Third, previous studies could not reach a general 

consensus about the contribution of knee flexion to the knee joint offloading. Knee flexion is a key synergetic 

parameter that is often increased within the clinical execution of the rehabilitation patterns (Barrios et al., 2010, 

Fregly et al., 2007, van den Noort et al., 2013).  Several studies concluded that  increasing the knee flexion would 

reduce KAM (Fregly et al., 2009, Fregly, 2008, Fregly et al., 2007), whilst others showed that it has no association 

with KAM (Creaby et al., 2013) or may even increase contact pressure at the knee bearing surfaces (D'Lima et al., 31 
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32 2008). A systematic investigation is required to enhance our understanding of the contribution of knee flexion to 

the knee joint offloading.   33 
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Artificial neural networks (ANN) and genetic algorithm (GA) are two relatively new techniques in the field 

of biomechanics. Artificial neural network (ANN) can be used as a real-time surrogate model with the ability to 

learn a nonlinear relationship. Once a set of inputs and corresponding outputs are presented to the network, it will 

then “learn” the causal interactions between inputs and outputs. Given a new set of inputs, the trained neural network 

(surrogate model) can generalize the relationship to produce the associated outputs. The ANN surrogate therefore 

can be of significant advantage especially when the original model necessitates repeating a time-consuming 

computation. For example, ANN has been widely used as a surrogate of FEA (Campoli et al., 2012, Hambli, 2010, 

Hambli, 2011, Naito and Torii, 2005, Lu et al., 2013, Simic et al., 2011, Zadpoor et al., 2012). Genetic algorithm is a 

time-efficient global optimization technique which searches the entire data space to find the best solution(Goldberg, 

1989). In each iteration, only potential candidates that better optimize the cost function will survive to the next 

iteration. Thus, regardless of the initial point, the search data space is iteratively modified and GA will rapidly 

converge to the global optimum solution.  This in turn assures the robustness of the method and minimizes the 

computational effort required to find the best solution. Moreover, GA is capable of dealing with multivariable data 

space, nonlinear input-output interactions and non-explicit, non-differential cost function.  47 
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Therefore, the overall aim of this study was to develop a hybrid framework of time delay neural network 

(TDNN) and genetic algorithm (GA) to address the aforementioned limitations of the literature. In particular this 

study aimed to (1) optimize the gait pattern in order to minimize the contact pressure at the knee articulating surfaces 

and (2) investigate the role of knee flexion in knee joint offloading. The advantage of the proposed approach was 

also compared over the existing knee rehabilitations in the literature. 52 

2. Materials and methods53 

The proposed computational approach was implemented in the following steps: 54 

Step 1) Experimental gait analysis data were obtained from the literature (Section 2.1), and imported into MBD 55 

analysis to calculate gait kinematics and kinetics (Section 2.2). Knee flexion angle and three dimensional knee joint 56 

loadings were predicted by MBD, and then served as boundary condition and loading profiles for the finite element 57 

simulation to calculate contact pressure (Section 2.3). Gait trials were then outlined via a number of kinematic 58 

features and the corresponding maximum contact pressure values (CPRESS-max) (Section 2.4). 59 



Step 2) A time-delay neural network (TDNN) was trained to learn the nonlinear relationship between kinematic 60 

features as inputs and the corresponding CPRESS-max values as output (Section2.5). 61 

Step 3) A genetic algorithm (GA) was implemented to search for the optimum kinematic features (optimization 62 

variables) which minimized the CPRESS-max at the knee joint bearing surfaces. In this GA, the trained TDNN was 63 

served as a real-time cost function to calculate the objective value (CPRESS-max) (Section 2.6).  64 

2.1. Experimental gait data 65 

Experimental gait analysis data of a single subject with unilateral TKA (female, height 167 cm, mass 78.4 66 

kg) was obtained from the literature (https://simtk.org/home/kneeloads; accessed on June 2013). The subject walked 67 

with a variety of different gait patterns including normal, medial thrust, trunk sway, walking pole, bouncy, crouch, 68 

smooth and fore foot strike.  Medial thrust, trunk sway and walking pole were knee rehabilitation strategies, designed 69 

to decrease KAM, whilst the remaining gait trials were different walking patterns to cover the span of executable gait 70 

for the subject. Compared to normal walking, the subject walked with a slightly decreased pelvis obliquity, slightly 71 

increased pelvis axial rotation and leg flexion to implement medial thrust pattern. For trunk sway pattern, the subject 72 

walked with an increased lateral leaning of the trunk in the frontal plane over the standing leg. In walking pole, the 73 

subject used bilateral poles as walking aids. For each gait pattern, five gait trials were repeated under the same 74 

walking condition at a self-selected pace. A total of two complete gait cycles were picked up from each trial, leading 75 

to a total of 84 data sets. For further details, see (Fregly et al., 2012). Gait trials were recorded in terms of marker 76 

trajectory data (Motion Analysis Corp., Santa Rosa, CA) and ground reaction forces (AMTI Corp., Watertown, MA).  77 

2.2. Multi-body dynamic 78 

Experimental ground reaction forces and marker trajectories were imported into the three-dimensional multi-79 

body dynamic simulation software, AnyBody Modelling System (version 5.2, AnyBody Technology, Aalborg, 80 

Denmark). A lower extremity musculoskeletal model was used in AnyBody software based on the University of 81 

Twente Lower Extremity Model (TLEM) (Klein Horsman, 2007). This model, available in the AnyBody published 82 

repository, had 160 muscle units as well as foot, thigh, patella, shank, trunk and thorax segments. Hip joint was 83 

modelled as a spherical joint with three degrees of freedom (DOF): flexion-extension, abduction-adduction and 84 

internal-external rotation. Knee joint was modelled as a hinge joint with only one DOF for flexion-extension and 85 

universal joint was considered for ankle-subtalar complex. Since the assumptions of the simplified knee joint and 86 

rigid multi-bodies were made, the detailed knee implant was not considered in the MBD analysis. Knee flexion angle 87 

and three dimensional knee joint loads, aligned in medial-lateral, proximal-distal and anterior-posterior directions, 88 

were calculated for each complete gait cycle. A complete gait cycle was defined as the time period from heel strike of 89 

https://simtk.org/home/kneeloads
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one leg to the following heel strike of the same leg(Vaughan et al., 1992). Computations were then normalized to 90 

100 samples to represent one complete gait cycle. Knee flexion and three dimensional knee joint loads then served as 91 

the boundary condition and load profiles for FEA.  92 

2.3. Finite element method 93 

A typical tibiofemoral knee implant was modelled in the commercial finite element package; 94 

ABAQUS/Explicit (version 6.12 Simulia Inc., Providence, RI) using the computer aided design (CAD) of a clinically 95 

available fixed bearing knee implant. The knee implant consisted of two main parts; femoral component and tibia 96 

insert. Rigid body assumptions were applied to both parts, with a simple linear elastic foundation model defined 97 

between the two contacting bodies (Halloran et al., 2005). Tetrahedral (C3D10M) elements were used to mesh the 98 

model in ABAQUS. Convergence was tested by decreasing the element size from 8 mm to 0.5 mm in five steps (8, 4, 99 

2, 1, and 0.5 mm). The solution converged on contact pressure (ื5%) with over 86000 and 44000 elements 100 

representing the femoral component and the tibia insert respectively . This was also consistent with the previous 101 

mesh convergence studies for similar finite element models (Abdelgaied et al., 2011, Halloran et al., 2005). The 102 

physical interaction between femoral component and tibia insert was taken into account as a surface-to-surface 103 

contact (femur as the master surface and tibia as the slave surface) through a penalty-based approach with an 104 

isotropic friction coefficient of 0.04 (Abdelgaied et al., 2011, Halloran et al., 2005). The tibia insert was constrained 105 

in all available DOFs and the femoral component was only allowed for flexion-extension under the three dimensional 106 

load which were obtained from MBD analysis. The model calculated the contact pressure at each node for each time 107 

increment. An output field was created over all simulation frames to compute the maximum value of the contact 108 

pressures (CPRESS_max) over the entire gait cycle. Since the medial compartment experiences the CPRESS-max 109 

value (Schipplein and Andriacchi, 1991), this part was considered for the rest of the study (Figure 1a). 110 

2.4. Feature extraction 111 

During a complete gait cycle, the extent to which a joint can be moved (range of motion) and the 112 

corresponding absolute values of motions directly affect the quality of human gait and joint loading. For example, 113 

increasing the “maximum” value of hip adduction angle or hip internal rotation would decrease the “peak” values of 114 

KAM (Barrios et al., 2010). On the other hand, to design a realistic gait modification strategy, the overall trend of 115 

kinematic patterns cannot differ significantly from natural human walking habitudes; otherwise the pattern would not 116 

be acceptable and executable by the patient. Thus, only the key features of kinematic waveforms are needed to be 117 

modified whilst the overall trends should be preserved consistent. Gait kinematics were therefore outlined through a 118 



total of 39 descriptive kinematic features (Table 1 and Figure 1b). These features have been suggested in the literature 119 

for a number of studies such as gait  analysis  (Collins et al., 2009, Gates et al., 2012a, Gates et al., 2012b), gait 120 

classification  (Armand et al., 2006)  ,  evaluation of  joint loading  (Simonsen et al., 2010),  and  joint inter-121 

coordination  (Wang et al., 2009). Kinematic features (optimization variables) were then allowed to vary within the 122 

corresponding ranges of experimental values plus ±20% variations to cover a thorough span of executable movement 123 

patterns for the subject. Contact pressure was also characterized by the maximum pressure value occurred over the 124 

entire gait cycle (CPRESS-max).   125 

2.5. Time-delay neural network 126 

Time delay neural network (TDNN) was implemented to model the highly nonlinear relationship between 127 

kinematic features (39 inputs) and CPRESS-max values (one output). The trained network was then embedded in an 128 

optimization process (GA) as a real-time cost function to calculate the objective values (CPRESS-max). The TDNN 129 

architecture consisted of a feed forward neural network in which a tapped delay line was added to the input layer 130 

(Figure 2). Similar to other types of neural networks, a number of processor units (neurons) were arranged in a 131 

certain configuration (layers). A weighted sum of all inputs was fed into each hidden neuron where an activation 132 

function acted on this weighted sum to produce the output of the hidden neuron. All of the hidden neurons were 133 

activated using “hyperbolic tangent sigmoid” function which linearly scaled its input signal to [-1, 1] interval: 134 

2
-1     1,2,......,  

(-2* )1 exp

m

m
j

j My mV j

 


྄ 135 

Where yj
m is the output of jth hidden neuron located at the mth hidden layer, Mm is the number of hidden neurons136 

at the mth hidden layer, and Vj
m(n) is the weighted sum of the signals from the previous layer which was fed to the jth137 

hidden neuron of mth hidden layer:  138 

1 1
11 * ) +  1,2,....,   ,   1,2,........,  (m mMm

m mj jk jk k j kyV W b M M 
     ྅ 139 

Where Wjk is the weight relating the output of kth neuron located at the (m-1)th layer (yk
m-1) to the jth hidden neuron at140 

the mth hidden layer with the bias value of bj, and Mm and Mm-1 are the number of neurons at the mth and (m-1)th layers141 

respectively. A weighted sum of all hidden neurons’ outputs was also fed into the single output node which was 142 

activated by a “pure line” function:  143 

1
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k

k
m

o ky y yw


  ྆144 
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in whichy  is the output bias . 145 

TDNN was trained using the scaled conjugate gradient algorithm (SCG) (Møller, 1993). The available data 146 

space, obtained from MBD and FEA, was randomly divided into three main parts: train (70%), validation (15%) and 147 

test (15%) subsets. The train and validation subsets were used to train the network whilst the test subset was not 148 

included in training. The network prediction error on the validation subset implied how accurate the network has 149 

learned the input-output causal relationship (accuracy). On the other hand, the network prediction error on the test 150 

subset indicated the extent to which the trained network could generalize this causal relationship for new inputs 151 

(generality). Generally speaking, the structure of the FFANN would build a trade-off between “prediction accuracy” 152 

and “generality”. Whilst increasing the number of hidden neurons/layers would increase the prediction accuracy, 153 

using too many neurons would decrease the generality and increase the test error. The number of hidden layers and 154 

hidden neurons were therefore determined according to the network prediction error for the test and validation 155 

subsets. The input delay was also determined by trial and error.  156 

2.6. Genetic algorithm 157 

In the present study, gait optimization was stated as follows: 158 

 Y :  Y=U(X)Minimize     AX b    ,  L UXX X       ྇  159 

Where Y is the CPRESS-max, X is the optimization variables (kinematic features), and U is the trained TDNN. Upper 160 

and lower bounds of the optimization variables (XL and XU) were obtained from the experimental gait trials plus ± 161 

20% variations. Matrix A and vector b described the linear inequality constraints in order to control the natural trends 162 

of the gait kinematics (Appendix). Genetic algorithm (GA) was used to search for those kinematic features that could 163 

minimize CPRESS-max. Kinematic features (optimization variables) were configured as 1*N arrays called 164 

individuals (N=39). In each iteration, the GA created a population of individuals and then employed the trained 165 

TDNN to calculate the resultant CPRESS-max values associated with potential individuals. Those individuals that 166 

led to lower CPRESS-max values were assigned a higher survivorship probability to be selected and make the next 167 

population. Each individual is indeed a potential solution and each population is a search space of solutions. 168 

Accordingly, after passing several iterations, the population (solution search space) evolved toward the optimized 169 

individuals.  170 

The first population was initialized with random individuals in which features of gait kinematics were 171 

randomly chosen due to XL and XU. The next populations were created through selected individuals by elitism, 172 



crossover and mutation operators of GA (Goldberg, 1989). Table 2 summarizes the setting of the proposed GA in 173 

MATLAB (v.2009, Genetic Algorithm toolbox). In the present study, two systematic optimizations were performed: 174 

first, knee flexion was bounded to vary within the normal walking. Second, the knee flexion was allowed to vary 175 

beyond the normal walking up to the medial thrust pattern. Once the GA converged to the optimum kinematic 176 

features, a typical normal gait cycle was adjusted to these optimum features using the curve fitting technique and the 177 

optimized gait pattern was reconstructed. Figure 3 shows schematic of the proposed combined TDNN-GA 178 

methodology in this study. 179 

3. Results180 

3.1. Network training 181 

A four-layer TDNN with four delay units at its input layer , 20 hidden neurons at the first hidden layer and 15 182 

hidden neurons at the second one, was trained using 70% of the generated data base. Then, it was validated and tested 183 

with the remaining 30%. Figure 4 shows the average performance of the proposed network over 100 training and 184 

testing repetitions, each time with a random selection of subsets(Iyer and Rhinehart, 1999). According to the results, 185 

the TDNN could accurately predict CPRESS-max values for the training, validation and test subsets. Pearson 186 

correlation coefficients, between network predictions (Y axis) and real outputs (X axis), were all above p=0.98. 187 

Figures 4a, b show that the network learned the nonlinear interaction of kinematics and contact pressure variables 188 

(p=0.99). Figure 4c shows that the network could predict the CPRESS-max values corresponding to new sets of 189 

kinematics which were not included in the training data space (p=0.98). 190 

3.2. Optimization problem 191 

The crossover fraction substantially affects the convergence of GA.  Optimization was therefore run for a 192 

variety of different values of crossover fraction ranged from 0 to 1 in the step size of 0.05. The crossover fraction of 193 

0.85 led to the lowest CPRESS-max value (see Figure 5). Thus, this value was adopted for the rest of this study. In 194 

the first optimization problem, knee flexion angle was bounded within normal walking. The algorithm was 195 

terminated after 75 populations due to stall generation criterion, in which the average change of the objective value 196 

(CPRESS-max) was less than 10-6 (function tolerance) over 50 populations (stall generations). Figure 6a shows the 197 

mean and the best CPRESS-max values associated with each population. After successful convergence of the 198 

algorithm, TDNN-GA achieved the lowest CPRESS-max value of 25.58 MPa for the best individual of the last 199 

population. 200 
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Using curve fitting technique, a typical normal gait cycle was adjusted to the obtained optimum kinematic 201 

features and the optimized gait pattern was reconstructed (Figure 7). The optimized kinematics laid within the 202 

experimental gait patterns suggesting that it would be feasible for the subject to execute the optimized pattern. Using 203 

multi-body dynamic analysis, the corresponding joint loadings were computed and compared with the span of 204 

experimental values (Figure 8). Results show that lower extremity joints (ankle, knee and hip) underwent realistic 205 

loading conditions i.e. within and with similar pattern to the experimental gait trials. Particularly, hip joint loading 206 

was generally low in the anterior-posterior direction. A general reduction at the anterior-posterior component of knee 207 

joint loading and significant reduction at its medial-lateral component around 40%-60% of the gait cycle occurred. 208 

Moreover, the medial-lateral component of ankle joint loading was significantly decreased accompanied with a 209 

reduction at its anterior-posterior component around 40%-60% of the gait cycle. Figure 9 shows the resultant 210 

distribution of the maximum contact pressure at the medial tibiofemoral joint over the entire gait cycle. The 211 

maximum contact pressure was reduced by 21.8% compared to the normal walking, while previously published gait 212 

modifications were fairly ineffective to decrease the contact pressure magnitudes. 213 

In the second optimization problem, XL and XU were modified and the knee joint flexion was bounded 214 

between normal and medial thrust patterns. The GA achieved the convergence value of 24.61 MPa after 77 215 

populations (Figure 6b). Reconstructed gait kinematics and the resultant joint loading patterns are presented in 216 

Figures 7 and 8 respectively. Results demonstrate that the second optimized gait pattern also laid within the span of 217 

executable gait patterns. The second optimized gait modification led to a significant reduction at the three 218 

dimensional hip joint loading (anterior-posterior, proximal-distal and medial-lateral) around 0-25% of the gait cycle. 219 

This pattern also led to an overall reduction at anterior-posterior component of the knee joint loading. Anterior-220 

posterior and medial-lateral components of the ankle joint loading were substantially low at 0-25% of the gait cycle, 221 

however ankle joint loading was slightly increased around 40%-60% of the gait cycle. By comparison, the second 222 

optimization problem yielded to a more effective gait modification pattern that better reduced the magnitude of the 223 

contact pressure by up to 25% (Figure 9).  224 

4. Discussion225 

4. 1. Hybrid neural network-genetic algorithm 226 

Neural network was employed: first, to model the highly nonlinear relationship between gait kinematics and 227 

contact pressure; second, to serve as a real-time cost function that allowed the optimization algorithm to be 228 

performed in a reasonable computation time. A recent study by Lu et al. (2013) demonstrated that the dynamic 229 



structure of a time delay neural network was preferred for modelling the relation between tibiofemoral cartilage load 230 

(input) and von Mises stress (output), compared to the traditional static feed forward neural network. Therefore, this 231 

structure was used in this study. Moreover,  neural network has been used to calculate joint loading from ground 232 

reaction forces and gait kinematics (Ardestani et al., 2013, Ardestani et al., 2014) and ground reaction force from gait 233 

kinematics (Oh et al., 2013, Ren et al., 2008). In this study, neural network was employed to calculate the contact 234 

pressure from gait kinematics. The high correlation that was found between the target values and the network 235 

predictions for validation and test subsets reassures the reliability of the proposed structure. The TDNN in turn 236 

necessitated involving the GA as the optimization technique. In fact, other classical optimization approaches mainly 237 

rely on iterative derivation of an explicit cost function however TDNN modelled the problem non-explicitly.  238 

4. 2. Current research contribution 239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

There are a number of implications on the gait modification and optimization both in terms of methodology and 

findings. Major limitations of the previous studies were addressed in the present research. First, compared to 

previous studies in which iterative “trial-and-error” MBD analysis has been used, this study presented a cost-

effective computational alternative. TDNN provided a real-time cost function for the GA that could rapidly evaluate 

the contact pressure associated with each potential gait pattern. Moreover, GA is a stochastic direct search method in 

which the search data space is modified iteratively. This in turn reduced the computational effort required to find the 

optimized solution. It should be pointed out that although various gait modifications have been developed in 

association with knee joint offloading, none of them have yet been accepted as a general modification strategy. In 

fact, due to the large inter-patient variability, reported in gait kinematics and joint loading patterns(Kutzner et al., 

2010, Taylor et al., 2004) , gait rehabilitation strategies should be determined patient specifically. Hence, to design a 

gait modification strategy, it is crucial that the proposed computational method is cost-effective and easy to recreate. 250 

251 

252 

253 

254 

255 

Second, unlike the previous studies in which KAM reduction has been the principal goal of gait modification, 

here, contact pressure was adopted as a more accurate criterion for knee joint offloading. This in turn built more 

confidence in the efficiency of the proposed gait modification. Previous gait modifications were mainly designed to 

reduce knee joint moment. Although these modification patterns could decrease knee joint loading, none of them 

could decrease contact pressure at the knee joint bearing surfaces whilst the proposed gait pattern in this study could 

effectively decrease the contact pressure by up to 25% (see Figure 9). 256 

257 

258 

Third, whilst previous studies have debated on the influence of increasing knee flexion, this study could 

address the contribution of knee flexion angle to the knee joint offloading in a systematic manner. Two optimizations 

were performed: first, knee flexion angle was kept within normal patterns to investigate whether it was possible to 259 
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260 

261 

262 

263 

264 

265 

266 

decrease knee joint loading through adjacent joints effects. Second, knee flexion was allowed for a non-significant 

increase. Results showed that in the first optimized gait, contact pressure was reduced by up to 21% whilst knee 

flexion was preserved within normal walking. In the second optimized pattern, a more effective pressure reduction 

(25%) was achieved with a slight increase in the knee flexion  at the cost of considerable increase in the ankle joint 

forces at 40-60% of the gait cycle. This observation is consistent with previous studies (Fregly et al., 2007) and 

suggests that perhaps the first optimization pattern in which joint reaction forces were within the experimental range 

might be more physiologically feasible. Allowing the knee flexion angle to be more increased  led to higher ankle 

joint loading and a gradual reduction in the contact area which in turn increased contact pressure. 267 

268 

269 

270 

271 

Overall, hip adduction, ankle flexion, subtalar eversion, pelvis posterior rotation and pelvis medial-lateral 

rotation were increased during the stance phase for both optimized gait patterns (see Figure 7). However it should be 

noted that the exact amount of kinematic changes, compared to normal gait, was not reported in this study since 

specific gait rehabilitation, designed for a particular subject, may not be equally applicable for other patients. 

Therefore, the quantitative amount of kinematic variations, compared to normal gait, was not focused in this study. 272 

4. 3. Limitations 273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

There were several limitations in this study: (1) there was a lack of clinical investigation on the estimated 

kinematics. Nevertheless, from a technical point of view, the predicted kinematic waveforms are expected to be 

feasible since the TDNN was trained based on executable walking patterns. Once the network learns this dynamic, it 

uses this dynamic as the acting function to respond to new sets of inputs. Therefore, it is unlikely that it would 

generate highly aberrant kinematics. Regardless, further investigations are required to test whether the predicted 

kinematics is feasible to implement for compensatory or unexpected effects on the other joints or the contra-lateral 

limb; (2) rigid body constraints were applied to both the femoral and tibia components. Halloran et al.(2005) showed 

that rigid body analysis of the tibiofemoral knee implant can calculate contact pressure in an acceptable consistence 

with a full deformable model  whilst rigid body analysis would be much more time-efficient. Therefore, in order to 

produce the training data base, required to train the neural network, rigid body constraints were applied. This was 

consistent with the present multi-body dynamic analysis in which no detailed modelling on the knee implant was 

included; (3) a typical knee implant was adopted in the present study. Although this implant has been widely used in 

literature (Clayton et al., 2006, Dalury et al., 2008, Ranawat et al., 2004, Willing and Kim, 2011) , its dimensions 

were different from the original knee prosthesis by which the subject was implanted. In fact, the subject was 

implanted with a custom-made sensor-based prosthesis which was specifically produced to measure in vivo knee 

joint loading(Fregly et al., 2012). Accordingly, in this study , a typical commercial knee implant was preferred to test 

the 

289 



efficiency of the proposed knee rehabilitation patterns. Nevertheless, the proposed methodology should be equally 290 

291 

292 

293 

applicable to other implant geometries and (4) the knee joint was modelled with only one DOF (flexion-extension). 

Although six DOFs are possible for the knee joint, the dominant movement of the knee joint takes place in the 

sagittal plane and knee joint has been mostly simplified as a hinge joint, especially for the knee rehabilitation design 

purposes (Ackermann and van den Bogert, 2010, Anderson and Pandy, 2001, Fregly et al., 2007). 294 

5. Conclusion295 

296 A time-delay neural network was embedded in a genetic algorithm to predict a gait pattern that would 

minimize the contact pressure at the knee joint bearing surfaces. The proposed algorithm suggested an optimum gait 297 

pattern in which hip adduction, ankle flexion, subtalar eversion᧨ pelvis posterior rotation and pelvis medial-lateral 298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

rotation were slightly increased during the stance phase. Compared to the available gait rehabilitations, the proposed 

gait pattern could decrease the knee contact pressure by up to 25%. Compared to the conventional MBD-based 

framework in gait rehabilitation design, the present methodology facilitated a more practical and reliable design 

procedure at a lower computational cost :(1) instead of using knee adduction moment, contact pressure was 

considered as a more accurate criterion which led to a more efficient gait modification, (2) using the time-delay 

neural network, the proposed computational framework was considerably faster and time-efficient. The 

computational framework therefore can be easily repeated for any given subject. Moreover, (3) the conflicting effect 

of the knee flexion was addressed through two systematic optimization frameworks: (i) knee joint may be offloaded 

without any changes in the knee flexion angle (ii) a slight increase in the knee flexion angle might better reduce 

contact pressure but at the cost of ankle joint over loading and (iii) large increase in the knee flexion angle reduced 

the contact area and yielded to an increase in the contact pressure. 309 

310 

311 

312 

313 

314 

Various future direction from this study can be considered: (1) on the methodological level, more rigorous 

tribological metrics (e.g. wear), constraints (e.g. energy expenditure) or gait balance requirements can be included 

into the computational framework to enhance the predications; (2) on the validation level, further clinical studies are 

required to validate the finding of such studies; (3) on a wider application level, the proposed methodology in this 

study has wider implications in design and development of rehabilitation protocols for broader numbers of subjects 

and other joints such as hip and ankle.  315 
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Table 1 Description of gait kinematic features 

Joint Kinematic feature Description 

Hip H1 Hip flexion at initial contact 

Hip H2 Maximum hip extension at stance 

Hip H3 Maximum hip flexion at swing phase 

Hip H4 Hip abduction at initial contact 

Hip H5 Maximum hip adduction at midstance phase 

Hip H6 Maximum hip adduction at stance phase 

Hip H7 Hip external rotation at initial contact 

Hip H8 Maximum hip internal rotation at swing phase 

   

Knee K1 Knee flexion at initial contact 

Knee K2 Maximum knee flexion at stance 

Knee K3 Maximum knee extension at stance  

Knee K4 Maximum knee flexion at swing phase 

   

Ankle A1 Ankle flexion at initial contact  

Ankle A2 Maximum ankle dorsiflexion at midstance 

Ankle A3 Maximum ankle dorsiflexion at stance 

Ankle A4 Maximum ankle plantar flexion at swing phase 

   

Subtalar S1 Subtalar inversion at initial contact  

Subtalar S2 Maximum subtalar eversion at stance 

Subtalar S3 Maximum subtalar inversion at stance 

Subtalar S4 Maximum subtalar eversion at swing 

   

Pelvis PP1 Maximum posterior tilt of pelvis  

Pelvis PP2 Maximum anterior tilt of the pelvis  

Pelvis PP3 Maximum lateral obliquity of the pelvis 

Pelvis PP4 Maximum medial obliquity of the pelvis 

Pelvis PP5 Pelvis vertical position at initial contact 

Pelvis PP6 Maximum pelvis upward position at stance 

Pelvis PP7 Maximum pelvis downward position at stance  

Pelvis PP8 Maximum pelvis upward position at swing 

   

Pelvis PR1 Pelvis anterior rotation at initial contact 

Pelvis PR2 Maximum pelvis posterior rotation at stance  

Pelvis PR3 Maximum pelvis posterior rotation at swing 

Pelvis PR4 Pelvis medial rotation at initial contact 

Pelvis PR5 Maximum pelvis lateral rotation at stance 

Pelvis PR6 Maximum pelvis medial rotation at stance 

Pelvis PR7 Maximum pelvis lateral rotation at swing 

Pelvis PR8 Pelvis axial rotation at initial contact 

Pelvis PR9 Maximum pelvis axial rotation to the left at stance 

Pelvis PR10 Minimum pelvis axial rotation to the right at stance 

Pelvis PR11 Maximum pelvis axial rotation to the left at swing 

Table 1



Table 2 Genetic algorithm settings in MATLAB 

Genetic algorithm parameter Value 

Population size 50 

Scaling function Rank 

Selection function Tournament 

Elite count 2 

Crossover fraction 0.85 

Crossover function Single point 

Mutation function Adaptive feasible 

Maximum number of generations 100 

Table 2
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(b) 
Figure 1 (a) Experimental gait measurements were imported into multi-body dynamics analysis to calculate joint kinematics/kinetics which were 

then used by finite element analysis to calculate contact pressure (b) Joint angles were parameterized by extremum features (red circles). Due to 

the periodicity of the gait, joint angle values at the end of the gait cycle (gray points) were equal to the initial values at 0% of the gait cycle 

except for pelvis anterior-posterior position. 
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Figure 2 A schematic diagram of a four-layer TDNN used in this study. The network calculated the maximum 

values of contact pressure (output) based on gait features (inputs). 

 

 

Figure 2



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The flowchart of the proposed TDNN-GA. 
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Figure 4 Network predictions versus actual CPRESS-max values for (a) train (b) validation and (c) test subsets. 

 

 

 

 

 

 

 

 

 

 

Figure 4



 

 

Figure 5 Mean and standard deviation of the optimized CPRESS-max for different values of crossover fraction in 

the GA process. 
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(b) 
Figure 6 Convergence of the GA for (a) the first optimization problem in which the knee flexion angle was 

bounded to normal patterns,(b) the second optimization problem in which the knee flexion angle was allowed to 

increase beyond normal pattern. “fitness” refers to the calculated value of CPRESS-max for each individual.  
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Figure 7 Kinematics of the first optimized gait pattern (black line) and the second optimized pattern (pink line) laid within the extent of 

experimental gait trials (gray span). Those kinematics that underwent considerable changes have been marked by  

 

 

 

 

 

 

 

 

 

Figure 7



  

 

 

 

Figure 8 Resultant joint contact forces of the first optimized gait pattern (black line) and the second optimized pattern (pink line) laid within the 

extent of experimental gait trials (gray span). 
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  Medial thrust CPRESS_max: 30.92 MPa Optimized pattern1  CPRESS_max: 25.01 MPa Optimized pattern 2   CPRESS_max: 24.04 MPa 

   

   

   

 

Figure 9 The resultant maximum values of contact pressures for the optimized gait patterns versus contact pressures obtained from normal gait 

and other previously published gait modifications. 
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