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Abstract

In this paper we propose a temporal segmentation and a keyframe selection method
for User-Generated Video (UGV). Since UGV is rarely structured in shots and usually
user’s interest are revealed through camera movements, a UGV temporal segmentation
system has been proposed that generates a video partition based on a camera motion
classif cation. Motion-related mid-level features have been suggested to feed a Hierar-
chical Hidden Markov Model (HHMM) that produces a user-meaningful UGV tempo-
ral segmentation. Moreover, a keyframe selection method has been proposed that picks
a keyframe for fxed-content camera motion patterns such as zoom, still, or shake and
a set of keyframes for varying-content franslation patterns.

The proposed video segmentation approach has been compared to a state-of-the-art
algorithm, achieving 8% performance improvement in a segmentation-based evalua-
tion. Furthermore. a complete search-based UGV annotation system has been devel-
oped to assess the inf uence of the proposed algorithms on an end-user task. To that pur-
pose, two UGV datasets have been developed and made available online. Specif cally,
the relevance of the considered camera motion types has been analyzed for these two
datasets, and some guidelines are given to achieve the desired performance-complexity
tradeoff. The keyframe selection algorithm for varying-content franslation patterns has
also been assessed, revealing a notable contribution fo the performance of the global
UGV annotation system. Finally, it has been shown that the UGV segmentation algo-
rithm also produces improved annotation results with respect to a fxed-rate keyframe

selection baseline or a traditional method relying on frame-level visual features.
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1. Introduction

The amount of multimedia content that is generated daily has dramatically grown
during recent years. This is particularly true in the case of User Generated Content
(UGQ), due to the massive access of users to mobile devices with recording capabilities
Cricri et al. (2011). Consequently, algorithms providing automatic content annotation
and content-based search are more and more demanded by both multimedia hosting
services and users.

Although the automatic annotation problem has been traditionally posed as that of
object/concept recognition Smeaton et al. (2006): Everingham et al.: Deng et al. (2009),
this approach has not yet reached a suitable solution due to the large amount of visual
concepts to detect, including not only general visual categories such as car, street, or
chair, but also particular places, people. artworks, and other objects of special interest
for users.

Alternatively. the problem of content annotation can be approached by taking ad-
vantage of valuable user-provided metadata (tags, titles, and descriptions) that are avail-
able through online repositories such as Panoramio®, Flickr? or Picasa®. Such a vast
amount of (noisy) annotated contents opens the possibility of annotating a particular
image or video by propagating tags from visually similar content. This approach has
been referred to as search-based annotation in the literature Wang et al. (2006, 2010,
2012b).

Most successful methods make use of some kind of contextual information to pres-
elect a candidate set of images/videos that show some aspect in common with the query
content. In Soderberg & Kakogianni (2010) a set of tags is suggested by combining

the context in which the photo was captured with prior knowledge about popular anno-
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tation concepts. In Moxley et al. (2008) GPS coordinates are used together with image
features to propose labels that are chosen by considering both geographical distances
and visual similarities. Similarly, in Lee et al. (2011) a Fuzzy ARTMAP network was
used to map images and their visual features to geographic nouns. The main disadvan-
tage of these methods is that they are not applicable to non-geolocated contents, which
has resulted in the creation of mechanisms for automatic geotagging Sevillano et al.
(2012): Schindler et al. (2008).

Although the initial approaches for search-based annotation were restricted to im-
ages. in the last few years some effort has been directed towards video content and, in
particular, towards the development of methods that exploit redundancy among videos.
In Siersdorfer et al. (2009) a system combining video copy detection and tag prop-
agation techniques used redundancy between videos as a key to annotate new ones.
The work in Shang et al. (2010) focused on real-time video retrieval over large-scale
web datasets by developing eff cient spatio-temporal features. In Li et al. (2011a),
the authors proposed a system that relied on user global tags to further analyze the
video content at shot level. The approach in Tang et al. (2013) went beyond and. be-
sides identifying the particular segments associated with a tag, also generated spatio-
temporal segmentations of the object representing the tag. The work in Li et al. (2011a)
was later extended in Wang et al. (2012a) to detect events and automatically generate
video summaries. Finally, Ulges et al. (2008) proposed a system that identif ed rele-
vant frames in a video from its global tags and then used these frames to train concept
detectors.

All the mentioned methods focus on similar aspects of the annotation system such
as the development of robust and eff cient visual search methods for near-duplicate con-
tents, the application of these search methods to the more challenging tasks of video
segment alignment and matching, the design of methods for tag propagation, or the
deployment of systems for large-scale datasets with even billions of images. We have
found. however, that little or no effort has been devoted to study how the video temporal
segmentation and the subsequent keyframe selection affect the video annotation perfor-
mance. In fact, all aforementioned methods employ very basic techniques to select the

frames being analyzed: they run a shot-boundary detector to identify abrupt cuts in



videos and then represent each shot by means of one keyframe, normally sampled at
the middle of the temporal segment.

As we will discuss in the section devoted to related work, although several methods
can be found in the literature proposing smart techniques for video segmentation, all
of them have been assessed just in terms of segmentation quality, thus obviating how
they may inf uence subsequent end-user tasks, such as video content annotation.

In this paper, we present a video segmentation algorithm that analyzes the camera
motion using a Hierarchical Hidden Markov Model (HHMM) and provides a f ne-grain
temporal segmentation of the video content. Moreover, a strategy for keyframe selec-
tion is proposed that considers a camera motion-based model of the interests of the
person who is recording the video. Finally. we embed these subsystems on a com-
plete system for automatic annotation of User Generated Video (UGV) and prove that
our model for video segmentation not only achieves successful segmentation results,
but also contributes to improve the performance of a high-level tasks such as specifc
object/place recognition and search-based video annotation.

Furthermore, as a by-product of our experimental evaluation, two video datasets
for specif ¢ object/place recognition have been developed and made publicly available,
which also becomes an important contribution of our work, and hopefully will help
future developments in the feld.

The rest of the paper is organized as follows. Section 2 introduces related work on
temporal video segmentation and keyframe selection. Section 3 explains in detail the
proposed method for automatic video segmentation and keyframe selection. Section
4 describes the complete system for video annotation. Section 5 is devoted to the
experimental results, assessing both the segmentation performance and its impact on
a higher-level task. Finally, Section 6 summarizes our conclusions and outlines some

future work directions.

2. Related Work

Temporal video segmentation aims to split a video sequence into homogeneous

subsequences, in such a manner that the properties of each subsequence are different



enough from those of its temporal neighbors. When dealing with edited video. most
temporal segmentation techniques rely on shot boundary detection, which entails de-
tecting both abrupt or gradual changes in the video and/or audio signal properties Yuan
et al. (2007), Smeaton et al. (2010).

By contrast, user generated videos are usually continuous recordings taken with
a mobile phone or a digital camcorder, where (frequently) only one shot is present.
Thus, in order to divide UGVs into meaningful semantic units, segmentation must be
performed at sub-shot level. According to the defnition given by Petersohn (2009). a
sub-shot is an unbroken sequence of frames within a shot only having a small variation
in visual content. Some sub-shot detection methods are based on the comparison of
color histograms between video frames Petersohn (2009), Cahuina & Camara Chavez
(2013). However, since the type of camera motion (such as pan, tilt, or zoom) can
be an indicator of the user’s interests in the scene, and therefore of the video content,
recently, several temporal video segmentation techniques have been proposed which
use features derived from the camera motion information. In this sense, Abdollahian
et al. Abdollahian et al. (2010) def ne the so-called camera view as the basic unit of
UGV.

Camera motion-based segmentation approaches involve, as frst stage, the extrac-
tion of a set of features that allow for discriminating among the different types of
camera motion considered. Typically used features include region-based correlation
between consecutive frames Aggarwal et al. (2008), parameters derived from a 2D
aff ne motion model Bouthemy et al. (1999), Mei et al. (2013). motion vectors Abdol-
lahian et al. (2010). or even parameters provided by auxiliary motion-sensors, such as
accelerometers Cricri et al. (2011).

Once the relevant features have been extracted, the temporal segmentation can be
approached in different ways. In some works a simple thresholding method is used
to detect the different camera motions Bouthemy et al. (1999). Luo et al. (2009), Mei
et al. (2013). The main drawback of this method being the diff culty to fnd threshold
values suitable for all kinds of video sequences. On the contrary, supervised machine
learning methods, such as Support Vector Machines (SVM) or hidden Markov models,

do not require any threshold adjustments. A SVM-based segmentation method was



proposed in Abdollahian et al. (2010). where binary SVMs are used to classify the
camera motion of each video frame, and the f nal segmentation is obtained by grouping
together neighboring frames that exhibit the same type of camera motion. HMMs has
been used for shot detection and segmentation due to their ability for modeling time
varying sequences Bae et al. (2004), Zhang et al. (2006). Nevertheless, the complexity
of multimedia data might make HMM not suitable for this kind of tasks. To address this
limitation. more recently, it has been proposed the use of hierarchical hidden Markov
models (HHMM) for the indexing of daily living activities in videos acquired from
wearable cameras Karaman et al. (2011), Karaman et al. (2014).

Following the concept of camera view-based segmentation proposed in Abdol-
lahian et al. (2010) and the use of HHMM for video analysis suggested in Karaman
et al. (2014), in this paper we propose a camera motion-based video segmentation
method for UGC that uses mid-level features derived from the motion vectors and a
hierarchical hidden Markov model that performs the temporal segmentation.

Since the focus of the paper at application level is the annotation of UGV, an op-
timal representation of the video temporal segments that maximizes the tradeoff be-
tween annotation/retrieval performance and computational complexity is also desir-
able. When dealing with video content, the computational eff ciency has been tra-
ditionally achieved by means of a keyframe selection mechanism, in such a manner
that a video temporal segment is represented by one or more keyframes that properly
represent its visual content. Several works can be found in the literature addressing
this problem, from simple approaches selecting one frame per video shot Shang et al.
(2010); Liet al. (2011a): Su et al. (2010), to more advanced techniques extracting sev-
eral keyframes per shot. In general, this problem is known as Video Abstraction and
represents a preprocessing step required in several applications such as video brows-
ing. video summarization, video retrieval, or video event detection. Most methods rely
one low-level visual descriptors to represent frame content, such as color histograms Li
et al. (2011b); Zhang et al. (1997); Ciocca & Schettini (2006), histograms of gradient
orientations Li et al. (2011b), motion features Liu et al. (2003); Chang & Chen (2007):
Li et al. (2009), or even visual attention-based features Peng & Xiaolin (2010). These

features are then used to select the most informative keyframes within each video shot
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Figure 1: Processing pipeline of the proposed UGV Temporal Segmentation and Keyframe Selection

by applying sequential comparisons Zhang et al. (1997, 2003), global comparisons
such as maximum coverage Rong et al. (2004), keyframe correlation Li et al. (2011a)
or graphs Porter et al. (2003); Gao et al. (2009). or clustering methods such as that
proposed in Girgensohn & Boreczky (1999).

In contrast to all these methods, our proposal relies on detected camera motion pat-
terns to select the most informative keyframes in each video segment resulting from
the previous video segmentation stage. From our point of view, these mid-level camera
motion patterns are more meaningful to represent the user’s interests in UGV than the
aforementioned traditional visual features. Hence, our work is more aligned with the
previous proposal in Abdollahian et al. (2010), but besides developing a more robust
approach for temporal video segmentation, we evaluate how video segmentation and
keyframe selection methods contribute to improve the performance of a UGV annota-

tion system.

3. Proposed UGV Temporal Segmentation and Keyframe Selection

In most previous approaches, the temporal video segmentation task is restricted to
the detection of shot changes and a simple selection of one keyframe per shot. How-
ever, as already mentioned, UGV is rarely structured in shots. A much more common
scenario is a single long-duration shot, in which the camera moves from one object to
another (typically by panning) and stands still in front of or zooms in on the most inter-
esting ones. Therefore, in this particular scenario, using camera motion is probably the

most reliable source of information to temporally segment a video. In any case, as it is



possible to fnd several shots in a UGV, our system also includes a shot-cut detection
mechanism.

We have divided this subsystem into three processing blocks: a frst block that
detects abrupt shot changes: a second block that estimates global camera motion by
means of a parametric model inferred from the motion vectors directly extracted from
the bitstream: and a third block that classif es motion into one of f ve motion patterns
(pan/tilt, zoom, still, shaky. or fast), thus providing a suitable temporal segmentation.
Once the segmentation has been performed, a set of keyframes is extracted representing
each temporal segment. Figure 1 shows the block diagram of the proposed temporal
video segmentation and key frame selection process.

The traditional shot-cut detection divides the UGV into several very long shots de-
limited by either an abrupt cut between two scenes or by very fast camera motions
that completely change the view of the camera (and therefore are also detected by this
kind of algorithms). However, representing a video by such a long segments and, sub-
sequently, each segment by just one keyframe, might cause dramatic losses of useful
information and, consequently, would prevent the system from properly annotating the
video content. Therefore. a f ner-grain segmentation is required to produce more mean-
ingful video segments. With this purpose in mind, an advanced temporal segmentation
approach is proposed that analyzes the camera motion at frame level, and produces a
video segment for each group of consecutive frames exhibiting a stable motion pattern
(pan/tilt, zoom, still, shaky, or fast).

The abrupt shot detector was implemented using the second derivative of the dif-
ference between gray-level histograms of consecutive frames, a simple and adaptive
measure that allows to perform a fast scene segmentation with a high rate of success.

The next blocks are described in the following subsections.

3.1. Camera Motion Estimation

Several models and methods for camera motion estimation have been proposed in
the literature Liu (2008). Weng & Jiang (2011). In our system., we have adopted an eff -

cient global camera motion model that considers three parameters, each corresponding



to one major direction: horizontal (H), vertical (V) and radial (R), as proposed in Ab-
dollahian et al. (2010). Henceforth, we will refer to this model as HVR.

Since the model parameters are estimated from a dense local Motion Vector Field
(MVF). we need to generate this motion feld for every frame in a video. To that end,
and with the objective of minimizing the computational burden, we use the motion
vectors available in the coded bitstream.

Our implementation generates a dense block-based MVF in which a motion vector
is assigned to each 8x8 block in the image, which dramatically reduces the computation
time of a pixel-wise dense motion estimation and still provides enough data points to
robustly estimate the camera motion. Since modern video coding standards handle dif-
ferent sizes of block (from 4x4 to 16x16 in H.264 Wiegand et al. (2003)), vector repli-
cations or inferpolations are made when necessary. The obtained MVF is denoted as
V = {v¢(x) } sz, where  represents the time instant, M and N are the frame dimensions
in number of blocks, and x = {x,y} are the block coordinates. This matrix relates the
block locations in subsequent frames of the video, such that ideally x; = x;_; + v;(x).
Most of the vectors in this map will follow the camera motion whereas a small portion
will show other motion patterns associated with objects that are moving independently
in the scene.

Nevertheless, vectors coming from the bitstream do not always represent real mo-
tion due to the fact that cost functions in video coding standards consider a tradeoff
between quality and bitrate (rate-distortion optimization). These non-real motion vec-
tors usually happen in low textured regions, where the bits associated with the motion
vectors become an important part of the total amount of bits allocated to the block, pro-
ducing motion felds with static vectors. To avoid processing misleading non-real mo-
tion vectors, we have implemented a simple texture classif cation system that decides if
a motion vector should be included or not in the camera motion parameterization pro-
cess by comparing a measure of the texture in a block (we use the standard deviation
o of the grayscale values of pixels within the block) with a predef ned threshold 1/
(thg = 30 in our experiments).

Taking this post-processed MVF as reference, the next step consists of estimating



the HVR parameterization that properly approximates the local motion vector map:

X Xi_ H,
“f _ Rr t—1 + 1 (1)
Yt Vi1 Vi

In order to build this approximation an error measure e(X; — X;) is minimized that
considers the difference between those block locations x; provided by the MVF and
those ones x; estimated by the HVR model. In particular, the HVR parameters are es-
timated using a robust algorithm for parameter estimation based on RANSAC Fischler
& Bolles (1981). The aim of RANSAC is to properly estimate the HVR parameters
even in presence of the outliers caused either by objects in motion or by errors in the
motion estimation process during video coding. RANSAC is able to provide successful
results as long as the background represents the largest element/object in a frame (even
though it takes up less than the 50% of the frame). Hence, the output of this module is,
therefore, a sequence of camera motion estimations, i.e.: HVR(f),t =1...T, where T

is the length of the video sequence.

3.2. Temporal UGV segmentation algorithm

As previously mentioned, in UGV, camera motion information is usually quite rel-
evant to determine how the video is structured and which are the most signif cant seg-
ments. This subsection describes the proposed temporal video segmentation algorithm
and is organized in three parts: a) description of the camera motion patterns of inter-
est; b) proposed set of mid-level features used to classify the camera motion into these
patterns; and c) suggested probabilistic approach to perform the classif cation and seg-
mentation. Once the temporal segmentation is available, an appropriate strategy for

keyframe extraction is needed. as described in Section 3.3.

3.2.1. Camera motion patterns

A wide set of camera motions can be considered: boom, track, roll, pan, zoom, tilt,
still, etc. Furthermore, there are several combinations of those which lead to other more
complex ones. However, many of them are hardly found in UGV and can be removed
from our study without a signif cant loss of performance. Hence, in this work., we

consider fve patterns of camera motion that recurrently appear in UGVs:
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. Translation (pan, tilt, diagonal): the camera follows a linear axis (horizontal,
vertical or diagonal) and, although some changes on the motion speed might
appear, it remains quite stable (H and V parameters exhibit low variance). It
is associated with various scenarios: the camera follows a moving object, as a
transitory motion between objects of interest, or to construct panoramic views
when the objects are too large to f't into the camera wide.

. Zoom: the camera follows a radial axis. It typically occurs when an interest-
ing area is being focused and usually entails a sequence of consecutive zoom
in/out patterns. This motion is well def ned by a sequence of non-zero values in
the R value of HVR model (zoom-in/zoom-out produce positive/negative values,
respectively).

. Fast or Blurry: it is a sudden and fast camera motion that blurs the image. The
frames recorded during this motion are normally of no interest for the user. This
pattern may be characterized by displacements of large magnitude, with huge
variance and sudden changes in speed.

. Shake: small displacements caused by a hand-held camera. It typically occurs
when the camera man is walking, traveling in some sort of vehicle or there is
simply a wobbly hold or support. It can be described by a large number of
direction changes per second in the horizontal and vertical components of motion

(H.V in the HVR model).

. Still: represents the absence of motion and indicates that an object of interest is
being recorded. It is, along with the zoom, the most relevant camera motion due

to its high probability of containing user-relevant video segments.

3.2.2. Mid-level features for camera motion classif cation

These fve motion patterns can be properly described by their average speed and

acceleration, their variance, the number of direction changes in both axis, and the radial

velocity of the motion. We propose to gather this information in a 9-dimensional mid-

level feature vector f that can be easily computed from the HVR model. Since some

of the features involve more than one frame, we have used a sliding window centered

at the frame of interest, so that the parameters of a given frame depend on previous and
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subsequent frames of the video. The length of the sliding window, denoted as W, has
been experimentally set to 7 = 42 as we will show in section 5.1.

For a particular  frame, the suggested mid-level features are:

1. Average horizontal speed:
_ ] /21
i)=— Y H() 2

w s=t—W /2

The speed is a basic feature to discriminate between static and dynamic patterns.
2. Average vertical speed:

_ 47 /21

=% 2 V) 3)

s=t—W /2

3. Average horizontal acceleration:

o 14721 g (s)
ax(t)_ﬁ 2 ds (4)

s=t—W /2

The acceleration is very useful to discriminate between several dynamic patterns:
translation patterns are usually associated with constant motion whereas fast or
blurry patterns are more random, with continuous changes in speed.

4. Average vertical acceleration:

- 1 21 g
ay(t) = W )) dE:S) ®)

s=t—W /2

5. Variance of horizontal acceleration:

4+ /21

1 _
o, (1) = 71 Y (ax(s) —ax(1))? (6)
s=t—W /2
6. Variance of vertical acceleration:
] /21 B
Ggy(f)zﬁ _;,W (ay(s) — ay(t))? (7
s=t—W /2

7. Average number of horizontal direction changes: very useful fo detect shaky
motion patterns presenting large number of direction changes.

] /21

di(t)=— 3 |sgn(H(s))—sgn(H(s—1))| ®)

w s=t—W /2
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8. Average number of vertical direction changes: as the previous one, very useful
to detect shaky motion patterns.

7 /2—1

dyt)== 3 |sen(V(s))—sgn(V(s—1))| ©)

w s=t—W /2

9. The R parameter of the HVR model: since it models the zoom pattern.

3.2.3. An HHMM for motion classif cation and segmentation

Once we have computed the mid-level feature vector for each frame, segmentation
can be approached as a classif cation task where each vector gets associated with one
of the fve types of camera motion considered. In previous works, this task has been
tackled using a cascade of SVM classif ers Abdollahian et al. (2010). However, when
dealing with UGV, camera movements tend to extend over tens or even hundreds of
frames. Since SVMs do not properly handle this temporal structure of video record-
ings, our temporal video segmentation system relies on the well-known hidden Markov
models.

HMMSs Rabiner (1989) are statistical generative models that allow for capturing
the temporal structure of the camera motion in UGV. Basically, HMMs consist of a
set of hidden variables, called states, which follow a temporal sequence or Markov
chain. At regularly spaced times, the system undergoes a change of state according
to the corresponding transition probabilities and an observation is emitted according
to the set of emission probabilities of the current state. To explain how the HMM-
based segmentation method works, let us consider the example illustrated in the central
part of Fig. 2 (gray states). A M-state HMM is shown where S;, withi=1,2,..., M,
represents each state, a;; is the probability of transition from state 7 to state j, and
b; is the observation symbol probability distribution for state 7. Thus, in general. an
HMM model is characterized by the number of states V and a set of model parameters
A = (4,B, ). where 4 is a matrix that contains all the transition probabilities (a;;). B
represents the set of observation probabilities (b;) and 7 is the probability distribution
of the initial state.

The mechanism for generating a Markov observation sequence of length 7. O =

[04,03,...,07] is as follows:

13



1. Choose an initial state S; in the initial instant = fy according with 7.
2. Generate a symbol O; in the chosen state using b;.
3. Dot =1+1 and make a fransition from state i to j according to a;;.

4. If t < T return to step 2), otherwise fnish the process.

The likelihood of the sequence O given the model A can be computed as:

P(O/A) = Z Tg,b4,(01)ag,4,04,(02) -.-agr_1qrber (Or) (10)
q1.492.-4T

where g; is a state S'in a time f and bg, (O;) is the emission probability of the observation
O associated with state g;. There are plenty of state sequences that could lead to this
observation sequence. However, it is possible to measure which is the most likely path
along the states by using the Viterbi algorithm Rabiner (1989).

Unfortunately, we can not rely on an HMM in which each motion pattern is repre-
sented by just one state. The rationale behind is that one state is not enough to represent
the statistical complexity of a motion pattern when the videos have been recorded by
multiple users. Instead. it is necessary to build a full individual HMM model to repre-
sent each type of motion and then design an appropriate way for integrating all of them.
In our system, this is accomplished by using hierarchical hidden Markov models Fine
et al. (1998). In particular, we have designed a two-level HHMM., in which the bottom
level models the different camera motions, and the top level is intended to represent the
temporal video structure, i.e., transitions between motion types.

Fig. 2 illustrates the proposed HHMM architecture for a simplif ed case in which
only two different motion types are considered. Note that dashed circles represent non-
emitting states, whereas dashed arrows indicate forced transitions (with probability 1).
The bottom level HHMM is composed by £ ve HMM submodels, one for each type of
camera motion. Specif cally, each motion type is represented by a M-state HMM (in
our case, M was set to 5 following the procedure explained in Section 5.1). where the
corresponding emission probabilities (B matrix) are modeled by Gaussian mixture dis-
tributions with diagonal covariances. These individual submodels (A, B and 7 matri-

ces) are estimated separately using the training partition of the video database described
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Figure 2: Hierarchical Hidden Markov Model. Only two of the f ve motion types are shown in the f gure for
simplicity.

in Section 5.1 through an iterative scheme based on the Expectation-Maximization
(EM) algorithm Dempster et al. (1977).

Since an UGV can contain several types of camera movements, the top level of
the full HHMM is built in such a way that transitions between different submodels
are allowed. As it can be observed in Fig. 2, it is possible to jump from state i of
one motion type fo state j of any other motion with a probability y*a;;. The top
level transition probabilities a;; are estimated using the Viterbi Path Counting (VPC)
algorithm Davis & Lovell (2003) during the training stage of the system, whereas the
constant ¥ is determined in the validation stage and it controls the submodel insertion
probability, preventing the appearance of short duration segments.

Once the HHMM is trained. the temporal segmentation is performed by executing

the Viterbi algorithm on the video sequence, so that the most likely path of hidden states
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is obtained. By analyzing this sequence of states, each frame is classif ed into one of
the fve considered camera motion types. From the resulting segments, keyframes are

extracted following the procedure explained in next subsection.

3.3. Keyframe extraction

Since we aim to solve a higher-level task, such as a video annotation task. the op-
timal strategy will be that one which maximizes the performance of the annotation
system analyzing the lowest number of keyframes. Therefore, the keyframe extrac-
tion strategy proposed in this paper relies on the previous camera motion classif ca-
tion and, in particular, on the meaning of each motion pattern for the annotation task.
Specif cally, the keyframe extraction process depends on the detected camera motion

as follows:

e For Still and Zoom camera motion patterns, the visual contents should remain
fxed during the whole video segment. It is worth noting that, although im-
portant changes in scale and even viewpoint may occur with respect to annotated
reference images, our annotation approach is invariant to several geometric trans-
formations and, therefore, one keyframe should contain all the information in the

shot.

e Shake camera motion patterns are actually similar to Still patterns from the user
point of view, the only difference being that the user fails to hold the camcorder
steady. In other words, during shake camera motion segments the user focuses
on a concept of interest. Therefore, one keyframe is enough again to capture the

concept shown in the shot.

e Fust motion patterns normally appear when the user intends to change the objec-
tive of the recording (pointing to another place). Thus, frames associated with
this motion pattern are of little interest for the user. Additionally, they may ap-
pear severely blurred due to the fast motion, which would dramatically decrease
the performance of the annotation system. Therefore, no keyframes are extracted

from shots associated with Fasf patterns.
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e The keyframe extraction model for the segments exhibiting a Translation motion
pattern deserves a brief explanation. The perception accuracy of the visual con-
tent when this type of motion is involved varies according to the camera motion
speed. Previous studies Daly (1998) have established that the human eye is spe-
cially attracted by motions of a certain velocity (between 6 and 30 deg./s. of the
visual feld). then decreasing its accuracy for faster motions. Therefore, instead
of analyzing just one keyframe per video segment, as done for other patterns such
as stills or zooms, when this motion pattern happens. the actual camera motion
speed should be taken into account to decide on the keyframe sampling rate. In
order to measure the camera speed, we consider the average translational speed
(fs) in a video segment s as the average of the components [H V] of our HVR
motion model (see sec. 3.1). In particular, we propose a keyframe sampling rate
def ned by means of a shifted (Z;.s) and scaled (7qy) triangular function:

?‘S:rmxTri(ﬂ) (11)

Tef

with 74,4 being the maximum sampling rate that depends on the desired compu-
tational complexity of the application; and T, has been heuristically estimated
as the 25% of the largest dimension of the image. Intuitively, the keyframe ex-
traction rate for translation segments grows with the camera speed T, until the
value Tr.y, when it starts to decrease according fo the presumed lower user’s
mterest on the content being recorded. In the experimental section, we will com-

pare this strategy with a baseline f xed rate of keyframe sampling.

In summary, we are taking one keyframe from Still, Zoom, and Shake segments
where we assume that the video content does not vary:; we are taking several keyframes
from Transiation segments where we assume that the user is exploring a varying con-
tent, modulating the keyframe sampling rate according to a presumed perception ac-
curacy derived from the camera speed: and fnally, we are discarding Fast segments

because we assume that they are meaningless for the user.
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Figure 3: Processing pipeline of the proposed UGV annotation system.

4. Complete UGV Annotation System

In order to assess how the proposed temporal UGV segmentation and keyframe
extraction subsystems contribute to improve the performance of a higher-level system,
we have implemented a complete UGV annotation system that is described in this
section.

The general scheme of our UGV annotation system implemented is illustrated in
Fig. 3. Once the UGV is available, the system generates a video temporal index and
selects the appropriate keyframes for each video segment according to the inferred
camera motion-based relevance, as described in the previous section. In parallel. a set
of reference images is selected according to the context information associated with the
query. As we will describe in the experimental section. these reference datasets may be
generated in a variety of ways: in some cases, we use a general name of the place where
the video was recorded (a museum, a city, a region, etc. ) to automatically generate a
list of artworks or landmarks from Wikipedia; in others, we use the GPS coordinates
obtained from the built-in GPS receivers of the acquisition devices. This information
is used to perform searches over web-available image datasets such as Flickr to obtain
a dataset of potentially similar images enriched by annotations in the form of tags,
descriptions, or titles.

Once both keyframes and reference images are available, the image retrieval sub-
system is in charge of computing a similarity measure between each keyframe and the

reference images and, therefore, looking for near-duplicate contents. Although it is out
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of the scope of this paper, it is worth noting that the experiments conducted in this pa-
per have used a robust image retrieval system described in Gonzalez-Diaz et al. (2012,
2014), a probabilistic approach that incorporates robust methods of geometric verif ca-
tion for rigid objects. Given a video keyframe and set of R reference images related to
the query, the output of this module is a vector containing the global similarity mea-
sure ), with = 1...R, between the corresponding keyframe and each of the reference
images.

Finally, based on this similarity measure, the system generates the set of annota-
tions associated to each keyframe. For that end. two scenarios are envisaged: a) in some
particular scenarios as those presented in the section 5.2, each reference image belongs
to one of a pre-defned set of concept categories or vocabulary and max-pooling has
provided the best results in our tests. Hence, the category of the most similar image is
used as annotation. b) In a more general and unconstrained scenario, labels are given
in the form of tags or title words provided by users, so that the fnal annotation process

becomes more complex as we will explain in section 5.3.

5. Experiments and Results

In this section we describe the experiments and discuss the results concerning the
assessment of the proposed UGV temporal segmentation and keyframe selection algo-
rithms. We have conducted experiments at two levels. At subsystem level. we have
assessed the performance of the HHMM-based UGV temporal segmentation subsys-
tem in comparison to a state-of-the-art SVM-based system. At system level, besides the
annotation performance, we have assessed the inf uence of the UGV indexing method
on the automatic annotation process over two novel datasets for particular object/scene
recognition in video. Finally. an online demo for automatic User Generated Image
and Video annotation is also introduced that shows how our proposal can be applied to

UGC annotation in very general and unconstrained scenarios.

5.1. Experiments on UGV Temporal Segmentation

In order to show the performance of the video temporal segmentation module, we

have created a video database with clips showing contents generated by non-professional
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users. In total. the database contains 2.12 hours of video. distributed in 106 different
fles with an average length of 1.2 minutes, which gives place to approximately 230K
frames to be analyzed. The videos have been collected from Youtube and the average

quality in terms of image resolution and bitrate is:

e resolution: 640 x 480

e bifrate: 400 kbps

The segmentation dataset has been manually annotated at frame level, so that each
frame belongs to a specif ¢ category of camera motion. Furthermore, we have split
the database into three sets of approximately equal size, namely: train, val and test. It
is noteworthy that the split was carefully made to provide a balanced sub-division for
every camera motion pattern, so that, for each camera motion pattern, a similar number
of video segments was contained in each set. In any case, the split also resulted quite
balanced in terms of video total duration.

Our approach to train the HHMM was as follows:

1. For the individual HMMs devoted to each motion pattern, we used the train set
to generate models for several values of the hyperparameters (number of states
M, length of the temporal window W) and evaluated those models over the val-
idation set, thus selecting the optimal set of values M=5, W=42. The result of
this validation is shown in Fig. 4(a).

2. Once the optimal individual HMMs were set, we built a global model, and vali-
dated the global hyperparameter ¥ over the validation set. As mentioned in Sec-
tion 3.2.3, ¥ affects the submodel insertion probability and controls how likely
our segmentation model allows changes between different motion patterns (bal-
ance between under and oversegmentation). Therefore, to optimize this param-
eter with some generality. we selected that value that minimizes over the vali-
dation set the relative difference between the number of temporal segments pro-
vided by our model and the true number of segments in the ground truth. As can
be observed in Fig. 4(b), large values of ¥ lead to very unstable segmentations,
with very short segments, and a lot of changes between motion patterns, produc-

ing an increase in the relative error. Nevertheless, for a wide range of values of
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Figure 4: Results of the cross-validation procedure for HHMM hyperparameters. a) Jomt 2D cross-validation
of M (number of states) and W (length of temporal window); b) Validation of the y hyperparameter.

Table 1: Huang and Dom (HD) segmentation error for the HHMM and SVM-based segmentation systems

HD error | HD error
Model
w/o post. | with post.
HHMM | 0.4781 0.4747
SVM 0.5842 0.5150

v, the achieved error remains low and quite stable. Finally, from the results in

Fig. 4(b), we chose ¥ = 1e — 20 for the remaining experiments.

3. Once we had all the optimal parameters. we trained a global HHMM model for

video segmentation using the train+validation set, and assessed it using the test

set.

We have assessed the temporal segmentation module according to two different

system capabilities: 1) Temporal Segmentation; and 2) Camera Motion Classif cation.

The former evaluates the system performance at partitioning a video into a sequence

of segments with a stable motion pattern and, consequently. at extracting keyframes of

interest that are automatically analyzed and annotated by subsequent stages in the pro-

cessing pipeline. From our point of view, this represents the main functionality of the
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segmentation module and, although the segmentation is computed based on the camera
motion, the identif ed motion pattern is actually not considered in the evaluation. In
other words, the alignment between the proposed and the ground truth segmentations
is computed without taking into account the class of each segment.

The latter, meanwhile, aims to provide a complementary measure of the system
performance at classifying the camera motion into one of the considered patterns. This
classif cation, although initially conceived as a way to tailor the temporal segmenta-
tion, additionally allows us to assign a camera motion-based relevance to each video
segment (e.g. segments with zooms tend to be more relevant for the user than ones
with fast motion).

We have compared our approach to a SVM-based segmentation technique. This
reference approach is very similar to the one proposed in Abdollahian et al. (2010)
except for two differences: a) in order to ensure a fair comparison between the SVM-
and HHMM-based segmentation approaches, the input features for the SVM are the
same ones used in our proposal: and b) in Abdollahian et al. (2010) the multiclass
problem was solved by means of a cascade of binary classif ers whereas, in our case,
a multi-class implementation of the SVM was used to select the most appropriate mo-
tion pattern for each frame. Let us note that, similarly as we did for our HHMM. we
have also validated the hyperparameters involved in the SVM-based model, getting the
following optimal values: W=42, and C=0.125.

To evaluate the temporal segmentation performance we have used the well known
Huang and Dom segmentation error Huang & Dom (1995). a measure in which bidi-
rectional Hamming distances are computed (and later combined) between the Ground
Truth (GT) and the Estimated Segments (ES). Each direction of the distance takes
into account (and therefore penalizes) either oversegmentation (GT—>ES) or under-
segmentation (ES—>GT). Segmentation results are provided in Table 1, in terms of the
alignment error between the two segmentations (0 means a perfect alignment). For
each approach, two alternatives have been evaluated: a) the basic one, which uses the
direct outputs of the classif er/segmenter (either the HHMM or the SVM outputs); and
b) a post-processed approach, in which segments of less than one second (30 frames)

are removed from the results. As it can be easily noticed, whereas post-processing
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Figure 5: Two examples of video temporal segmentations based on camera motion classif cation. The red
dashed line stands for our proposal, the blue dotted one for the SVM-based, and the ground truth is repre-
sented with a black solid line.

becomes critical for the SVM approach, the results of our approach remain unaltered
when postprocessing is activated. The explanation is that the HHMM-based solution
partitions the input video in a similar number of segments than those ones of the ground
truth, whereas the SVM, due to the fact that it does not explicitly considers the transi-
tions between different camera motions. notably suffers from oversegmentation. This
observation is supported by the results shown in Fig. 5. which displays two examples
of video temporal segmentation using camera motion classif cation for both the SVM-
based approach and our proposal. Furthermore, even if we activate this post-processing
step, our proposal notably outperforms the SVM-based solution, with an improvement
of about a 8% (18% if we remove the postprocessing step). In the following, we are
comparing the approaches that incorporate the post-processing stage.

In addition to this segmentation-based evaluation, we have also assessed the mo-
tion classif cation performance of our approach by computing the confusion matrices
for the SVM and the HHMM-based systems, which are shown in Fig. 6 (a) and (b). re-
spectively. In both f gures, the rows correspond to the correct class, the columns to the
hypothesized one and the cell colour indicates accuracy values (white corresponds to
the highest classif cation rate and black to the lowest one). Table 2 shows the diagonals
of these two confusion matrices, which provide the accuracy of each system for each

class of camera motion, and the average classif cation rate computed as the mean of the
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Table 2: Classif cation accuracy (%) for the compared HHMM- and SVM-based segmentation systems

Model | Trans. | Zoom | Fast | Shake | Still | Avg.

HHMM | 29.48 | 56.11 | 51.42 | 53.73 | 89.91 | 56.13
SVM | 69.15 | 36.72 | 38.48 | 44.41 | 78.90 [ 53.53

diagonal. From this table, it can be observed that very similar average accuracies are
obtained, with a slightly better performance of our approach. However, the HHMM-
based system achieves better performance for almost every motion pattern (specially
for Zoom which has higher semantic relevance than other motion types) except for the
translational one, in which SVM obtains notably better results. Analyzing the confu-
sion matrices, it can be observed that for the SVM-based system, Fast and Shake (and
in less degree Zoom and Still) are frequently classif ed as Translation whereas HHMM
reduces, in general, the confusability between classes. In other words, HHMM seems
to discriminate better between the different motion patterns than SVM. Also. it is worth
mentioning that in the HHMM system, Translation segments are mainly confused with
Still because these segments present a very low camera motion speed and, according
to the keyframe extraction strategy proposed in Section 3.3, they will produce almost
the same results in terms of extracted keyframes as if they were considered as Still seg-
ments. For all the aforementioned reasons, and as we will see in the following sections,
the HHMM is expected to perform better than SVM in the evaluation of the complete
UGV annotation system.

Hence, we can conclude that, for a similar average classif cation accuracy, our pro-
posal achieves more suitable segmentations in the sense that the number of detected
video segments is much closer to the ground truth, and notably lower than that one
provided by the SVM-based solution, which is prone to over-segmentation. This leads
not only to better system performance (in terms of a more precise video indexing). but
also to important savings in computational time for video segments showing Zoom,

Still, and Shake patterns, for which our system extracts just one keyframe.
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Figure 6: Confusion matrices [%]: (a) HHMM-based system; (b) SVM-based system.

5.2. Experiments on Video Annotation

We have assessed the inf uence of the UGV temporal segmentation subsystem on a
higher level task. To that purpose we have built a complete system (see Section 4 that
performs an automatic annotation of each video segment generated by the segmentation
subsystem. For this assessment, we have generated two datasets that have been made
available online*: the Louvre Artworks dataset and the Madrid Landmarks dataset. In
the following paragraphs we will thoroughly describe both datasets.

The Louvre Artworks dataset contains 80 minutes of user generated video footage
divided into 10 sequences with lengths ranging from 2 to 20 minutes. These video
sequences have been recorded by non-professionals users either inside or outside the
Louvre Museum and mostly show raw content with no or little edition. In parallel,
using information automatically retrieved from Wikipedia, we have generated a list of
165 artworks (paintings and sculptures) that can be potentially detected in the video
dataset. Furthermore, we have downloaded from Flickr an image dataset showing the
selected artworks. It should be emphasized that the whole process for the dataset gen-
eration was completely automatic. On the one hand, this fact proves the usefulness of
the proposed application since a database for a similar task could be readily generated

in the same way. On the other hand, an automatic procedure inevitably entails diverse

“http://cerceta tsc uc3m. es:9090/dbsLouvreMadrid.zip
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artifacts: some of the images may be incorrectly associated with an artwork due to
noisy annotations by Flickr users; some images may show more than one artwork, etc,
which makes things more challenging to our approach. The reference image database
consists of 610 images and. in average, it contains between 4 and 5 images per artwork.
We have manually annotated the video dataset, fnding 123 occurrences of 49 distinct
artwork categories. Let us note that, for simplicity, labels have been assigned at video
level and, therefore, the evaluation is also performed on a video basis. Moreover, we
have checked that the probability of assigning a correct label at video level because of
a false positive detection at a given segment is negligible.

The Madrid Landmarks dataset contains 115 minutes of video divided into 20 se-
quences with lengths between 30 seconds and 30 minutes. These videos were recorded
by tourists visiting Madrid and exhibit properties similar to those of the Louvre dataset.
We have automatically identif ed 40 landmarks of Madrid and we have downloaded a
total of 1998 reference images (approximately 50 images per landmark). After manu-
ally annotating the video dataset, we have found a total of 65 occurrences of 28 distinct
landmarks. As in the previous case, the dataset has been generated following a com-
pletely automatic process. This dataset is more challenging than the Louvre dataset due
to various reasons: the variability of the landmarks is higher than that of the artworks
(a city vs. a museum); the visual appearance of an artwork, specially a paint that is a
planar surface, exhibits lower variations than that of buildings and places of interest,
which can be recorded from quite different points of view; the variability of photos
taken in very large places. such as parks, is so high that makes very hard even to apply
classical image retrieval techniques; etc.

In our experiments we have roughly extracted and analyzed 2000 video keyframes
per dataset. Therefore. we can say that the size of these datasets (queries and reference
images) is comparable to that of the most well known datasets for near-duplicate image
search (e.g. Oxford DB Philbin et al. (2007), Holidays DB Jegou et al. (2008), or Paris
DBJ. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman (2008)).

In this scenario, since both datasets require detecting instances of from a predeter-
mined list of concepts (either artworks or landmarks, depending on the task), we have

preferred to assess the system performance in terms of its concept recognition ability,

26



by computing the Average Precision (AP). Specif cally, we have manually annotated
every video by listing the concepts that actually appear in it and we have computed
the AP of the system by comparing these concepts to those automatically annotated by
the system (one per video segment). Moreover, we have assessed the performance at
different complexity levels, thus simulating systems with different computation time
requirements. To that end. we have used the proposed camera motion-based UGV
segmentation and keyframe selection procedures to generate a complete keyframe set,
which has been then randomly subsampled. thus varying the computational complexity
(the lower the number of evaluated keyframes per second, the lower complexity, and
viceversa).

The proposed method for keyframe selection involves selecting one keyframe per
each shake, zoom, or still segment, and several keyframes for (potentially varying-
content) rranslation segments. The frst experiment was devoted to assess the perfor-
mance of the method proposed in Section 3.3 for varying the keyframe sampling rate
in translation motion patterns according to the camera motion speed. In order to eval-
uate the proposed method. the reference keyframe subset for translations was built in
two different ways, which were compared: a) as suggested by the proposed camera
speed-based keyframe selection method: and b) using a f xed-rate keyframe selection
method. For this experiment, all the keyframes associated with non-translation seg-
ments were used, while those of translation segments were sub-sampled, for the two
compared reference subsets, to achieve results at several complexity levels.

In Fig. 7 the proposed keyframe selection method (green line) is compared to
the fxed-rate keyframe selection method (blue line) for the Louvre Artwork detec-
tion task. The results in AP terms are shown as a function of the number of analyzed
keyframes (expressed in keyframes per second). Let us note that this dependence has
been achieved by varying the value of the 7y, parameter in eq. (11). As can be
seen, the proposed camera speed-based keyframe selection method notably contributes
to improve the concept recognition results. Furthermore, the improvement remains
approximately constant with the number of used keyframes, which means that the pro-
posed speed-based keyframe selection process turns out to be more effective for con-

cept recognition purposes. For the subsequent experiments, we have set the value of
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Comparison between KF selection strategies for Translations
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Figure 7: A comparison of Keyframe selection techniques for translation segments in the Louvre Artwork
detection task.

the maximum frame rate »; = 1 kfps, which approximately produces an effective frame
rate of 0.25 kfps in Fig. 7.

Our second experiment aims to gain some insight into the relevance of the con-
sidered motion patterns for the video annotation task. In Fig. 8 we compare several
system conf gurations using the HHMM segmentation approach for the Louvre Art-
work detection task. In particular, each conf guration uses only keyframes from seg-
ments exhibiting one particular motion pattern. As we did it previously, to compute the
performance at different complexity levels, the corresponding reference keyframe sets
were subsampled. The results highlight the zoom as the most relevant motion pattern
for video annotation, which agrees with our initial hypothesis that this camera motion
pattern is used to focus on concepts of special interest for the user. Nevertheless, the
zoom pattern is not so commonly used and, therefore, limiting the analysis to this type
of segments would probably lead to a large number of missed detections. Similarly, we
have found that, although they represent a very small portion of the analyzed frames,
the relevance of shake patterns is also quite notable. One could think of shaky seg-

28



Influence of different camera motion patterns over the global system
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Figure 8: A study of the relevance of different motion patterns i the Louvre Artwork detection task.

ments as sfill segments in which some kind of camcorder shake happens. However,
the surprisingly poor results achieved for the s#i// motion pattern put into question this
hypothesis. After visualizing the videos, we found two reasons for these results: 1)
there are many short still segments at the beginning or the end of translations. In all
these cases, the segment does not contain any valuable content since the user either
has not pointed yet to the object of interest or has already left it; and 2) still segments
also happen in scenarios where the camera is attached to a tripod and records a person
talking. without any concept of interest in the scene. We would like to note that this
second fnding could be generally arguable since people faces, although useless in our
datasets, are usually of great interest in many problems. Finally, franslation segments,
although less relevant than zoom, are so popular in our video datasets that become the
main source of information for video annotation.

Therefore, a smart keyframe selection method that relied on the type of camera
motion could be used to properly balance complexity vs. performance in a given ap-
plication. For instance, if complexity were the toughest requirement. the system would

focus on zoom and shake segments; while if very high annotation rates were mandatory
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in our application, franslation segments would be analyzed in detail at the expense of a
notable increase in processing time. To prove this last insight, we have designed a sim-
ple relevance-based keyfirame subsampling scheme, where the keyframe subsampling
has been made according to a non-uniform probability density function that assigns
the following heuristic relevance indexes to the different camera motion types: fast: 0,
still: 1, translation: 2, shaky: 3. and zoom: 4. Tt is worth mentioning that these values
have been obtained from the previous experiment by simply computing and rounding
the average ratio between the AP and the number of analyzed frames for each particu-
lar motion pattern. Obviously, these relevance indexes could have been more carefully
estimated, but we decided not to address this task because this simple set of values
allowed us to prove our claim.

In Figs. 9(a) and 9(b) we show detection results for the Lomvre Artworks and
Madrid Landmark datasets, respectively. In each f gure, we compare the performance
of three strategies to select keyframes: namely: 1) a keyframe selection based on the
camera motion-based segmentation achieved by the proposed hierarchical HMM (re-
ferred as to HHMM); 2) the same using a SVM for camera motion-based segmentation
Abdollahian et al. (2010) (referred as to SVM): 3) a representative approach of the fam-
ily methods relying on visual frame descriptors (VISUAL): and 4) a baseline keyframe
selection method consisting on a fxed-rate sampling that does not take segmentation
into account (UNIFORM). In particular, the visual frame descriptor method f rstly per-
forms a shot boundary detection and then, within each shot, clusters frames based on
visual descriptors and selects as keyframes those frames that best represent each clus-
ter. In particular, following previous approaches Li et al. (2011b); Zhang et al. (1997).
we have considered color histograms, histograms of gradient orientations, and camera
motion parameters as visual descriptors.

Let us remind that, in order to provide results at several complexities, both HHMM
and SVM approaches use non-uniform sampling based on motion-based segment rel-
evances. whereas the VISUAL approach sets the number of clusters (keyframes) per
shot depending on the desired complexity. As shown in the f gures, in both datasets, our
proposal consistently outperforms the rest of the approaches at any given rate of eval-

uated keyframes. Furthermore, in the Madrid Landmarks dataset, both segmentation-
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Figure 9: Comparison of recognition results for several camera motion-based segmentation methods in (a)
the Louvre Artwork dataset, and (b) the Madnd Landmark dataset

based mechanisms clearly outperform those ones without segmentation as the number
of evaluated keyframes increases. The rationale behind the poor results achieved by the
SVM mehod for low rates of analyzed keyframes in Madrid dataset is the following: at

these rates, this particular segmentation method analyzes a higher proportion of shake
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Figure 10: Some examples of outputs of the annotation over Louvre dataset (left column) and Madrid dataset
(right column). The frst 4 rows show relevant retrieved documents that give place to correct annotations
(detected objects are shown in a green bounding box). The last row shows the frst non-relevant retrieved

image that gives place to a wrong annotation.

motion segments, as opposed to our method, that analyzes many more keyframes of
zoom segments. This fact is due to probably wrong camera motion labels produced by
the SVM. which leads to misalignment between the user preferences and the relevance-
based sampling. Finally, the more traditional approach relying on frame visual features,
although provides notable results in the Louvre datataset (probably due to the very dis-
tinct visual nature of each artwork in the museum), shows quite poor performance in
the Madrid dataset. In summary, we can conclude that these results highlight the im-
portance of suitable temporal segmentation and keyframe selection mechanisms in a
video annotation system. This fact is particular noticeable in the Madrid dataset, where

both segmentation-based methods notably outperforms the other techniques.
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The proposed system for search-based UGV annotation achieves remarkable AP
values: 77.82% and 74.86% for the Louvre Artwork and the Madrid Landmark datasets,
respectively. In Fig. 10 we show some examples of video annotation. The frst 4 rows
show successful cases, while the last one illustrates annotation errors. As we can see
in the frst rows, our system is able to identify either artworks or landmarks of interest
under a variety of transformations, such as scale, viewpoint change, varying illumina-
tions, or severe occlusions. After an in-depth study of the results, we can conclude
that the main source of error in the system are the missed detections due to the lack of
keyframes showing the concept. Moreover, this type of errors can be attributed to the
segmentation and keyframe selection modules, which again stresses their importance.
On the contrary, false alarms are much less common since it is highly unlikely to fnd
non-relevant images showing high similarity values with a given keyframe. In any case,
in the last row of Fig. 10 we show two examples of false alarms that produce wrong
annotations of the content. For the example in the Louvre dataset, the error is due to a
noisy annotation in the reference dataset, since the reference image (right) was anno-
tated by a Flickr user with the name of a particular painting (The Massacre at Chios)
that is actually located in the room shown in the image. The example in the Madrid
dataset is even more striking, since our system is matching the lampost appearing in
the two images. Although the places are completely different, the lampost model is in

fact quite similar in many streets of the town.

5.3. An online demo for Video Annotation

In order to demonstrate the system performance, an online demo of our annotation
system is available online®. In this demo, our system provides automatic annotations
and ROI segmentations given a geo-located query image or video.

The demo allows users to upload multimedia contents and geo-locate them using an
intuitive web interface based on Google Maps. The user may select different values for
the geo-location (from very precise, simulating capturing devices with a built-in GPS

receiver, to very rough, covering the whole city/region were the content was taken),

Shttp://cerceta tsc uc3m.es:9090/apps/ AFICUS/web/Af cusDemo_html

33



VIDEO SUMMARY

Video tags
madrid
ezpanha
spain
monumentoaalfonsoxii
ratiro
lake
parque ' !
status Shot No 1 Shot No 2 Shet Mo 3
park

(@

Shot no 3

Camera
Tags Moticn Relevance |Start frame| End frame
Faltern

Retiro ZOOM || HIGH 518 | 652
mornurnent
spain
parque
_madrod
park
Estangue
[ lake
Alfonso
Monqmento

Similar content

®)

Figure 11: Online annotation demo: a) Video Summary (4 video segments) and annotation; and b) example
of a segment annotation.

and for the number of retrieved images from Flickr. In addition, several demonstrative
samples are also available for direct use. Once the input data are uploaded. our system
retrieves from Flickr a set of reference images taken around the same location. It is
worth mentioning that the database is always built in real-time and, thus, never stored
in our servers. Consequently, this process entails an important overhead to the system
operation with respect to a scenario in which reference images have been previously
retrieved and processed. However, the objective of this demo is not to get a very fast
annotation system but to show up its capabilities.

Compared to the previous experiments, in this case labels are given in the form

of user tags/images titles provided by users uploading the reference content. Hence,
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in order to provide a video annotation, the system computes a ranking of proposed
labels in such a way that those labels associated with more similar images are better
candidates to become part of the automatic annotation of the corresponding keyframe.
Then, all the individual sets of labels (one per keyframe) are properly fused to provide
a high level annotation for the whole video.

The typical tags that can be found in databases such as Flickr are noisy and do not
follow any predef ned vocabulary or taxonomy, which prevents from a straightforward
fusion of labels. In particular, it happens that different, but very redundant labels,
appear as a result of slight typographical variations. For example, “towerof ondon”,
“tower-of_london”, and *’thetowerof ondon” represent the same semantic concept and
should be merged into just one tag. In our implementation, the Levenshtein distance
Levenshtein (1966) has been used to evaluate the similarity between labels and merge
those ones showing very low distances.

Then, each label associated with a reference image is weighted according to its

visual similarity with the query: specif cally, the weight is computed as follows:

Xr )a
W, = 12
1 (xmax ( )

where the normalization factor Y. is the maximum similarity measure in the refer-

ence set, and o, which verifes that 0 < o < <=, is a parameter that was heuristically
chosen (& = 2 in our experiments). Higher values of & lead to annotations dominated
by labels belonging only to the most similar images. whereas lower values lead to an-
notations exhibiting labels from many images of the reference set.

Finally, based on these weights, a label histogram A is computed by accumulating

the weight of each label / of the reference set as:

R
H(l) =Y wenyy (13)

where n;, is equal to one if the label / was found in the reference image » and zero
otherwise. A list of tags ordered according to their relevance to the query content is
easily generated by sorting the histogram of labels H(/) in descent order.

In summary, a fully annotated video index is obtained by taking into consideration

two types of relevance measures extracted by the system. The frst relevance measure,
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called camera motion-based relevance, is inferred from the fact that certain camera
motion patterns (such as zooms, shake, or stills) are actually relevant indicators of the
user’s interest. The second, referred to as visual similarity-based relevance, is obtained
from the visual similarity measures between each keyframe and the set of annotated

reference images gathered by the image retrieval subsystem.

6. Conclusions and Further Work

In this paper we have proposed a temporal segmentation and a keyframe selec-
tion method for User Generated Video (UGV). Specif cally, an eff cient UGV temporal
segmentation system based on camera motion has been proposed which partitions a
video into user-meaningful segments. Additionally, a suitable keyframe selection al-
gorithm has been proposed that maximizes the concept annotation performance for a
target complexity level. Moreover, a complete search-based UGV annotation system
has been developed to prove the contribution of the proposed methods to two different
UGV annotation tasks.

The segmentation algorithm is based on a frame-level camera motion classif cation
method that has specif cally designed for UGV. A frame-level camera motion classif er
has been proposed that relies on a carefully selected set of mid-level features designed
to capture the proper clues for solving the camera motion classif cation problem. Sub-
sequently, a novel HHMM-based system that uses these mid-level features as input
has been proposed for segmenting the video according to the camera motion type. We
have compared the proposed approach to a state-of-the-art SVM-based system. The
experimental results allow us to conclude that our proposal provides more suitable seg-
mentations, while the SVM-based system clearly incurs in over-segmentation.

The proposed keyframe selection method has been proved to be an essential tool
to optimize the complexity-performance tradeoff. In particular, we have performed a
relevance analysis of the different camera-motion types in the annotation system per-
formance, which allows the application developer to choose a design that suitably bal-
ances complexity and performance.

The impact of both subsystems, the UGV temporal segmentation and the keyframe
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selection. has been assessed on a complete annotation system over two video datasets.
The complete system has shown notable performance in video annotation tasks: aver-
age precisions of 77.82% and 74.86% for Louvre artwork and Madrid landmark de-
tection tasks, respectively. Furthermore, our experimental results have revealed that
such a high performance exhibits a substantial dependence of both the temporal seg-
mentation and the keyframe selection methods, as proved by the experimental results
showing how the proposed system outperforms both a fxed-rate keyframe selection
baseline and a more traditional method relying on frame-level visual features. It is also
worth noticing that two UGV datasets, the Louvre Artworks dataset and the Madrid
Landmarks dataset, have been made publicly available to support future developments
on the feld.

Moreover. in order to show the applicability of our method, an integrated system
for UGC annotation has been developed and made available online. The demo allows
users to play with different parameters of the method, showing the annotation results
under different scenarios.

Since this work has focused on two particular elements of a search-based video
annotation system, many research lines remain open. For example: those related to a
more real-time oriented implementation; those concerning the incorporation of addi-
tional context-information (such as user preferences or social network-related data); or

those associated with more elaborated tag propagation approaches.
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