Automated serviceability prediction of NSM strengthened structure
using a fuzzy logic expert system
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This paper presents a simplified model using a fuzzy logic approach for predicting the serviceability of
reinforced concrete (RC) beams strengthened with near surface mounted (NSM) reinforcement. Existing
analytical models lack proper formulations for the prediction of deflection and crack width in NSM
strengthened beams. These existing models are based on the externally bonded reinforcement (EBR)
technique with fiber reinforced polymer (FRP) laminates, which presents certain limitations for applica-
tion in predicting the behavior of NSM strengthened beams. In this study seven NSM strengthened RC
beams were statically tested under four point bending load. The test variables were strengthening mate-
rial (steel or CFRP) and bond length (1600, 1800 or 1900 mm). For fuzzification, load and bonded length
were used as input parameters and the output parameters were deflection and crack width for steel bar
and CFRP bar. Experimentally NSM steel strengthened beams showed better performance in terms of
crack width and stiffness, although NSM FRP strengthened beams exhibited enhanced strength
increment. For all parameters, the relative error of the predicted values was found to be within the
acceptable limit (5%) and the goodness of fit of the predicted values was found to be close to 1.0. Hence,

the developed prediction system can be said to have performed satisfactorily.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Structural strengthening has become an important area of
research as many existing structures underperform and require
rehabilitation to meet current standards and service conditions.
The near surface mounted (NSM) reinforcement technique has
become a popular strengthening method due to its superior ability
to increase flexural and shear strength, and to delay or avoid pre-
mature debonding failure in comparison to the externally bonded
reinforcement (EBR) technique. In the NSM technique, fiber rein-
forced polymer (FRP) strips or steel rods are inserted into pre-sawn
grooves in the concrete cover and bonded therein with epoxy
adhesive.

Serviceability refers to the satisfactory performance of a struc-
ture under normal service load conditions based on the occupancy
type. Deflection and cracking behavior are the most important
parameters when considering the serviceability of a structure.
The serviceability of a structure is significantly influenced by
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structural strengthening. FRP strengthening materials possess
lower modulus’ and linear stress-strain diagrams which
significantly influence deflection and crack width patterns. Cur-
rently, there is limited information on serviceability issues of
NSM strengthened structures compared to EBR strengthened
structures.

ACI 318-99 (1999) recommended Branson's (Branson & Metz,
1963) semi-empirical cubic equation for effective moment of iner-
tia to compute immediate or short-term deflection. However, this
equation is based on the behavior of RC beams reinforced with
steel. Researchers have found that the effective moment of inertia
for FRP reinforced beam is overestimated with this equation. ACI
440 (2006) modified this expression to make it applicable to FRP
reinforced beams, although they explicitly state that further
modification of the bond dependent coefficient in the equation
is needed. Several authors (Benmokrane, 1996; Brown &
Bartholomew, 1996; Masmoudi, Theriault, & Benmokrane, 1998;
Pecce, Manfredi, & Cosenza, 2000; Toutanji & Saafi, 2000) have
proposed modifications of this bond dependent coefficient, while
others (Bischoff, 2005; Faza & Ganga Rao, 1992; Smith & Kim,
2011) have proposed a modified equivalent moment of inertia
derived from curvatures. ACI 440 (2006) and the Canadian



standard (CSA, 2002) have acknowledged these approaches.
El-Mihilmy and Tedesco (2000) and Charkas, Rasheed, and
Melhem (2003) have proposed a post yielding deflection model
for FRP based EBR strengthened RC beams where the load-deflec-
tion curve is divided into three distinct linear stages, pre-cracking,
cracking and post yielding. More recently, Visintin, Oehlers,
Muhamad, and Wu (2013) have proposed a closed form solution
based on the partial-interaction moment-rotation approach which
can estimate all load levels from serviceability through to total col-
lapse of a EBR strengthened RC beam.

The cracking behavior of FRP based EBR strengthened structures
is quite unlike RC structures with steel due to the tension stiffening
effects which develop at the steel-concrete and the FRP-concrete
interface. As a result, crack widths and spacing become smaller
compared to unstrengthened elements with the same service load-
ing or same tension level in the steel (Ceroni & Pecce, 2007, 2009).
Currently the Italian guideline (CNR, 2006) recommends 0.5 mm as
the allowable crack width for FRP reinforced members. This guide-
line also provides equations to measure characteristics of crack
widths.

The assessment of deflection and crack width is required in
order to meet the serviceability requirements. At the moment, a
complete theoretical model for the deflection behavior of NSM
strengthened RC structures is scarce. Finite Element Modeling
(FEM) may provide a possible solution, although this method is
quite expensive in terms of computational aspects, especially for
geometrically complicated forms. The present crack width formu-
lations do not allow for the prediction of crack width at each load-
ing step in controlled laboratory conditions or even for actual field
crack size. Therefore, there is a need for a simple and rapid, yet
reliable and accurate alternative method to predict the serviceabil-
ity of NSM strengthened structures. At present, various artificial
intelligence techniques, such as Artificial Neural Networks (ANN)
and Genetic Algorithms (GA), have been used in various FRP
strengthened RC structures (Cevik, 2011; Nehdi, Chabib, & Said,
2006). However, these techniques require extensive experimental
results to optimize parameters, which is a challenging, labor inten-
sive and time consuming process (Bashir & Ashour, 2012; Kara,
2011). Conversely, the Fuzzy Logic Expert System (FLES) offers an
effective solution as it depends on expert knowledge (Kim, Kim,
& Shin, 2014; Liu, Han, & Lu, 2013; Nasir, Lim, Nahavandi, &
Creighton, 2014), It uses expert appraisals as well as a logical sys-
tem closer to human reasoning rather than extensive experimental
results. Cevik (2011) applied several soft computing techniques,
such as neuro-fuzzy, genetic programming, stepwise regression
and neural network to model the influence of FRP on confined con-
crete cylinders. The model was based on collected experimental
data from open literature, which showed superior accuracy. Their
formulation also conforms to the existing 10 models. Zheng, Li,
and Wang (2011) predicted the delamination size and location of
glass/epoxy laminate beams using a combination of fuzzy logic
theory, neural networks and genetic algorithms. Modal frequencies
were obtained from finite element analysis and the parameters
were fed in this genetic fuzzy hybrid learning algorithm. The model
demonstrated robust and promising applications in the structural
health monitoring system. Nasrollahzadeh and Basiri (2014) devel-
oped a model to predict the shear strength of FRP reinforced RC
structures using the Fuzzy Inference System (FIS). The study sam-
ples were 197 RC beams and slabs for which they utilized the sub-
tractive clustering approach for partitioning the numerical data.
The output of their model was only compared with the shear
design guidelines (e.g., ACl and CAN/CSA). However, no work was
found in the literature concerning flexural strengthened NSM-RC
beams using FLES. Therefore, this study proposes an innovative
approach based on FLES to predict the serviceability of RC

structures flexurally strengthened with NSM reinforcement. This
study consists of two approaches:

(1) The experimental method: Seven full sized RC beams were
strengthened with CFRP and steel using the NSM technique.
The beams were tested under four point bending load condi-
tions. The deflection and crack width of steel and CFRP
strengthened RC beams were measured with variable
bonded lengths.

(2) The intelligent method: The study comprises deflection and
crack width as the output parameters while applied force
and bonded lengths are the input parameters for FLES. This
system uses expert logic using IF-THEN rules, which con-
nects the input and output variables with linguistic
concepts.

The goal of the study was to determine the viability of using the
FLES approach to achieve an accurate yet rapid prediction model
for the deflection and crack width of NSM strengthened RC beams.
It was expected that this approach would allow the predicted val-
ues to be obtained within a short period of time, which, in turn,
would make it possible for a large number of alternative strength-
ening configurations to be evaluated, and thus beam specifications
could be easily optimized for future use. The importance of the
FLES approach is that it is possible to make flexural strengthened
NSM-RC beam application, more viable and thus more attractive
to potential users, such as design engineers and the Expert Systems
with Applications (ESWA) community, etc.

2. Experimental methodology

2.1. Test matrix

Various parameters affect the flexural behavior of NSM
strengthened beams. This study concentrates on the effect of
length variation (1600, 1800 and 1900 mm) and the type of
strengthening material (steel and CFRP bar) applied in strengthen-
ing the RC beams. A total of seven RC beam specimens were tested
under static loading conditions in four point bending until failure.
The specimens were divided into two main groups based on differ-
ent strengthening material (CFRP and steel bar) and within the
groups bond length was also varied. The test matrix is presented
below in Table 1.

2.2. Materials

Ready mixed concrete was used for the construction of the RC
beam specimens. Crushed stone, 20 mm in diameter, was used as
coarse aggregate and natural river sand was used as fine aggregate.
The concrete cube compressive strength at 28 days was 43.24 MPa
and cylinder strength was 35.63 MPa. Flexural strength was found
to be 5.01 MPa. Compressive and flexural strengths of the concrete
were determined according to BS EN (2009a), ASTM (2014) and BS
EN (2009b). The dimensions of the cube, cylinder and prism were
100 x 100 x 100 mm, 200 x 100 mm diameter and 500 x 100 x
100 mm, respectively.

Deformed steel bars, 12 mm in diameter, were used for internal
longitudinal reinforcement in the beams. The deformed bars were
tested fortensile strength in the laboratory to confirm the mechanical
properties supplied by the manufacturer. The yield stress and modu-
lus of elasticity were found to be 400 MPa and 200 GPa respectively.
8 mm steel bars with yield stress of 380 MPa and modulus of elastic-
ity of 200 GPa were used as shear reinforcement. 12 mm deformed
steel bars with yield stress and modulus of elasticity of 520 MPa
and 200 GPa respectively, were used for NSM strengthening.



Table 1

Test matrix.

SI. No. Notation Description Groove size (mm) Total bonded length of strengthened bars 2L (mm)
1 CB Control RC beam (unstrengthened) - -

2 NI1.6F NSM strengthened RC beam with 12 mm CFRP bar 2dp = 2dp 1600

3 N1.65 NSM strengthened RC beam with 12 mm steel bar 1600

4 N1.8F NSM strengthened RC beam with 12 mm CFRP bar 1800

5 N1.85 NSM strengthened RC beam with 12 mm steel bar 1800

6 N1.9F NSM strengthened RC beam with 12 mm CFRP bar 1900

7 N1.85 NSM strengthened RC beam with 12 mm steel bar 1800

dp= Diameter of NSM bar (mm).

Carbon-epoxy pultruded FRP (CFRP) bars 12 mm in diameter
with a density of 1.65 g/mm? were also used for NSM strengthen-
ing in this study. These CFRP bars demonstrated linear elastic
behavior up to failure. According to manufacturer's product result
(LAMACO Inc.), the ultimate strength of the bars was found to be
2400 MPa and the modulus of elasticity was 165 GPa. The surface
of the CFRP bars were sand-coated to enhance bond performance.

An epoxy adhesive, Sikadur® 30, was used to bond the NSM
reinforcements to the concrete substrate for superior bond
strength. The adhesive is composed of two components, a resin
and a hardener, which were blended together in a ratio of 3:1 until
an even gray color was attained. According to the manufacturer’s
results, the density was 1.65 kg/liter at 23 °C. The bond strength
with steel was 21 MPa according to DIN EN 24624 and with
concrete was 4 MPa. The compressive, tensile and shear strengths
of this adhesive were 85-95MPa, 26-31 MPa and 16-19 MPa
respectively at 7 days curing time and at 35°C temperature
(Sikadur®-30, 2014).

2.3. Procedure and beam preparation

The beams were 2.3 m long with effective spans of 2 m and
rectangular cross-sections with dimension of 125 x 250 mm. The
beams were cast in the laboratory using ready mix concrete with

the specifications given above. The tension reinforcements
consisted of two 12 mm diameter ribbed bars with a ninety degree
bend at both ends. Two 10 mm diameter ribbed bars were used in
the compression zone as hanger bars and were run along the zones
where the flexure moment is not constant. The shear reinforce-
ments were made with 8 mm diameter ribbed steel bars spaced
90mm apart. The beams were designed as under reinforced
(p = As/by=0.0085) beams to initiate failure in flexure in accor-
dance with the ACI code. Fig. 1 displays the details of the beam
configuration.

2.4. Strengthening Procedure

All the strengthened beam specimens had a single groove
(24 x 24 mm) cut along the beam length to accommodate a
12 mm diameter steel or CFRP bar. A special concrete saw with a
diamond blade was used to create the grooves in the longitudinal
direction on the tension side of the RC beam. A hammer and hand
chisel were used to remove any remaining concrete lugs in the
groove and to create a rough surface inside the groove. Debris
and fine particles were also removed from the groove using an
air brush. These steps were done to ensure appropriate bonding
between the epoxy adhesive and the concrete. The groove was
filled with epoxy adhesive to around 2/3 of the groove depth.
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Fig. 1. Specimen design details.
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Fig. 2. Instrumentation and loading setup.

The CFRP or steel bar was gently inserted into the groove and
pressed lightly to ensure the epoxy covered the bar. The remaining
space in the groove was filled with epoxy and the surface levelled.
This arrangement was left for one week in order to allow the epoxy
to achieve full strength.

2.5. Test setup and instrumentation

A closed-loop Instron universal testing machine of 500 kN
capacity was used to apply four point loading on the prepared
specimens. The machine was operated under load control mode
with a loading rate of 5 kN/min up to yielding of the internal rein-
forcement of the RC beam specimens. After yielding, displacement
control was applied up to failure with a rate of 1.8 mm/min.

The instrumentation of the beams is shown in Fig. 2. Three ver-
tical Linear Variable Differential Transducers (LVDT) was affixed at
the center, 250 mm from the center (under the spreader beam load
point) and 500 mm from the center of the RC beam to measure the
deflection at these different points. Strain gauges 5 mm in length
were attached to the center of both the internal steel reinforce-
ments and the NSM rods to measure tensile strains. Another
5 mm strain gauge was put 200 mm away from the cutoff point
on the NSM bars. 30 mm strain gauges were placed on the top sur-
face of the RC beam to measure concrete compressive strains.
Demec disks were planted at the midspan of the beams along the
depth to measure transverse strains. A Dino-Lite digital microscope
was used to measure micro cracks on the surface of the beams.

3. Prediction model design

3.1. Serviceability recommendations from existing codes and
guidelines

In early RC designing serviceability issues were dealt with indi-
rectly. However, serviceability is now considered a major issue in
designing a structure. Among the two limit states (strength and
serviceability), the serviceability limit state refers to the perfor-
mance of structures under normal service loads and is concerned
with the uses and/or occupancy of structures. Serviceability is
measured by considering the magnitudes of deflections, cracks,
and vibrations of structures. In general, ACI 318-05 provisions for
deflection control are concerned with deflections that occur at

service levels under immediate and sustained static loads. The
present study only concentrates on short term or immediate
deflection.

3.1.1. Deflection Measurement

The empirically calibrated Branson's equation represents the
transition from uncracked gross moment of inertia (Ig) to the
transformed moment of inertia (I5). ACI 318-99 (1999) adopted
this Eq. (1) for effective moment of inertia (I.) to estimate the
immediate deflection of steel reinforced RC beams.

3
L= Lo+ (L) () )

Here, M, is the service moment and M,, is the cracking moment.
However, researchers have found that this Eq. (1) overestimates
the I. of a FRP reinforced beam due to the linear elastic behavior
of FRP material. Gao, Benmokrane, and Masmoudi (1998) proposed
a modified version of Branson's equation (2) for FRP reinforced
beams.

3
L= Ip + (Pl — “)( ) (2)
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Here, oy, is a bond dependent coefficient and ACI recommends its
value be 0.5 for all FRP bar types until a more precise value is deter-
mined from further research.

The Italian guideline (CNR, 2006) has suggested that the curva-
ture diagram of the FRP reinforced member be integrated following
the proposed Eurocode 2 model. Non-linear analysis can be used to
consider this diagram by considering both the tension stiffening
and cracking of the concrete. The deflection f can be calculated

using the following Eq. (3).

Mo \™ Mo \™

F=Fipifa (Mm‘u) +f3 [1 — BB (Mm) ] (3)
where, f; = deflection of the uncracked section; f; = deflection of the
transformed cracked section; f§; = 0.5, which is the value of FRP bar
bond properties; fi, = coefficient used for the duration of loading
(1 for short term and 0.5 for long term or cyclic loading);




Mpnac=maximum moment; Mg = cracking moment; and m=a
coefficient equal to 2.

To avoid inelastic deformations of RC members with non-
prestressed external FRP reinforcement, the existing internal steel
reinforcement should be prevented from yielding under service
load levels, especially for members subjected to cyclic loads. For
this reason, ACI has set two Eqs. (4) and (5) for the stress in steel
and concrete under service loading (ACl 440.2R-08, 2008). They
are as follows.

Jrs.s < Osofy (4)
fes < 045f, (5)

The stress level in the steel reinforcement can be calculated
based on a cracked-section analysis of the FRP-strengthened
reinforced concrete section (Fig. 3), as indicated in the following
Eq. (6):

[M; + CbEA_(Ef (df - %J] (d — kd)E;

Lss T AE(d ) (d — kd) + A (d; — %) (d; — kd)

(6)

Here, M; is equal to the moment due to all sustained loads (dead
loads and the sustained portion of the live load) plus the maximum
moment induced in a fatigue loading cycle. Under service loading
conditions, within the elastic response range of the member, the
FRP stress level can be computed using the following Eq. (7).

ErN\ df — kd
Jrs=fs (E_J;) m— eniEy (7)

3.1.2. Crack width

According to ACI, allowable crack width in FRP reinforced struc-
tures is wider than in steel reinforced concrete beams as FRP is a
corrosion resistant material. The well-known Gergely and Lutz
(1973) crack width equation is mainly used for steel reinforced
structures and requires modification when applied to FRP rein-
forced members (Gao et al., 1998). The original Gergely-Lutz equa-
tion (8) with SI units is as follows.

w = 00113 ,f,/dA (8)

Here, the crack width w is expressed in mm. Wang and Salmon
(1992) pointed out the fact that instead of stress in the tensile rein-
forcement, strain is the guiding factor that varies proportionately
with crack width. Based on this concept, the Gergely-Lutz equation
has been modified by replacing the steel strain &; with the FRP
strain, & :%’;. A bond quality coefficient k; is also introduced to
Egs. (9) and (10), which becomes as follows.

— b —
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Here, k, <1 (when FRP bond behavior is superior to steel); k;, =1
(when FRP bond behavior is similar to steel); k; > 1 (when FRP bond
behavior is inferior to steel); Er=modulus of elasticity of FRP
(MPa); i, = ratio of the distance between the neutral axis and the
tension face to the distance between the neutral axis and the cen-
troid of reinforcement; f;= stress level in FRP (MPa); d. = thickness
of cover from the tension face to the center of the closest bar
(mm); A=the effective tension area of concrete around the main
reinforcement divided by the number of bars (mm?). The ACI com-
mittee recommends a value of 1.2 for deformed FRP bars, if K, is
unknown. Eurocode 2 (EC2-04, 2004) has proposed an expression
for calculating the characteristic value of crack width. Eq. (11) is
as follows.

Wi{—sr.max(asm _Ecm) (llj

fr=M; (10

Maximum crack spacing can be calculated from the following
Eq. (12),

Srmax = 3.4C + 0425 klkzg (12)
The difference between the mean steel and the concrete strain
between cracks can be calculated using Eq. (13),

. Ts femBeer | fem
’“‘”"E’kf[ EA. +Em] (13)

where, k; = factor of load duration; AEE!!= effective area of concrete
in tension; k; = bond coefficient; k; = type of loading; = diameter of
bar; us=ratio of the internal steel reinforcement to the effective
area of concrete in tension. In the updated Eurocode 2, the bond
relationship is present only in the crack spacing formulation, in a
simplified way by the coefficient k,, while in the tension stiffening
term (e, — £4n) the concrete tensile strength appears and the sur-
face type of bars is neglected (Ceroni & Pecce, 2009).

Esm

3.2. Fuzzy inference system

The basic configuration of a fuzzy logic expert system (FLES)
comprises of four principal components (Passino, Yurkovich, &
Reinfrank, 1998). They are:

(1) Fuzzification - which takes crisp numeric inputs and
converts them into the fuzzy form needed by the decision-
making logic. The first task in fuzzification interfaces is the
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Fig. 3. Elastic strain and

stress distribution.



selection of input and output variables. After that all input
and output numeric variables have to be defined in linguistic
terms such as low, medium, high and so on. Subsequently,
membership functions for all input and output variables
have to be formed. The central concept of fuzzy set theory
is membership functions, which represent numerically to
what degree an element belongs to a set. A membership
function is typical a curve that converts the crisp numerical
value of input variable into the fuzzy number within a range
from O to 1, representing the belongingness of the input to a
fuzzy set. There are different forms of membership functions
such as triangle, trapezoid, and Gaussian functions. The
selection of membership functions and their formations is
based on system knowledge, expert’s appraisals, and exper-
imental conditions.

Rule base — which holds a set of if-then rules that quantify
the knowledge that human experts have amassed about
solving a specific problem. Moreover, fuzzy rules are the
heart of the fuzzy expert system which determines the
relationship between input and output of the model. This
performs as a source to the decision making logic. Moreover,
it consists of a data base and a rule base. In the fuzzy knowl-
edge base system, knowledge is represented by if-then rules.
Fuzzy rules consist of two parts: an antecedent part stating
conditions on the input variables and a consequent part
describing the corresponding values of output variables.
For instance, in the case of three inputs P, Q, and R, and
one output Z, which have the linguistic variables of very
low, medium, and low medium for P, Q and R respectively
and medium for Z, then development of fuzzy inference
rules can be demonstrated as follows:

IfP is very low and Q is medium, and R is low medium then Z
is medium.

Inference — which creates the control actions according to
the information provided by the fuzzification module and

by applying knowledge. It plays a central role in a fuzzy logic
model due to its ability to create human decision making
and deduce fuzzy control actions as per the information pro-
vided by the fuzzification module by applying knowledge
about how to control best the process. Three types of fuzzy
inference systems (FIS) have been widely employed in vari-
ous applications: Mamdani, Sugeno and Tsukamoto fuzzy
models (Cevik, 2011). The differences between these three
fuzzy inference systems are due to the consequences of their
fuzzy rules, and thus their aggregation and defuzzification

procedures differ accordingly (Jang, Sun, & Mizutani, 1997).
The Mamdani-type FIS uses the technique of defuzzification
of a fuzzy output and has output membership functions
(Mamdani & Assilian, 1975). This FIS is widely accepted for
capturing expert knowledge (Kaur & Kaur, 2012). The Mam-
dani-type FIS describes the expertise in more intuitive, and
more human like manner. Most commonly, the Mamdani
max-min fuzzy inference mechanism is used because it
ensures a linear interpolation of the output between the
rules.

For instance, in case of tree-inputs and single-output fuzzy
inference system, it can be shown (Fig. 4) as below.

where applied load (F) and rod length (L) are in input side
and deflection for steel bar strengthened beams (DS), crack
width for steel bar strengthened beams (WS), deflection for
CFRP bar strengthened beams (DF) and crack width for CFRP
bar strengthened beams (WF) are on output side.

(4) Defuzzification - which calculates the actual output, i.e. con-
verts fuzzy output into a precise numerical value (crisp
value). The conversion of a fuzzy set to a single crisp output
on which action can be taken is called defuzzification. The
defuzzification interface combines the conclusions reached
by the decision-making logic and converts the fuzzy output
into a precise crisp numeric value. There are several meth-
ods of defuzzification, such as centroid, center of sum, mean
of maxima and left-right maxima. Most commonly, the cen-
ter of gravity (centroid) defuzzification method is used, since
this operator assures a linear interpolation of the output
between the rules.

3.3. Implementation of fuzzy logic

In the FLES model created for this study there are two input
parameters, applied load (F) and rod length (L). From the labora-
tory investigation it has been experienced that these two parame-
ters could significantly influence four output parameters:
deflection for steel bar strengthened beams (DS), crack width for
steel bar strengthened beams (WS), deflection for CFRP bar
strengthened beams (DF) and crack width for CFRP bar strength-
ened beams (WF) (Table 2). Actually, the input parameters of F
and L might be less or more in simulating the intensity and magni-
tude of load and rod length. The load varied within the range from
0 to 100 kN and the rod length varied between 1600 and 1800 mm.
In this instance, eleven linguistic variables for Load (F) and four lin-
guistic variables for Length (L) were considered. For fuzzification,
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Fig. 4. Fuzzy inference mechanisms.



Table 2
Fuzzy inference rules.

Rule No. Input variables Output variables

F L Ds Wws DF WF
1 VVL VL L1 L1 L1 L1
7 VL M L2 L1 L2 L1
12 L H L2 2 13 3
18 M L L4 L7 L5 L8
25 VHM v 16 ) Lo L1z
36 H H L7 3 L9 L10
14 wWH H 19 18 Lo L

the input variable F was given eleven possible linguistic variables,
namely very very low (VVL), very low (VL), low (L), High low (HL),
low medium (LM), medium (M), high medium (HM), medium high
(MH), high (H), very high (VH), and very very high (VVH), and for
input variable L four linguistic variables were used, very low
(VL), low (L), medium (M), and high (H). The linguistic variables
used for the output variables were levels 1 to 12 for DS and DF,
and levels 1 to 16 for WS and WF, respectively. If more input vari-
ables were considered the fuzzy inference rules would become
more complex and vice versa. Therefore, the number of input vari-
ables were reasonable to achieve suitable output from the pro-
posed model. A Mamdani max-min inference approach and the
center of gravity defuzzification method were applied as these
operators assure a linear interpolation of the output between the
rules (Hossain, Rahman, & Mohiuddin, 2012). Fig. 4 displays the
fuzzy inference system in the case of two inputs and four outputs.
The units of the input and output variables are kN for F and mm for
L, DS, WS, DF and WF. A total of 44 fuzzy inference rules were
formed based on expert knowledge and past experience. Some of
the rules are shown in Table 2. An example is illustrated here con-
cerning how the values of the last four columns of fuzzy inference
rules (Table 2) are determined.

Rule 1: If applied force (F) is very very low (VVL), and rod length
(L) is very low (VL) then deflection for steel bar strengthened
beams (DS) is level 1 (L1), crack width for steel bar strengthened
beams (WS) is level 1 (L1), deflection for CFRP bar strengthened
beams (DF) is level 1 (L1), and crack width for CFRP bar strength-
ened beams (WF) is level 1 (L1).

Rule 36: If applied force (F) is high (H), and rod length (L) is high
(H) then deflection for steel bar strengthened beams (DS) is level 7
(L7), crack width for steel bar strengthened beams (WS) is level 8
(L8), deflection for CFRP bar strengthened beams (DF) is level 9

(L9), and crack width for CFRP bar strengthened beams (WF) is
level 10 (L10).

There is a level of membership for each linguistic word that
applies to an input variable. Fuzzifications of the input variables
were made by using the following Egs. (14)-(19):

, h; 0<i <100
Fln) = {0; otherwise } (14)
. iz; 1600 < i, < 1900
L(is) = 15
(i2) {01 otherwise } (15)
0;; 0<00 <16
DS| = ’ 16
(01) {01 otherwise } (16)
0; 0<0,<064
Wi(oz) = {0: otherwise } (17)
DF(0s) {oj: Ugojs_lﬁ} 18)
(03) = 0. otherwise (
04; 0<04<064
WF = ’ 19
(04) {U; otherwise } (19)

where,is the first input variable load (F), is the second input variable
length (L) and oy, 02, 03 and o4 are the output variables DS, WS, DF
and WF respectively. Prototype triangular fuzzy sets for the fuzzy
variables were set up using MATLAB Fuzzy Toolbox. Among the
many membership functions, triangular, trapezoidal, piecewise lin-
ear and Gaussian are those mostly used. These membership func-
tions are chosen based on the researcher's past experience and
ease of application. Moreover, the triangular membership functions
provide a faster and easier solution, as, in the symmetric condition,
the center of gravity is at the apex of the triangle, which makes
computational calculation easier (Mendel, 1995). The membership
values obtained from the above formulas are shown in Fig. 5 for
two input variables.

To demonstrate the fuzzification process, linguistic expressions
for the triangular membership functions can be described using
following Eq. (20):

0: X=0
Eh. g gx<c
-1t 1T=A=t2
Hiriangie (%, €1,C2,C3) = § 0 : (20)
g 2<hsa
0; Xz

where, x is the input and output variable; ¢y, ¢; and c; are the coef-
ficients of membership functions.

Linguistic expressions and membership functions of load (F)
and length (L) obtained from the developed rules and above for-
mula [Egs. (14) and (15)] for HM and H are presented as follows.

VyL VL Il LM M HM VF}I.‘ MH H VH VWH

v I n ! I
q 20 A 80 a0 100

input variable "F(kN)"

(a) Input variable “F (kN)”

T 1 1 1 T

1650 1700 1750 1800 1850 1900

input variable "L(mm)"

(b) Input variable “L (mm)”

Fig. 5. Membership functions of input variables (a) load - F (kN) and (b) NSM length - L (mm).
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