
 

 

 

 

Applying Goldratt’s Theory of Constraints to reduce 

 the Bullwhip Effect through Agent-Based Modeling 
 

José Costas1, Borja Ponte2,*, David de la Fuente2, Raúl Pino2 and Julio Puche3 

1Polytechnic Institute of Viana do Castelo, School of Business Sciences of Valença 

Avenida Miguel Dantas, 4930-678, Valença, Portugal 

josegual@esce.ipvc.pt 

2University of Oviedo, Department of Business Administration, Polytechnic School of Engineering 

Campus de Viesques s/n, 33204, Gijón, Spain 

{ponteborja, david, pino}@uniovi.es 

3University of Burgos, Department of Applied Economics, Faculty of Economics and Business 

Plaza Infanta Doña Elena s/n, 09001, Burgos, Spain 

jcpuche@ubu.es 

 

Abstract 

In the current environment, Supply Chain Management (SCM) is a major concern for businesses. The 

Bullwhip Effect is a proven cause of significant inefficiencies in SCM. This paper applies Goldratt’s Theory 

of Constraints (TOC) to reduce it. KAOS methodology has been used to devise the conceptual model for a 

multi-agent system, which is used to experiment with the well known ‘Beer Game’ supply chain exercise. Our 

work brings evidence that TOC, with its bottleneck management strategy through the Drum-Buffer-Rope 

(DBR) methodology, induces significant improvements. Opposed to traditional management policies, linked 

to the mass production paradigm, TOC systemic approach generates large operational and financial 

advantages for each node in the supply chain, without any undesirable collateral effect. 

Keywords: Bullwhip Effect; Drum-Buffer-Rope; KAOS modeling; Multi-agent Systems; Supply Chain 

Management; Theory of Constraints. 

 

1. INTRODUCTION 

The complexity and dynamism that characterize the context in which companies operate nowadays have 

drawn a new competitive environment. In it, the development of information technologies, the decrease in 

transport costs and the breaking down of barriers between markets, among other reasons, have led to the 

perception that competition between companies is no longer constrained to the product itself, but it goes 

much further. For this reason, the concept of Supply Chain Management (SCM) has gained a lot of strength 

to the point of having a strategic importance. The current global economic crisis, consequence of many 

relevant systemic factors due to the fact that globalization still has not been able to develop systemic 

dynamic properties to deal with a growing variety of requirements, is creating conditions which increase 

awareness to adopt new approaches to make business (among others, Schweitzer et al., 2009); hence, SCM is 

a boiling area for innovation. 

Analyzing the supply chain, Forrester (1961) noted that changes in demand are significantly amplified along 

the system, as orders move away from the client. It was called the Bullwhip Effect. He studied the problem 

from the perspective of system dynamics. This amplification is also evidenced in the famous ‘Beer Game’ 

(Sterman, 1989), which shows the complexity of SCM. He concluded that the Bullwhip Effect is generated 

from local-optimal solutions adopted by supply chain members. This can be considered as a major cause of 

inefficiencies in the supply chain (Disney et al., 2005), because it tends to increase storage, labor, inventory, 

shortage and transport costs. Lee et al. (1997) identified four root causes in the generation of Bullwhip Effect 

in supply chains: (1) wrong demand forecasting; (2) grouping of orders into batches; (3) fluctuation in the 

products prices; and (4) corporate policies regarding shortage. The same idea underlies behind all of them: 
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the transmission of faulty information to the supply chain. Therefore, the first approaches in the search for a 

solution to this problem were based on trying to coordinate the supply chain. Some practices that have been 

successfully implemented in companies are Vendor Managed Inventory (Andel, 1996), Efficient Consumer 

Response (McKinsey, 1992) and Collaborative Planning, Forecasting and Replenishment (DesMarteu, 

1998). Nevertheless, the Bullwhip Effect is still a major concern around operations management in the 

supply chain. Chen and Lee (2012) discussed the linkage between the bullwhip measure and the supply chain 

cost performance, capturing the essence of most-real world scenarios. 

The Theory of Constraints (TOC) was introduced by Goldratt (1984) in his best seller 'The Goal', 

representing a major innovation in the production approach. The author alleges that the sole purpose of an 

organization is to make money now and in the future. Hereupon, the author defines six variables 

as organizational measures to approach that goal. Three of them are operational: throughput, inventory and 

operating expense. The other three are financial: net profit, return on investment and cash flow. All these 

metrics are bound together through relationships. According to TOC, the most important thing to improve 

the overall system performance is to concentrate the whole improvement effort on its bottleneck. Goldratt 

proposes the Drum-Buffer-Rope (DBR) methodology to manage the system. Once the bottleneck is 

identified, it becomes the drum of the system. A buffer is used to protect against variability in replenishment 

time, because we aim to exploit the full capacity in the bottleneck. A rope is used to subordinate the system 

to the bottleneck.  

The major contribution of this paper is to provide evidence via a multi-agent simulation model about the 

sound impact of TOC application to reduce the Bullwhip Effect in supply chains. TOC is compared against a 

traditional management alternative, typical in mass production paradigm: the order-up-to inventory policy. 

Our aim is to demonstrate that supply chains have plenty of reasons to operate according to the TOC 

systemic approach. Figure 1 depicts the structure of our work. 

 
Figure 1 – Structure of this work. 

The conceptual multi-agent model has been worked out using KAOS methodology. Robust SW engineering 

and test driven development techniques have been applied to build and verify the model. A multi-agent 

system (MAS) is an optimal environment to address this issue, as it is a physically distributed problem, 

where each node has only a partial knowledge about the problem-world.  

As shown in figure 1, our research method has been the following: 

(1) Definition of problem world (‘Beer Game’ supply chain) and problem statement (Bullwhip Effect).  
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(2) Clarification of the process. The ‘Beer Game’ is modeled as it is widely described in literature (among 

others, Kaminsky and Simchi-Levi, 1998): the unique source of noise is the variability in demand; the 

Bullwhip Effect emerges as a consequence of the agents’ behavior; the metrics considered are the shortage 

penalties and the inventory costs. Once the material and the information flows are implemented, two engines 

are added: TOC and the order-up-to inventory policy. The experimenter chooses what engine the agents in 

the supply chain will use to make their purchasing decisions. 

(3) Devise the conceptual model using KAOS methodology. 

(4) ABMS development of the model using NetLogo, followed by verification using statistical tests. 

(5) Exploitation of the model: experimentation of different treatments. 

(6) Problem analysis: descriptive and inferential statistics to derive conclusions. 

 

2. LITERATURE REVIEW 

Theory of Constraints in Supply Chain Management. 

Elihayu M. Goldratt described in his book ‘The Goal – A Process of Ongoing Improvement’ (1984) his view 

about the best way to manage a company. He did it through fiction, telling how a troubled company managed 

to get over this situation. In a subsequent scientific work, Goldratt (1990) presented the Theory of 

Constraints (TOC) in more detail. This theory comprises three interrelated areas (Simatupang et al., 1997): 

logistics, logical thinking and performance measurement. In logistics, the methodology is based on the DBR 

scheduling method (Goldratt and Cox, 1984). The logical thinking is based on a continuous improvement 

cycle with five steps: (I) Identify the bottleneck; (II) Decide how to exploit the bottleneck; (III) Subordinate 

everything else in the system to the previous step; (IV) Elevate the bottleneck; and (V) Evaluate if the 

bottleneck has been broken, and return to the beginning. The performance measurement, which quantifies the 

application of this methodology, encompasses operational measures (throughput, inventory and operating 

expense) and financial measures (net profit, return on investment and cash flow), which obey to the same 

view: the only goal of the organization is to make money now and in the future. 

Although TOC was initially oriented on the production system of the company, its application to other areas 

of the business has been proposed, such as marketing and sales (Goldratt, 1994), project management 

(Goldratt, 1997) or SCM (Goldratt et al., 2000). In this latter area, several authors have researched the 

application of the TOC. As an example, Umble et al. (2001) described the application of TOC in the 

implementation of an ERP system to manage the supply chain. Cox and Spencer (1998) proposed a method 

for SCM through TOC, valid when one company directs the entire chain. However, when this assumption 

does not apply and there are different companies in the same supply chain, the implementation of TOC is 

more complex. A dilemma rises because each company has to decide between gearing to the interests of the 

supply chain as a whole and pursuing only their own interests. Simatupang et al. (2004) showed that 

collaboration between different independent firms, according to the TOC, generates a much larger benefits to 

participants than the consideration of individual interests of each company. 

Wu et al. (2010) developed an enhanced simulation replenishment model for TOC-SCRS (Theory of 

Constraints - Supply Chain Replenishment System) under capacity constraint in the different levels. The 

TOC-SCRS (Yuan et al., 2003) is a methodology widely used in businesses nowadays to improve the SCM 

and to reduce Bullwhip Effect. It is based on the use of two strategies (Cole and Jacob, 2002): (I) Each node 

holds enough stock to cover demand during the time it takes to replenish reliably; and (II) Each node orders 

only to replenish what was sold. The authors demonstrated the effectiveness of this system, in solving the 

conflict generated in determining the frequency and quantity of replenishment when the TOC- SCRS is 

applied in a plant or a central warehouse. In a later work (Wu et al., 2014), they proposed a two-level 

replenishment frequency model for the TOC-SCRS under the same constraints, which is especially suitable 

to a plan in which different products have a large sales volume variation. This methodology facilitates a plant 

or a central warehouse the implementation of TOC-SCRS.  

 

Multi-Agent Systems in Bullwhip Effect Reduction. 

MASs is a branch of Artificial Intelligence that proposes a model to represent a system based on the 

interaction of multiple intelligent agents (Wooldridge, 2000). Each agent evaluates different alternatives and 
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makes decisions, in a clearly defined context, through local and external constraints. De la Fuente and 

Lozano (2007) defend this methodology in the study of SCM, based on its own characteristics: it is a 

physically distributed problem; it can be described a general pattern in decision-making; each agent can 

consider both individual and chain interests; and it is a highly complex problem, which is influenced by the 

interaction of many variables. For this reason, since the work of Fox et al. (1993), who were pioneers in 

representing the supply chain as a network of intelligent agents, many studies have followed this line. 

Maturana et al. (1999) used the multi-agent architecture to create the Metamorph tool. It was aimed at 

facilitating the SCM in business through the introduction of intelligence in the design and manufacturing 

stage. Later Kimbrough et al. (2002) studied the agent’s capability of managing their own supply chain. The 

authors concluded that they can determine the most appropriate policy for each level, achieving a large 

reduction in the Bullwhip Effect generated along the system. Some years later, Mangina and Vlachos (2005) 

designed a smart supply chain in the food sector. They demonstrated that agents increase the supply cain’s 

flexibility, information access and efficiency. Liang and Huang (2006) developed a MAS to forecast the 

demand along a supply chain where each level has a different inventory policy. To calculate the forecast, 

they used a genetic algorithm. Fuzzy logic was introduced into the analysis by Zarandi et al. (2008). The 

authors constructed an agent-based system for SCM in dim environments. One of the latest studies on the 

subject is the one by Saberi et al. (2012), who analyzed the chain collaboration. In their work, the agents 

coordinate to make forecasts, to control the stock and to minimize total costs. Recently, Chatfield and 

Pritchard (2013) constructed a hybrid model of agents and discrete simulation in order to represent the 

supply chain. It was studied in several scenarios and they showed that returns of excess goods increase 

significantly the Bullwhip Effect. 

The literature review leads us to conclude that multi-agent methodology is widely used to experiment around 

complex systems, such as supply chains. More specifically, it contains several works which apply these new 

technologies to analyze the well-known problem of the Bullwhip Effect. Likewise, the application of TOC 

has been studied to improve the management in complex systems, including supply chains. However, the 

authors are aware of multiple real supply chains and know it is not common to apply Goldratt's theory. The 

systemic thinking prompts the actors to solve a major dilemma, which consists on that the methods of 

measurement, linked to reward and punishment policies,  in the supply chain are not usually defined from a 

systemic perspective, but from the relationships between each pair of nodes in the chain. Therefore, our aim 

is to compare the holistic TOC method against a traditional reductionist alternative –the ‘order-up-to’ 

inventory policy– from a multi-agent approach.  

 

3. PROBLEM FORMULATION 

The Bullwhip Effect gained much importance when, in the early 90's, Procter & Gamble noticed that their 

demand for Pampers diapers suffered considerable variations throughout the year, which did not correspond 

to the relatively constant demands of its distributors –in addition, the swings of its suppliers were greater 

(Lee et al., 1997). Since then, this phenomenon has been a fruitful research area within logistics studies. 

Nevertheless, at present, it is one of the main concerns for business regarding to SCM. As way of example, 

Buchmeister et al. (2012) illustrate this phenomenon using real data in three simulation cases of a supply 

chain with different level constraints (production and inventory capacities). 

In our study, we have considered a traditional single-product supply chain with a linear structure, composed 

of five levels: client, shop retailer, retailer, wholesaler and factory, as the one used in the ‘Beer Game’. 

Among the levels, there are two main flows: the material flow (related to the shipping of the product) from 

the factory to the client, and the information flow (related to sending the orders) from the client to the 

factory. Thus, there are five main actors. Four of them (shop retailer, retailer, wholesaler and factory) are 

responsible for managing the supply chain, in order to meet the other’s (customer) needs. 

The only purpose of the supply chain is, according to TOC, to make money, now and in the future. To assess 

the approximation of a company to this goal, the author proposes three financial metrics: net profit, return on 

investment (ROI) and cash flow. These metrics must be understood as complementary indicators. Thereby, 

improving the SCM requires the simultaneous increase of the three values. The next question is: how can the 

supply chain achieve it? Then, a second level of goals appears: (I) improve customer satisfaction; (II) 

improve the efficiency of the supply chain; and (III) improve the utilization of the capacity.  
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Here, we can link our analysis with the TOC, considering three operational metrics: throughput (the rate at 

which system generates money through sales), inventory (money invested in purchasing items intended to be 

sold) and operating expense (money spent in order to turn inventory into throughput). Customer satisfaction 

is a big contributor to throughput; increased efficiency means a decrease in operating expense; and 

improving capacity usage implies achieving good results in the inventory. This operational metrics can also 

be used to quantify the results of the supply chain, as the financial ones can be understood as a direct 

consequence of these.  

How do we attain these three goals of the second level? To increase customer satisfaction, the key element is 

minimizing missing sales. Our model does not consider the effect of other factors, such as marketing. The 

client will be satisfied if he finds what he needs in the shop retailer when he needs. To improve supply 

efficiency and capacity utilization, the chain needs to reduce the Bullwhip Effect that causes an amplification 

of the demands variability of levels upstream, which hinders both transportation and inventory management. 

Thus, the decrease of the Bullwhip Effect brings the system to improve its operational, and consequently, 

financial metrics.  

Many authors quantify the Bullwhip Effect in a level n of the supply chain as the quotient between the 

variance of the purchase orders launched (𝜎𝑃𝑂𝐸
2 𝑛

) and the variance of the purchase orders received (𝜎𝑃𝑂𝑅
2 𝑛

), 

adjusted both the numerator and denominator by the mean value (𝜇𝑃𝑂𝐸
𝑛, 𝜇𝑃𝑂𝑅

𝑛), according to equation 1. 

For stationary random signal, in a linear supply chain, over longs periods of time, both means values are the 

same. It should be noted that the purchase orders received by the shop retailer are the sales orders, which 

meet the demand of the customer, and that purchase orders emitted by the upper level of the supply chain 

(factory) translate in their own production. As the purchase orders launched by each level are the sale orders 

received by the next one, the total Bullwhip Effect generated in the supply chain (𝐵𝐸𝑜𝑟𝑑𝑒𝑟𝑠
𝑠𝑐) can be 

expressed as the product of the Bullwhip Effect in the four different levels, by equation 2. When this ratio is 

higher than 1, there is Bullwhip Effect in the supply chain.  

𝐵𝐸𝑜𝑟𝑑𝑒𝑟𝑠
𝑛 =

𝜎𝑃𝑂𝐸
2 𝑛

/𝜇𝑃𝑂𝐸
𝑛

𝜎𝑃𝑂𝑅
2 𝑛

/𝜇𝑃𝑂𝑅
𝑛
=
𝜎𝑃𝑂𝐸
2 𝑛

𝜎𝑃𝑂𝑅
2 𝑛 (1) 

𝐵𝐸𝑜𝑟𝑑𝑒𝑟𝑠
𝑠𝑐 =∏𝐵𝐸𝑜𝑟𝑑𝑒𝑟𝑠

𝑛

4

𝑛=1

 (2) 

This is a useful measure to quantify the evolution of orders, but only compares output variance with input 

variance, and does not describe the structure that causes the variation increase. For this reason, some authors 

(among others, Disney and Towill, 2003) also recommend the use of an alternative measure of the Bullwhip 

Effect at each level n of the supply chain (𝐵𝐸𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
𝑛), which quantifies fluctuations in actual inventory. It 

can be expressed as the quotient of the variance of the stock (𝜎𝑆𝑇𝑂𝐶𝐾
2 𝑛

) and the variance of the demand 

(𝜎𝑃𝑂𝑅
2 𝑛

), by means of equation 3. It is important to note that they are complementary measures. That is to 

say, to improve the SCM is necessary to reduce the two of them, and not just one at the expense of the other. 

𝐵𝐸𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
𝑛 =

𝜎𝑆𝑇𝑂𝐶𝐾
2 𝑛

𝜎𝑃𝑂𝑅
2 𝑛  (3) 

The goals of this level face two major obstacles of the SCM: uncertainty in both demand and lead time. 

Uncertainty in the final customer demand is modeled through various statistical distributions. Lead time is 

modeled constant, as stated in the ‘Beer Game’. Obviously, if orders lead time and material lead time were 

both null, the supply from the factory would instantly respond to customer requirements and Bullwhip Effect 

would not rise. The only relevant controllable factor (parameter) in our model is the engine to be used by 

agents to make their purchasing decisions.  For the sake of simplicity, we have not considered other causes 

of the Bullwhip Effect, as the uncertainty in the lead time or variation in prices.  

Figure 2 points out the p-diagram (parameter diagram –a widely used tool in robust engineering) that we 

have used to establish the perimeter of our study. In it, we can see the overall supply chain function, the 

noise sources that threaten the system function, and the parametric space, which are controllable factors 

either at engineering stage or manufacturing stage.  
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Figure 2 – P-diagram of the system that we have developed. 

 

4. DESCRIPTION OF THE MULTI-AGENT SYSTEM 

We have used KAOS methodology (Dardenne et al., 1993) for the conceptual design. It is an engineering 

methodology that joins, in the development of a software application, the overall objective that should be 

met and the specific requirements that should be considered. This methodology relies on the construction of 

a requirement model, whose graphical part can be represented by means of the KAOS Goal Diagram. Figure 

3 shows the KAOS Goal Diagram that we have created and used in the development of the system.  

TOC approach consists on managing the supply chain based on the bottleneck. This is one of the foundations 

of the TOC: any improvement that is deployed away from the bottleneck of a system represents a waste of 

resources. Therefore, this fact leads to a new question: Where is the bottleneck in this supply chain? The 

factory would be the bottleneck if its production rate cannot cover the customer demand. But the factory has 

not a capacity constraint in the ‘Beer Game’. The intermediate nodes, wholesaler and retailer, could be the 

bottleneck if its storage or transport capacity did not allow the supply chain to meet the final demand, but 

this is not the situation that we have considered. So, the bottleneck is the final customer demand. To 

maximize the flow at the bottleneck means to have zero missing sales at the shop retailer. Therefore, the 

drum is placed at the shop retailer. 

Each time that a demand event is triggered to the system, the drum makes all the agents react. Each agent 

(node) calculates its rope length to the drum position and makes the order decision based on its downstream 

buffer to the bottleneck. Instead of traditional safety stock based on material quantities, TOC-based buffers 

are a function of the lead time. Buffer management consists on moving the flow so that arrival happens on 

time at the bottleneck. Because the shop retailer is the drum, this agent looks for maximizing flow; which 

means preventing missing sales by linking the final customer demand forecast straight to the factory. All 

other nodes work subordinated to the drum with a shipping rope.  

Each node works using a finite state machine schema. The agent is idle until the drum triggers it. From the 

idle state it switches to serve backorders state. Then, it flows to the shipping orders state. Once the agent has 

moved material downstream, it moves to the sourcing state (take care of information flow). Finally the agent 

moves to the reporting state, when it cares about updating and exporting information. And then the agent 

switches now to the idle state to reiterate the loop. The state transition diagram is represented in figure 4.  
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Figure 3 – KAOS Goal Diagram of our MAS. 

 
Figure 4 – State transition diagram (local for each agent). 

Some details about our simulation engine should be commented. The simulation clock advances based on a 

FEL (future event list). Events are scheduled in the future and the clock advance will move to the event 

which is sooner due. Every takt (block of time between two consecutive arrivals of customers to the shop 

retailer) schedules the next one. Each customer arrival schedules new events in the FEL so to divide each 

time bucket into small time windows. Synchronizing mechanisms are used to force nodes to follow a 

downstream sequence for material flow and an upstream sequence for the orders flow.  

During these sequences agents transition their states to perform all the activities: move material downstream, 

move orders upstream, serve backorders just in case, serve the current order, place backorder if needed, place 

its purchase order upstream (according to the settings for the order policy), and report data into the export 

file. Of course the system behaves polymorphous depending on the setting of the experiment. This means 

that details of what each node does at each state follows the appropriate rules linked to the parameters given 

at the setup stage.  
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We have used robust SW engineering techniques (Taguchi, 2000) to build the model and NetLogo 5.0.5 to 

implement it. Figure 5 shows a screenshot of the interface window of the implemented model. The interface 

window provides the experimenter with the animation frame, the controls to setup parameters and to run 

each experiment, and the graphics and monitoring stuff to track what the system is doing. NetLogo provides 

two additional windows, one for the model documentation and another for the model code. 

In the next paragraphs we will clarify some relevant details about what the system does when operating 

under TOC parameters and when the order-up-to policy is the selection made by the experimenter. 

 

Figure 5 – Screenshot of the system interface at one particular moment of the simulation. 

 

Order-up-to inventory policy. 

This policy is implemented as follows: at the end of each period t, the shop retailer, retailer, wholesaler and 

factory update the forecast (𝐷𝑡̂) based on the demand or order received, by means of a moving average of the 

last three observations (𝐷𝑡−𝑖), according to equation 4. In this policy, under the assumption of normal 

demand, the order-up-to point (𝑦𝑡) is estimated as the product of the forecast and the lead time (𝐿), plus a 

term related to the safety stock (equation 5). It depends on a parameter (𝑍) that is a function of the security 

level and the standard deviation of the error (𝑆𝑡). We have used 𝑍 = 1.64 in order to work with a confidence 

level of 95%. The purchase order quantity for each period is the difference between the order-up-to point of 

this period and the previous one, plus the demand of the previous period, by equation 6. Note that the 

purchase order arrives at the start of period t+L and sales orders are filled at the end of each period. More 

information about this management policy can be found in Chen et al. (2003). In our case, we have used a 

three period moving average to calculate the forecast.  

𝐷𝑡̂ =
1

𝑛
∙∑𝐷𝑡−𝑖

𝑛

𝑖=1

 (4) 

𝑦𝑡 = 𝐿 ∙ 𝐷𝑡̂ + 𝑍 ∙ √𝐿 ∙ 𝑆𝑡 = 𝐿 ∙ 𝐷𝑡̂ + 𝑍 ∙ √𝐿 ∙ √
1

𝑛
∙∑(𝐷𝑡−𝑖 − 𝐷𝑡−𝑖̂ )2

𝑛

𝑖=1

 (5) 

𝑞𝑡 = 𝑦𝑡 − 𝑦𝑡−1 + 𝐷𝑡−1 = (1 +
𝐿

𝑛
) ∙ 𝐷𝑡−1 − (

𝐿

𝑛
) ∙ 𝐷𝑡−(𝑛+1) + 𝑍 ∙ √𝐿 ∙ (𝑆𝑡 − 𝑆𝑡−1) (6) 
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DBR methodology - Goldratt’s TOC policy. 

The DBR methodology has been implemented according to the Goldratt’s TOC, summarized in section 2 and 

following to the meta-model explained above. We should remember that, in the context we are considering, 

the shop retailer is the constraint in the system, so it must be the drum. The aim of the solution is to protect 

it, and therefore the supply chain as a whole, against process dependency and variation, and thus to optimize 

the system. In these circumstances, the other levels must be subordinated to the shop retailer. The buffer is 

the material release duration and the rope is the release timing. Kelvyn Youngman (2009) has developed an 

outstanding guide for the implementation of the TOC in systems of very different kinds, which can be 

consulted to get further detail in the process described below.  

In the TOC mode, the system operates in two stages. In the first one, the systemic condition to tie the 

different levels of the supply chain through time (and not by product) is established. It is the planning stage 

and it is orientated to operate the system as a whole. In the second one, the buffer is administered along the 

intermediate stations, to guide the way in which the motor is tuned for peak performance. It is the control 

stage that allows us to keep a running check on the system performance. The idea is summarized in figure 6. 

 
Figure 6 – Two-stage based operation system.  

With the previous objective, at each time unit, the factory uses the history of the demand in the shop retailer 

(the time interval defined by the rope, which is the period of time to protect), in order to decide the 

production orders that must be placed in the channel (the manufacturing time is equal to the lead time in the 

remaining levels: 3 periods). Subsequently, each node of the supply chain, except the shop retailer (as no 

other level can be found downstream) manages the buffer. The horizontal channels are the buffer of the 

model. The buffer is time and material flow, but not the order flow. Manage it means compensating in each 

takt the flow dissipated downstream after shipping. Therefore, for example, in the case of the factory, the 

buffer is 9 time units (lead time of 3 units in the previous three levels). Unlike classical policies, the TOC 

orders are dosage orders into the buffer and they are dissipative. They have no lead time, because each agent 

decides what to dose subordinated to the bottleneck. They do not generate backorders, as the next dosage 

again obey the bottleneck. Figure 7 graphically represents this idea, showing the drum, the buffer and the 

rope.  

 
Figure 7 – Schematic representation of the MAS when it works according to the TOC. 
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5. SIMULATION STUDY AND CONCLUSIONS  

As the equations related to the inventory policy that we have used to contrast the results are based on the 

assumption of normal demand, we have simulated the customer demand through a normal distribution with a 

mean of 12. We have performed treatments on three different scenarios: when the variability is low (standard 

deviation of 1; coefficient of variation 8.3%), when the variability is moderate (standard deviation of 3; 

coefficient of variation 25.0%), and when the variability is high (standard deviation of 5; coefficient of 

variation 41.7%), in order to extend the conclusions considering the effect of the demand variability in the 

SCM. Thus, our experimentation approach, can be written as shown in equation 7, where 𝑌 is a vector of the 

key performance indicators (in terms of Bullwhip Effect); 𝑋 is the policy management, which is a nominal 

attribute variable (order-up-to inventory policy or DBR methodology); 𝑍 is an external noise condition, 

which is characterized for de experiment as 𝑁(12, 𝜎), where 𝜎 is set to three different levels in order to 

represent different levels of variability with respect to the average demand; and 𝜉  represents the residuals –

the unexplained part of the system response.  

𝑌 = 𝑓(𝑋, 𝑍) + 𝜉 (7) 

So, it is a full DoE (Design of Experiments) with two factors. One factor (order policy) is controllable and is 

taken at two levels; while the other factor (demand law) is noise and enters the simulated experiment at three 

levels. This idea is shown in table 1. 

 

Factor Level Treatment Demand Law (Z) Order Policy (X) 

Demand Law  Normal(12,1) 1 Normal(12,1) Order-up-to inv. pol. 

(Z) Normal(12,3) 2 Normal(12,3) Order-up-to inv. pol. 

 Normal(12,5) 3 Normal(12,5) Order-up-to inv. pol. 

  4 Normal(12,1) DBR methodology 
Order Policy Order-up-to inv. pol. 5 Normal(12,3) DBR methodology 

(X) DBR methodology 6 Normal(12,5) DBR methodology 

Table 1 – DoE (Design of Experiments) table 

A time horizon of 330 periods was used for each treatment. The first 30 are discarded as warm-up period, so 

to avoid the initial transitory that can alter the results. On the other hand, the 300 remainder periods is a large 

enough time interval to check stability according to the common practices.  

 

Model verification and validation. 

A fundamental step in any modeling process is the verification of the model, with the aim of checking its 

cohesion and consistency; that is, to check that the development matches the logic of the conceptual design. 

This model was created following strict rules of clean code, test driven development focus, versioning for 

continuous functionality increments, and it uses failure modal analysis in order to prevent failures. Although 

these good practices of software engineering reduce the probability of error, they do not eliminate it 

completely. Therefore, we have complemented it with mechanics (exception handling, cross checking, police 

agents for system audits) for early detection of any system malfunction. 

Another essential step in simulation process is the validation phase. The experimenter wants model 

predictions to match reasonably well the reality, so that the simulation model is useful to devise changes and 

apply them to improve the real system. To validate our model we have used factory acceptance test (FATs), 

so to confirm that the model exhibits a well known behavior when exposed to controlled conditions. As an 

example, we include one this kind of tests that are implemented in the model. 

 Test conditions:  (I) Constant demand in the shop retailer: 12 sku / period. 

    (II) Damaged equipment on the factory: zero production. 

Expected behavior:  (I) It only serves customers until the initial stock is depleted. 

    (II) Cumulative backorders are generated at each node. 

Acceptance criteria:  (I) Demand turns into missing sales (12 sku / period) in steady state. 

    (II) Storage costs are zero in steady state. 

Once the FAT tests were satisfactory, the standard approach was used when comparing treatments under 

stochastic conditions: each treatment is replicated (it was run three times) so that the statistical analysis takes 

into account the experimental error. An overall stability study (run several trajectories –replicas– of each 
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experimental treatment) about the key output metrics (lost sales, stocks) was also conducted. And, of course, 

we did care about the experimental error (using replicas and hypothesis testing).  

The model statistically probed to be valid: matched expected outputs under controlled scenarios, reached 

stability and have repeatability. 

 

Analysis of the treatments. 

Tables 2, 3, 4 and 5 report the final results of the treatments, both the outcomes exported from the simulation 

(process metrics) and the results of the simulations in terms of Bullwhip Effect and missing sales 

(performance metrics). 

 

 

Process Metrics 

Scenario 1 

Low variability  

[Treatment 1] 

Scenario 2 

Mid variability 

[Treatment 2] 

Scenario 3 

High variability 

[Treatment 3]   

Consumer Demand 11.98 – 1.04 11.97 – 7.97 11.91 – 27.61 

Shop Retailer Purchase Orders 11.47 – 98.39 11.49 – 133.53 11.64 – 232.13 

Retailer Purchase Orders 12.04 – 380.20 11.79 – 715.74 12.50 – 1008.79 

Wholesaler Purchase Orders 11.79 – 1405.58 13.17 – 1994.30 13.47 – 3304.94 

Factory Production 12.08 – 4247.31 14.15 – 4162.65 13.03 – 7228.66 

Shop Retailer Inventory 12.0 – 101.1 19.2 – 215.9 34.9 – 613.6 

Retailer Inventory 67.9 – 1011.38 105.1 – 4429.3 154.5 – 8362.3 

Wholesaler Inventory 218.9 – 13471.1 384.1 – 22900.2 559.9 – 51286.0 

Factory Inventory 577.7 – 32599.2 593.1 – 13674.0 1057.0 – 137635.3 

Table 2 – Results of the tests when the order-up-to inventory policy is used (I): Mean (left) and variance (right) of the consumer demand, purchase 

orders, factory production and inventory in the different levels of the supply chain (without warm-up time). 

 
 

Performance Metrics 

Scenario 1 

Low variability  

[Treatment 1] 

Scenario 2 

Mid variability 

[Treatment 2] 

Scenario 3 

High variability 

[Treatment 3]   

Shop Retailer Bullwhip Effect [Orders] 99.13 17,47 8.60 

Retailer Bullwhip Effect [Orders] 3.68 5,22 4.05 

Wholesaler Bullwhip Effect [Orders] 3.78 2,49 3.04 

Factory Bullwhip Effect [Orders] 2.95 1,94 2.26 

Supply Chain Bullwhip Effect [Orders] 4063.14 442.07 239.33 

Shop Retailer Missing Sales [sku] 163 124 86 

Shop Retailer Bullwhip Effect [Inventory] 97.58 27,10 22.22 

Retailer Bullwhip Effect [Inventory] 10.28 33,17 36.02 

Wholesaler Bullwhip Effect [Inventory] 35.43 32,00 50.84 

Factory Bullwhip Effect [Inventory] 23.19 6,86 41.65 

Table 3 – Results of the tests when the order-up-to inventory policy is used (II): Orders Bullwhip Effect and Inventory Bullwhip Effect generated 
along the different levels, in addition to missing sales to evaluate the performance of the supply chain (without warm-up time). 

Tables 2 and 3 demonstrate the huge generation of Bullwhip Effect along the supply chain when using the 

order-up-to inventory policy. Whilst the quantity order average remains constant along the supply chain 

nodes (it only varies slightly due to missing sales and inventory accumulation), the quantity order variance 

increases greatly as we move upstream. It is interesting to see that the average inventory increases 

dramatically upstream the chain. Nevertheless, the amount of missing sales is noteworthy. As a conclusion, 

with the order-up-to policy the service level to customers is not extremely bad (still, it is not excellent), and 

the weak point is that this bad service is obtained at a huge cost in terms of inventory. The lesson learnt, and 

it is very usual in the marketplace, is that the customer service is protected with huge inventory and this 

policy is not effective, because the root cause of the problems is not being considered. According to the 

industrial experience of the authors, this is a very common finding in ailing processes. 

Looking at these tables, it can be seen that the greatest Bullwhip Effect is generated, according to the 

classical formulation, in the scenario of low variability. Obviously, the greater the variability in consumer 

demand, the greater the variability in the rate of production of the factory. However, the relationship between 

the two variances is much larger when the variability in consumer demand is low. Moreover, this classic 

inventory management policy generates more missing sales when the variability of consumer demand is low. 

At first glance, this result might seem surprising, but it is not, as the explanation lies in the level of 
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inventories: when the variability is very high, the levels of the supply chain tend to be overprotective. For 

this reason, the missing sales are reduced at the expense of increasing the inventory far from the customer.  

 

 

Process Metrics 

Scenario 1 

Low variability  

[Treatment 4] 

Scenario 2 

Mid variability 

[Treatment 5] 

Scenario 3 

High variability 

[Treatment 6]   

Consumer Demand 12.07 – 1.13 12.47 – 11.03 11.79 – 24.43 

Shop Retailer Purchase Orders 12.10 – 9.11 13.04 – 75.82 12.83 – 134.10 

Retailer Purchase Orders 12.10 – 7.32 12.33 – 58.37 11.66 – 101.48 

Wholesaler Purchase Orders 12.09 – 5.63 12.36 – 53.60 11.47 – 110.75 

Factory Production 12.09 – 7.98 12.47 – 76.48 11.39 – 145.03 

Shop Retailer Inventory 9.2 – 12.5 16.8 – 74.1 21.9 – 142.9 

Retailer Inventory 14.0 – 23.8 18.6 – 140.4 20.6 – 209.7 

Wholesaler Inventory 50.7 – 17.2 56.5 – 190.7 59.3 – 523.7 

Factory Inventory 97.1 – 18.0 113.6 – 162.0 121.0 – 441.1 

Table 4 – Results of the tests when the DBR methodology is used (I): Mean (left) and variance (right) of the consumer demand, purchase orders, 

factory production and inventory in the different levels of the supply chain (without warm-up time). 

 
 

Performance Metrics 

Scenario 1 

Low variability  

[Treatment 4] 

Scenario 2 

Mid variability 

[Treatment 5] 

Scenario 3 

High variability 

[Treatment 6]   

Shop Retailer Bullwhip Effect [Orders] 8.02 6.57 5.05 

Retailer Bullwhip Effect [Orders] 0.80 0.81 0.83 

Wholesaler Bullwhip Effect [Orders] 0.77 0.92 1.11 

Factory Bullwhip Effect [Orders] 1.42 1.42 1.32 

Supply Chain Bullwhip Effect [Orders] 7.03 6.94 6.15 

Shop Retailer Missing Sales [sku] 1 54 82 

Shop Retailer Bullwhip Effect [Inventory] 11.01 6.72 5.85 

Retailer Bullwhip Effect [Inventory] 2.61 1.85 1.56 

Wholesaler Bullwhip Effect [Inventory] 2.34 3.27 5.16 

Factory Bullwhip Effect [Inventory] 3.19 3.02 3.98 

Table 5 – Results of the tests when the DBR methodology is used (II): Bullwhip Effect and Alternative Bullwhip Effect generated along the different 
levels, missing sales and Goldratt’s operational metrics to evaluate the performance of the supply chain (without warm-up time). 

Tables 4 and 5 point out that the TOC also causes Bullwhip Effect in the supply system, since variability in 

purchase orders increases and both the mean and the variance of the inventory level increment as they move 

away from the consumer. However, a simple comparison of these tables with respect to tables 1 and 2 makes 

clear the enormous effectiveness of DBR methodology in managing the supply chain. The amplification of 

the variability of orders is much lower when the supply chain is managed according to the practices proposed 

by Goldratt. Likewise, the TOC gets to manage the supply chain with minor inventories at all levels. 

Moreover, despite that, the amount of missing sales decreases meaningfully. Hence, the important findings 

using TOC approach is that both negative effects (Bullwhip Effect and missing sales) reduce at the same 

time when compared to the order-up-to policy.  

The generation of the Bullwhip Effect in the supply chain and the improvements introduced by Goldratt’s 

practices in comparison with the traditional management policies can be shown graphically in many different 

ways. For example, figure 8 exhibits the production rate of the factory throughout the time horizon for the 

two tests assuming normal with mean 12 and standard deviation 3 in the final consumer. When the system 

works according to the order-up-to inventory policy, the factory production varies greatly: in most periods, it 

has no production needs while in some specific moments it must manufacture very high amounts of product. 

With the DBR methodology, however, variability in the factory production is much lower, which translates 

in cost savings from different perspective (among others, labor, inventory, and transportation costs). 

Why does such amplification occur? When the supply chain is managed according to the order-up-to 

inventory policy, the peaks in orders received for each level translate into an even bigger peak in orders 

placed by that level. The time difference is the lead time. That is to say, each level contributes increasing the 

distortion in the supply chain, and so decreasing the reliability of the transmitted information. When using 

TOC, the supply chain performs dramatically better. 

The other way to observe the Bullwhip Effect is through the inventory of the various levels. It is possible to 

see it, for example, by means of box plots. Figure 9 shows these graphs, with the average, the indicators of 

the first and third quartile and the upper and lower limits, for the stock of the different members of the supply 
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chain in tests with mean 12 and standard deviation 5. It should be noted that the values lower than 0 are 

related to inventory backorders that will be met the following periods. It is enough to compare the vertical 

scale of the two graphs to observe the improvements introduced by TOC, both in mean and in variance. 

 
Figure 8 – Factory production in the two tests (order-up-to inventory policy and DBR methodology) carried out with a N(12,3). 

 
Figure 9 – Box plots of the inventory level in the different members of the supply chain in the two tests (Order-up-to inventory policy and DBR 

methodology) carried out with a N(12,5). 

 

Statistical significance of results. 

By looking at the plots shown above we have visual evidence that the supply chain performs much better 

when using TOC, as commented. Nevertheless, it should be formally verified. The statistical tests were 

conducted for the different treatments, although they are only shown in one case, by way of example. 

First, we concentrate on missing sales at the shop retailer, which is the only point where the fact of missing 

sales is really a critical concern. When the standard deviation of the demand is 5, we have the distribution for 

the missing sales penalty in each time bucket (sample size N > 150, once excluded the warm-up period). We 

have tested the null hypothesis “H0: missing sales mean = 0”. For the order-up-to inventory policy, using 1-

sample t test has a pValue less than 5%, which rejects null hypothesis. So, the penalty for missing sales is 

significantly different from zero. On the other hand, running a same length trajectory with TOC, all time 

buckets, after the warm-up period, have zero lost sales. The conclusion is that TOC policy effectively 

protects the supply chain against losing sales, whilst this does not happen with the order-up-to policy. 

Once we have got formal evidence that the supply chain performance significantly improves when applying 

TOC in terms of external customer satisfaction (here, maximizing sales by exploiting the bottleneck), we 

now take care of getting also formal evidence that this achievement is not at the expense of increasing 

inventory cost in the overall supply chain. The inventory total cost has been collected during a long (for 

example, 200 time buckets) period of time after the system warm-up, and proceed first to check is the 

variance of this metric is unequal when using TOC versus when using order-up-to policy. We check, using a 

2-variance test, the null hypothesis “H0: variance (total inventory cost in the supply chain) | policy = TOC) 

= variance (total inventory cost in the supply chain) | policy = order-up-to)”. Figure 10 shows that in the 

sample, the standard deviation statistic of the metric at TOC level is less than at order-up-to level; the Levene 
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test shows a p-value lower than 5%; so we reject null hypothesis. Therefore, TOC policy induces less 

variance in the inventory cost (so, to the goal stock in the system). 

Figure 10 also displays the Welch’s test to compare the means. Again, we reject the null hypothesis “H0: 

mean (total inventory cost in the supply chain) | policy = TOC) = mean (total inventory cost in the supply 

chain) | policy = order-up-to)”. And, we take the alternative hypothesis: the total inventory cost in the supply 

chain is less when we use TOC policy. In conclusion, as expected, TOC not only gives a full protection 

against missing sales (while order-up-to does not), but besides, TOC achieve this result even reducing the 

total inventory cost (less variance and lower mean). 

 
Figure 10 – Hypothesis contrast to the significant difference between the inventory costs and averages of both policies. 

 

6. FINDINGS, RECOMMENDATIONS AND NEXT STEPS 

The new competitive environment has granted the Supply Chain Management a strategic role in the search 

for competitive advantage. For this reason, the orders variance amplification along the supply chain, known 

as the Bullwhip Effect, is an important concern for businesses, as it is a major cause of inefficiencies. 

Traditional management policies linked to the mass production paradigm, such as order-up-to inventory 

policy, are unsuccessful ‒as already shown in literature‒ in terms of fighting the Bullwhip Effect.  

KAOS methodology was used to devise the multi-agent simulation model carried out on this research. The 

Gall’s incremental principle (a complex system that works properly has evolved from a simple system which 

was effective) has been applied to end up with a highly reliable, self-controlled, tested and flexible model so 

to experiment TOC approach versus order-up-to policies for managing a multi-echelon supply chain and 

collect data evidence of system behavior. Statistical analysis have been applied to these data blocks taking 

into account the warm-up period, stability study and the final hypothesis testing to raise our conclusions. 

Our first finding was that the higher the final customer demand variability, the higher is the amplification 

upstream the supply chain, because each node tends to overprotect itself due to the fear of breaking stock. 

TOC philosophy has demonstrated in this work that is highly effective in remedying this issue. A dramatic 

improvement in the overall supply chain has been reached in several explored levels of external demand 

variability, but the more important point is that every level has improved its own performance by 

subordinating to the bottleneck. Hence, the best solution for the system is the best solution for each 

individual member. 

The major contribution of this work has been to demonstrate that considering only the main effects, there are 

enough reasons to manage the supply chain according to Goldratt's philosophy. 

There are plenty of model extensions and future works that this research group is planning as next steps on 

this fascinating topic.  

(1) To analyze why, provided that TOC is a mature and validated theory, it is not yet widely used. We 

wonder that moving the agents away from their natural egoist behavior needs some educational phases, and 

simulation can play an important role here.  
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(2) To extend this model to a larger noise conditions scenario. Now the noise factors have been limited in 

the model to include only different levels of variability in the external demand and to keep constant the 

delays in the material and in the information flows. Of course, considering other disturbance factors like 

scrap, variability in transportation delays, errors in the information flow and other sources of waste in the 

supply chain, a comparison of system robustness using TOC versus other management policies can provide 

insights to other relevant findings.  

(3) To place SCM rules and controls to prevent selfish behavior of agents that could operate against the 

supply chain major interests. We also plan to explore to what extent agents applying fuzzy logic decision in 

their quest of local optima compares against applying holistic fuzzy logic decision making engines. Thereby, 

the concept of the Nash Equilibrium in supply chains must be introduced. 

 (4) To model adaptive mechanisms on the supply chain in order to detect and  react to  bottleneck 

displacements; for instance, due to changes in the storage technology, storage policies, multimodal 

transportations costs and so forth.  

Even though the shift in our production and management systems was initiated after World War II, with lean 

manufacturing taking over the mass production paradigm, the systemic approach has spread in a very 

irregular way. Agent-based modeling and simulation  is an important tool to educate people, and to 

contribute to create critical mass  for a large deployment of the systemic approach, which in the end 

translates in a better skilled population to deal with complex systems like supply chains. 
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