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Abstract

In this paper two important issues in BCI systems are addressed. First, EEG-
based BCI systems require to attach many electrodes on the scalp of subjects but
their placement involves a laborious process. Second, the preprocessing of EEG
signals by means of filters plays a crucial role in the success of EEG classification.
An evolutionary multi-objective approach is proposed for optimizing both the
number of electrodes and the classification error achieved by the spatial filter
coupled to a learning classifier. Multi-objective algorithms have the advantage
that they return a Pareto front, that is, a set of solutions that represent all
the possible tradeoffs between the number of channels and the classification
accuracy, from where the practitioner can choose. An empirical comparison
with two other heuristic methods shows that the simultaneous optimization
of electrodes and filters can provide better results than other approaches that
reduce the number of electrodes but do not modify the filter, specially if low
error solutions with few electrodes are desired.

Keywords: Brain-Computer Interfaces, Multi-Objective Optimization,
Electrode Selection

1. Introduction

Brain-Computer Interface (BCI) research aims at developing a direct com-
munication between brain and machine in order to provide an alternative control
pathway for the user. One of the main aims of BCIs is to restore motor function
for disabled patients, suffering for instance from Amyotrophic Lateral Sclerosis
or the locked-in syndrome [16]. BCIs can provide to those patients control over
wheelchairs [3, 17] or new communication channels through virtual keyboards
[9, 23].
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There are many varieties of BCIs, but the most common are the EEG-
based non-invasive BCIs. In a typical BCI setting, subjects are required to
perform specific mental tasks while their EEG signals are being recorded. The
EEG signal is amplified and sent to the computer where it can be analyzed by
algorithms. Depending on the kind of BCI, different features can be detected
on the EEG signal and transformed into actions (such as moving a cursor on
the screen or controlling a wheelchair). These features can be either voluntarily
generated by the user (such as slow cortical potentials or sensorimotor rhythms)
or elicited by visual or auditory stimulation (event-related potentials or steady-
state evoked potentials) [15].

EEG-based BClIs capture the EEG signal by means of electrodes or channels
disposed on the subjects scalp. The EEG signal is recorded from the electrodes,
then the signal is preprocessed using different kinds of filters and, finally, it
is classified. The result of the classification can be used to control a device.
For instance, a BCI that is able to classify thoughts into hand-right and left-
hand imaginary movement can be used to move a screen cursor right and left.
Machine Learning techniques are typically used for computing the classifier from
user data [8, 20]. The learning of the classifier and the adjustment of the
filters is carried out off-line. They are calibrated by using the data from an
acquisition/calibration session where the user is instructed to perform certain
mental tasks while the EEG is recorded.

Preprocessing / filtering raw signals plays a crucial role in the classification
of EEG signals [7, 26]. In particular, EEG-based BCT’s suffer from low spatial
resolution: only half the contribution to each electrode comes from sources
within a 3 ¢cm radius below each electrode [22]. In this context, spatial filters
are useful because they can generate a more localized signal for every electrode.
Previous research [4, 10, 5] has shown that hybridization of global optimization
techniques and machine learning classification is useful for different issues in the
BCI domain, like feature selection / extraction and improving classification. In
particular, previous work by the authors [1] is focused in obtaining spatial filters
for improving the performance of a classifier. In that work, the Covariance
Matrix Adaptation Evolution Strategy (CMAES) [12] is used to optimize a
spatial filter for a Fisher Discriminant classifier.

The issue that will be addressed in this paper is related to the reduction in
the number of channels. The number of electrodes in typical EEG systems may
range from 10 to 256 channels. A large number of electrodes can be useful for
medical and diagnostic purposes. For real BCI applications, the classification
accuracy that can be achieved by using many electrodes is highly important.
But on the other hand, the placement of electrodes on the scalp is slow and
it generally involves a laborious process. Therefore, it is important to find out
those electrodes which have a null or very small contribution for classification.
Neurological knowledge can be used for electrode selection. For instance, it is
well known that hand motor imagery can be detected at the C3 and C4 locations.
This information can be very useful, but it is also known that different subjects
respond differently and the subject-dependent optimal location of electrodes
may vary [7]. Therefore, it is important to automatically determine the degree



of relevance of electrodes for the user-dependent classification task.

A way to tackle this problem is to consider initially a large number of elec-
trodes and then use some methods to select the best set of channels for each sub-
ject. For this purpose, evolutionary algorithms have already been used within a
single-objective formulation where the classification error is optimized while at
the same time penalizing solutions with many electrodes [18, 14, 2]. The single-
objective approach returns a single solution that represents a good trade-off
between the number of electrodes and classifier accuracy.

Electrode selection can be formulated more naturally within a multi-objective
framework because both goals (accuracy and number of electrodes) can be opti-
mized simultaneously. The end result of a multi-objective algorithm is not one,
but a set of solutions (the so-called non-dominated solution set or Pareto front)
[24]. This front represents the best tradeoffs between the number of channels and
some measure related to classification accuracy. In other words, for every pos-
sible number of electrodes, the Pareto front contains the solution that provides
the optimal accuracy that can be achieved with them. This way, the practi-
tioner does not have to commit to a single solution like in the single-objective
case, but can select the electrodes that achieve the classification performance
required at a particular time.

Multi-objective evolutionary algorithms (MOEAs) have already been used
in the BCI domain for electrode selection. In [13] authors present a preliminary
study comparing a multi-objective evolutionary algorithm based on a decompo-
sition approach into optimization sub-problems and a Multi-objective Particle
Swarm Optimization method. In [21] the decomposition approach is introduced
into a Multi-objective Particle Swarm method. In those works, channel selection
in the classification of continuous EEG without trial structure is carried out by
minimizing two objectives: the classification error and the number of channels.
In [25] a Multi-objective Binary Particle Swarm optimization is also proposed
to handle the problem of channel selection for multi-channel EEG signals. T'wo
objectives are optimized: the number of selected channels and the mutual in-
formation (instead of classification accuracy) achieved by a classifier (Support
Vector Machines, Back-propagation, and Nearest Neighbor). In all the previous
approaches, particles contain binary values, each one of them representing the
selection (or removal) of a channel.

The goal of our work is to use a multi-objective approach to provide a set of
solutions (Pareto front) that represents all the possible best trade-offs between
classification error and number of electrodes. Each solution is a pair made of a
collection of electrodes (like in other approaches) but also a spatial filter. Both
of them are optimized simultaneously within the multi-objective framework.

The chromosome has to encode candidate solutions made of a spatial filter
and selected electrodes. In order to simplify the chromosome encoding, our
framework allows to take advantage that the components of the spatial filter
matrix represent the weights or coefficients of the electrodes (small weights
mean small influence of the electrode). Therefore, a threshold is also included
in the chromosome and it is used to determine which electrodes are selected
(those whose weight is larger than the threshold). Thus, only a threshold has to



be encoded in the chromosome (in addition to the spatial filter matrix), instead
of a longer binary electrode-selection mask, as in other approaches.

To test the performance of this approach, it will be compared with other
methods that compute an optimized spatial filter for the whole set of electrodes,
and then electrodes are removed according to some heuristics (but the spatial
filter itself remains fixed).

The rest of the paper is organized as follows. Section 2 describes the multi-
objective approach, including a brief description about how spatial filter is used
to preprocess raw EEG data, the chromosome encoding, and the fitness function.
Section 3 includes the experimental validation of the proposed multi-objective
approach and the conclusions are summarized in Section 4.

2. Multi-objective Approach for Electrode Selection

The aim of this section is twofold. First, the main concepts related to multi-
objective optimization and to preprocessing (mainly the spatial filter) and clas-
sifying EEG signals. Second, the two main components of the multi-objective
optimization process used in this paper will be described: how solutions are
encoded and how the actual fitness function is computed.

2.1. Introduction

The aim of this introductory section is to first describe the main concepts
related to multi-objective optimization, and second, to explain the way EEG
signals are preprocessed (mainly by applying the spatial filter) and classified, as
done in this article.

Multi-objective optimization

Multi-objective optimization is concerned with problems where more than
one goal has to be optimized. For non-trivial problems, there is no single solution
that optimizes all objectives because they conflict. This is the case of this paper,
where reducing the number of electrodes also increases the classification error,
and viceversa. Therefore, instead of a single solution like in single-objective
optimization, a set of solutions called non-dominated set or Pareto front, is
obtained. Solutions in the non-dominated set are optimal in the Pareto sense:
none of the objective functions can be improved without worsening some of the
other objective values. Without further user preferences, all Pareto optimal so-
lutions can be considered equally good, because none of them is better than the
others according to Pareto. It is up to the user to select one of them according
to his requirements at the moment of selection. An example of Pareto front
can be seen later in the article in Figure 1 (left figure, label "Multiobjective’),
which represents a non-dominated set with two objectives: classification error
(y-axis) and number of electrodes (x-axis). The goals to be optimized consti-
tute the objective space. In order to find the optimal values for the objectives,
the optimization algorithm can explore the so-called decision space, which in
this work is made of two components: the spatial filter and a threshold that
determines the subset of electrodes to be used. The objective space and the



decision space are related: the classification error is computed by preprocessing
the EEG signal, restricted to the subset of electrodes, by means of the spatial
filter. Then, a classifier can be constructed from the preprocessed data. And fi-
nally, the classification error can be obtained. The following part of this section
is dedicated to explaining this preprocessing and classification process.

Preprocessing and classifying EEG signals

Let M be a t x ¢ data matrix that contains c¢ time series, each one recorded
from each of the c electrodes. t is the number of time instants in the signal to
be classified. The spatial filter S is a linear transformation of the original data.
S is represented by a ¢ x ¢’ matrix, where ¢ is the number of electrodes and
¢ < c¢is a parameter. Spatial filtering is carried out by just multiplying the
original data M by matrix S: M’ = M % S. This means that the spatial filter
S transforms the ¢ channels of M into the ¢’ channels of M’.

Classification is carried out in two steps. First, the signal M is preprocessed
by means of the spatial filter S and the Fast Fourier Transform (FFT). The
reason for moving from the time-domain to the frequency-domain by means of
the FFT is that EEG patterns can be better detected at the frequency domain
[15]. For instance, it is known that imagination of movements can be observed
around the 12Hz frequency-band, although the exact band depends on the user
[1]. Second, once preprocessed, the signal is classified by a Linear Discriminant
(LDA), also known as the Fisher Discriminant.

Preprocessing is carried out by first applying the spatial filter S to M as
explained in the previous paragraphs, and then transforming from the time to
the frequency domain (by means of the FFT), according to Eq. 1. FFT returns
complex numbers (modulus and phase) but for classification purposes, only the
modulus is used [7], extracted by the modulus operator | |. Rows of F' from 1
to ¢ = % represent the frequency bands from 0 Hz to % Hz with a resolution

of % Hz, where f is the sampling frequency. That is, these rows represent the

frequency bands [0, %] Hz, [%, 2 % {] Hz, etc.

F = (fij)vxe = [FFT(M * 5)| @)

The expression M’ = (mgyj)txd = M %S in Eq. 1 transforms signal M from
the c real electrodes to ¢’ spatially filtered channels. Let m’ ; represent column
J from matrix M’ (or equivalently, the jth filtered channel). Eq. 2 shows that
the application of the spatial filter (M’ = M % .5) can be understood as creating

filtered channels m’ 5 which are linear combinations of real electrodes m j.

k=c
m’; = Z Sk,;Mk = S1 M1+ SojM a2+ ...+ S, M (2)

k=1
Once the signal has been preprocessed, classification is carried out by a linear
classifier that uses the f; ; in Eq. 1 as features. The f; ; belong to the frequency
domain and represent the ith frequency-band of the jth filtered channel. Eq. 3
displays the LDA with weights w; ; and bias b. H is the Heavyside step function
and returns either 0 and 1 (i.e. class 0 and class 1). Eq. 3 is valid for two class



problems. For problems with IV classes, the one versus all approach is used, and
N discriminants are learned, from D™ to D(N). Each discriminant separates
one of the classes from the rest. In this case, the classification is carried out by
Eq. 4.

’

j=c’ i=t
D(F)=H | Y > wijfij+b (3)
=1 i=1
j=c" i=t'
D(F) = argmax D'P)(F) = arg max Z Z w§:"})fi7j +p® (4)
P p =1 i=1

Weights wg}) and biases b(P) can be learned from data by Fisher’s Linear
Discriminant Analysis (LDA) [11]. But the spatial filter S used to preprocess
the data must first be adjusted in order to maximize the classification accuracy.
As mentioned in the Introduction, it is also intended to minimize the number
of electrodes. In this paper, a multi-objective approach has been chosen to
optimize both goals.

In order to use an evolutionary algorithm, two components must be defined:
how solutions (decision space) are encoded in the chromosome, and the fitness
function (objective space) to be optimized. Both will be described in the next
two subsections.

2.2. Solution encoding

In evolutionary algorithms, the decision space (spatial filter S and subset
of electrodes) is usually encoded by an array of real numbers, also called the
chromosome or the individual.

The first part of the chromosome (¢ X ¢’ genes) contains a sequence of real
numbers that represent matrix Scy ., the spatial filter. The second part of the
chromosome controls which electrodes are selected. A possibility would be to
use a binary mask with as many bits as electrodes, but this could result in very
long chromosomes and it would be necessary to combine real and binary parts
within the same chromosome. In this paper, we will take advantage that the
components of the spatial filter can be interpreted as the strength of electrodes
in the filtered channels. According to Eq. 2, if the ith row of S contains small
values, then the ith electrode will have small influence on the filtered channels
m’ ;- The rule displayed in Eq. 5 shows how threshold s; can be used to remove
those electrodes 7 with weights less than threshold. Thus, s; will be encoded in
the last part of the chromosome as a single gen. For each electrode, there is a
row in S. If the maximum value of a row is less than the threshold s; then the
participation of real electrode ¢ in all filtered channels j is small. This electrode
is removed by zeroing row ¢ of S. The larger the threshold, the more electrodes
are removed, but the less significant ones are removed first.

if m]?x(sik) < s¢ then (s;1,...,8;) < (0,...,0) (5)



In summary, the chromosome encodes particular combination of values from
the decision space ((S;.k)exe s St) = (S, s¢). Those individuals must be evaluated
according to a multi-objective fitness function, which is described in the next
Section.

2.8. The multi-objective fitness function

Each individual (S,s;) in the population encodes the spatial filter to be
applied to the raw data and a threshold that determines the number of channels.
In order to evaluate the quality of the filter and the number of channels involved
from a multi-objective approach, two objectives have been considered:

e The accuracy of the linear classifier that uses as inputs the spatially pro-
cessed signals based on the filter encoded in the chromosome.

e The actual number of electrodes used

The computation of the second objective is straightforward because it is
just the number of rows of matrix S where the rule in Eq. 5 does not apply
(i.e. electrodes with entries in S smaller than s; are removed). However, the
computation of the first objective of fitness function is a more complex process
and a detailed description can be found in [1]. Here, the main steps involve in
the computation of the first objective are summarized.

The starting point is the raw data, which is made of ¢ time series (as many
as real electrodes) that contain the EEG signal recorded from a subject during
an acquisition session. The raw signal belongs to the time domain: for every
time instant, the signal is recorded for every electrode. In order to evaluate
individual (S, s¢) these steps are followed:

1. The raw data is segmented into several chunks M (™, each one of dimen-
sion t X ¢, where ¢ is the number of time instants in the signal chunk.
Consecutive M(™)’s overlap by dt time instants. This means that if M (1)
starts at time 1, M2 starts at time 1+t —d&t, M) starts at time 1+2t— 4§t
and so on. The reason for this segmentation is to generate different data
samples M (™) from the raw data. Both ¢ (the signal chunk size) and dt
(the amount of overlap) are parameters set by the user.

2. The spatial filter S with some rows set to zero by threshold s; (rule in
Eq. 5) is applied to each M) according to Eq. 1. A matrix of features

F = (fi(’?))t’xc/ is created from each M (™).

3. The weights wi? and biases b?) of the linear discriminants D®) of Eq. 4

are learned by means of Fisher’s LDA from the data samples M (™). Let’s
remember that a one-versus-all approach is followed for more than two
classes, therefore NV linear discriminants are learned from the data.

4. The quality of the linear discriminants is measured as the mean squared
error in order to provide a continuous and more precise feedback to the
evolution process. It is defined as:



p=

3 (U(D(”) (F()Y) — y(nn))Q] (6)

p=1

MSE == EF(">

where E' is the average operator, N is the number of classes (or mental

tasks), D®) is the linear discriminant that separates class ¢ from the rest

of classes, o is a sigmoid function between 0 and 1 (o(z) = (1+—i—1))’ and
y®7™) is the desired output for data chunk M) y(P") = 1 if the subject
was performing mental task p during M (™) and 0 otherwise.

5. The results returned by the multi-objective fitness function are the MSE
and the number of real electrodes left by threshold s;.

3. Experimental Validation

8.1. Data sets description and Setting Parameters

In this paper, BCI-III competition data ' has been used. They consist on
three datasets acquired in the IDIAP Research Institute will be used [19] from
three different subjects. Each dataset contains data for 4 non-feedback sessions
(named Sessionl, Session2, Session3, and Sessiond). 32 electrodes were located
on the subjectss scalp. There are 3 mental tasks: Imagination of repetitive
self-paced left hand movements; imagination of repetitive self-paced right hand
movements; and, generation of words beginning with the same random letter.
All 4 sessions of a given subject were acquired on the same day, each lasting 4
minutes with 5-10 minutes breaks in between them. The subject performed a
given task for about 15 seconds and then switched randomly to another task at
the operators request. In this paper, we use the raw EEG signals provided by
the competition organizers.

For each subject and all the experiments carried out in this work, the three
first sessions (Sessionl, Session2 and Session3) were used for training and to
guide the searching process, while the last one (Session4) was used for testing
the classifiers.

Most of the experimental parameters are given by the provider of the data
[19]. Those are the sampling frequency f = 512 Hz; the size of temporal windows
to construct every training instance is 1s, that is ¢ = 512; training instances are
sampled 16 times per second (hence the amount of overlap is 6t = % = 32),
and the number of electrodes is ¢ = 32. We have followed the suggestion of
[19] and only frequencies from 8 Hz to 30 Hz have been taken into account,
because it is in that range that motor imagery patterns can be detected. The
only parameter for our approach is ¢’ (the number of columns in the spatial
filter). Based on previous work on the same dataset, ¢’ has been set to 2 [1].

For each subject (1,2 and, 3) ten independent runs have been made using the
multi-objective algorithm NSGA-II [6]. In this work, the MATLAB NSGA-II

Thttp://www.bbci.de/competition/iii/results/index.html#martigny.



implementation (gamultiobj) has been used. The experiments have been made
under the default parameters of the algorithm, except with a population of 100
individuals and gaussian mutation.

3.2. Ezperimental Results and Comparative Analysis

In this Section, we report the results obtained using the NSGA-II multi-
objective evolutionary algorithm and compare them with two other algorithms
that follow similar heuristics but use a greedier search than the multi-objective
approach. The three methods start from the same spatial filter Sy obtained
by a single-objective optimizer (the Covariance Matrix Adaptation Evolution
Strategy or CMA-ES) using the maximum number of electrodes [1]. Therefore,
three methods are compared: the multi-objective approach described in Section
2.3, an unsupervised greedy method, and finally a supervised one.

Unsupervised greedy method: The idea is to iteratively remove elec-
trodes with smallest weights in the initial filter Sy (therefore, it follows a similar
heuristic to the rule in Eq. 5). Or equivalently, for each electrode, its maximum
weight in S is computed as m; = maxy(s;;) and then electrodes are sorted ac-
cording to m;, small values first. The electrode with smallest m,; is removed.
Then, the resulting filter (with fewer electrodes S(._1)x) is applied to the raw
EEG signal, a new classifier is trained with the filtered signal, and the error
is computed. The procedure is repeated until only one channel remains in the
spatial filter. Thus, the error is computed for ¢ electrodes, ¢ — 1 electrodes, ¢ —2
electrodes, ..., down to 2 electrodes. The final result is that, for every number
of electrodes (from ¢ to 2), the classification error that can be achieved with
those electrodes is obtained. It should be noticed that the initial spatial filter
So is not modified, except for removing electrodes (removing the ith electrode
is equivalent to zeroing the ith row of Sp).

Supervised greedy method: It is similar to the unsupervised one but it is
the training error (or success classification rate) that is used to decide the elec-
trodes to be removed at every step. If for instance there are n electrodes left, all
possible classifiers with n — 1 electrodes are tested, and the electrode producing
the minimum classification error decrement will be removed. Let’s illustrate this
with an example: if there are 4 electrodes left (z1, x2, x5, and x4), four different
classifiers, C; to Cy, are built. Classifier C; uses all electrodes except x;. Then,
the classification error is computed for each C; and the electrode corresponding
to the classifier with smallest error is removed. In other words, the electrode less
relevant for classification is removed. As in the unsupervised case, the procedure
is repeated until all channels are removed, one by one. The final result is a set
of solutions where, for every possible number of electrodes, the corresponding
classification error has been computed. Unlike the unsupervised method, the
supervised one removes first the less important electrodes for classification by
actually computing the classification error instead of using the heuristic that
considers the weights in the spatial filter. In principle, this should give better
results, but it is slower than the unsupervised approach, because computing the
classification error is costly and this has to be done many times. Like in the
unsupervised approach, the initial spatial filter Sy is never modified, except for



removing electrodes (removing the ith electrode is equivalent to zeroing the ith
row of Sp).

Multi-objective approach: it is the method based on NSGA-IT and de-
scribed in Section 2.3, but the initial population contains the filter Sy obtained
from CMA-ES with all ¢ electrodes. The rest of individuals in the population
is random, as in standard NSGA-II. This approach should work better than
the greedy ones if the spatial filter has to be re-adjusted when electrodes are
removed. The greedy methods can only decide the order in which electrodes
are removed, but filter Sy is left untouched (except for the rows set to zero for
removing each electrode). In some sense, the multi-objective approach combines
the unsupervised and supervised ideas, because it uses a threshold (encoded in
the chromosome) to remove electrodes but also uses the classification error to
guide the search. But given that the spatial filter is encoded in the chromosome
(i.e. is part of the decision space), it also permits to adapt the spatial filter for
different sets of electrodes.

The three methods return a set of solutions {(n,e,)}"=f where n is the
number of electrodes and e,, is the error with that number of electrodes. In
the case of the NSGA-II approach, this set of solutions is the Pareto front. In
order to account for the stochastic nature of evolutionary algorithms, CMA-ES
has been run 10 times, 10 initial filters (Sér))ﬁjo have been obtained, and then
each of the three methods have been applied to these initial filters. Therefore,
10 sets of solutions have been obtained for every method.

To visualize and analyze the ten sets of solutions (for each subject), an
average front has been generated by ranking the set of non-dominated solutions
by the second objective (number of electrodes) and then computing the average
of the ten errors for every number of electrodes. This has been done for training
and test. When the multi-objective approach is used, there is no guarantee
that there is a solution for every number of electrodes (i.e. a solution with
4 electrodes might not exist in the Pareto front). In that case, it is assumed
that the error with n electrodes e, is equal to the error obtained with n — 1
electrodes, this is e, = e,,—1. This is reasonable given that it is always possible
to construct a solution with n electrodes from a solution with n — 1 electrodes
by just ignoring the additional electrode.

The differences among the average errors for the three suggested approaches
(unsupervised, supervised and multi-objective) have been tested for statistical
significance. This statistical study has been applied to pairs of methods: un-
supervised versus supervised, multi-objective versus unsupervised, and multi-
objective versus supervised. The protocol used in this study has been the fol-
lowing: first, it is checked if results of the ten runs follow a Normal distribution
applying the Shapiro test and if the variances of the two pairs of methods are
homogeneous using the Levene test (homoscedasticity). Then, if both condi-
tions are verified, the t-test is performed to compare the average of errors for
the two methods. In other cases, the Wilcoxon test (non-parametric) is applied
to compare the solutions. A significance level a = 0.05 is used in all cases.

In Figures 1, 2 and 3 the average training and test errors are shown for
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Figure 1: Unsupervised, supervised, and multi-objective average fronts for Subject 1.

subjects 1, 2, and 3, respectively. The figures include the results obtained with
the multi-objective approach as well as the results provided by the two strategies
used for comparison, unsupervised and supervised methods. The three lines
with triangles at the bottom of the figures display the statistical significance
comparisons. The upper line compares supervised vs. unsupervised and the
next two lines compare multi-objective vs. unsupervised, and multi-objective
vs. supervised. The symbol A means that the first algorithm is significantly
better than the second one, while 57 means otherwise. Absence of a triangle
implies that the difference is not significant.

Observing the results provided by the multi-objective approach, it can be
appreciated that the error for training and test tends to decrease as the number
of electrodes increases. However, a similar level of accuracy can be reached
with a number of electrodes less than 32. In particular, 90% of the reduction in
training error can be achieved with only 19, 20, and 15 electrodes for subjects
1, 2, and 3, respectively. This shows that the number of electrodes to be used
to get an appropriate level of accuracy can be reduced, as it was the hypothesis
of this study.

The supervised approach sorts the electrodes according to classification er-
ror. The unsupervised method was thought as a faster way of sorting the elec-
trodes because they were ordered by using only the weights in the spatial filter
instead of computing the classification error at each iteration. Results show that
the supervised approach is generally better than the unsupervised one, specially
in subject 2. Both approaches leave the initial spatial filter unchanged, they
only sort the electrodes according to some criterion. On the other hand, the
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Figure 2: Unsupervised, supervised, and multi-objective average fronts for Subject 2.
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multi-objective approach is designed to optimize the initial filter, which allows
to improve its performance in classification. As it can be observed in Figures
1, 2, and 3 on the left (training data), the multi-objective approach is always
significantly better than the supervised method for subject 1. For subjects 2
and 3, this is also the case, except when the number of electrodes is larger than
25, where there is no significant difference between both approaches.

In test, the situation is slightly different (see Figures 1, 2, and 3 on the right),
which can be expected in the BCI domain, because training and test is done with
different sessions with data recorded in different days. Let us remember that in
this work training is done with session 1, 2, and 3 and testing with session 4. In
any case, the multi-objective approach is generally better than the supervised
one also in test. The main improvement can be observed on the left hand side of
the fronts (small number of electrodes). For subject 1, it is significantly better
with fewer than 12 electrodes (except for 2, 3, and 8 where there is no significant
difference). For subjects 2 and 3 this is also the case with fewer than 15 and
8 electrodes respectively. For a larger number of channels, differences are not
significant, except in a few cases where multi-objective performs worse (30 to
32 for subject 1 and 27 to 30 for subject 3). But even in those cases, the actual
differences are very small (less than 0.005 in the worse case for subject 1 and
0.009 for subject 3).

In general terms, the multi-objective framework provides better Pareto fronts,
specially in those regions of the front that allows to use fewer electrodes.

4. Conclusions

EEG-based BCI systems require to attach many electrodes on the scalp of
subjects. However, the placement of each channel involves a laborious process.
The later, coupled to the fact that not all electrodes are equally relevant for
EEG classification, motivates the study of methods for selecting electrodes. On
the other hand, the preprocessing of EEG signals by means of filters (spatial,
spectral, ...) plays a crucial role in the success of EEG classification.

In this work, we combine the optimization of a spatial filter and the op-
timization of the number of electrodes within an evolutionary multi-objective
framework. The approach provides a set of solutions (Pareto front), in which
each solution represents the optimal classification error for each number of chan-
nels. The evolutionary search not only takes charge of the selection of relevant
channels, but also the optimization of the spatial filter. Thus, the minimization
of classifier error is also guaranteed.

The multi-objective approach has been compared with two other approaches
(named unsupervised and supervised) which do not modify the filter, but start
from a filter previously optimized for the whole set of electrodes, and then
iteratively remove the less relevant channels. The criteria for electrode removal
are related to the weights of channels in the spatial filter (unsupervised), or to
classification error (supervised). In order for the comparison to be meaningful,
the multi-objective approach also starts from this initially optimized filter, but
it is allowed to modify it along the evolutive process.
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As a general observation, results show that for all the approaches, reasonable
levels of error can be achieved by using significantly fewer electrodes than the
whole set, hence confirming the relevance of electrode reduction. With regard
to differences between the approaches, results show that the multi-objective
approach provides similar solutions than unsupervised and supervised methods
in the right part of the fronts (i.e. large number of channels). However, when
the number of electrodes is smaller (left part of the fronts), the multi-objective
method provides solutions with smaller classification errors. This is due to the
multi-objective framework being able to optimize the filter for each different
number of electrodes.
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