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Abstract

High school timetabling is one of those recurring NP-hard real-world combinato-

rial optimisation problems that has to be dealt with by many educational insti-

tutions periodically, and so has been of interest to practitioners and researchers.

Solving a high school timetabling problem requires scheduling of resources and

events into time slots subject to a set of constraints. Recently, an interna-

tional competition, referred to as ITC 2011 was organised to determine the

state-of-the-art approach for high school timetabling. The problem instances,

obtained from eight different countries across the world used in this competition

became a benchmark for further research in the field. Selection hyper-heuristics

are general-purpose improvement methodologies that control/mix a given set of

low level heuristics during the search process. In this study, we evaluate the per-

formance of a range of selection hyper-heuristics combining different reusable

components for high school timetabling. The empirical results show the suc-

cess of the approach which embeds an adaptive great-deluge move acceptance

method on the ITC 2011 benchmark instances. This selection hyper-heuristic

ranks the second among the previously proposed approaches including the ones

competed at ITC 2011.
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Deluge, Combinatorial Optimisation, Constraint Satisfaction, Educational

Timetabling

1. Introduction

Educational timetabling problem is classified as one of the hard computa-

tional problems (Broder, 1964), which are of interest to the researchers and prac-

titioners from the fields of operational research and artificial intelligence. Educa-

tional timetabling problem has many variants including examination timetabling,

university course timetabling and high school timetabling (Pillay, 2010b). The

focus of this work is on high school timetabling.

The solution to high school timetabling problem requires the scheduling of

events, such as courses and classes, and resources, such as teachers and class-

rooms to a number of specific time slots subject to a set of hard and soft con-

straints. The hard constraints must be satisfied, and the soft constraints repre-

sent preferences. A feasible solution to a given problem is the solution that sat-

isfies all the hard constraints. High school timetabling is a well-known NP-hard

combinatorial optimisation problem (de Werra, 1997; Even et al., 1976) recur-

ring at many educational institutes. There are many variants of high school

timetabling problem and they mainly differ due to many reasons, such as the

educational system in a given country.

High school timetabling was subject of a recent challenge, the third Inter-

national Timetabling Competition (ITC 2011) (Post et al., 2013), to encourage

researchers and practitioners to deal with the real-world complexities of the high

school timetabling problem without any simplification and support development

of automated state-of-the-art methods for high school timetabling. Those real-

world problem instances obtained across the world became a benchmark after

the competition. Many different approaches have been proposed, each solving

a particular problem, including simulated annealing (da Fonseca et al., 2014;

Zhang et al., 2010), tabu search (Bello et al., 2008) and evolutionary algorithm

(Shambour et al., 2013; Domrös and Homberger, 2012; Raghavjee and Pillay,
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2012). More on high school timetabling can be found in (Pillay, 2010a, 2012).

Hyper-heuristics are general purpose solution methodologies which perform

search over the space of heuristics rather than the solutions to solve hard compu-

tational problems (Burke et al., 2013). There are two general classes of hyper-

heuristics identified in the scientific literature; high level methodologies that

generate or select low level heuristics. The latter class is the focus of this study

(Burke et al., 2010). Bilgin et al. (2007) argued that the performance of a se-

lection hyper-heuristic varies depending on the choice of its components. In

this study, fifteen hyper-heuristics combining five different heuristic selection

components with three different move acceptance components are investigated

for high school timetabling using the ITC 2011 benchmark. The performance

of the best selection hyper-heuristic is analysed further and compared to the

previously proposed approaches including the ones competed at ITC 2011.

Section 2 overviews selection hyper-heuristics. Section 3 describes the third

International Timetabling Competition and selection hyper-heuristic compo-

nents that are employed for solving the high school timetabling problem from

the competition. Section 4 provides the empirical results. Finally, Section 5

presents the conclusions and remarks.

2. An Overview of Selection Hyper-heuristics

Heuristics are rule-of-thumb methods designed for a specific computationally

difficult problem and often cannot be reused to solve another problem. This

observation is also valid for meta-heuristics implemented for a specific problem.

Although there are many successful examples of (meta-)heuristics capable of

solving instances from a particular domain in the literature, their design require

extensive knowledge about the relevant problem domain (Bilgin et al., 2007).

On the other hand, hyper-heuristics have emerged as reusable general-purpose

search methodologies with reusable components that can be applied to a wide

range of problems (Cowling et al., 2001). The foundation of the current studies

on hyper heuristics dates back to the early 1960s. Fisher and Thompson (1963)
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stated that combining scheduling rules in production scheduling would make a

great improvement than using them individually. Their study can be credited for

putting the initial ideas forward and leading to the succeeding studies on hyper-

heuristics. Cowling et al. (2001) initially defined hyper-heuristics as “heuristics

to choose heuristics”. The authors claimed that hyper-heuristics operate at a

higher level of abstraction than meta-heuristics.

There are two main types of hyper-heuristics (Burke et al., 2010): (i) method-

ologies to select heuristics and (ii) methodologies to generate new heuristics. The

former class, also known as selection hyper-heuristics, is the focus of this study.

Often, selection hyper-heuristics operate on a single-point based search frame-

work which has two common consecutive stages, heuristic selection and move

acceptance as identified by Özcan et al. (2008). An initial solution is improved

iteratively through passing into these two stages, consecutively. The heuristic

selection selects a heuristic from a set of pre-defined low level heuristics and

generates a new solution; the move acceptance decides whether to accept or

reject the new solution. If the solution is accepted, it replaces the original so-

lution. The process iterates until a set of termination criteria is satisfied as

demonstrated in Figure 1.
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Figure 1: Demonstration of a generic selection hyper-heuristic framework
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In most of the selection hyper-heuristics, a domain barrier is featured (see

Figure 1). The domain barrier is a filter which prevents any problem spe-

cific information to be passed to the hyper-heuristic level (Burke et al., 2013),

thus it allows the reusability of the selection hyper-heuristic components. Al-

though the selection and the move acceptance methods are general and reusable,

Bilgin et al. (2007) stated that using different combinations of the two methods

yields to a different performance.

There is a large number of studies on heuristic selection and move acceptance

methods used within selection hyper-heuristics (Burke et al., 2013). In here, we

describe the relevant selection hyper-heuristic components which have been used

in this study. Most of the simple selection methods were tested by Cowling et al.

(2001), initially. Simple Random (SR) uses a uniform probability distribution

to randomly select one of the heuristics at each step. Random Descent (RD)

performs similarly to SR except that it applies the selected heuristic repeatedly

until there is no further improvement. Random Permutation (RP) generates an

initial permutation of the low level heuristics and applies one heuristic at a time

from that permutation at each step, sequentially. Random Permutation Descent

(RPD) orders the low level heuristics randomly similar to RP, but operates in

the same way as RD while applying a chosen low level heuristic.

Choice Function (CF) scores the low level heuristics based on a combination

of three different measures and the heuristic with the highest score is chosen at

each step. The first measure f1 is calculated based on the previous performance

of each low level heuristic according to the following formula:

f1(LLHi) =
∑
n

αn−1 In(LLHi)

Tn(LLHi)
(1)

where In(LLHi) is the evaluation function change, Tn(LLHi) is the time taken

to apply LLHi in n previous invocation, and α is a value between 0 and 1.

The second measure f2 records the pair-wise dependencies between the heuris-

tics. When a heuristic LLHi gets invoked right after the invocation of heuristic
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LLHk, the value of f2 is measured using the following formula:

f2(LLHk, LLHi) =
∑
n

βn−1 In(LLHk, LLHi)

Tn(LLHk, LLHi)
(2)

where In(LLHk, LLHi) is the evaluation function change, Tn(LLHk, LLHi) is

the time taken to apply LLHi following LLHk in n previous invocation, and β

is a value between 0 and 1. The third measure f3 is the time passed (τ(LLHi))

since the last time the heuristic LLHi was invoked.

f3(LLHi) = τ(LLHi) (3)

The choice function ranks the heuristics based on a score given to each heuris-

tic. This score is calculated using the three above measures with the following

formula:

F (LLHi) = αf1(LLHi) + βf2(LLHk, LLHi) + δf3(LLHi) (4)

where α and β weight the first two measures to give intensification to the search

process of the heuristic, while δ weights f3 to give diversification. More on

choice function and its variants can be found in (Drake et al., 2012).

There are a number of deterministic and non-deterministic acceptance meth-

ods that are used as a move acceptance component within selection hyper-

heuristics. Cowling et al. (2001) described some of the simple deterministic

methods, including accepting all moves (AM) criterion which accepts all the

generated solutions, accepting only improving moves (OI) which accepts only

the improved solutions, and accepting improve or equal moves (IE) which ac-

cepts only the non-worsening solutions. Simulated Annealing (SA) move accep-

tance was used in (Bai and Kendall, 2005; Bai et al., 2007; Bilgin et al., 2007).

Simulated annealing accepts the worsening solutions with a probability given

by the following equation:

pt = e
− ∆f

∆F (1− t
T

) (5)

where ∆f is the change in the evaluation function at time (step) t, T is the time

limit (maximum number of steps), ∆F is the range for the maximum change in

the evaluation function after applying a heuristic.
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Kendall and Mohamad (2004) utilised Great Deluge (GD) as a move ac-

ceptance strategy for channel assignment problem in the industry of cellular

communication. Great deluge move acceptance accepts a worsening solution if

the cost of that solution is better than or equal to a specific cost value called the

level at each step. For the initial level, the value of the first generated candidate

solution is used, and the level at each step is then updated with a linear rate

using the following formula:

τt = f0 +∆F × (1− t

T
) (6)

where τt is the value of the threshold level at time (step) t, T is the time limit

(maximum number of steps), ∆F is the expected range for the maximum change

in the evaluation function, and f0 is the final cost value.

Özcan et al. (2006) demonstrate and compare between four different se-

lection hyper-heuristic frameworks discriminating between mutational and hill

climbing low level heuristics. The mutational low level heuristics perturb a given

solution mostly at random and act as a diversification component which enables

the search process to explore the other regions potentially leading to high qual-

ity solutions. The hill climbing heuristics always produce non-worsening solu-

tions. Figure 1 is the traditional framework which uses all low level heuristics

without any discrimination. The experimental results on a set of benchmark

functions showed that frameworks using mutational heuristics first and then ap-

plying a hill climbing similar to the process in iterated local search (Özcan et al.,

2006) deliver better performance in the overall. More on hyper-heuristics can

be found in (Burke et al., 2013, 2003; Chakhlevitch and Cowling, 2008; Ross,

2005; Özcan et al., 2008).
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3. Selection Hyper-heuristics for High School Timetabling

3.1. The Third International Timetabling Competition - ITC 2011

The third international timetabling competition (ITC 20112) (Post et al.,

2013) was organised by the Centre of Telematics and Information Technology

at the University of Twente in Netherlands, to determine the state-of-the-art

approach among the modern approaches for the high school timetabling prob-

lem, allow researchers to try their techniques in real-world practical problem,

and to encourage the researchers and practitioners for further development of

algorithms in the area of high school timetabling. The competitors were given

an ANSI C library3, referred to as KHE, which was designed by Jeff Kingston

for implementing their algorithms to solve high school timetabling problems.

The competition consisted of three rounds. Since the time limit for the first

and third rounds of the competition was in months, the focus of this study is

the second round of ITC 2011 in which algorithms were required to operate as

time-contract algorithms, hence they had to terminate with a solution in a given

maximum amount of time. In the second round, the time limit was defined as

1000 nominal seconds based on the organisers’ machine. A tool was provided

for benchmarking of user machines. The competitors’ solvers were run by the

organisers for 10 times with different random seeds each for 1000 seconds on 18

hidden instances. The result for each run was ranked, and all the ranks were

averaged to determine the winner.

The problem instances for the competition were obtained from different ed-

ucational institutions across the world. A standard format for the definition

of the instances based on XML schema, referred to as XHSTT (XML for high

school timetabling) was used (Post et al., 2012, 2013), supported by KHE. The

problem instances of the ITC 2011 consisted of four components (Post et al.,

2013). The first component defines the instance times, which are individual

units of times during which the events take place. The second component is the

2ITC 2011 website: http://www.utwente.nl/ctit/hstt/
3http://sydney.edu.au/engineering/it/~jeff/khe/
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resources which are entities that attend the events such as teachers, students,

and rooms. The third component is the events which represent the meeting

between resources. Each event has a specific time, duration and any number of

resources. Finally the fourth component is the constraints which are conditions

an ideal solution should satisfy. The ITC 2011 instances contain 15 types of con-

straints: assign resource, assign time, split events, distribute split events, prefer

resources, prefer times, avoid split assignments, spread events, link events, avoid

clashes, avoid unavailable times, limit idle times, cluster busy times, limit busy

times, limit workload. In this study, the selection hyper-heuristics are tested on

the instances used in the second round of the competition. Table 1 summarises

the characteristics of the instances used in that round.

Table 1: Characteristics of round 2 instances used during ITC 2011 competition

Instance-Country Times Teachers Rooms Classes Students Event Duration

Instance2-Brazil 25 14 6 63 150

Instance3-Brazil 25 16 8 69 200

Instance4-Brazil 25 23 12 127 300

Instance6-Brazil 25 30 14 140 350

ElementarySchool-Finland 35 22 21 60 291 445

SecondarySchool2-Finland 40 22 21 36 469 566

Aigio 1st HS 2010-Greece 35 37 208 283 532

WesternGreeceUni3-Greece 35 19 6 210 210

WesternGreeceUni4-Greece 35 19 12 262 262

WesternGreeceUni5-Greece 35 18 6 184 184

Instance4-Italy 36 61 38 748 1101

Instance1-Kosovo 62 101 63 809 1912

Kottenpark2003-Netherlands 38 75 41 18 453 1156 1203

Kottenpark2005A-Netherlands 37 78 42 26 498 1235 1272

Kottenpark2008-Netherlands 40 81 11 34 1047 1118

Kottenpark2009-Netherlands 38 93 53 48 1166 1301

Woodlands2009-South Africa 42 40 278 1353

School-Spain 35 66 4 21 225 439

Each constraint contains a Boolean variable to indicate whether the con-

straint is hard or soft. The penalty for violating a hard constraint is much

higher than the soft constraint according to the competition rules. The quality
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(degree of violations) of a solution for a given problem instance is computed

using a minimising evaluation function (cost) which contains two components:

feasibility, and preferences (objective). They are calculated using weighted sum

of hard and soft constraint violations for a given solution, respectively. The

weights are defined as input for each problem instance. To represent the quality

of a given solution, the two values of infeasibility and objective are concate-

nated in the form: infeasibility-value.objective-value, using “sufficient” number

of digits in the objective part. For example a solution of 12.000032, indicates an

infeasibility value of 12, and objective value of 32. A solution is considered bet-

ter than the other if it has a smaller infeasibility value or the same infeasibility

but less objective value (Post et al., 2013).

In the second round of ITC 2011, four teams submitted their solvers. The

team HySST (Kheiri et al., to appear) employed a multi-stage hyper-heuristic

approach that operates on a set of mutational and hill climbing heuristics, which

operate on a candidate solution with a direct representation. The proposed

approach switches between exploration and exploitation stages automatically

and use appropriate heuristics at each stage. Moreover, this solver embeds an

adaptive threshold move acceptance, controlling its parameter setting during

the search process enabling partial restarts whenever necessary. The HySST

solver has some system parameters which are tuned and fixed for high school

timetabling. The team HFT (Domrös and Homberger, 2012) designed an evolu-

tionary strategy which uses only mutation as a genetic operator as their solver.

The main characteristic of this solver is that it uses an indirect representation,

encoding solutions using a permutation of sub-events. Moreover, the HFT solver

uses a population size of 1, accepting improving moves only as the replacement

strategy. At each evolutionary cycle, the candidate solution in hand gets de-

coded and used to construct a complete new timetable, which is followed by

evaluation and replacement. The proposed algorithm can be considered to be a

basic random mutation hill climbing algorithm in the overall. The team Lectio

(Sørensen et al., 2012) used an approach based on adaptive large neighbourhood

search which passes through three main stages. The first stage determines how
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many variables gets unassigned. The following stage uses an adaptive strategy

deciding which remove and insertion (reassign) type of move operators to in-

voke successively, producing a new solution. Then finally, a simulated annealing

with reheating method decides to accept or reject that new solution. Lectio ap-

plied parameter tuning using irace tool on nine system parameters of the solver

for an improved performance. The team GOAL (da Fonseca et al., 2014) pro-

posed a three stage approach using two different meta-heuristics for high school

timetabling. The first stage constructs an initial solution using the KHE library.

Then simulated annealing with reheating and iterated local search stages are

employed respectively to improve upon that initially generated solution. The

GOAL solver contains seven different neighbourhood operators, two of them

being representative of ‘large’ neighbourhoods, while the remaining are fairly

simple ‘small’ moves, such as swap or move events. The simulated annealing

with reheating utilises a subset of six neighbourhood operators, while iterated

local search utilises two of them. A neighbour operator is chosen based on a

prefixed probability and applied to a solution in hand at any step.

The results of the second round of the competition revealed that team GOAL

is the winner, team HySST ranked second, Lectio third and HFT fourth. Soon

after the competition, Kalender et al. (2013) applied a hyper-heuristic using a

greedy-gradient approach for selection and simulated annealing for move accep-

tance and applied it to the round 2 instances of ITC 2011. The greedy-gradient

is a learning heuristic selection method that selects heuristics based on their

scores. The results showed the success of the approach performing better than

HySST using the same ranking method as used in the second round of the

competition.

3.2. Solution Method

The same problem domain layer in the framework proposed by Kheiri et al.

(to appear) is used for implementing a range of combinations of hyper-heuristic

components. The initial solutions are constructed using the heuristic provided

with the KHE software library. The selection hyper-heuristics are then used to

11



mix a set of nine low level heuristics, including seven mutational and two hill

climbing heuristics as briefly described below:

• MH1 consists of two independent perturbation operators which are in-

voked successively. The first operator is invoked with a probability of

1% and splits a randomly chosen event taking longer than 1 period into

two events whose durations sum up to the duration of the original event.

Then the second operator is invoked, exchanging the start time of two

randomly chosen events regardless of their duration and whether this ex-

change causes any overlaps afterwards. For example, this heuristic could

choose a Mathematics meeting with a duration of two hours, splitting it

into one hour long two separate meetings and then swap the start time of

Geography and Biology meetings. Assuming the special case that Geog-

raphy with a duration of 2 time slots starts on Tuesday at the first time

slot and Biology with a duration of 3 time slots starts on Tuesday at the

third time slot, this heuristic will swap the start time of both meetings

even though they overlap.

• MH2 chooses an event randomly, and reschedules it to a random time slot.

For example, assuming that Biology meeting taking place on Tuesday at

the first time slot is chosen, this heuristic could reschedule this meeting

to the last time slot on Thursday.

• MH3 exchanges the start time of two randomly selected events resolving

overlaps that could occur after this operation. If the two randomly selected

events have the same duration, then the classical exchange operation will

be performed. The difference between the exchange operation in MH1

and MH3 becomes apparent only when swapping the start time of two

successive events with different durations. For example, assuming the

special case that Geography with a duration of 2 time slots starts on

Tuesday at the first time slot and Biology with a duration of 3 time slots

starts on Tuesday at the third time slot, MH3 would move the start time

of Geography to the fourth time slot on Tuesday.
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• MH4 chooses a resource randomly assigned to an event, and reassigns it to

another event. For example if Room1 is assigned to the History meeting,

after applying this heuristic, Room1 could be assigned to the Mathematics

meeting.

• MH5 randomly swaps two resources. For example, assuming that the

Biology meeting is assigned to Room1, the Geography meeting is assigned

to Room2, and those resources are chosen, after applying this heuristic,

the Biology meeting gets assigned to Room2, while the Geography meeting

gets assigned to Room1.

• MH6 randomly chooses an event and an associated resource, then reas-

signs a random resource to the event. For example, assuming that Geog-

raphy meeting is chosen and Teacher2 is assigned as the teacher of that

meeting, after applying this heuristic, Teacher5 could become the teacher

of that Geography meeting.

• MH7 merges separate, but contiguous events of the same type. For exam-

ple, assuming that Geography with a duration of two time slots is assigned

to the first time slot on Thursday, and another Geography meeting with

a duration of one period is assigned to the third time slot on Thursday,

after applying this heuristic, the two classes are merged into a single class

with a duration of three time slots starting from the first time slot on

Thursday.

• HC1 merges events to reduce the cost of the solution by employing a first

improvement hill climbing operator

• HC2 makes moves based on ejection chains to reduce the cost of the

solution by changing the assignments of the resources

Both hill climbers make their moves according to a specific constraint, hoping

the solution improves upon the other types of constraints. This could produce

a net worsening in the final cost, but such worsening moves are rejected. More

on those low level heuristics can be found in (Kheiri et al., to appear).

13



The goal of this work is to compare the performance of different selection

hyper-heuristics embedding different reusable heuristic selection and move ac-

ceptance methods and report the best performing approach unlike the work

in (Kheiri et al., to appear). Each hyper-heuristic component exhibit different

characteristics some with learning and some without learning; some are adap-

tive methods and some are not. We investigate the performance of 15 selection

hyper-heuristics, formed by combining each selection method in {SR, RP, RD,

RPD, CF} with each acceptance method in {IE, SA, GD} over 18 problem

instances from the second round of the ITC 2011 competition.

SA and GD are adaptive move acceptance methods which are implemented

different than the versions described in Section 2. The ∆F value in the simulated

annealing and great deluge move acceptance methods is set to 0.01% of the cost

of the best solution in hand, and to 1% if the best solution violates only soft

constraints, as suggested in (Kalender et al., 2013). The f0 value in great deluge

is set to 0.001% of the cost of the best solution in hand, and to 0.1% if the best

solution violates only soft constraints.

4. Computational Results

The experiments are conducted on the second round problem instances of

the ITC 2011 competition. A total number of fifteen selection hyper-heuristic

methods are investigated as described in Section 3. Each method is applied to

the same set of eighteen instances taking into account the rules of the ITC 2011

competition, that is, each method is run for ten trials with a time limit of 1000

nominal seconds for each instance. A benchmarking software tool provided

at the ITC 2011 website is used to obtain the equivalent time limit on our

local machines. The selection hyper-heuristics are evaluated with the aim of

determining the best algorithm that delivers the high quality solutions to the

high school timetabling problem instances. Then the performance of the best

hyper-heuristic is compared to some previously proposed approaches.
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4.1. Comparison of the Selection Hyper-heuristics

Table 2 summarises the results from fifteen selection hyper-heuristics, each

combining a heuristic selection method from {SR, RP, RD, RPD, CF} with a

move acceptance from {IE, SA, GD} over the ITC 2011 problem instances. Each

entry in the table provides the number of instances for which the corresponding

selection hyper-heuristic produces the best in terms of best-of-run or average

best, including ties, over the 10 trials. The table also gives the score for each

hyper-heuristic using the ranking strategy utilised in the second round of the

ITC 2011 competition. From Table 2, RPGD and RDSA generate the best aver-

age in three instances. RDGD generates the best and the minimum cost values

in five instances including four draws. RDIE also obtains the best results in five

instances including 3 draws. The ranking results put the selection methods {SR,

RP, RD, RPD} combined with {GD} in the top of the fifteen selection hyper-

heuristics that were tested. The results also show that the heuristic selection

methods with no learning (i.e., SR, RP) or learning with the shortest memory

(i.e., RD) perform better than the CF learning heuristic selection method re-

gardless of the move acceptance. RPGD and SRGD are the best approaches

based on their scores. On the other hand, considering the average results, RPGD

performs slightly better than SRGD producing the best average cost on three

instances, while SRGD is successful on one instance. Hence, the performance of

top ranking great deluge based selection hyper-heuristics are compared further.

Table 3 summarises the results. The Mann-Whitney-Wilcoxon test is used

as a statistical test to perform pairwise comparison of results (costs) of 10 runs

from RPGD versus each hyper-heuristic in {SRGD, RDGD, RPDGD} at 95%

confidence level. Indeed, RPGD performs better than the other algorithms on

average considering that the number of instances for which it produces the best

average results is six (in bold in Table 3), which is more than any of the other

hyper-heuristic. The average performance difference between RPGD and the

other selection hyper-heuristics is not statistically significant for almost all in-

stances, as confirmed by the Mann-Whitney-Wilcoxon test. Although Table 2

shows that SRGD and RPGD has the same scores, RPGD performs better than
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SRGD on twelve instances and this performance difference is statistically sig-

nificant on the Woodlands2009-South Africa instance (Table 3). Hence, RPGD

is taken under consideration for further analysis and performance comparison

to previously proposed approaches.

4.2. An Analysis of RPGD

RPGD creates a random permutation of low level heuristics and applies each

one of them on the solution in hand one by one. For example, given five heuris-

tics, a random permutation of low level heuristics could be <LLH3, LLH2,

LLH4, LLH5, LLH1>. A circular list for the permutation is employed and

at each step, next low level heuristic from the list is chosen. For example, as-

suming <LLH3, LLH2, LLH4, LLH5, LLH1>, after the invocation of LLH1,

LLH3 is chosen as the next heuristic. In between the heuristic invocations,

the adaptive great deluge move acceptance is used for accepting or rejecting a

new solution. Mixing all low level heuristics regardless of their nature in this

manner, implicitly generates an algorithm similar to iterated local search algo-

rithm which is known to be an effective solver for combinatorial optimisation

problems (Lourenço et al., 2010). RP does not employ perturbation and local

search as fixed order single step/stage processes. The perturbation and local

search components are fixed as the permutation of low level heuristics is decided

randomly. Hence, RPGD can be considered as a multi-stage hyper-heuristic in

which number of stages is decided randomly depending on the nature of succes-

sive low level heuristics in the random permutation. Exploration of the search

space is performed using a (set of) mutational heuristic(s) at a stage while ex-

ploitation takes place by the help of a (set of) hill climbing heuristic(s), invoked

afterwards. In the next exploration or exploitation process, a (set of) different

heuristic(s) is utilised from the list. For example, given five low level heuris-

tics, where LLH1 and LLH4 are hill climbers, and LLH2, LLH3 and LLH5 are

mutational heuristics, the random permutation <LLH3, LLH2, LLH4, LLH5,

LLH1> automatically creates four stages. In the first stage, LLH3 and LLH2

are used for perturbation (exploration), while in the following stage LLH4 is
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used for local search (exploitation). Then, similarly, LLH5 is used for perturba-

tion in the third stage, while LLH1 is used as a local search component in the

following stage. This exploration and exploitation cycle repeats itself under this

fixed setting while solving a given instance until the hyper-heuristic terminates.

The experimental results indicate that the contribution of each low level

heuristic varies for the improvement of an initial solution within the given time

limit. The utilisation rate of a low level heuristic is the ratio of the total number

of times a low level heuristic is invoked, to the total number of low level heuristics

invocations during the search process (Özcan et al., 2008). The utilisation rate

is obvious for each low level heuristic for the RP heuristic selection. They are

all equally used, but then again it does not mean that they contributed equally

to improvement. Figure 2 depicts the improvement oriented average percentage

utilisation rate for the low level heuristics over 10 runs considering only the total

number of low level heuristics invocations that generated improvement for two

selected sample problem instances of WesternGreeceUni5-Greece and Instance1-

Kosovo. It has been observed that the hill climbing low level heuristics are more

successful, resulting with a high utilisation rate for WesternGreeceUni5-Greece

instance (Figure 2(a)). However, surprisingly, the mutational operators MH4,

MH5, MH6 and MH7 generate improvement almost as much as the hill climbing

operators. Moreover, the remaining mutational operators MH1, MH2 and MH3

yield poorer performance when compared to them. MH1-MH3 are event oriented

random perturbation operators and they modify a given solution randomly by,

for example, swapping or changing the timing of events in the timetable, while

MH4-MH7 are resource oriented operators (see Section 3). The analysis clearly

show that the low level heuristics which perturb the resource allocations between

events in the timetable are likely to result with an improved solution. Although

MH1-MH3 do not seem to yield more improvements than other heuristics, they

act as diversification components, potentially leading to better solutions and

increasing the utilisation rate of the other low level heuristics, considering that

GD allows worsening solutions. For the rest of the problem instances, similar

phenomena are observed, except for the the Instance1-Kosovo. Figure 2(b) il-
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lustrates the different behaviour of RPGD while solving this instance. Although

all low level heuristics are invoked, only the event oriented low level heuristics,

MH1-MH3 and HC1 generate improving solutions during the search process.
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Figure 2: Average utilisation rate for the low level heuristics over 10 runs based on only

improving moves for (a) WesternGreeceUni5-Greece, and (b) Instance1-Kosovo

Figure 3 illustrates the progress of the infeasibility value and partially ob-

jective value in time averaged over 10 runs on two selected problem instances,

namely; Instance4-Brazil and WesternGreeceUni5-Greece, representative of the

remaining instances. RPGD either makes a gradual and slow improvement as

illustrated in Figure 3(a) or a large and rapid improvement as in Figure 3(b). In

any case, a solution is improved continuously over time. There are certain stages

during when the search process gets stuck at a local optimum. No change in the

infeasibility value has been observed for a period of time, when RPGD works on

repairing of the soft constraint violations. The use of adaptive strategy within

the great deluge move acceptance method changing the threshold is helping the

search process to jump to other potentially “good” regions in the search space

yielding further improvements in time. Figure 3(a) shows that the degree of

improvement that RPGD achieves is limited and still struggles resolving hard

constraints within the given duration. In Figure 3(b), the sudden drop in the

infeasibility value happens right at the beginning of the search process. After

a while the infeasibility value reaches nearly to zero indicating that the solu-
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tion is satisfying all the hard constraints. After this point onward during the

search process, the improvement in the solution slows down while the algorithm

attempts to repair the soft constraint violations.
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Figure 3: Plots showing the improvement of cost in terms of infeasibility and objective values in

time averaged over 10 runs for the instances (a) Instance4-Brazil, and (b) WesternGreeceUni5-

Greece

4.3. Comparison of RPGD to the Best Known Approaches

The performance of RPGD algorithm is compared to the performance of the

four finalists in the second round of ITC 2011 competition, GOAL, HySST, Lec-

tio, and HFT. Additionally, the greedy-gradient simulated annealing (GGSA)

approach proposed in (Kalender et al., 2013) is considered in the performance

comparison. The scoring of each method is based on the same ranking strat-

egy used in the second round of the ITC 2011 competition. Table 4 provides
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the best cost values obtained by each approach in 10 runs for each instance.

HySST and GGSA use the same selection hyper-heuristic framework. HySST

cannot generate the best result on any of the instances among the algorithms

being compared, while GGSA generates the best result on ElementarySchool-

Finland and Kottenpark2003-Netherlands. RPGD wins on 9 instances against

HySST and they tie on 2 instances, while it is the winner on 10 instances

against GGSA. RPGD performs well on the problem instances from Greece,

Italy and Netherlands and its performance is superior on most of the large

problem instances. In the overall, GOAL still turns out to be the best ap-

proach for high school timetabling. RPGD obtains the new best known re-

sults on three instances: Instance1-Kosovo, Kottenpark2005A-Netherlands and

Kottenpark2009-Netherlands. Overall, RPGD ranks the second with a score of

3.08 among the previously proposed algorithms. However, the difference be-

tween RPGD and the third approach (GGSA) is only 0.06.

5. Conclusion

The goal of hyper-heuristic research is to provide automated intelligent

search methodologies that can be applied to a wide range of computation-

ally hard problems. The theoretical work on such methodologies is limited.

Lehre and Özcan (2013) recently demonstrated on some benchmark functions

that mixing multiple move operators, or acceptance methods yield more effi-

cient algorithms than using a single operator. In this study, a set of selection

hyper-heuristics combining five different selection methods, with three move ac-

ceptance methods are experimented and their performance is analysed for high

school timetabling. The results revealed that the selection method Random

Permutation (RP) when combined with and adaptive Great Deluge (GD) move

acceptance criterion performed better than the other selection hyper-heuristics

and ranked the second comparing to some previously proposed methods.

The experimental results confirm that the choice of selection hyper-heuristic

components influences its overall performance. The adaptation ability of move
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acceptance component is also a crucial element in the overall performance of a se-

lection hyper-heuristic. Adaptive move acceptance criteria perform better than

the deterministic or probability based move acceptance, such as simulated an-

nealing, under the single point based hyper-heuristic search framework for high

school timetabling. Combining an adaptive heuristic selection method with an

adaptive move acceptance does not necessarily result with a better performing

selection hyper-heuristic. The results indeed show that the internal dynam-

ics between adaptive components of a selection hyper-heuristic could cause the

search process to get stuck at a local optimum during the search process. The

reinforcement learning based adaptive heuristic selection method CF performs

the worst when combined with the adaptive move acceptance method GD for

high school timetabling, while RP, a heuristic selection method with no learning

performs the best when combined with the same move acceptance method.

Both the HySST (Kheiri et al., to appear) and proposed solver contain adap-

tive threshold move acceptance, however GD adapts itself to changes better in

the overall, generating better solutions to given instances. The move acceptance

component of HySST is not as general as GD, since it uses a set of discrete

threshold values which are tuned for high school timetabling and so it might

not perform well on other problem domains. Moreover, the heuristic selection

component of HySST is also not as general as RP and relies on the nature

of the low level heuristics distinguishing between mutational and hill climbing

heuristics. For example, if ruin and recreate or crossover type of operators

are introduced, there is no strategy within the heuristic selection component

of HySST to handle them properly. However, RP being a simple yet effective

strategy can handle any type of operator.

A hyper-heuristic controls the mixing of low level heuristics and their pa-

rameter setting. The success of RP on timetabling is worth to consider in the

future design of hyper-heuristics. Hence, we plan to apply this hyper-heuristic

on other problem domains, but more importantly we plan to investigate into

learning heuristic selection methods which orders chosen low level heuristics.

Human design of such strategies could be an extremely difficult task, and so
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data science techniques, such as machine learning (Asta and Özcan, 2015) or

other metaheuristics, such as genetic programming Burke et al. (2009) can be

embedded into hyper-heuristics, constructing such strategies automatically for

improved performance.

The framework used during the experiments for high school timetabling is

forward compatible, meaning that new hyper-heuristic components developed in

the future can easily be tested on this problem domain. Moreover, new low level

domain specific heuristics can be designed and best performing selection hyper-

heuristics could be re-evaluated managing those low level heuristics. Moreover,

if crossover operators are implemented as low level heuristics, then adaptive

memetic algorithms or other memetic computing techniques (Neri and Cotta,

2012) could be utilised as population based approaches, further enabling the

development of hybrid approaches using hyper-heuristics as local search com-

ponents.
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Table 2: The performance comparison of the fifteen selection hyper-heuristics which are run

for 10 trials on all problem instances. The second column provides the number of instances for

which the corresponding selection hyper-heuristic produces the best average cost (including

ties). The third column provides the number of instances for which the corresponding selection

hyper-heuristic produces the best-of-trials cost (including ties). The last column provides the

score of each hyper-heuristic, which is computed using the same scoring scheme as in ITC

2011 for ranking different approaches.

HH #best/tie avg. #best/tie min. score

SRIE 1 / 0 0 / 2 7.28

SRSA 0 / 0 0 / 1 8.75

SRGD 1 / 0 1 / 2 5.33

RPIE 1 / 0 1 / 2 6.58

RPSA 1 / 1 0 / 1 7.88

RPGD 3 / 0 2 / 0 5.33

RDIE 1 / 0 2 / 3 6.94

RDSA 3 / 0 2 / 1 7.78

RDGD 2 / 0 1 / 4 5.34

RPDIE 0 / 0 2 / 2 6.71

RPDSA 1 / 1 1 / 1 7.65

RPDGD 2 / 0 2 / 2 5.40

CFIE 0 / 0 0 / 0 13.02

CFSA 1 / 0 0 / 0 12.91

CFGD 0 / 0 0 / 0 13.10
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Table 3: The average performance comparison of top four selection hyper-heuristics based

on the mean cost (quality) of resultant solutions over 10 trials. The pairwise statistical test

considering RPGD vs. each hyper-heuristic in {SRGD, RDGD and RPDGD} is based on

Mann-Whitney-Wilcoxon. Given two hyper-heuristics RPGD vs X: > (<) indicates that

RPGD (X) performs significantly better than X (RPGD), while ≥ (≤) indicates that RPGD

(X) performs slightly better X (RPGD). The best mean values for each instance are high-

lighted in bold.

Instance RPGD vs. SRGD vs. RDGD vs. RPDGD

Instance2-Brazil 0.00001199 ≥ 0.30001082 ≤ 0.00001073 ≤ 0.00001121

Instance3-Brazil 0.00001856 ≥ 0.00001904 ≤ 0.00001831 ≥ 0.00001883

Instance4-Brazil 12.00001607 ≥ 12.20001649 ≥ 12.70001556 ≤ 11.90001555

Instance6-Brazil 0.00003098≥ 0.00003123 ≥ 0.00003166 ≥ 0.10003282

ElementarySchool-Finland 0.00000043 ≥ 0.00000045 ≤ 0.00000041 < 0.00000037

SecondarySchool2-Finland 0.00000179≥ 0.00000224 ≥ 0.00000218 ≥ 0.00000218

Aigio 1st HS 2010-Greece 3.20009039 ≥ 4.00009285 ≤ 3.00009371 ≤ 2.40008882

WesternGreeceUni3-Greece 0.00000124≥ 0.00000128 ≥ 0.00000132 ≥ 0.00000133

WesternGreeceUni4-Greece 0.00000269 ≤ 0.00000246 ≤ 0.00000247 ≤ 0.00000251

WesternGreeceUni5-Greece 0.00000036 ≤ 0.00000028 ≤ 0.00000026 ≤ 0.00000034

Instance4-Italy 0.00008743 ≤ 0.00007749 ≤ 0.00007982 ≤ 0.00007532

Instance1-Kosovo 27.50101321 ≤ 26.40098814≤ 26.80095814 ≥ 29.30101231

Kottenpark2003-Netherlands 2.10667418 ≤ 1.30571195 ≤ 1.70599276 ≤ 1.80647190

Kottenpark2005A-Netherlands35.60301159 ≤ 35.30292741≥ 35.60309963 ≥ 36.60288450

Kottenpark2008-Netherlands 32.41802756 ≥ 33.11790055 ≤ 32.01804926≥ 34.81819965

Kottenpark2009-Netherlands 33.5325698≥ 35.43325980 ≥ 38.13352230 ≥ 35.73329525

Woodlands2009-South Africa 2.0000288 > 2.10002925 ≥ 2.00002921 ≥ 2.10002907

School-Spain 0.00022784≥ 0.00023358 ≥ 0.00023082 ≥ 0.20036330
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Table 4: The performance comparison of RPGD to HySST, GOAL, HFT, Lectio and GGSA

over 10 trials showing the best cost, indicated as infeasibility-value.objective-value for each

instance. The best values are highlighted in bold.

Problem RPGD HySST GOAL HFT Lectio GGSA

Instance2-Brazil 0.00096 1.00069 1.00051 5.00183 0.00019 0.00046

Instance3-Brazil 0.00152 0.00096 0.00087 26.00264 0.00112 0.00122

Instance4-Brazil 10.00143 2.00238 16.00104 63.00225 1.00172 1.00234

Instance6-Brazil 0.00266 2.00229 4.00207 21.00423 0.00183 0.00201

ElementarySchool-Finland 0.00004 0.00004 0.00003 29.00080 0.00003 0.00003

SecondarySchool2-Finland 0.00009 0.00006 0.00000 28.01844 0.00014 0.00035

Aigio 1st HS 2010-Greece 0.00596 0.00322 0.00006 45.03665 0.00653 0.00514

WesternGreeceUni3-Greece 0.00010 0.00010 0.00005 14.00198 30.00002 0.00016

WesternGreeceUni4-Greece 0.00019 0.00016 0.00005 233.00277 35.00070 0.00030

WesternGreeceUni5-Greece 0.00002 0.00001 0.00000 9.00174 4.00013 0.00004

Instance4-Italy 0.00520 0.04012 0.00169 250.05966 0.00225 0.00882

Instance1-Kosovo 17.09084 1065.17431 38.09789 986.42437 274.04939 71.35367

Kottenpark2003-Netherlands 0.40862 0.47560 0.87084 203.8792 34.5596 0.18738

Kottenpark2005A-Netherlands 26.26129 26.35251 27.37026 393.40463 185.83973 30.27471

Kottenpark2008-Netherlands 24.99999 32.71562 10.33034 INVALID 84.99999 51.99999

Kottenpark2009-Netherlands 22.99999 33.99999 25.14030 337.99999 97.9606 31.99999

Woodlands2009-South Africa 2.00279 2.00047 2.00012 59.00336 0.00094 0.00121

School-Spain 0.01451 0.01247 0.00597 63.13873 0.01927 0.04005

Average ranking 3.08 3.29 1.52 5.86 3.56 3.14
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