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Abstract

Gait modification strategies play an important role in the overall succesgabftknee arthroplasty. There are a
number of studies based on multi-body dynamic (MBD) analysis that have mininmeedaklduction moment to
offload knee joint. Reducing the knee adduction moment, without consideratlum actual contact pressure, has its
own limitations. Moreover, MBD-based framework that mainly relies on iterati@eand-error analysis, is fairly
time consuming. This study embedded a time-delay neural network (TDNNyémetic algorithm (GA) as a cost
effective computational framework to minimize contact pressure. Multi-body dyremdidinite element analyses
were performed to calculate gait kinematics/kinetics and the resultanttcprgasure for a number of experimental
gait trials. A TDNN was trained to learn the nonlinear relation betweepaaimeters (inputs) and contact pressures
(output). The trained network was then served as a real-time cost functioGA-based global optimization to
cdculate contact pressure associated with each potential gait pattern. Tmagiin problems were solved: first,
knee flexion angle was bounded within the normal patterns and second, knee dllegierwas allowed to be
increased beyond the normal walking. Designed gait patterns were evaluated throiglodyudynamic and finite

element analyses.

The TDNN-GA resulted in realistic gait patterns, compared to literaturehweould effectively reduce contact
pressure at the medial tibiofemoral knee foifihe first optimized gait pattern reduced the knee contact pressure by
up to 21% through modifying the adjacent joint kinematics whilst knee flaxé@npreserved within normal walking.
The second optimized gait pattern achies@bre effective pressure reduction (25%) through a slight increase in th
knee flexion at the cost of considerable increase in the ankle joint foFbesproposed approach is a cost-effective
computational technique that can be used to design a variety of rehabilitation strategies for jdiffiereplacement

with multiple objectives.

Keywords: Gait modification, Tibiofemoral knee joirlime delay neural network, Genetic algorithm, Contact
pressure
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1. Introduction:

Following total knee arthroplasty (TKA), rehabilitation strategies are of significant importance to accelerate

patient recovery(lsaac et al., Z(HOS, Klein et al., 2008), reinforce joint functignality(Moffet et al|R2004ann ef

al., 2009), decrease gait asymmetry(Zeni Jr et al., |2011), and augment the durability and life time of kne

prosthesds(Fransen, 2(|11, Mont et al., 2006). Gait rehabilitations mainly aim to decrease knee joint loading throt

minor changes in human gait patterns. However, recognizing the synergistic kinematic changes, required for jo
offloading, is a challenging task, hence; computational approaches have been used to facilitate the design procec

To best of our knowledge, most of the current literature on gait modification strategies have been designed throt

multi-body dynamic (MBD) analysis (Barrios et al., 2{}10, Barrios and Davis,|[2007, Fregly et a' , 2009, Hunt et al

2008{ Mindermann et al., ZCH)B, Willson et al., 2p0dkermann and van den Bogert, 2(J10, Anderson and Pandy,

2001) Fregly et al., 2007) . However, iteratfiteial-anderror” MBD analysis, that has been performed in such

studies,s fairly time demanding which limits the applicability and generality of the method. Hence, a cost-effective

computational framewaork that minimizes the computational cost is of particular interest.

Besides the computational cost, there are a number of aspects that have not been well addressed by
conventional MBD-based framework. FirsMBD-based approach attempts to reduce the peak values of knee

adduction moment (KAM) which is not always a reliable measure since decreasing KAM may not necessari

decrease knee joint Ioadin4; (Walter et al., 2010); and the results of such approach are sensitive to the chc

reference frame (e.g. laboratory, floating reference frarlnes) (Lin et al.{{2001, Shull et gl., 2012). Second , joir

offloading gait patterns are likely to decrease the contact area of articulating surfaces that unfavorably may incre:

the contact pressurat the knee joint| (D'Lima et al., 20D8). Therefore, reducing the contact pressure should be

concerned as the principal goal of rehabilitation design. Conventional computational frameworks however a
inherently unable to consider the contact pressure in the design procedure since the conventional methods requir
explicit cost function whilst the relation between gait kinematics and the resultant contact pressure has not be

stated explicitly before. Also, predicting the contact pressure requires implementing finite element analysis (FE/

which in turn increases the computational dqost (Halloran et al.,[2010). A cost-effective surrogate which releases

necessity of iterative FEA is therefore of significant advantage. Third, previous studies could not reach a gene

consensus about the contribution of knee flexion to the knee joint offloading. Knee flexion is a key synergeti

parameter thais often increased within the clinical execution of the rehabilitation patlerns (Barrios et al., 2010,

Fregly et al., 200fvan den Noort et al., 201.3). Several studies concluded that increasing the knee flexion woul

reduce KAM|(Fregly et al., 20009, Fregly, 2008, Fregly et al., R007), whilst others showédhmno association

with KAM (Creaby et al., 2013) or may even increase contact pressure at the knee bearing syrfaces (D'Lima et al.,
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4

2008).A systematic investigation iequired to enhance our understanding of the contribution of knee flexion to

theknee jointoffloading.

Artificial neural networks (ANN) and genetic algorithm (GA) are two relatively new techniques in the field
of biomechanics. Artificial neural network (ANN) can be used as a real-time surrogate model with the ability tc
learn a nonlinear relationship. Once a set of inputs and corresponding outputs are presented to the network, it
then“learri’ the causal interactions between inputs and outputs. Given a new set of inputs, the trained neural netwi
(surrogate model) can generalize the relationship to produce the associated dbgWBIN surrogate therefore

can be of significant advantage especially when the original model necessitates repeating a time-consum

computation. For example, ANN has been widely used as|a surrog%EaAc(Cam[}’IDIi et al., 2012, Hambli, 20110,

Hambli, 2011 Naito gnd Torii, 2005] Lu et al., 2013, HSimic et al., 2011, Zadpoor et al., Zpa2¢tic algorithm is a

time-efficient global optimization technique which searches the entire data space tp find the best |solution(Goldbe

1989). In each iteration, only potential candidates that better optimize the cost function will survive to the ne»
iteration. Thus, regardless of the initial point, the search data space is iteratively modified and GA will rapidl
converge to the global optimum solution. This in turn assures the robustnessnodhtbd and minimizes the

computational effort required to find the best solution. Moreover, GA is capable of dealing with multivariable dat:

space, nonlinear input-output interactions and non-explicit, non-differential cost function.

Therefore, the overall aim of this study was to develop a hybrid framework of time delay neural network
(TDNN) and genetic algorithm (GA) to address the aforementioned limitations of the literature. In particular this
study aimed to (1) optimize the gait pattern in order to minimize the contact pressure at the knee articulating surfa
and (2) investigate the role of knee flexion in knee joint offloading. The advantage of the proposed approach w

also compared over the existing knee rehabilitations in the literature.

2. Materials and methods

The proposed computational approach was implemented in the following steps:

Step 1) Experimental gait analysis data were obtained from the lite(&ecgon 2.1), and imported into MBD
analysis to calculate gait kinematics and kinetics (Section 2.2). Knee flexionaawigthree dimensional knee joint
loadings were predicted by MBD, and then served as boundary condition and loading famofiiesfinite element

simulation to calculate contact pressure (Section 2.3). Gait trials thien outlined via a number of kinematic

features and the corresponding maximum contact pressure values (CPRESS-max) (Section 2.4).
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Step 2) A time-delay neural network (TDNN) was trained to learn the eanlirelationship between kinematic

features as inputs and the corresponding CPRESS-max values as output (Section2.5).

Step 3) A genetic algorithm (GA) was implemented to search for the wptikinematic features (optimization
variables) which minimized the CPRESS-max at the knee joint bearingesutfathis GA, the trained TDNN was

served as a real-time cost function to calculate the objective value (CPRESS-max) (Section 2.6)

2.1. Experimental gait data

Experimental gait analysis data of a single subject with unilateral TKA (gerhelght 167 cm, mass 78.4

kg) was obtained from the literature (https://simtk.org/home/knegloacksssexd on June 2013). The subject walked

with a variety of different gait patterns including normal, mettaust, trunk sway, walking pgl&ouncy crouch
smooth and fore foot strike. Medial thrust, trunk sway and walking polke kvere rehabilitation strategies, designed
to decrease KAM, whilst the remaining gait trials were different walkinigpet to cover the span of executable gait
for the subject. Compared to normal walking, the subject walked with a gliigtteased pelvis obliquity, slightly
increased pelvis axial rotation and leg flexion to implement medial thrtistma-or trunk sway patterthe subject
walked with an increased lateral leaning of the trunk in the frontal pleeethe standing leg. In walking pole, the
subject used bilateral poles as walking aids. For each gait pattern, fivieialai were repeated under the same

walking condition at a self-selected pace. A total of two complete gait cyelespicked up from each trial, leading

to a total of 84 data sets. For further details, [see (Fregly et al.|. ZBdiR)rials were recorded in terms of marker

trajectory data (Motion Analysis Corp., Santa Rosa, CA) and ground reaction forces (AMTMZgstown, MA).

2.2.Multi-body dynamic

Experimental ground reaction forces and marker trajectories were imported ititoethrelimensional multi-
body dynamic simulation software, AnyBody Modelling System (version 5.2, AnyBody Tegyndhalborg,

Denmark). A lower extremity musculoskeletal model was used in AnyBody software dxadbd University of

Twente Lower Extremity Model (TLEM) (Klein Horsman, 2(Q07). This model, aviglabthe AnyBody published

repository, had 160 muscle units as well as foot, thigh, patella, shank,amdnthorax segments. Hip joint was
modelled as a spherical joint with three degrees of freedom (DOF): flexion-exteasiduction-adduction and
internal-external rotation. Knee joint was modelled as a hinge jointomith one DOF for flexion-extension and
universal joint was considered for ankle-subtalar complex. Since the assumptions infplifeed knee joint and

rigid multi-bodies were made, the detailed knee implant was not considered in thaMaBBis. Knee flexion angle
and three dimensional knee joint loads, aligned in medial-lateral, proximal-distahsertbr-posterior directions,

were calculated for each complete gait cycle. A complete gait cycle was defined as the time period frorkehefel stri
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6
one leg to the following heel strike of the samg leg(Vaughan et al.| 1992). Ctonmutaere then normalized to

100 samples to represent one complete gait cycle. Knee flexion and three dimensional klveglgoihen served as

the boundary condition and load profiles F&A.

2.3.Finite d ement method

A typical tibiofemoral knee implant was modelled in the commercial finitement package;
ABAQUS/EXxplicit (version 6.12 Simulia Inc., Providence, RI) using the computer aidaghd€AD) of a clinically
available fixed bearing knee implant. The knee implant consisted of two mainfpartsal component and tibia

insert. Rigid body assumptions were applied to both parts, with a simple linear fdastiation model defined

between the two contacting bodi}es (Halloran et al., R005). Tetrahedral (C3[2ié&xehnts were used to mesh the

model in ABAQUS. Convergence was tested by decreasing the element size frono®rGrmiin five stepq8, 4,
2, 1, and 0.5 mm). The solution converged on contact pressi®)(with over 86000 and 44000 elements

representing the femoral component and the tibia insert respectively . Thialseaconsistent with the previous

mesh convergence studies for similar finite element mddels (Abdelgaied 2@131‘ , Halloran et al., 20{)5). The

physical interaction between femoral component and tibia insert was taken into acceusturéaceo-surface

contact (femur as the master surface and tibia as the slave surface) thrpaghltg-based approach with an

isotropic friction coefficient of 0.04 (Abdelgaied et al., 2011, Halloraal.e200%). The tibia insert was constrained

in all available DOFs and the femoral component was only allowed for flexion-extemslenthe three dimensional
load which were obtained from MBD analysis. The model calculated the contagirpras each node for each time
increment. An output field was created over all simulation frames to compute theunaxialue of the contact

pressures (CPRESS_max) over the entire gait cycle. Since the medial compartmeéenagptne CPRESS-max

value|(Schipplein and Andriacchi, 1991), this part was considered for the rest of thé-gjudy {a).

2.4.Feature extraction

During a complete gait cycle, the extent to which a joint can be moved (range ioh)matd the
corresponding absolute values of motions directly affect the quality of humaandajoint loading. For example,
increasing thé'maximun? value of hip adduction angle or hip internal rotation would decreasgp#ai values of
KAM (Barrios et al., 2010). On the other hand, to design a realistic gaiifioation strategy, the overall trend of
kinematic patterns cannot differ significantly from natural human walkibgudes; otherwise the pattern would not
be acceptable and executable by the patient. Thus, only the key featihesnuditic waveforms are needed to be

modified whilst the overall trends should be preserved consistent. Gait kioenvatie therefore outlined through
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total of 39 descriptive kinematic features (Table 1 and Figure 1b). These features havgpested in the literature

for a number of studies such as gait analysis (Collins et al.||2009, Gates et al|GHd2&t al., 2013b), gait

classification [(Armand et al., 2006) evaluation of joint loading| (Simonsen et al., 2010), and joint inter-

coordination | (Wang et al., 2009). Kinematic features (optimization variabksg) then allowed to vary within the

corresponding ranges of experimental values plus +20% variations to coeeowegtihspan of executable movement
patterns for the subject. Contact pressure was also characterized by the mpréssume value occurred over the

entire gait cycle (CPRESS-max).
2.5. Time-delay neural network

Time delay neural network (TDNN) was implemented to model the highityinear relationship between
kinematic features (39 inputs) and CPRESS-max values (one output). The mietiwvedk was then embedded in an
optimization process (GA) as a real-time cost functmoalculate the objective values (CPRESS-max). The TDNN
architecture consisted of a feed forward neural network in which a tapmgdlidel was added to the input layer
(Figure 2). Similar to other types of neural networks, a number of procesisr(neurons) were arranged in a
certain configuration (layers). A weighted sum of all inputs was feddatd hidden neuron where an activation
function acted on this weighted sum to produce the output of the hidden neuraof.ti#dl hidden neurons were

activated using “hyperbolic tangent sigmoid” function which linearly scaled its input signal to [-1, 1] interval:

Where y" is the output of'] hidden neuron located at th& fridden layer, M is the number of hidden neurons
at the rfi hidden layer, and;¥(n) is the weighted sum of the signals from the previous layer which was fed o the j

hidden neurof m" hidden layer:

VI=SW R W by =12 Mm o K= 120 M (2)

Where V), is the weight relating the output df keuron located at then-1)" layer (™) to the " hidden neuron at
the n" hidden layer with the bias value qf &nd M, and M, are the number of neurons at thie and(m—l)‘hlayels
respectively. A weighted sum of dlidden neurons’ outputs was also fed into the single output node which was

activated by a “pure line” function:

Mm _
You= D W Vi +Y (3)
k=1
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145  in whichy is the output bias .

146 TDNN was trained using the scaled conjugate gradient algorithm (FC@le(ML993). The available data

147 space, obtained from MBD and FEA, was randomly dividéa three main parts: train (70%), validation (15%) and
148 test (15%) subsets. The train and validation subsets were used to traintbik nehilst the test subset was not
149 included in training. The network prediction error on the validation subgdied how accurate the network has
150 learned the input-output causal relationship (accuracy). On the other hand, the&k medglation error on the test

151 subset indicated the extent to which the trained network could geeethis causal relationship for new input

152 (generality). Generally speaking, the structure of the FFANN would buraba-off betweerfprediction accuracy

153 and“generality. Whilst increasing the number of hidden neurons/layers would increase the prediction accuracy
154  using too many neurons would decrease the generality and increase the test error. Thefrhidden layers and

155 hidden neurons were therefore determined according to the network predictiorioerthe test and validation

156 subsets. The input delay was also determined by trial and error.

157 2.6.Genetic algorithm
158 In the present study, gait optimization was stated as follows:
159 MinimizeY : Y=UXX) AX<b , X <X<Xy (4)

160 Where Yis the CPRESS-max, Xis the optimization variables (kinematic features), and Wam#dteTDNN. Upper

161 and lower bounds of the optimization variables §4d X)) were obtained from the experimental gait trials plus *
162 20% variations. Matrix A and vector b described the limeaguality constraints in order to control the natural trends
163 of the gait kinematics (Appendix). Genetic algorithm (GA) was used to searittogar kinematic features that could
164 minimize CPRESS-max. Kinematic features (optimization variables) wereguooedi as 1*N arrays called
165 individuals (N=39).In each iteration, the GA createdpopulation of individuals and then employed the trained
166 TDNN to calculate the resultant CPRESS-max values associated with pategitisduals. Those individuals that
167 led to lower CPRESS-max values were assignkijher survivorship probability to be selected and make the next
168 population. Each individual is indeeal potential solution and each population is a search space of solutions.
169 Accordingly, after passing several iterations, the population (solution search spah&)d toward the optimized

170 individuals.

171 The first population was initialized with random individudts which features of gait kinematics were

172 randomly chosen due to_Xand X. The next populations were created through selected indivithyadditism,
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crossover and mutation operators of GA (Goldberg, 1989). Table 2 summaezesttthg of the proposed GA in

MATLAB (v.2009, Genetic Algorithm toolbox). In the present study, two systeratimizations were performed:
first, knee flexion was bounded to vary within the normal walking. Secondnie flexion was allowed to vary
beyond the normal walking up to the medial thrust pattern. Once theoBverged to the optimum kinematic
featuresatypical normal gait cycle was adjusted to these optimum featuresthsimgrve fitting technique and the
optimized gait pattern was reconstructed. Figure 3 shows schematic of the proposededomiNIN-GA

methodology in this study.

3. Results

3.1.Network training

A four-layer TDNN with four delay unitatits input layer , 20 hidden neuroatthe first hidden layer and 15
hidden neuronat the second one, was trained using 70% of the generated data base. Then, it was validated and te:

with the remaining 30%. Figure 4 shows the average performance of fhes@donetwork over 100 training and

testing repetitions, each time with a random selection of suibsets(lyehareh&t, 199P). According to the results,

the TDNN could accurately predict CPRESS-max values for the traininiglatiah and test subsets. Pearson
correlation coefficients, between network predictions (Y axis) and real oufpuasig), were all above p=0.98.

Figures 4a, b show that the network learned the nonlinear interaction of kreesuadi contact pressure variables
(p=0.99). Figure 4c shows that the network could predict the CPRESS-max vaiuesponding to new sets of

kinematics which were not included in the training data space (p=0.98).
3.2.Optimization problem

The crossover fraction substantially affects the convergence of GA. @ggioni was therefore run for a
variety of different values of crossover fraction ranged from 0O to 1 istédpesize of 0.05. The crossover fraction of
0.85 led to the lowest CPRESS-max value (see Figure 5). Thus, this value was &mtdpiedest of this study. In
the first optimization problem, knee flexion angle was bounded within nowaditing. The algorithm was
terminated after 75 populations due to stall generation criterion, in which éhegavchange of the objective value
(CPRESS-max) was less than®l@unction tolerance) over 50 populations (stall generations). Figure 6a st®ws th
mean and the best CPRESS-max values associated with each population. Aftesflducoagergence of the
algorithm, TDNN-GA achieved the lowest CPRESS-max value of 25.58 MPa for the begiuadiof the last

population.



1C

201 Using curve fitting technique typical normal gait cycle was adjusted to the obtained optimum kinematic
202 features and the optimized gait pattern was reconstructed (Figure 7). Th&zegbtkimematics laid within the
203 experimental gait patterns suggesting that it would be feasible for the sobgsetcute the optimized pattern. Using
204  multi-body dynamic analysis, the corresponding joint loadings were computed and comphrédewspan of
205 experimental values (Figure 8). Results show that lower extremity joints (&nide and hip) underwent realistic
206 loading conditions.e. within and with similar pattern to the experimental gait trials. Paatiguhip joint loading
207 was generally low in the anterior-posterior direction. A general reductithe @nterior-posterior component of knee
208 joint loading and significant reduction at its medial-lateral component arouneb@®9wof the gait cycle occurred
209 Moreover, the medial-lateral component of ankle joint loading was significdettyeased accompanied with a
210 reduction at its anterior-posterior component around 40%-60% of the gait &igure 9 shows the resultant
211 distribution of the maximum contact presswaethe medial tibiofemoral joint over the entire gait cycle. The
212 maximum contact pressure was reduced by 21.8% compared to the normal walkingreviidesly published gait

213 modifications were fairly ineffective to decrease the contact pressure magnitudes.

214 In the second optimization problem, dnd X, were modified and the knee joint flexion was bounded
215 between normal and medial thrust patterns. G# achieved the convergence value of 24.61 MPa affer
216 populations (Figure 6b). Reconstructed gait kinematics and the resultantopmiliig patterns are presented in
217 Figures 7 and 8 respectively. Results demonstrate that the second optimizedeagaitaped laid within the span of
218 executable gait patterns. The second optimized gait modification led to aicsiginifeduction at the three
219 dimensional hip joint loading (anterior-posterior, proximal-distal and mediakla@mound 0-25% of the gait cycle
220 This pattern also led to an overall reduction at anterior-posterior compondrg &hée joint loading. Anterior-
221 posterior and medial-lateral components of the ankle joint loading were substdoniiadity0-25% of the gait cycle,
222  however ankle joint loading was slightly increased around 40%-60% of the gait Byatemparison, the second
223 optimization problem yieled to a more effective gait modification pattern that better reduced the magnittite of

224  contact pressure by up 25% (Figure 9).

225 4. Discussion

226 4.1. Hybrid neural network-genetic algorithm

227 Neural network was employed: first, to model the highly nonlinear refdtiprbetween gait kinematics and
228 contact pressure; second, to serve as a real-time cost function that allmvegtimization algorithnto be

229 performed in a reasonable computation time. A recent study by Lu et al. (2018hstiexted that the dynamic
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structure of a time delay neural network was preferred for modellingldigon between tibiofemoral cartilage load
(input) and von Mises stress (outputompared to the traditional static feed forward neural network. Ther#iwre,

structure was used in this study. Moregveeural network has been usedcalculate joint loading from ground

reaction forces and gait kinematics (Ardestani et al., 013, Ardestani2@X4) and ground reaction force from gait

kinematics| (Oh et al., 20|I|3, Ren et al., 2008). In this study, neural netvagriemployed to calculate the contact

pressure from gait kinematicshd high correlation that was found between the target values and the network
predictions for validation and test subsets reassures the reliability ofdpespd structure. The TDNN in turn
necessitated involving the GA as the optimization technique. In fact, othacalaggimization approaches mainly

rely on iterative derivation of an explicit cost function however TDNN modelled the protdarxplicitly.

4, 2. Current research contribution

There are a number of implications on the gait modification and optimization both in terms of methodology an
findings. Major limitations of the previous studies were addressed in the present researcltofipsted to
previous studies in whicliterative “trial-anderror” MBD analysis has been usedhis study presented a cost-
effective computational alternative. TDNN provided a real-time cost function for the GA that could rapidly evaluate
the contact pressure associated with each potential gait pattern. Mof@avsra stochastic direct search method in
which the search data space is modified iteratively. This in turn reduced the computational effort required to find tl
optimized solution. It should be pointed out that although various gait modifications have been developed |

association with knee joint offloading, none of them have yet been accepted as a general modification strategy.

fact, due to the large inter-patient variability, reported in gait kinematics and joint loading ;l)atterns(Kutzner et al

2014| Taylor et al., 2004) , gait rehabilitation strategies should be determined patient specifically. Hence, to desig!

gait modification strategyi, it is crucial that the proposed computational matbostieffective and easy to recreate.

Second, unlike the previous studies in which KAM reduction has been the principal goal of gait modification
here, contact pressure was adopted as a more accurate criterion for knee joint offloading. This in turn built mc
confidence in the efficiency of the proposed gait modification. Previous gait modifications were mainly designed t
reduce knee joint moment. Although these modification patterns could decrease knee joint loading, none of the
could decrease contact pressure at the knee joint bearing suvfalséshe proposed gait pattern in this study could

effectively decrease the contact pressure by up to 25% (see Figure 9).

Third, whilst previous studies have debated on the influence of increasing knee flexion, this study coul
address the contribution of knee flexion angle to the knee joint offloading in a systematic manner. Two optimizatiot

were performed: first, knee flexion angle was kept within normal patterns to investigate whether it was possible to
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decrease knee joint loading through adjacent joints effects. Second, knee flexion was allamea-fsignificant
increase. Results showed that in the first optimized gait, contact pressure was reduced by up to 21% whilst kr
flexion was preserved within normal walking. In the second optimized pattern, a more effective pressure reducti

(25%) was achieved with a slight increase in the knee flexion at the cost of considerable increase in the ankle jc

forces at 40-60% of the gait cycle. This observation is consistent with previous gtudies (Fregly et fal., 2007) al

suggests that perhaps the first optimization pattern in which joint reaction forces were within the experimental ran
might be more physiologically feasible. Allowing the knee flexion angle to be more increased led to higher ankl

joint loading and a gradual reduction in the contact area which in turn increased contact pressure.

Overall, hip adduction, ankle flexion, subtalar eversion, pelvis posterior rotation and pelvis medial-latera
rotation were increased during the stance phase for both optimized gait patterns (see Figure 7). However it shoulc
noted that the exact amount of kinematic changes, compared to normal gait, was not reported in this study si
specific gait rehabilitation, designed for a particular subject, may not be equally applicable for other patient

Therefore, the quantitative amount of kinematic variations, compared to normal gait, was not focused in this study.

4. 3. Limitations

There were several limitations in this study: (1) there avksck of clinical investigation on the estimated
kinematics. Nevertheless, from a technical point of view, the predicted kinematic waveforms are expected to
feasible since the TDNN was trained based on executable walking patterns. Once the network learns this dynami
uses this dynamic as the acting function to respond to new sets of inputs. Therefore, it is unlikeivdabbt
generate highly aberrant kinematics. Regardless, further investigations are required to test whether the predic
kinematicsis feasible to implement for compensatory or unexpected effects on the other joints or the contra-later
limb; (2) rigid body constraints were applied to both the femoral and tibia components. Halloran et al.(2005) show:
that rigid body analysis of the tibiofemoral knee implant can calculate contact pressure in an acceptable consiste
with a full deformable model whilst rigid body analysis would be much more time-efficient. Therefore, in order tc
produce the training data base, required to train the neural network, rigid body constraints were applied. This v
consistent with the present multi-body dynamic analysis in which no detailed modelling on the knee implant we

included; (3) a typical knee implant was adopted in the present study. Although this implant has been widely usec

literature| (Clayton et al., 20006, Dalury et al., ZH)OS, Ranawat et al.||2004, Willing and Kim, 2011) , its dimension

were different from the original knee prosthesis by which the subject was implanted. In fact, the subject we

implanted with a custom-made sensor-based prosthesis which was specifically produced to measure in vivo ki

joint loading(Fregly et al|, 2012). Accordingly, in this study , a typical commercial knee implant was preferred to tes

the
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efficiency of the proposed knee rehabilitation patterns. Nevertheless, the proposed methodolodyestmiady

applicable to other implant geometries and (4) the knee joint was modelled with only one DOF (flexion-extension
Although six DOFs are possible for the knee joint, the dominant movement of the knee joint takes place in tt

sagittal plane and knee joint has been mostly simplified as a hinge joint, especially for the knee rehabilitation desi

purposeg (Ackermann and van den Bogert, 010, Anderson and Panﬂy, 2001, Fregly et al., 2007).

5. Conclusion

A time-delay neural network was embeddedaigenetic algorithm to predict a gait pattern that would

minimize the contact pressure at the knee joint bearing surfaces. The proposed algorithm suggested an optimum

pattern in which hip adduction, ankle flexion, subtalar eversigelvis posterior rotation and pelvis medial-lateral

rotation were slightly increased during the stance pt@smpared to the available gait rehabilitations, the proposed

gait pattern could decrease the knee contact pressure by up to 25%. Compared to the conventional MBD-ba
frameworkin gait rehabilitation design, the present methodology facilitated a more practical and reliable desig
procedure at a lower computational cost :(1) instead of using knee adduction moment, contact pressure v
considered as a more accurate criterion which led to a more efficient gait modification, (2) using the time-delz
neural network, the proposed computational framework was considerably faster and time-efficient. Th
computational framework therefore can be easily repeated for any given subject. Moreover, (3) the conflicting effe
of the knee flexion was addressed through two systematic optimization frameworks: (i) knee joint may be offloade
without any changes in the knee flexion angle (ii) a slight increase in the knee flexion angle might better redu
contact pressure but at the cost of ankle joint over loading and (iii) large increase in the knee flexion angle reduc

the contact area and yielded to an increase in the contact pressure.

Various future direction from this study can be considered: (1) on the methodological level, more rigorou
tribological metrics (e.g. wear), constraints (e.g. energy expenditure) or gait balance requirements can be incluc
into the computational framework to enhance the predications; (2) on the validation level, further clinical studies a
required to validate the finding of such studies; (3) on a wider application level, the proposed methodology in th
study has wider implications in design and development of rehabilitation protocols for broader numbers of subjec

and other joints such as hip and ankle.
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Table 1

Table 1 Description of gait kinematic features

Joint Kinematic feature Description

Hip H1 Hip flexion at initial contact

Hip H2 Maximum hip extensioat stance

Hip H3 Maximum hip flexion at swing phase

Hip H4 Hip abduction at initial contact

Hip H5 Maximum hip adductiomat midstance phase
Hip H6 Maximum hip adduction at stance phase

Hip H7 Hip external rotation at initial contact

Hip H8 Maximum hip internal rotation at swing phase
Knee K1 Knee flexion at initial contact

Knee K2 Maximum knee flexion at stance

Knee K3 Maximum knee extension at stance

Knee K4 Maximum knee flexion at swing phase

Ankle Al Ankle flexion at initial contact

Ankle A2 Maximum ankle dorsiflexion at midstance
Ankle A3 Maximum ankle dorsiflexion at stance

Ankle A4 Maximum ankle plantar flexion at swing phase
Subtalar S1 Subtalar inversion at initial contact

Subtalar S2 Maximum subtalar eversion at stance
Subtalar S3 Maximum subtalar inversion at stance
Subtalar S4 Maximum subtalar eversion at swing

Pelvis PP1 Maximum posterior tilt of pelvis

Pelvis PP2 Maximum anterior tilt of the pelvis

Pelvis PP3 Maximum lateral obliquity of the pelvis

Pelvis PP4 Maximum medial obliquity of the pelvis

Pelvis PP5 Pelvis vertical position at initial contact

Pelvis PP6 Maximum pelvis upward position at stance
Pelvis PP7 Maximum pelvis downward position at stance
Pelvis PP8 Maximum pelvis upward position at swing
Pelvis PR1 Pelvis anterior rotation at initial contact

Pelvis PR2 Maximum pelvis posterior rotation at stance
Pelvis PR3 Maximum pelvisposterior rotation at swing
Pelvis PR4 Pelvis medial rotation at initial contact

Pelvis PR5 Maximum pelvis lateral rotation at stance
Pelvis PR6 Maximum pelvis medial rotation at stance
Pelvis PR7 Maximum pelvis lateral rotation at swing
Pelvis PR8 Pelvis axial rotation at initial contact

Pelvis PR9 Maximum pelvis axial rotation to the left at stance
Pelvis PR10 Minimum pelvis axial rotation to the right at stance

Pelvis PR11 Maximum pelvis axial rotation to the left at swing




Table 2

Table 2 Genetic algorithm settings in MATLAB

Genetic algorithm parameter Value
Population size 50
Scaling function Rank
Selection function Tournament
Elite count 2
Crossover fraction 0.85
Crossover function Single point

Mutation function

Maximum number of generations

Adaptive feasible

100
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Figure 1 (a) Experimental gait measurements were imported into multidyodynics analysis to calculate joint kinematics/kinetics which were
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the periodicity of the gait, joint angle values at the end ofj#titecycle (gray points) were equal to the initial values at 0% afdfieycle

except for pelvis anterior-posterior position.



Figure 2

2 2

Figure 2 A schematic diagram of a four-layer TDNN used in this sttty network calculated the maximum

values of contact pressure (output) based on gait features (inputs).
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Figure 8
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Figure 8 Resultant joint contact forces of the first optimized gaitrpatidack line) and the second optimized pattern (pink line) laiinvihe

extent of experimental gait trials (gray span).
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Figure 9 The resultant maximum values of contact pressures for thrézeptgait patterns versus contact pressures obtained from normal gait

and other previously published gait modifications.
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