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Abstract

Test assembly design problems appear in the areas of psychology and educa-
tion, among others. The goal of these problems is to construct one or multiple
tests to evaluate some criteria. This paper studies a recent formulation of the
problem known as the one-dimensional minimax bin-packing problem with bin
size constraints (MINIMAX BSC). In the MINIMAX BSC, items are initially
divided into groups and multiple tests need to be constructed using a single
item from each group, while minimizing the difference among the tests. We first
show that the problem is NP-Hard, which remained an open question. Second,
we propose three different local search neighborhoods derived from the exact
resolution of special cases of the problem, and combine them into a Variable
Neighborhood Search (VNS) metaheuristic. Finally, we test the proposed al-
gorithm using real-life-based instances. The results show that the algorithm is
able to obtain optimal or near-optimal solutions for instances with item pools
with up to 60.000 items. Consequently, the algorithm is a viable option to de-
sign large-scale tests, as well as to provide tests for online small-sized situations
such as those found in e-learning platforms.

Keywords: Bin Packing, Test Assembly Design, Test Splitting, Variable
Neighborhood Search.

1. Introduction

Test assembly design studies the problem of selecting the optimal subset of
items (questions) among those available to define one or several tests (question-
naires) subject to specific constraints and objectives. These problems appear in
multiple areas, specifically in test design (van der Linder, 2005) both for edu-
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cation (Porter et all |2013; [Sun et al. |2008]) and psychology studies (Veldkamp|
2005)).

Based on the specific objective of the test, as well as the characteristics
of the questions and questionnaires, different problems and formulations may
appear. One of these formulations arises when considering the problem as a
packing problem, specifically as a one dimensional Bin Packing Problem (BPP)
with additional constraints (see [Dyckhoff] (1990)) for a classification of packing
problems, and Wascher et al.| (2007) for an update of the previous classification).
In the BPP formulation, the questions and questionnaires are interpreted as
the items and the bins of the BPP, respectively, and the weight of the items
corresponds to some metric (e.g., the difficulty of the question) that needs to be
considered during the test design. The objective of the problem is to find disjoint
subsets of all the items so that the sum of weights (i.e., the total difficulty) of
each subset is as evenly matched as possible.

In this work we consider the formulation introduced in [Brusco et al.| (2013).
This formulation is known as the one-dimensional minimax bin-packing problem
with bin size constraints (MINIMAX_BSC). To solve the problem, the authors
propose a mixed zero-one integer linear programming model that is then solved
using the CPLEX commercial software. For large real-life problems, the authors
propose a Simulated Annealing (SA) algorithm that outperforms the quality of
the solutions provided by CPLEX.

While Brusco et al.| (2013]) do not address the complexity of the problem, the
analysis of the results showed that all of the algorithms proposed in the paper
were able to optimally solve large problems with 2 questionnaires, leading the
authors to hypothesize that the special case of 2 questionnaires may be solvable
in polynomial time (Brusco et al.,|[2013, p. 623). Furthermore, the quality of the
solutions provided by the SA deteriorates as the number of questionnaires in-
creases, which may identify possible improvements if different solution methods
were used.

1.1. Contributions of this work

In this paper, we address the complexity of the MINIMAX_BSC and demon-
strate that the MINIMAX _BSC is NP-Hard when two questionnaires are to be
constructed and strongly NP-Hard when more than two questionnaires are re-
quired. We also show that the case with two sets of questions can be optimally
solved in polynomial time and that the case with two questionnaires can be
efficiently solved as a subset sum knapsack problem (Kellerer et al., 2004)).

Based on these special solvable cases, we derive a new constructive heuristic
and three local search neighborhoods. These methods are then combined in
a Variable Neighborhood Search (VNS) metaheuristic (Mladenovi¢ & Hansen),
1997)) to provide a combined approach to solve the problem. VNS is a popu-
lar metaheuristic approach (Mladenovi¢ & Hansen, [1997; [Hansen et al.; [2010)
based on the use and exploration of different local neighborhoods of an incum-
bent solution and a mechanism to escape from local optima by restarting the
search on random neighbor solutions. Both mechanisms provide a method to
systematically explore the solution space.
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The results of the method clearly outperform those provided by previous
algorithms, such as the SA method proposed in Brusco et al.| (2013). More
specifically, the proposed method is able to routinely reach a BPP-based lower
bound in instances with a large number of questions per questionnaire (i.e., over
ten questions per questionnaire) with characteristics of real-life problems, and
still manages to obtain small deviations from the theoretical bound in other
cases.

1.2. Paper outline

The remainder of the paper is structured as follows. In Section [2] we study
the problem, describe its mathematical formulation, address the issue of com-
plexity and identify special cases that can be efficiently solved. We also outline
some of the work in the literature devoted to test design and other related prob-
lems, such as the BPP. In Section |3| we describe the proposed local searches
and a constructive heuristic. We also propose their combination in a VINS-based
method. In Section[d we describe the results of a computational experiment to
assess the quality of the proposed algorithm. Finally, in Section [5} we provide
conclusions of the present work and identify some future areas of research.

2. Problem description

2.1. Literature review

Test assembly design was early identified as a combinatorial optimization
problem. According to Van der Linden (van der Linden, |1998)), an initial work
in the field (Birnbaum), [1968) proposed a three step process to design and con-
struct tests: (1) identification of the goal of the test under construction; (2)
identification of a target function in accordance with the goal; and (3) selection
of items based on the target function and the fulfillment of some constraints.
These steps clearly mimic the formulation and resolution of any other combina-
torial optimization problem.

These three steps are preceded by a preliminary one in which the item pool is
constructed. Item pool construction requires the estimation of the information
function of the items, a step that is performed using and Item Response Theory
(IRT), see |Veldkampl| (2013)) for a basic description and a critique of IRT, and
Lu/ (2014]) for a description of an estimation method. The information function
is then discretized into specific ability levels of interest (such as the pass/fail
ability level for an examination test) that provide coefficients for the objective
and/or the constraints of the combinatorial optimization model.

The present paper only considers the item selection process. Even when
we limit our attention to the selection step, the literature of the field is very
broad. We can divide previous work into three groups: (1) offline single test
construction, in which the objective is to design a single test, which is com-
pletely constructed before its use; (2) online single test construction, in which
the objective is to design a single test, which is sequentially constructed using
the information provided by the answers to previous items; and (3) multiple
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test construction, in which multiple tests are constructed together in order to
evaluate examinees with different, but equivalent, test forms.

Note that a method to solve any of these problems can be used to solve other
problems after some modifications, and consequently we offer a review of recent
procedures for each of these three methods.

Offline single test construction is known in the literature as static test gen-
eration (Nguyen & Fong} |2013)), or automated test assembly (Veldkamp) [2013]).
A general reference on the area (van der Linder, [2005) provides a general in-
teger programming formulation for the problem. The proposed objective is to
maximize the minimum amount of discrimination index on any ability level of
interest, while satisfying some constraints on the different requirements of the
test. [Veldkamp| (2013]) considers the model in [van der Linder| (2005)) under ro-
bustness considerations on coefficients provided during item pool construction.
The effect of using a robust formulation is then verified by constructing a test
using a 306 items pool, and comparing the solutions provided by both models.
The robust solution is shown to be less sensitive to errors in the evaluation of
the information function.

Nguyen & Fong| (2013)) identifies the problem as a multidimensional knap-
sack problem (Kellerer et al., [2004), in which the test tries to maximize the
discrimination degree of the test (how good the question is at recognizing user
proficiency) under constraints on number of questions, time to perform the test,
average difficulty and number of questions per topic. The model is then solved
using a branch and cut based procedure and the solutions are compared to
previous methods found in the literature on instances with up to 50.000 items.

Online single test construction corresponds to the construction of the test
along with its resolution and it is usually known in the literature as CAT (com-
puterized adaptive test). Due to the variable nature of the problem, the methods
are usually constructive and item selection makes use of greedy rules. Further-
more, CATs try to take into account that multiple tests are to be generated
and, thus some randomization is introduced to avoid excessive use of a subset
of questions.

In [He et al| (2014), four different item-selection methods are evaluated.
These methods take into account multiple particularities, such as side con-
straints, content specifications, time requirements, or item formats, among oth-
ers. The heuristics are compared in terms of their use of items (how good
are they providing multiple different tests) and their accuracy to measure the
information function.

Edmonds & Armstrong| (2009) considers a hybrid between offline and online
single test construction, denoted as Multiple Stage adaptive Test (MST). The
hybrid divides items into groups, each belonging to a different stage of the test.
When an item is to be selected, the method randomly takes an item from the
corresponding group by taking into account the stage and the level shown by
the examinee on previous items. The definition of each group is modeled and
solved using a commercial solver (CPLEX) for a 1.336 items pool.

While IRT is the predominant method to evaluate the information provided
by the items, alternatives exist. In|Smits & Finkelman| (2014) a health-oriented



140

150

160

170

180

alternative is put forward. The objective is now to minimize the time required
to administer a diagnosis. Consequently, the method minimizes the number of
questions required to identify the expected total score of the test. The method
applies an ordinal regression on the previous answers in order to stop admin-
istering questions once a required degree of precision on the final result of the
test has been reached. The applicability of the model is then tested on a real
data set provided by a screener for depression.

Multiple test construction, or parallel test design, is used when multiple in-
terchangeable tests need to be constructed. An example in which multiple tests
are needed is the evaluation of different candidates at different time frames, or
the assignment of different tests to different students in order to avoid cheating.

A basic multiple test construction method builds tests sequentially until the
desired number of tests have been generated. |Chen et al.| (2012) proposes one
of these sequential methods. The method first divides the item pool into groups
(referred as cells) containing questions with similar characteristics. Then, a
specified number of items from each group are randomly selected in order to
generate different tests in each execution. |Chen| (2015) provides an improved
method that incorporates a content-balancing element similar to those found on
CAT test construction methods. Both works use a real 540 items pool to test
their proposed method.

Chang & Shiu| (2012) proposes a method to construct multiple tests based on
CLONALG, an algorithm based on the clonal selection principle in a biological
immune system. The authors report results with a 4.000 items pool used to
construct 5 parallel tests.

Hwang et al.| (2008) proposes a tabu search approach that generates multiple
tests subject to time constraints and identical number of questions per test. The
method was tested in simulated 50.000 items pools, which represents the largest
sized item pool used in the literature.

The previous references try to focus on constructing a predefined number of
tests while minimizing deviations among the tests and/or maximizing the dis-
crimination power of each test. Another possible objective aims at maximizing
the utilization of the item pool, by constructing the maximum number of tests
under some constraints on the repeated use of each item.

Songmuang & Ueno| (2011) consider a mixed problem in which both the
number of constructed tests and quality of each individual test are considered.
The problem is then solved using a Bee Algorithm. The computation is per-
formed using parallelization and multiple tests are obtained for item pools with
up to 20.000 items.

Ishii et al. (2014) considers the maximization of the number of tests using
a maximum clique formulation. Their work builds upon the study by Belov &
Armstrong (2006)), in which the problem is assimilated to a set packing problem
and solved using a constraint programming approach. The proposal of [[shii
et al.| (2014) constructs a graph in which a maximal subset of tests that share
none or few items (the clique) is sought. The method first constructs multiple
tests with the required conditions like the discrimination power and number of
items used (see also [Belov, 2008)). The tests define the vertices of the graph and
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edges among vertices are included if the number of shared items is deemed small.
Once the graph has been built, a classical method to ascertain the maximum
clique is used.

A different approach, which also links test assembly design to a classical
combinatorial optimization problem was proposed in [Brusco et al| (2013). In
this case, the problem is formulated as a constrained Bin Packing Problem
(BPP) and it is named the one-dimensional minimax bin-packing problem with
bin size constraints (MINIMAX_BSC). The authors consider that the item pool
has been previously divided into groups of items with similar characteristics,
as seen in van der Linden & Boekkooi-Timmingal (1988), |Chen et al| (2012)
or (Chen| (2015]), and then they consider the generation of multiple tests each
containing an item from each group.

As pointed out by van der Linden & Boekkooi-Timmingal (1988) and |Brusco
et al.| (2013)), the division of items into groups has multiple advantages as it can
be used to obtain tests with similar composition as well as to enforce constraints
which may be difficult to specify. The objective of the problem is then to
obtain tests with similar discrimination index on the ability level of interest.
The authors solve the problem using a commercial software (CPLEX) and a
Simulated Annealing approach on item pools with up to 6.000 items.

In this paper, we extend the work of Brusco et al| (2013) by considering
its complexity and by providing a new efficient solution method for the MIN-
IMAX_BSC. The computational experiment shows that we are able to solve
instances with up to 60.000-item pools within less than a minute in a modern
commodity computer, and the solutions obtained show very small optimality
gaps when compared to a theoretical lower bound on the maximum discrimi-
nation index. For smaller sized instances, the method provides solutions of the
same quality within seconds. These results open the door to their use in on-
line single test construction methods using the shadow test approach (He et al.|
2014). The shadow test approach is a online single test construction method in
which a complete test is constructed in each CAT decision step and the final
item used is selected from the constructed test.

Additionally, this work also verifies the applicability of the proposed method
on different conditions to those proposed in Brusco et al.| (2013). According
to [Brusco et al| (2013), items are grouped according to their discrimination
indexes. We conduct an experiment in which items are randomly grouped (so
we can consider that they have been grouped by subject topic or some other
constraint). The results of the additional experiment show that the method
is still capable of obtaining optimal or near-optimal solutions, highlighting the
possible application of this method to other multiple test construction problems
in which the number of tests is known in advance and the constraints can be
adapted into the multiple initial groups method required by the MINIMAX _BSC
formulation.

As the problem under study is a special case of the BPP, we also provide a
brief bibliography on the methods available for packing problems. We refer the
reader to the classifications of packing problems provided in [Dyckhoff] (1990));
Wascher et al.| (2007)) and the references included in these papers for a more
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extensive and comprehensive literature review. We will only highlight that mul-
tiple approaches have been proposed for the resolution of the one-dimensional
case, both exact (i.e., usually based on column generation Kallrath et al.l [2014;
Brandao & Pedroso, 2014) and heuristic, such as genetic algorithms (Quiroz-
castellanos et al.| 2015)), variable neighborhood search (Fleszar & Hindi, [2002;
M’Hallah et al.;[2013) or hyperheuristics (Lopez-Camacho et al., [2014) methods.

Our proposal belongs to the second group and its more distinguishing fea-
ture is the use of special neighborhood structures, rather than the common swap
or exchange neighborhoods. The proposed neighborhood structures allow us to
explore larger neighborhoods and to find the best move in these neighborhoods
within very short running times. The neighborhood structures are then com-
bined in a Variable Neighborhood Search (VNS) method, and allow us to obtain
optimal or near-optimal solutions in very short running times. While the pro-
posed method is not directly applicable to other Bin Packing problems, it offers
an example on how to apply the resolution of special cases of the problem into
the definition of effective heuristics.

2.2. Mathematical formulation, lower bounds and special cases

The MINIMAX_BSC considers the problem of sorting a number of questions
into questionnaires of equal length (i.e., each is composed of the same number
of questions). The questions are initially divided into different homogeneous
sets, and a solution corresponds to the assignment of one question from each
set to each questionnaire so that all questions are assigned, and some measure
of fairness among the resulting questionnaires is optimized (e.g., minimizing the
maximum difference between the total difficulty of the questions assigned to two
different questionnaires).

These constraints (e.g., multiple sets and assigning a question of each set to
each questionnaire) are particularly common in applications pertaining to the
splitting of a set of items to form parallel tests of equal length. For example,
in the research of van der Linden & Boekkooi-Timmingal (1988), a first stage
divides the questions into homogenous sets. Then, a second stage tries to find a
solution in which questionnaires may only use one question from each set. While
the first and second stage problem could be solved as a single problem, the first
stage allows for the inclusion of additional constraints, (e.g., the grouping of
questions with comparable difficulty or similar content) and avoids the selection
of highly unbalanced solutions (e.g., one test is only composed of easy and
difficult questions, while another contains a combination of moderately difficult
questions).

The formulation proposed in [Brusco et al.| (2013) is described as follows:
T disjoint sets (1 < t < T) of questions exist, and each set is composed of
B questions (1 < r < B) with weights w,¢ (1 <r < B, 1 <t <T). These
weights represent the discrimination index of the question (i.e., the percentage of
recipients that are capable of correctly answering the question). The questions
need to be grouped into B (1 < b < B) groups (i.e., questionnaires) in such a
way that each questionnaire contains exactly one item from each one of the sets;
and the total weight of the questions assigned to a questionnaire identifies the
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Figure 1: Example of a MINIMAX_BSC instance and one of its possible solutions. The
instance has five sets and three questions per set. The questions must be divided into three
questionnaires, which are pictured in the solution. Each question is named with a lowercase
letter, and its weight w,¢ is indicated above (e.g., question ¢ has a weight of 3). In the
solution pictured, questionnaires are identified with uppercase letters, and the total weight
of the questionnaires can be calculated by summing the weights of all the questions assigned
to each questionnaire (e.g., questionnaire A, which contains questions a, e, h, 1 and o, has a
total weight of 29). The value that needs to be optimized is the maximum total weight for
any questionnaire. In the solution pictured, the objective value is 32, which corresponds to
questionnaire B.

difficulty of the questionnaire. The objective is then to obtain questionnaires
with similar difficulty. An example of both an instance and a solution for this
problem is detailed in Figure

One of the possible methods to achieve the previous objective and the one
used in the MINIMAX_BSC is to minimize the maximum difficulty of any ques-
tionnaire; this is known as a minimax objective and it is similar to the ob-
jective of some Bin Packing related problems, like the unrelated parallel ma-
chine scheduling problem with maximum completion objective (Dell” Amico &
Martellol 1995]).

Equations (/1)) to (5) are a valid integer programming (IP) formulation for the
problem, which uses binary decision variables x,4; to identify the assignment of
different questions to the questionnaires. The variable is equal to 1 when item r
from set t is assigned to group b, and 0 otherwise. Finally, a real-valued variable
Z is used to identify the maximum weight among the questionnaires.

[MIN]Z (1)
subject to:
B T
Z>3"3 we -, 1< B (2)
r=1t=1
B
Zxrbt—l, 1<b<B1<t<T; (3)
r=1
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B
aw=1, 1<r<B1<t<T; (4)
b=1

z € 0,1}, 1<r<B1<b<B1<t<T (5)

Equation corresponds to the objective function (i.e., the minimization of
the weight of the questionnaire with the largest sum of weights). Z is calculated
in the constraint set . Equation set verifies that each questionnaire has
one question from each set, while equation set checks that each question
of each set is assigned to one questionnaire. Finally, constraint set defines
the domain of the variables. Note that constraint set corresponds to the
traditional BPP constraint set, forcing each item to be assigned to one bin,
while constraint set corresponds to the set of additional constraints over the
traditional BPP constraint set.

While the mathematical formulation can be used to obtain the optimal solu-
tion to small-sized problems and to obtain lower bounds on the optimal solution
of larger-sized ones, alternative methods exist in some cases:

1. Let W denote the sum of all of the weights of the questions (W =
> icb<pi<i<r Wrt). Then, equation (6) provides a valid lower bound for
Z. This lower bound is used in the computational experiments to verify
the optimality of the solutions.

Zrp = [W/B]. (6)

2. When T'=2, the optimal solution can be obtained as follows: first, order
the questions of one set in non-decreasing order of weights and the ques-
tions of the other set in non-increasing order of weights; let (a1, as,...,ap)
and (af,db, ...,a’z) be such sequences. Then, build a solution so that the
b-th questionnaire (1 < b < B) is composed by questions {ay, a} }.

Claim 1. The previous algorithm provides an optimal solution.

Proof The claim is verified using exchange arguments. Let us consider a
solution constructed with the previous method, and consider the case when
the sum of weights from the first questionnaire equals the objective function.
Then, to reduce the objective value, one of the questions in (as, ..., ap) must be
assigned together with question a}; however, because the weight of a; is smaller
than or equal to the weights of the questions in (as, ...,ap), the objective value
would not improve. Hence, the current solution is optimal.

Now suppose that the sum of weights from the second questionnaire equals
the value of the objective function. Then, to reduce the objective value, a; can
only be assigned together with af, effectively reducing the sum of weights of
the second questionnaire. However, the best possible assignment for a} among
the remaining questions is thus as and w1 + wee > wee + weo. Hence, the
exchange would increase the objective value.

The previous exchange argument can be extended to the remaining question-
naires. Note that we must exchange the questions between a questionnaire and
an earlier questionnaire, but this would not improve the global solution unless
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the newly exchanged question is exchanged with the question of an earlier ques-
tionnaire. Eventually, the question from the first or the second questionnaire
is to be considered, and the previous arguments state that the exchange is not
going to improve the solution, thus proving this claim. [J

A computer implementation to solve the MINIMAX_BSC with T' = 2 re-
quires the ordering of two sets with complexity of O(B - logB). This is a clear
improvement over the B! permutations that would need to be explored if a brute
force method were used.

2.3. Complezity of the problem

In this section, we first reduce the Partition Problem to the MINIMAX_BSC
problem in which B = 2. Then, we show that the 3-Partition Problem reduces to
a general MINIMAX _BSC, ascertaining the theoretical difficulty of the problem.
Finally, we identify the relationship between the MINIMAX _BSC problem and
the subset sum knapsack problem (Kellerer et al., 2004)), which will be used in
the proposed VNS as one of the neighborhood evaluation methods.

Theorem 1. The MINIMAX_BSC problem with B=2 is NP-Hard.

Proof. We use a reduction for the Partition problem that is known to be
NP-Complete (Garey & Johnson| 1979, p. 223).

Problem PARTITION. Given a finite set A and a size s(a) € ZT for each
a € A, is there a subset A" C A such that ) 4 s(a) =2 ,c4_48(a)?

To ease the explanation of the reduction procedure, we assume that A is an
ordered set, and thus, the ¢-th element of A can be referred to as a;.

Reduction: Given an instance of the problem PARTITION, the correspond-
ing MINIMAX _BSC instance with B = 2 is constructed as follows: Let T be
the cardinality of A (T = |A|), and let each set (1 <t < T) be composed by
two items with weights w;; = a; and wye = 0.

The optimum objective value for this instance is equal to »_ . 4 s(a)/2 if
and only if the answer to the original instance of the Problem PARTITION is
“Yes” O

Theorem 2. The general MINIMAX_BSC problem is strongly NP-Hard.

Proof. We use a reduction for the 3-Partition problem that is known to be
strongly NP-Complete (Garey & Johunson, (1979} p. 96).

Problem 3-PARTITION. Given a set A of 3-m elements, a bound U € ZT,
and a size s(a) € ZT for each a € A such that U/4 < s(a) < U/2 and such that
Y acasla) = m-U, can A be partitioned into m disjoint sets Ay, Aa, ..., Ay,
such that, for 1 <i <m, EaeAi s(a) =U?

Reduction: Given an instance of problem 3-PARTITION, the corresponding
instance of MINIMAX_BSC is constructed as follows: B = m and T' = 3 - m.
Then, let wy = as, wypy =0for 2<b< Band1<t<T.

The optimum objective value for this instance of the MINIMAX _BSC is equal
to U if and only if the answer to the original instance of Problem 3-PARTITION
is “Yes” O

The reduction of the MINIMAX _BSC with B = 2 to the Partition Problem
allows us to solve this special case using efficient methods found in the literature

10
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for the subset sum knapsack problem. While the subset sum knapsack problem
is NP-Hard (Garey & Johnsonl |1979) p. 65), the problem is known to be easily
solvable in many practical circumstances.

The subset sum knapsack problem can be defined as follows: let there be
n (1 <i < n) items, each with weight w;, and a maximum capacity W. The
objective is to find the subset of items such that the total weight is maximized
without surpassing the maximum capacity W. The mathematical formulation
of the problem using a set of variables z; € {0,1}, (1 <14 < n) corresponds to
maximizing » , -, ., w; - &; subject to Y | ., w;-x; < W.

In this case, the subset sum knapsack problem considers the optimal as-
signment of questions to one of the questionnaires (i.e., implicitly assigning the
remaining questions to the other questionnaire). Let w; be the additional dif-
ficulty associated to selecting the most difficult question in the set i, which
implies w; = |w;; — w;z| for each i (1 <i<T). Let z; € {0,1}, 1 <i<T be a
binary variable that equals 1 if the most difficult question from set ¢ is assigned
to the questionnaire under construction and 0 if the easy question from set i is
assigned instead. Finally, let W be |>, . op |wi1 — wi2|/2].

Claim 2. The optimal solution to the previously defined subset sum knap-
sack problem provides an optimal assignment of questions to questionnaires.

Proof. To prove this claim, first note that each question must belong to
one questionnaire; then, the unselected question of each set defines the second
questionnaire. Let Z; and Z5 be the total difficulty of each questionnaire, which
can be obtained using and :

T T
Zy ="y i lwi —wia| + Y MIN(wi1; wi) (7)
i=1 i=1
T T
Zy = (1—a;)-|wi — win| + > MIN(wj1; wip) (8)
i=1 i=1

Then, the ideal weight for the non-constant part of Z; is [> .. p |wi1 —
w;z|/2], which would lead to a non-constant part of Z; equal to [, p|wi —
wia|/2]. Hence, if Z; decreases, Z increases. As the subset sum knapsack
problem maximizes Z7, and the maximum possible value for Z; is Lzle g lwir —
w;2|/2], the optimal subset sum problem minimizes the non-constant part of
(8), effectively minimizing the MINIMAX BSC problem.[]

Note that during the previous proof, the definition of the problem imposes
w.l.o.g. that Z; < Zs.

3. Description of the algorithm

The Variable Neighborhood Search (VNS) approach is a metaheuristic used
as a framework to develop heuristics for specific problems. The primary con-
cepts of the VNS approach are based on the following observations (Hansen
et all 2010): (1) local optimality with respect to a neighborhood does not im-
ply local optimality in other neighborhood structures; (2) an optimum is a local

11
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optimum for any neighborhood structure; and (3) usually a local minimum for
one neighborhood is similar to those in other neighborhoods.

Based on these observations, VNS uses multiple local searches, each with a
different neighborhood structure. The algorithm starts from an initial solution
and applies different local searches until a locally optimal solution to each of
these neighborhoods is found. This technique is usually known as a variable
neighborhood descent (VND).

While VND improves upon the use of traditional local search methods, it
may still become trapped in a local (i.e., non-global) optimum. To escape from
these optima and to diversify the search, an additional mechanism must be
incorporated. This mechanism is known as a shake operator and introduces a
random movement from the current solution to a neighbor solution in one of the
neighborhood structures. The resulting algorithm is known as a general VNS.

This paper proposes a general VNS for the MINIMAX_BSC; the remaining
subsections describe the primary components of the implementation. Subsection
describes a greedy constructive procedure, which is used to obtain an initial
solution and also during the “shaking” procedure. Subsection describes the
neighborhood structures used in this implementation and the methods used
to reach the best neighbor for each neighborhood structure. Subsection [3.3]
documents the ”shaking” procedure, and Subsection [3.4] details the conditions
used to terminate the search.

8.1. Greedy Initialization heuristic

While the definition of a good initial solution is not an important aspect of
an effective VNS heuristic, the quality of the initial solution helps reduce the
time required to reach the first local optimum. Therefore, we propose the use of
a fast O(T - B - logB) heuristic, with an absolute performance guarantee equal
to R = maxi<i<7r (ry = maxi<,<pWys — Minj<,<pwre). Algorithm 1 depicts
the algorithm.

Algorithm 1. Greedy heuristic.

for each set 1 < b < B do
Zp=0
end for
for each set 1 <t <T do
Order the questions of the set into a non-decreasing order of the weights.
Order the questionnaires into a non-increasing order of accumulated weights.
for each t, 1 <t <T do
Assign the t-th question to the ¢-th questionnaire.
end for
end for

An example depicting the process of Algorithm 1 can be found in Figure
Note that the method is based on considering the questionnaires of a partial
solution as single questions and finding the best assignment combining these
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Figure 2: Illustration of the constructive heuristic. The instance is illustrated in the first row
of the figure. First, set 1 is assigned to the questionnaires at random, as shown in the second
row of the figure. Then, set 2 is assigned following the heuristic logic described as follows:
the question with the lowest weight is assigned to the partially filled questionnaire with the
highest weight; the question with the second lowest weight is assigned to the questionnaire
with the second highest weight; etc. until all of the questions are assigned, as shown in the
third row of the figure. Afterwards, the process is repeated for the following sets until all
questions from all sets have been assigned. The last row in the figure shows the final solution.
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questions with an additional set, which is equivalent to finding the optimal
solution of a MINIMAX _BSC problem when T' = 2 (see Subsection [2.2)).

To analyze the computational complexity of the algorithm, first note that
the computationally expensive part of the algorithm is ordering the questions
and questionnaires. This step is executed T times, and each ordering has O(B -
logB) complexity. Hence, the final computational complexity of the algorithm
is O(T - B -logB).

Claim 3. Algorithm 1 provides a solution with an absolute performance
guarantee of R.

Proof. First, we show that the maximum difference between then accumu-
lated weights of any two questionnaires is equal to R. To simplify the explana-
tion, let d denote the maximum difference in the accumulated weights between
two questionnaires.

Initially, d is set to 0. Accordingly, after the first assignment of questions to
questionnaires, R > d holds. During subsequent assignments, d is bounded by
max{d, r;} with r; equal to the range of the assigned set (if r; < d, then d — r;
is bounded by d, and if r; > d, then r, — d is bounded by r;). Because both
d < R and r; < R hold, the difference between any two groups will always be
smaller than R.

Second, note that for any valid solution, the minimum total weight of any
questionnaire (mini<p<p{Zp}) is a lower bound on the optimal solution. Be-
cause R is a bound on the difference between any two questionnaires obtained
using Algorithm 1, the difference between the solution provided by Algorithm 1
and a lower bound for the problem is also bounded by R. This construct proves
the claim that Algorithm 1 provides a solution that has an absolute performance
guarantee equal to R.0J

The solution offered by this constructive method depends on the order in
which the sets are considered. A preliminary computational experiment showed
that the experimental efficiency of Algorithm 1 is improved when the sets are
assigned in non-increasing values of r; order. Accordingly, the initial solution
of the VNS uses this ordering.

3.2. Neighborhood structures

Neighborhood structures are the most important part of the definition of
a successful VNS implementation. In this work, we propose three different
neighborhood structures that try to improve the incumbent solution in different
ways. The search in each of the neighborhoods is conducted by solving special
cases of the problem (i.e., a MINIMAX BSC with either T'= 2 or B = 2) until
the solution is locally optimal for all of the explored neighborhoods.

We now proceed to define each of the three neighborhoods:

Neighborhood 1. This neighborhood considers the reassignment of the
questions of one set to the questionnaires.

This neighborhood corresponds to the exploration of all possible solutions
that can be obtained by removing all the questions of a set from the incumbent
solution and their reassignment to the questionnaires. For all of the sets, the
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following three steps are performed: (1) remove the questions that correspond to
that set from the questionnaires; (2) explore the reassignment of the extracted
questions to the partially filled questionnaires; and (3) assign the questions to
the questionnaires according to the least expensive solution obtained in step (2).

Step (2) can be time consuming, as all possible permutations of the assign-
ments of questions to questionnaires need to be considered in the worst case.
Note that the weight of the questionnaires in the partial solution can be con-
sidered as a unified contribution to the total weight of the final questionnaires.
Consequently, each partially filled questionnaire can be considered as a single
question from a different set, and the optimal reassignment of the extracted
questions can be obtained by solving the MINIMAX BSC with T' = 2 (see
Subsection .

This neighborhood is implemented in a first descent fashion, and as such, the
ordering of sets may modify the final solution. Therefore, to reduce the effect
of a specific ordering, whenever neighborhood 1 is explored, a random order of
sets is generated and the sets are considered in accordance with the proposed
order. Algorithm 2 depicts the final algorithm.

Algorithm 2. Neighborhood structure 1 search.

Define a random order of the T sets
repeat until no further improvement is possible
foreacht (1<t <T)do
Remove the questions from ordered set ¢ from the questionnaires
Solve the MINIMAX_BSC problem with T = 2.
if the new solution improves upon the incumbent solution then
Update the incumbent solution
end if
end for
end repeat

An example of this neighborhood is depicted in Figure [3]

Note that the neighborhood considered in [Brusco et al.| (2013) can be seen
as a special case of this neighborhood. Their neighborhood studies the reassign-
ment of two questions from the same set to their respective questionnaires, which
is a limited version of neighborhood 1. Therefore, the limited neighborhood is
not used in the final VNS implementation.

Neighborhood 2. This neighborhood considers the division of the solution
into two partial solutions that are then optimally combined to possibly form an
improved solution.

Let T and T" be a partition of the sets in 7. For any given solution S, let
S’ and S” be the partial assignment of the questions to questionnaires defined
in S for the questions of subsets T” and T", respectively. Then, consider each
questionnaire in S’ and S” as a single question (i.e., all questions assigned to a
partial questionnaire are to be assigned together when the partial questionnaires
are combined). Based on the previous definition, neighborhood 2 corresponds

15
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Figure 3: Example of the application of the neighborhood 1. The figure depicts an initial
solution in the first row (taken from the example in Figure 1), from which the first neigh-
bourhood is created. First, all of the questions that correspond to set 3 are removed from the
solution (second row in the figure). Underneath the partial solution, the total weight of each
questionnaire is depicted in a box (for example, the total weight for the partial questionnaire
A is 22). Then, the questions corresponding to set 3 are optimally reassigned (third row)

providing an improved solution.
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to the exploration of all possible partitions of S into S’ and S”, as well as all of
their respective assignments combining S’ and S” to obtain a new solution.

The previous neighborhood definition has two issues that must be addressed
to obtain an efficient implementation:

1. The number of partitions in the previous definition is not bounded by a
polynomial function to the number of sets in the instance, and thus only a
limited number of partitions can be considered. The implementation uses
the following technique; each time neighborhood 2 is explored, we define
a random order of the sets and we explore the t —1 (1 < ¢ < T') partitions
in which 7" is composed of the ¢ first sets of questions according to the
random ordering, and 1" is composed of the remaining sets of questions.

2. Once T” and T" have been defined, the optimal combination of the partial
questionnaires in S” and S” can be solved as a MINIMAX _BSC with T = 2,
which is solvable in polynomial time (see Subsection [2.2)). Algorithm 3
shows the final algorithm.

Algorithm 3. Neighborhood structure 2 search.

Define a random order of the T sets
repeat until no further improvement is possible
foreacht (1<t<T)do
Obtain the MINIMAX_BSC problem with T' = 2 with partitions 7" and T"”
Solve the MINIMAX _BSC problem with T = 2
if the new solution improves upon the incumbent solution then
Update the incumbent solution
end if
end for
end repeat

An example of an improving move using neighborhood 2 is depicted in Figure
@

Note that neighborhood 1 is a special case of neighborhood 2 if multiple
orderings are considered. The previous statement holds if at least one of the
considered orderings contains each set as its first or last studied set. Then, the
exploration of neighborhood 2 using all of these orderings subsume neighborhood
1 as the algorithm considers the reassignment of each individual set of questions
in addition to the joint reassignment of sets of questions.

Neighborhood 3. This neighborhood explores the optimal reassignment
of questions to two questionnaires.

While neighborhood 1 considers changes of different sets of questions and
neighborhood 2 considers changes of different groups of sets of questions, neigh-
borhood 3 studies the effect of changing the questions assigned to two ques-
tionnaires. Neighborhood 3 is thus defined as the exploration of all possible
solutions in which the reassignment of questions to exactly two questionnaires
may vary.

17
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Figure 4: Example of the application of the neighborhood 2. The initial solution (first row,
from the example in Figure is divided by selecting two groups of sets (one is composed of sets
3 and 5 and is highlighted by boxing their respective questions; the other group corresponds
to the remaining sets). The last row depicts the solution obtained after optimally solving the
related MINIMAX_BSC problem with T' = 2.
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The previous definition naturally leads to multiple possible partial solutions,
each requiring the exploration of a combinatorial problem (i.e., all possible as-
signments of questions to two questionnaires must be investigated). Conse-
quently, an efficient exploration of the neighborhood must be based on some
observations that may lead to an effective search for improving solutions. The
following observations are used in the proposed neighborhood search method:

1. To improve the solution, some questions assigned to the questionnaire with
the largest sum of weights must be exchanged.

2. The optimal assignment of two questionnaires can be found by solving a
subset sum knapsack problem (see Section [2.3]).

Combining both observations, we can establish that one of the questionnaires
considered in the subset sum knapsack problem must be one of the question-
naires in which constraint in the mathematical model is fulfilled in equality
(i.e., the questionnaire with the largest weight, or one of them if several exist).

As in the previous neighborhoods, it is important to define the order in
which the questionnaires are inspected. While the objective in the previous
cases was to avoid a bias towards some sets, we opt for an ordering in this case
that maximizes the probability of finding an improved solution; specifically, the
questionnaires are ordered in non-decreasing order of the sum of weights. Then,
for each questionnaire and in the order defined above, the algorithm solves a
MINIMAX_BSC problem that combines the said and the last questionnaire in
the list. Algorithm 4 illustrates this procedure.

Algorithm 4. Neighborhood structure 3 search.

Order the questionnaires in non-decreasing order to their respective weights
for each r (1 <r < B) do
Solve the MINIMAX _BSC problem using the r-th and B-th questionnaires
if the new solution improves upon the incumbent solution then
Update the incumbent solution
end if
end for

An example of neighborhood 3 is depicted in Figure

3.8. Shaking procedure

The shaking procedure randomly chooses exchanges defined by one of the
considered neighborhoods. In this case, we opt for the application of a neigh-
borhood structure similar to neighborhood 1 with a variable parameter k£ that
controls the distance from the current partial solution.

For any given k (2 < k < T), the proposed procedure removes the questions
associated to k distinct sets from the incumbent solution. Once these questions
are removed, the questions of each set are introduced in the solution using the
selection rule specified by neighborhood structure 1, which considers the partial
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Figure 5: Example of the application of the neighborhood 3. The first row depicts an initial
solution (from the example in Figure . A new instance of the problem is created by consid-
ering the questions assigned to questionnaires A and B; questionnaire B is selected because it
is the questionnaire with the highest weight. The new instance is depicted in the second row
and corresponds to an instance with 5 sets and 2 questions per set. The third row depicts
the optimal reassignment of questions to questionnaires A and B that, with questionnaire C
(which remains unchanged) provide an improved solution.
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solution as a single set of questions and finds the optimal assignment of a new set
of questions. Note that the consecutive introduction of multiple sets of questions
can also be achieved using algorithm 1; thus, the shaking procedure can be
described as the elimination of k& sets from the solution and their reintroduction
into the current solution using the constructive greedy heuristic; however, a
discrepancy exists because the sets are reintroduced in random order rather than
in the order proposed in Subsection [3.1] The shaking procedure highlights the
relationship between the constructive procedure and the two first neighborhood
structures, because all three structures are based on the optimal solution to a
MINIMAX _BSC instance with T' = 2.

The values of parameter k are controlled as follows: the initial value is
set to k = 2 because £k = 1 in the reintroduction scheme would return the
solution to the same local optimum and thus it does not modify the solution.
Whenever a local optimum for each of the three neighborhoods is reached, the
shaking procedure is restarted, and k is increased by one. Whenever k =T —1,
the shaking procedure generates a random solution which can be considered as
restarting the search; k is also restarted in this circumstance (i.e., k is set equal
to 2).

3.4. Termination condition and outline of the complete algorithm

The termination condition is linked to a run time limit or the verification
of an optimal solution (i.e., when the incumbent solution is equal to the lower
bound defined in Subsection [2.2)). The complete algorithm is depicted in Algo-
rithm 5.

Algorithm 5. VNS method.

Find a heuristic solution using Algorithm 1, and initialize k.

Init:

repeat until termination condition is met
Search neighborhood structure 1 until a locally optimal solution is found.
Search neighborhood structure 2 until a locally optimal solution is found.
If the solution was improved during the search, goto Init.
Search neighborhood structure 3 until a locally optimal solution is found.
If the solution was improved during the search, goto Init.

end repeat

Note that the application of the neighborhoods in the predefined order was
decided based on run time considerations: the less-time-consuming algorithm is
the first to be applied, while the most-time-consuming is the last to be applied.
4. Computational Experiments

The previous algorithm was implemented in C and compiled using gec v.4.9.0

and run on computer with a 2.9 GHz Intel Core i5 processor and 8 GB of
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RAM running the Mac OS X 10.9 operating system. To solve the subset sum
knapsack problems, the expknap implementation (Pisinger, 1995)) available at
http://www.diku.dk/-pisinger/codes.html was used.

In addition to the algorithms described in this paper, we also implemented
the SA algorithm proposed in Brusco et al.| (2013)). We did not report results
for the IP formulation because Brusco et al.| (2013) have already verified that
this formulation is inefficient for large size instances.

The parameters of the SA were identical to those proposed in [Brusco et al.
(2013). Furthermore, if the SA terminates before the specified running time
limit, the algorithm is restarted with a different randomly generated initial
solution. This VNS implementation is parameter-free, and thus no parameter
tuning was required. Both algorithms were run for at most 600 s, which was
measured as wall time.

The two algorithms were initially tested on a set of instances constructed by
Brusco et al.| (2013). The characteristics of both sets correspond to those found
in previously simulated data found in the literature (Veldkamp), [2005; ivan der
Linder}, [2005; [van der Linden & Boekkooi-Timmingal |1988)).

Instances with varying number of questions (e.g., 300, 600, 3000 and 6000
questions) were generated. These questions were divided into different num-
ber of questionnaires (e.g., B = 2, 3, 4, 5, 10, 20, 30, 60, 120, 300, 600 and
1200 questionnaires). For each number of questions, the abovementioned num-
ber of questionnaires is only used if the number of questions is at least five
times bigger than the number of questionnaires (i.e., each questionnaire will be
formed by five or more questions). Finally, the weights of the questions in each
instance were generated using the following method, which was proposed in |Br-
usco et al.| (2013), and based on [van der Linden & Boekkooi-Timminga (1988).
The method uses formula @ to compute the weight of each question based on
two parameters .+ and p,;, which represent the difficulty (i.e., percentage of
examinees who obtained the correct answer) and the discrimination effect of the
question, respectively.

Wyt = 5 - Trt + LR Trt * (1 - 7T'rt) Pt (9)

To generate sets of instances with similar weights, the method initially ob-
tains the difficulty 71; and discrimination effect p1; from the first question of each
set t. These values are drawn from a uniform distribution with interval [.3, .8]
for the difficulty effect (7) and from the interval [.25,.60] for the discrimination
effect (p). For the remaining questions m,; and p,; (2 < r < B), the values
are randomly drawn from uniform distributions with interval [y, — .1, 714 + .1]
and [p1: — .1, p1t + .1]. These weights are then used in combination with @D to
generate the final weights.

Ten instances per combination of number of questions, questionnaires and
distribution of weights were constructed to create a total of 400 instances. Note
that while the weights were obtained from uniform distributions and thus are
real values, the method works with integer-valued weights to avoid rounding
issues. To achieve this objective, we decided to multiply the obtained values by
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a constant (10%) and round to the nearest integer. Consequently, this algorithm
is working using real values with six digits of precision.

Table [1] provides a summary of the experimental results. For each number
of questions and questionnaires, the table provides a comparison between the
heuristic method depicted in Subsection the VNS method proposed in this
paper and the SA algorithm proposed by [Brusco et al.| (2013). For each al-
gorithm, we provide the average absolute gap between the lower bound (LB),
calculated using equation @, and the upper bound (UB) provided by the al-
gorithm (that is, UB — LB). For the metaheuristic approaches, the number of
optimal solutions (out of 10 instances) and the running time required to reach
the best solution (measured in wall time) are also provided.

An analysis of the table shows that the gap between the solutions provided
by both metaheuristics and the lower bound are small in all cases. Furthermore,
both methods are able to dramatically improve the initial solutions provided by
the heuristic with a performance guarantee.

Furthermore, the VNS was able to obtain the optimal solution for most
of the instances, including all of the instances in which the ratio between the
questions and questionnaires was higher than 15 within negligible running times
(i.e., within one second). Hence, we can conclude that those instances in which
the ratio of questions per questionnaire is larger than or equal to 15 are to be
considered easy for the proposed method. The running time increased for the
instances in which the algorithm was not able to verify optimality, but were still
reduced.

Note that table [l reports the running time to reach the best solution for
all methods rather than the total computing time required. According to the
termination condition, if the optimal solution is not verified, both algorithms
continue until the time limit is reached.

Based on the results provided above, we test the algorithm with larger in-
stances (e.g., with 7=30.000 and 60.000, and different values of B ranging from
2 to 12.000). Similar results to those reported in table Were obtained, and the
VNS method was able to optimally solve all instances with a ratio of questions
to questionnaires larger than 10 within a maximum of 5 seconds of computing
time. Therefore, we limit this report to the results for those groups of instances
in which the VNS fails to verify the optimal solution for every instance with
the given ratio of questions per questionnaire (“challenging” instances). Table
2] reports these results.

The results from table [2] show that the algorithm is still effective for larger-
sized instances. Furthermore, the number of verified optimal solutions increases
due to the existence of more alternatives to assign the questions. Consequently,
we conclude that for the VNS method, increasing the number of questions does
not affect the quality of the solutions, while the running times increase in ac-
cordance with the requirement of solving larger problems, specifically larger
knapsack instances.

The results provided in tables|l] and [2|indicate that the proposed VNS offers
high quality results, but do not identify which components of the algorithm
are responsible for the good performance. Therefore, an additional experiment
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Table 1: Results of the proposed algorithms. For each combination of characteristics, we
provide the number of optimal solutions verified by each of the metaheuristic algorithms, the
average absolute gap (i.e., the average difference between the solution and the lower bound,
provided by equation 6) for each algorithm and the average time required to reach the best
solution by the metaheuristic methods; for the SA algorithm, we report the time required for
replication that provided the solution under consideration.

Questions B Heuristic VNS VNS VNS SA SA SA
Gap Opt  Gap t Opt Gap t

300 2 152.8 10 0 0.0 10 0 0.0
300 3 2092.4 10 0 0.0 5 0.7 0.0
300 4 3990 10 0 0.0 0 114 0.1
300 5 5184.9 10 0 0.0 0 25.6 0.1
300 10 10424.8 10 0 0.0 0 107.6 0.1
300 20 14789.5 9 0.1 0.1 0 164.4 0.0
300 30 14425 0 9 0.1 0 2373 0.0
300 60 26446.1 0 201.7 0.0 0 368.7 0.0
600 2 23.9 10 0 0.0 10 0 0.0
600 3 1253.9 10 0 0.0 4 0.6 0.2
600 4 2598.8 10 0 0.0 0 44 0.2
600 5 4292.7 10 0 0.0 0 129 0.2
600 10 12199.9 10 0 0.0 0 50.6 0.1
600 20 14419.5 10 0 0.0 0 85.8 0.1
600 30 17964.2 10 0 0.0 0 116.6 0.1
600 60 13006.9 0 6.6 0.2 0 183.4 0.1
600 120 28216.4 0 133.9 0.1 0 290.3 0.0
3000 2 14.3 10 0 0.0 10 0 0.0
3000 3 453 10 0 0.0 10 0 1.4
3000 4 2093.4 10 0 0.0 ) 06 1.2
3000 ) 2614.6 10 0 0.0 0 2.1 1.0
3000 10 9293.1 10 0 0.0 0 10.2 0.6
3000 20 13998 10 0 0.0 0 19.5 04
3000 30 1561727 10 0 0.0 0 239 0.3
3000 60 13931.3 10 0 0.0 0 355 0.2
3000 120 17909.3 10 0 0.1 0 58.5 0.2
3000 300 0742.3 0 2.5 1.1 0 120 0.1
3000 600  30084.8 0 42.2 0.6 0 1749 0.2
6000 2 3.7 10 0 0.0 10 0 0.0
6000 3 252.6 10 0 0.0 10 0 2.7
6000 4 1297.2 10 0 0.0 8 02 25
6000 5 2510.4 10 0 0.0 4 0.8 21
6000 10 8054.3 10 0 0.0 0 5.2 1.3
6000 20 10717.1 10 0 0.0 0 9.1 08
6000 30 14209.7 10 0 0.0 0 11.1 0.6
6000 60 13686.2 10 0 0.0 0 173 0.5
6000 120 11105.7 10 0 0.0 0 29.8 0.3
6000 300 7902.1 10 0 0.1 0 59.7 0.3
6000 600 5324.9 0 1.6 0.9 0 90.3 04
6000 1200 29043.9 0 25.7 1.1 0 2909 04
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Table 2: Results for larger instances. Only those combinations of the number of questions
and questionnaires that are deemed to be ”challenging” are reported. For each combination
of characteristics, we provide the same results that in table m

Questions B Heuristic VNS VNS VNS SA SA SA
Gap Opt  Gap t Opt  Gap t

30000 3000 4208.8 6 4 60.8 0 351.1 2.6

30000 6000  24234.8 0 11.8  10.3 0 2155 2.4

60000 6000  12963.3 3 0.7 246 0 1055.3 4.8

60000 12000  38837.5 0 4 48.3 0 2757 5.7

geared towards evaluating the contribution of each of the specific components
was conducted.

The experiment considers different configurations of the VNS algorithm in
which some of the neighborhoods or the shaking procedure are not used. While
specific neighborhood can be removed from the algorithm without modifying its
global structure, it is necessary to include some kind of restarting procedure to
escape from local optimality, continue the search and effectively use the allotted
computing time. Consequently, when the shaking procedure is not used, it is
substituted by the greedy initialization procedure proposed in Subsection [3.1}in
which the order of the sets is randomly determined before executing algorithm
1.

A total of 14 different configurations of the VNS algorithm were tested (all
possible combinations of use/not use for each of the three neighborhoods and
the shaking procedure, with the exception of the two combinations that do not
use any of the three neighborhoods) on the large and “challenging instances
(the 40 instances reported in table . Each configuration was run for at most
600 seconds of wall time, and three values were recorded: (1) the running time
required to reach the best solution; (2) the absolute gap between the solution
found by the configuration and the best known solution for the instance; and
(3) the absolute gap between the solution found by the configuration and the
theoretical bin packing lower bound. Furthermore, and in order to verify if
the restarting procedure was efficient, we also run the procedure as a simple
descent method with all of the neighborhood structures and recorded the same
information.

Table [3| summarizes the results obtained for the experiment. The examina-
tion of table 3| highlights the effectiveness of neighborhood 3 (gaps are much
smaller if neighborhood 3 is used). Note that the gap reduction is accompanied
by larger computational times. The shaking procedure, as well as neighborhood
1 and neighborhood 2 do not affect the solution quality but they do seem to
reduce the running time required to reach the best solution. Also note that the
gap difference among the VNS configurations using neighborhood 3 is minimal.

If we compare the single descent method with the VNS algorithm, the re-
sults from table |3| show that the VNS is capable of providing improvements
on the solution provided by the simple descent method, at the cost of larger
computational times. Please note that the gap reduction is small as the solu-
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Table 3: Results for different configurations of the proposed algorithms. For each combination
of use/not use of each of three neighborhoods (columns N1, N2 and N3) and shaking procedure
(column “Shake”), the average absolute gap between the solution found by the configuration
and the theoretical bin packing lower bound (column Gapy,,,q); the average absolute gap
between the solution found by the configuration and the best known solution for the instance
(column Gapy,,;); and the average running time required to reach the best solution (column
t) are reported. Additionally, the results of the simple descent algorithm (no restart used) are
also reported (row with “Shake” entry equal to “Descent”).

N1 N2 N3 Shake Gapyoynd GaDpest t

No No Yes No 4.4 0.5 36.3
No No Yes Yes 4.4 0.6 39.5
No Yes No No 17.8 13.9 26.5
No Yes No Yes 26.6 22.7 16.1
No Yes Yes No 4.2 0.3 31.7
No Yes Yes Yes 4.3 0.4 34.0
Yes No No No 25.3 21.5 6.0
Yes No No Yes 16.7 12.8 2.8
Yes No Yes No 4.2 0.3 32.5
Yes No Yes Yes 4.3 0.4 22.7
Yes Yes No No 10.4 6.5 22.6
Yes Yes No Yes 12.3 8.4 21.1
Yes Yes Yes No 4.2 0.3 34.9
Yes Yes Yes Yes 4.0 0.1 21.6
Yes Yes Yes Decent 6.6 2.7 10.0
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tions provided by the descent heuristic are already very good and show close to
nonexistent optimality gaps.

In addition to the previous qualitative analysis, we conducted an ANOVA
test on two response variables (Gap,,,; and running time) and a MANOVA test
using both response variables (see (Christensen, 2011} for a general reference on
ANOVA and MANOVA). The tests reported differences among VNS configura-
tions, but an analysis of the residuals showed severe violations of the normality
assumptions and heteroscedasticity issues. As a consequence, we chose to reex-
amine the results using a non-parametric MANOVA alternative.

The permutational MANOVA using distance matrices proposed in[Anderson
(2001) was selected. The method does not require traditional assumptions; it
is based on a geometric interpretation of the analysis of variance; and it uses
permutations in order to obtain p-values. Furthermore, the code is readily
available on the R statistical package (Oksanen et al.; |2015|). The test was run
using four factors (the three neighborhood searches, and the shaking procedure)
and a blocking factor (the instances) that tries to block the variability caused
by specific characteristics of each instance.

The results show that neighborhood structures 1 and 3 are significant with a
p-value < 0.001, and the shaking procedure is significant with a p-value < 0.01.
Neighborhood structure 2 is not significant, leading us to conclude that it could
be removed from the algorithms without modifying its results (both in terms of
running time and solution quality).

If we combine the p-values with the analysis of table 3] we conclude that
the different components of the proposed VNS method are able to improve the
solution obtained by the final algorithm (neighborhood structure 3); to reduce
the required running time to reach the aforementioned solution(neighborhood
structure 1 and shaking procedure); or do not significatively modify running
time or solution quality.

A final experiment was performed to evaluate the behavior of the proposed
method if the sets were based on some other constraints (e.g., length, time re-
quired to answer the question) and not on similar objective function weights. A
new instance set in which the weights of the questions are uniformly distributed
is considered, see for example Nguyen & Fong| (2013). For these instances, each
weight is randomly selected form a uniform distribution on the interval [.1,.9]
maintaining the remaining characteristics from the instances.

The results, see table 4] show that the performance of the VNS method is
significantly better than its SA counterpart. Hence the VNS depends less on a
grouping of questions by similar weights. The relation between the number of
questions and questionnaires to ascertain the difficulty of the instance still holds.
However, the instances are harder to solve for both metaheuristics, and larger
absolute gaps appear for those instances in which optimality is not verified
(even if they are still small). Note that the heuristic constructive method is
clearly affected by changes in structure and generates significantly worse initial
solutions. As similar results in terms of optimally solved instances are obtained,
we conclude that the distribution of weights among the questions in each set
does not greatly affect the performance of the VNS method.
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Table 4: Results for the instances generated according to a uniform distribution as in |Nguyen
& Fong| (2013). For each combination of characteristics, we provide the number of optimal
solutions verified by each algorithm; the average absolute gap, which is measured as the
average difference between the solution and the lower bound using equation 6; and the average
time required to reach the best solution; for the SA algorithm, we report the time required
for replication that provided the solution under consideration.

Questions B Heuristic VNS VNS VNS SA SA SA
Gap Opt Gap t Opt  Gap t

300 2 761.3 10 0 0.0 10 0 0.0
300 3 11312.1 10 0 0.0 0 175 0.0
300 4 33248.2 10 0 0.0 0 944 0.1
300 5 52034.2 10 0 0.0 0 263.6 0.1
300 10 121717.5 10 0 0.0 0 803.7 0.0
300 20 151533.7 0 2.7 0.1 0 1303.5 0.0
300 30 152080.8 0 77.6 0.1 0 1863.4 0.0
300 60 276051.8 0 17154 0.0 0 2853.1 0.0
600 2 227.1 10 0 0.0 10 0 0.0
600 3 7769.4 10 0 0.0 0 6.8 0.2
600 4 24895.5 10 0 0.0 0 427 0.2
600 5 41638.3 10 0 0.0 0 117.8 0.2
600 10 133000 10 0 0.1 0 355.5 0.1
600 20 151155.8 10 0 0.1 0 710.3 0.1
600 30 198745.9 10 0 3.2 0 8739 0.1
600 60 137782.5 0 55.6 0.4 0 1441.3 0.0
600 120 318178 0 1090.6 0.1 0 2331.8 0.0
3000 2 156.3 10 0 0.0 10 0 0.0
3000 3 3727 10 0 0.0 3 0.7 1.6
3000 4 15952.3 10 0 0.0 0 8.7 1.2
3000 5 25568.9 10 0 0.0 0 23.9 1

3000 10 92353.9 10 0 0.0 0 7.1 0.6
3000 20 138538.2 10 0 0.1 0 141.1 04
3000 30 162414.9 10 0 0.2 0 182.9 0.3
3000 60 179236.1 10 0 0.3 0 287 0.2
3000 120 217096.8 10 0 0.5 0 442.7 0.2
3000 300 76249 0 20 3.8 0 987.5 0.1
3000 600 365729 0 358.5 0.2 0 1325.4 0.2
6000 2 29.5 10 0 0.0 10 0 0.1
6000 3 2497.9 10 0 0.0 6 0.4 3.6
6000 4 10685.3 10 0 0.0 0 5.2 2.6
6000 5 31974.9 10 0 0.0 0 114 2.1
6000 10 72561.1 10 0 0.1 0 40.2 1.3
6000 20 125779.9 10 0 0.1 0 70.2 0.8
6000 30 175586.3 10 0 0.1 0 91.7 0.6
6000 60 192118.3 10 0 0.3 0 134.7 0.4
6000 120 177719.9 10 0 0.5 0 2295 0.3
6000 300 108666 10 0 1 0 4825 0.3
6000 600  53802.5 0 11.4 7.9 0 6679 04
6000 1200 366379.5 0 209.3 0.8 0 2186 0.5
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5. Conclusions

In this paper, we have investigated a Bin Packing-based formulation of
the test assembly design problem known as the one-dimensional minimax bin-
packing problem with bin size constraints (MINMAX _BSC). We first show that
the problem in NP-Hard when the number of questionnaires is 2 and strongly
NP-Hard if more questionnaires are considered. Second, we develop a con-
structive heuristic with an absolute performance guarantee, and we derive three
neighborhood structures for the problem that we can explore by optimally solv-
ing special cases of the problem. Third, we combine these procedures into a
variable neighborhood search in order to efficiently search the solution space.
Finally, the quality of the proposed procedures is tested in computational exper-
iments on instances with up to 60.000 item pools, up to 12.000 questionnaires,
and different discrimination effect structures (see |[Brusco et al., 2013} [Nguyen
& Fongl [2013). The proposed method shows significant improvements over
previous algorithms proposed in the literature (Brusco et al., [2013), and the
optimality of the solutions provided for instances with a 60.000 items pool and
up to 3.000 tests has been verified.

Our complexity results follow the line of previous works (like Belov & Arm-
strong} 2006; [Nguyen & Fong} 2013; [Ishii et al., |2014)) in which other formula-
tions of the test assembly design problem were identified as classical strongly
NP-hard combinatorial optimization problems. Our approach differs when we
consider the resolution considerations, as [Belov & Armstrong (2006); Nguyen
& Fong| (2013); [Ishii et al. (2014) apply classical algorithms of the identified
optimization problem to the resolution of the test design problem, while our
Bin Packing-based formulation significantly differs from the classical problem,
thus forcing us to develop specially tailored procedures for its resolution.

The proposed algorithm corresponds to a neighborhood exploration heuris-
tic. If compared to previous neighborhood-based approaches for test assembly
design (Hwang et al., |2008; Brusco et al.l |2013)), which are based on traditional
swap or exchange neighborhoods, our neighborhoods are based on the optimal
exploration of special structures. These neighborhoods are derived from theo-
retical results for the MINMAX _BSC, and successfully use the structure of the
problem to reach high quality results within very reduced running times.

The quality of the solutions provided by the method is demonstrated by our
experimental results with instances larger than those previously considered in
the literature (see Hwang et al.| [2008; Nguyen & Fong] [2013). Please note that
the results are not directly comparable as there are strong differences among
different formulations for the test assembly design problem. Nevertheless, we
can make comparisons with a Bin Packing lower bound, which shows the high
quality of the solutions found. The proposed method routinely finds the optimal
solution when the ratio between items per questionnaire is above 10, and obtains
very low gaps if the aforementioned ratio is 10 or below. These results apply
under varying conditions, such as when the items are grouped according to
similar weights, as in |Brusco et al.| (2013), or when the items are randomly
grouped. Results for randomly grouped items consider cases in which additional
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constraints are to be enforced (He et al.l|2014; [Ishii et al. [2014; Nguyen & Fong],
2013)), or cases in which a cell approach (Chen et al., 2012;|Chen, [2015)) is used to
maintain similar characteristics not only among questionnaires, but also among
the item composition of each questionnaire.

In addition to the quality of the results, we would like to highlight the
reduced running times required to solve the instances, which are below the 60
seconds mark even for the largest item pools. These results lead us to conjecture
that the proposed procedure could also be used for on-line test construction
methods as in jvan der Linden & Veldkamp) (2004) or He et al. (2014)).

The possibility of efficiently solving large-sized instances leads us to con-
clude that any further research should address the inclusion of additional char-
acteristics into the formulation. Among these characteristics, we would like to
highlight the joint evaluation of multiple ability levels of the recipients on a
single unified test (van der Linder} |2005; |Chang & Shiu, |2012; Nguyen & Fong]
2013)) or the inclusion of additional constraints, such as incompatibilities among
questions of different sets or limiting the number of questions with specific at-
tributes (Hwang et al., [2008; [Yao, [2014; |[Yao et al., |2014). These additional
characteristics are usually present in many real situations and would impose
challenging changes to both the bin-packing-based formulation as well as to the
neighborhood structures proposed in this work.
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