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Abstract

In this research, a first order Markov model is built from a corpus of
bagana music, the ethiopian lyre. Different ways in which low order Markov
models can be used to build quality assessment metrics for an optimization
algorithm are explained. These are then implemented in a variable neigh-
bourhood search algorithm that generates bagana music. The results are
examined and thourougly evaluated. Due to the size of many datasets it is
often only possible to get rich and reliable statistics for low order models,
yet these do not handle structure very well and their output is often very
repetitive. A method was proposed that allows the enforcement of structure
and repetition within music, thus handling long term coherence with a first
order model.
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1 Introduction
In this research different ways are explored and evaluated in which a low order
Markov model can be used to construct an metric to evaluate generated bagana
music in an optimization context. A first order Markov model is learned that
quantifies note transition probabilities from a corpus of music for the bagana, the
Ethiopian lyre. This model is then used as the objective function in an optimiza-
tion procedure previously developed by the authors [Herremans and Sörensen,
2012]. The different methods by which the quality assessment from the Markov
model can be done are explained and compared in an experiment. The recogni-
tion of repetition is a fundamental activity when listening to music [Dannenberg
and Hu, 2003]. Due to the frequent repetitions of patterns within bagana music,
a method was developed to efficiently calculate transition probabilities using the
minimal amount of intervals possible while still containing all information about
the piece. This method allows the enforcement of a structure and repetition within
the music, thus ensuring long term coherence.

Traditionally, compositional systems can be categorised into two main groups.
On the one hand are the probabilistic methods and rule-based systems [Allan and
Williams, 2005, Conklin and Witten, 1995, Xenakis, 1992], and on the other hand
are optimization methods such as constraint satisfaction methods [Truchet and
Codognet, 2004] and metaheuristics such as evolutionary algorithms [Horner and
Goldberg, 1991, Towsey et al., 2001], ant colony optimization [Geis and Midden-
dorf, 2007] and variable neighbourhood search (VNS) [Herremans and Sorensen,
2013]. In this paper, we aim to bridge the gap between those that consider music
generation as an optimization system and those that generate based on a statistical
model.

The main challenge when using an optimization system to compose music is
how to determine the quality of the generated music. Some systems let a human
listener specify how “good” the solution is on each iteration [Horowitz, 1994].
GenJam, a system that composes monophonic jazz fragments given a chord pro-
gression, uses this approach [Biles, 2003]. This type of objective function consid-
erably slows down the algorithms [Tokui and Iba, 2000] and is known in literature
as the human fitness bottleneck.

Most automatic composition systems avoid this bottleneck by implementing
an automatically calculated objective function based on either existing rules from
music theory or by learning from a corpus of existing music. The first strategy
has been used in compositional systems such as those of Geis and Middendorf
[2007], Assayag et al. [1999] and Herremans and Sörensen [2013]. Although
every musical genre has its own rules, these are usually not explicitly available,
which poses huge limits on the applicability of this approach [Moore, 2001]. This
problem is overcome when style rules can be learnt automatically from existing
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music. This approach is more robust and expandable to other styles.
Markov models have been applied in a musical context for a long time. The

string quartet called the Illiac Suite was composed by Hiller and Isaacson in 1957
by using a rule based system that included probability distributions and Markov
processes [Sandred et al., 2009]. Pinkerton [1956] learned first order Markov
models based on pitches from a corpus of 39 simple nursery rhyme melodies, and
used them to generate new melodies using a random walk method. Fred and Car-
olyn Attneave generated two “perfectly” convincing cowboy songs by performing
a backward random walk on a first order transition matrix [Cohen, 1962]. Brooks
et al. [1957] learned models up to order 8 from a corpus of 37 hymn tunes. A
random process was used to synthesise new melodies from these models.

An interesting conclusion from this early work is that high order models tend
to repeat a large part of the original corpus and that low order models seem very
random. This conclusion was later supported by other researchers such as Moorer
[1972], who states: “When higher order methods are used, we get back fragments
of the pieces that were put in, even entire exact repetitions. When lower orders
are used, we get little meaningful information out”. These conclusions are based
on a heuristic method whereby the pitch is still chosen based on its probability,
but only accepted or not based on several heuristics which filter out, for instance,
long sequences of non-tonic chords that might otherwise sound dull. Music com-
positions systems based on Markov need to find a balance in which order to use.

Other music generation research with Markov includes the work of Tipei
[1975], who integrates Markov models in a larger compositional model. Xenakis
[1992] uses Markov models to control the order of musical sections in his com-
position “Analogique A”. Markov models also form the basis for some real-time
improvisation systems [Dubnov et al., 2003, Pachet, 2003]. Some more recent
work involves the use of constraints for music generation using Markov models
[Pachet and Roy, 2011]. Allan and Williams [2005] trained hidden Markov mod-
els for harmonising Bach chorales, and Whorley et al. [2013] applied a Markov
model based on the multiple viewpoint method to generate four-part harmonisa-
tions with random walk. A more complete overview of Markov models for music
composition is given by Fernández and Vico [2013].

In this research, a first order Markov model is built from a corpus of bagana
music. This is then used to evaluate music with a certain repetition structure, gen-
erated by an optimization algorithm. Due to the size of many corpora, including
the bagana corpus used in this research, rich and reliable statistics are often only
available for low order Markov models. Since these models do not handle struc-
ture and can produce very repetitive output, a method is proposed for handling
long term coherence with a first order model. Secondly, this paper will critically
evaluate how Markov models can be used to construct evaluation metrics in an
optimization context. In the next section more information is given about bagana
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music, followed by an explanation of the technique employed to generate repeated
and cyclic patterns. An overview the different methods in which a Markov model
can be converted into an objective function are discussed in Section 3. Variable
neighbourhood search, the optimization method used to generate bagana music,
is then explained. An experiment is set up and the different evaluation metrics are
compared in Section 4.

2 Structure and repetition of bagana music
Bagana is a ten-stringed box-lyre played by the Amhara, inhabitants of the Central
and Northern part of Ethiopia. It is an intimate instrument, only accompanied by
a singing voice, which is used to perform spiritual music. It is the only melodic
instrument played exclusively for religious purposes [Weisser, 2012]. The bagana
melody and singing voice are quasi homophonic, meaning that the voice and
bagana usually follow each other in unison [Weisser and Demolin, 2005]. In this
research the focus is on analysing and generating the instrumental part.

The bagana is made of wooden pillars and soundbox, equipped with ten cattle
gut strings. The strings are plucked with the left hand and four strings are used
as finger rests. It is tuned to a traditional pentatonic scale. Each finger of the
left hand is assigned to one string (see Figure 1), except in the case of finger 2
(referred to as finger 2 and 2′ in the figure), which plays two equally tuned strings.
This allows us to make abstraction from the note level and work with the corpus
made by Conklin and Weisser [2014] based on finger numbers (see Section 4).

Figure 1: Assignment of fingers to strings on the bagana

Bagana songs are typically very repetitive with a very recognisable overall
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structure [Weisser, 2006]. This repetition is intentional since repetitive music has
a strong influence on the state of consciousness among musical traditions. Even
Western-trained listeners describe the sounds as “becoming meditative objects,
relaxing the mind” [Dennis, 1974].

Figure 2: Tew Semagn Hagere by Alemu Aga, as transcribed by Weisser and
Demolin [2005]
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An example bagana song, including finger numberings, is given in Figure 2.
Note that this piece consists of two sections, and that only a few patterns (A1, A2

and A3) are used, and repeated many times throughout the duration of the song.
Additionally, note that the segment A2 appears within different sections of the
piece. In what follows, an approach is described for respecting this structure and
repetition within new sequences generated from Markov models.

Since repeated patterns are so important for bagana music, cycles and rep-
etitions must be represented and evaluated in an efficient way. Markov models
alone are incapable of representing such structures, which can involve arbitrarily
long-range dependencies, and therefore the approach used here is to preserve the
structure and repetition provided by an existing template piece. The next subsec-
tions will describe a method for representing and efficiently evaluating this struc-
ture and repetition while still employing a Markov model to generate the basic
musical material.

2.1 Cycles and patterns
Following the theoretical approach of Angluin [1980], the structure of a bagana
piece may be represented using a pattern, which is a sequence of variables drawn
from a set V (we use A1, A2, . . . as variables). Given a set Σ of event symbols
(in the case of bagana, finger numbers), a realization of a pattern is a substitution
from V to Σ? (the set of all sequences formed from event symbols), mapping
variables to sequences of finger numbers. Each variable is also associated with
a length, that is, a constraint on the length of the sequence that can replace the
variable. The event sequence replacing a variable Ai, associated with a length e,
will be notated in this paper as ai1a

i
2 . . . a

i
e.

To represent repetition of entire sections, the notion of cycles and cyclic pat-
terns is introduced. A cycle is a sequence of events that joins with itself and can
be repeated any number of times. For example, in the bagana song of Figure 2,
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the two cycles are the event sequences labelled by A1A2 and A3A2. Cycles can
be abstracted and represented as cyclic patterns, which are patterns as described
above but now enclosed in the symbols ‖: and :‖. For example, in the bagana song
of Figure 2, the two cyclic patterns are ‖: A1A2 :‖ and ‖: A3A2 :‖.

Patterns can also be concatenated, forming compound patterns. Taking the
bagana song of Figure 2 as an example, the pattern describing this piece is finally
represented as the compound pattern:

‖: A1A2 :‖‖: A3A2 :‖ (1)

with the lengths of A1, A2, A3 being specified as 6, 6, and 13, respectively.

2.2 Realizing and evaluating cyclic patterns
A realization of a pattern is a mapping from variables of the pattern onto actual
events. The events represented by any one variable are generated using a Markov
model and the entire generation is given by replicating the instances of the same
variable. In order to properly generate music that contains cyclic patterns, tra-
ditional statistical sampling methods like random walk are not suited because
long-range dependencies cannot be enforced. Therefore, we use a local search
optimization technique to generate the variables in this research. The actual re-
alizations of the events are given to the objective function in order to assess the
quality of a generated fragment.

In order to reduce the number of transition matrix lookups, without losing any
information about the sequence, an expansion technique was developed to gener-
ate the minimal extended subsequence that can be used to calculate the objective
function. For example, consider a cycle A = a1a2a3a4 that is repeated 8 times
in the template piece. When calculating the objective function, we should take
care not to omit the sequence a4a1, which is the transition that is heard whenever
the cycle is repeated. Since calculating the objective function on A alone is not
sufficient, we could simply calculate it on the full sequence as it is played, but
this would require roughly 8 times more transition matrix lookups than required.
The expanded sequence A′ will simply contain an additional element, which rep-
resents the transition from end to beginning: A′ = a1a2a3a4a1. The expansion
method used in this research reduces the number of lookups while retaining all
the information of individual transitions.

2.3 Compound cyclic patterns
Bagana music is characterised by a large number of repetitions combined together.
The expansion method discussed in the previous subsection is applied to reduce
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the number of transition matrix lookups. This method keeps the minimum number
of intervals without forgetting the connections between the end and beginning of
a cycle, as discussed in the subsection above. For a compound pattern which
contains cycles, some care needs to be taken to exclude certain intervals. For
example, for the cyclic pattern described by Equation 1, the sequence on which
the objective function is calculated thus becomes:

A1A2a1
1 ↓ a2

eA
3A2a3

1 (2)

whereby Ai consists of the note sequence ai1a
i
2 . . . a

i
e and the ↓ represent discon-

tinued intervals which should be excluded from the calculation.
This method as described above is valid for first order evaluation. When an

evaluation metric is based on note sequences of more than two subsequent notes
(e.g. unwords), higher order expansion is necessary. In the case of unwords of
length 3, second order expansion is necessary, and the expanded sequence be-
comes:

A1A2a1
1a

1
2 ↓ a2

e−1a
2
eA

3A2a3
1a

3
2 (3)

where as before the ↓ represents a discontinued interval. In the next section, dif-
ferent methods of using of Markov models to construct quality metrics for an
optimization algorithm are explained.

3 Methods
This section will discuss the optimization algorithm used to generate bagana mu-
sic, together with the different ways in which a Markov model can be integrated
in its objective function.

3.1 Using Markov models within evaluation metrics
Markov models describe the note transition probabilities of a musical piece or
style. In that way, they can not only be used to generate Markov chains with
random walk. We might use them to evaluate the quality of a musical piece that is
generated by methods from the field of optimization. Farbood and Schoner [2001]
use dynamic programming to find the highest probability sequence of notes in a
counterpoint line given a cantus firmus. They used both manually created Markov
models (based on music theory rules) and models learned from a corpus of 44
examples. A high probability or maximum likelihood approach is also explored by
Lo and Lucas [2006] as a fitness function for a genetic algorithm when generating
melodies, based on a corpus of 282 pieces. They conclude that high probability
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sequences sound uninteresting due to the large amount of oscillation between just
two notes. Davismoon and Eccles [2010] use a different quality measure. They
do not try to maximize the likelihood, but rather minimize the distance between
the transition matrices (both of the original model and the newly generated piece)
with simulated annealing.

In the next subsections, different methods that might be used as quality assess-
ment from a Markov model are described. These techniques will be implemented
and thoroughly evaluated in Section 4.

3.1.1 High probability sequences (XE)

Farbood and Schoner [2001] and Lo and Lucas [2006] generate the maximum
probability sequence from a statistical model. It makes intuitive sense that this
type of sequence is preferred, yet there might be more to a good musical piece
than just maximizing the probability (e.g. variety). This will be evaluated in
Section 4.

Cross-entropy is used as a measure for high probability sequences, whereby
minimal cross-entropy corresponds to a maximum likelihood sequence according
to the model. The probability P (s) of a fragment s consisting of a sequence of
notes e1, e2, . . . e` is transformed into cross-entropy [Manning and Schutze, 1999].
The sum of the logarithms is normalised by the sequence length to obtain the
cross-entropy f(s):

f(s) = − 1

`− 1

∑̀
i=2

log2 P (ei | ei−1) (4)

The quality of a counterpoint fragment is thus evaluated according to the cross-
entropy (average negative log probability) of the fragment computed using the
dyad transitions of the transition matrix. This forms the objective function f(s)
that should be minimized.

3.1.2 Minimal distance between TM of model and solution (DI)

Davismoon and Eccles [2010] use an evaluation metric that tries to match the
distribution matrices of both the original model and the newly generated piece by
minimizing the euclidean distance between them. This will ensure that they have
an equal distribution of probability chances after each possible note. The metric
used in this paper is based on Davismoon and Eccles [2010] and can be formulated
as follows for an N ×N transition matrix:
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f(s) =
1

N

√∑
a∈Σ

∑
b∈Σ

(
P (b | a)− P̄ (b | a)

)2 (5)

where Σ is the set of event symbols, for example in the bagana the finger numbers,
P (b | a) is the model transition probability from a to b, and P̄ (b | a) is the
transition probability calculated from the new piece.

It is expected that this measure enforces more variety in the generated music,
as the overall probability transition distribution is optimized to resemble the one
of the corpus. The musical output of the VNS that minimizes this metric as its
objective function will be evaluated in the experiment in Section 4.

3.1.3 Delta cross-entropy (DE)

In Subsection 3.1.1 cross-entropy was minimized to find the maximum likelihood
sequence. It cannot be guaranteed that this is a sequence a listener would enjoy.
If we look at the corpus, there are proportionally fewer pieces with low cross-
entropy. Figure 3 shows a histogram of the cross-entropy data calculated with
leave-one-out cross-validation from the corpus used in the experiment of Sec-
tion 4. That is, every piece was left out of the corpus, the model retrained, and
the cross-entropy of that piece was computed according to the model. It is clear
from this figure that most pieces are not even close to the lowest entropy value
that occurs in the corpus. As the results in Section 4 will indicate, the single min-
imal cross-entropy sequence can be very repetitive. Optimizing to the average
cross-entropy value E might offer a solution for this.

When optimizing towards the average cross-entropy value, the function being
minimized thus becomes:

f(s) =
∣∣∣E − 1

`− 1

∑̀
i=2

log2 P (ei | ei−1)
∣∣∣ (6)

where E is the average cross-entropy of the corpus.

3.1.4 Information contour (i)

One of the problems mentioned by Lo and Lucas [2006] with high probability
sequences is that they often sound uninteresting and repetitive. More diversity
might be achieved by defining the “information contour” within a piece. Infor-
mation contour is a measure that describes the movement of information between
two successive events (up indicating less expected then the previous event, down
indicating more expected then the previous event). It can be seen as the contour
of the information flow, which has been used by Witten et al. [1994] and Potter
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Figure 3: Histogram of cross-entropy values of the corpus
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et al. [2007] to measure dynamics in a musical analysis. In order to measure this
a viewpoint is created that expresses if the entropy, with respect to a model of the
corpus that does not include the template piece for each event, is higher, lower, or
equal to that of the previous event.

In the experiment performed in Section 4, the information contour was calcu-
lated for each note transition of a selected template song (Tew Semagn Hagere).
When evaluating a new solution, a similar information contour may be desirable.
Therefore, the objective function to be minimized can be specified as follows for
a piece of ` notes:

f(s) = M ×
∑̀
i=2

xi (7)

whereby

{
xi = 1 when the contour is not the same as in the template
xi = 0 when the contour is the same as in the template

and M is an arbitrarily high number.
This metric will be tested in conjunction with the first three metrics by sum-

ming the objective functions. By using the arbitrarily high number M in the
equation above, optimizing the information part will have priority over the other
term of the objective function (low entropy, minimize TM distance, delta cross-
entropy).

3.1.5 Unwords (u)

While music contains patterns that are repeated, it equally contains rare patterns.
Conklin [2013a] identified antipatterns, i.e., significantly rare patterns, from a
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(4, 2, 1) (2, 1, 2) (4, 1, 1) (1, 4, 1) (3, 4, 1) (1, 4, 3) (2, 4, 1)
(1, 4, 4) (3, 2, 1) (2, 1, 1) (4, 1, 4) (4, 1, 2) (1, 2, 5) (4, 5, 2)

Table 1: The set of unwords that were found in the bagana corpus

corpus of Basque folk music and from the corpus of bagana music used in this
research [Conklin and Weisser, 2014]. A related category of rare patterns are
those of unwords. Herold et al. [2008], in their paper on genome research, first
suggested this term for the shortest words from the underlying alphabet that do
not show up in a given sequence. Unwords are thus defined as the shortest words
(i.e., not contained within a longer unword) that never occur in the corpus. Among
these words, we filter for those that are statistically significant. This results in a list
of words whose absence from the corpus is surprising given their letter statistics
[Conklin and Weisser, 2014]. These patterns may represent structural constraints
of a style.

A related approach to improve the music generated by simple Markov models
is by adding constraints on the subsequences that can be generated. For example,
Papadopoulos et al. [2014] efficiently avoid all subsequences greater than a spec-
ified maximum order k, for the purpose of avoiding simple regeneration of long
fragments identical to the corpus. A contrasting approach to this problem is to
constrain the types of short words that can be generated based on the analysis of
a corpus, i.e., unwords, rather than uniformly forbidding all words of a specified
length or greater.

To find unwords, the algorithm of Conklin and Weisser [2014] was used to
efficiently search the space of bagana finger patterns for significant unwords. Ta-
ble 1 lists the resulting set of 14 unwords. These unwords, all trigrams, are all
formed from one or more bigrams that were identified as antipatterns by Conklin
and Weisser [2014]. To use these for evaluating music, their occurrence is given a
penalty according to the following formula:

f(s) = M × u (8)

whereby M is an arbitrarily high number and u is the total number of unwords
counted in the piece.

Since this quality measure can be seen more as a hard constraint, it is combined
with the first three techniques from this section in the experiment. This is done
by summing the objective functions for both techniques. The use of an arbitrarily
high number M will again give priority to the removal of the unwords over the
other metric with which this is combined (low entropy, minimize TM distance,
delta cross-entropy).
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3.2 Variable neighbourhood search
When ensuring the long term coherence of a musical piece by imposing a semi-
otic structure, a simple random walk strategy for generation is no longer an option
because only in the infinite limit can it be ensured that random walk will gener-
ate a sequence respecting the coherence. Therefore, we turn to an optimization
technique in this paper, whereby the best possible combination of notes needs to
be found to fit a certain style. A bridge between sampling from statistical models
and optimizing according to an objective function is made by comparing different
quality measures. The resulting problem is a complex combinatorial optimiza-
tion problem which is computationally complex due to the exponential number
of possible solutions. A variable neighbourhood search algorithm (VNS) is used
as it is an efficient optimization method that is used in many more traditional
optimization areas including (capacitated) vehicle routing [Kytöjoki et al., 2007],
graph colouring [Avanthay et al., 2003] and project scheduling [Fleszar and Hindi,
2004]. Hansen et al. [2001] find that VNS outperforms existing heuristics and is
able to find the best solution in moderate computing time for several problems.

A VNS for generating counterpoint based on formal rules from music theory
was developed and implemented by the authors [Herremans and Sörensen, 2012].
In later work, this algorithm has been modified to generate high probability se-
quences, from which the question arose whether the highest probability sequence
is desirable [Herremans et al., 2014]. In this paper, different evaluation metrics
are implemented and the obtained results are discussed.

Variable neighbourhood search, or VNS, is a local search based metaheuristic.
The structure of the implemented VNS is represented in Figure 4. The VNS starts
from an initial fragment that has random pitches. From this starting fragment the
algorithm iteratively makes small improvements (called moves) in order to find a
better one, i.e., a fragment with a lower value for the objective function. Three
different move types are defined to form the different neighbourhoods that the
algorithm uses. The first move type swaps the top notes of a pair of dyads (swap).
The change1 move changes any one pitch to any other allowed pitch. The last
move, change2, is an extension of the previous one whereby two sequential pitch
are changed simultaneously to all possible allowed pitches.

The neighbourhood is the set of all possible fragments s′ that can be reached
from the current fragment by a move type. Infeasible solutions are excluded from
the neighbourhood. The first note is fixed to an A and the last note is fixed to a C.
Solutions who do not comply with this hard constraint are considered infeasible.
The local search uses a steepest descent strategy, whereby the best fragment is
selected from the entire neighbourhood. This strategy will quickly steer the algo-
rithm away from choosing fragments with zero probability dyads, but it does not
strictly forbid them (transitions with zero probability are set to an arbitrarily high
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Figure 4: Overview of the VNS.

cross-entropy). A tabu list is also kept, to prevent the local search from getting
trapped in cycles.

When no improving fragment can be found by any of the move types, the
search has reached a local optimum. A perturbation strategy is implemented to
allow the search to continue and escape the local optimum [Hansen and Mlade-
nović, 2003]. This perturbation move changes the pitch of a fixed percentage of
notes randomly. The size of the random perturbation as well as the size of the tabu
lists and other parameters were set to the optimum values resulting from a full fac-
torial experiment on first species counterpoint [Herremans and Sörensen, 2012].
The VNS algorithm was implemented in C++ and the source code is available
online1.

1http://antor.ua.ac.be/musicvns
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4 Results
An experiment was set up in order to compare the outcome of the different evalua-
tion techniques discussed in section 3.1. They were all implemented in the objec-
tive function of the VNS described in the previous section. The algorithm stopped
after performing 100 000 moves or when no improving solution was found after
1 000 moves.

4.1 Training data and Markov model
The corpus used in this experiment is described in more detail by Conklin and
Weisser [2014]. It consists of 37 pieces of bagana music that have been recorded
by Weisser and Demolin [2005] between 2002 and 2005 in Ethiopia (except for
two of them recorded in Washington DC). The songs consist of a relatively short
melody, repeated several times with different lyrics, except for the refrain.

A piece called Tew Semagn Hagere by Alemu Aga, was selected from the
corpus as a template piece. The rhythm within the patterns was kept fixed. The
evaluation method based on information contour described in Section 3.1 needs
a template to calculate the target information contour. The same piece was also
used to get the global structure discussed in Section 2.3.

The output of the algorithm was rendered in the tezeta scale [Conklin and
Weisser, 2014] using F for finger 1 (see Figure 1) with a bagana soundfont and
presented to one of the authors, a bagana expert, who evaluated the fragments
discussed in Section 4.2. Her comments on a preliminary experiment resulted in
some improvements of the algorithm, including the fixation of the first note to an
A (finger 4) and the last note to a C (finger 2). The results were then presented
again for evaluation.

A first order Markov model was learned from the corpus of bagana music.
First order models can be weak models, as also stated by Lo and Lucas [2006]. Yet
in some cases there is not enough data to generate a higher order model, as in the
case of the bagana corpus. Working with a first order model allows training on a
small corpus, and also gives us a very clear overview of the effects of the different
metrics, without having to look at more complicated second order patterns. The
resulting transition matrix is represented in Table 2.

4.2 Musical results
The VNS algorithm was run with the different metrics from Section 3.1 as its
objective function. The first three metrics were run independently. Then each of
these metrics was combined with unwords and information contour. For each met-
ric, the evaluation of cross-entropy and the distance of the transition matrices is
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2 (C) 3 (D) 1 (F) 5 (G) 4 (A)

2 (C) 0.291 0.263 0.015 0.040 0.390
3 (D) 0.238 0.039 0.694 0.018 0.011
1 (F) 0.029 0.330 0.237 0.357 0.047
5 (G) 0.049 0.032 0.401 0.153 0.366
4 (A) 0.502 0.005 0.005 0.281 0.206

Table 2: Transition matrix based on the bagana corpus; finger numbers as indices,
and corresponding pitch class names (Tezeta scale) in brackets

shown over time (Figure 5). The average cross-entropy value E (see Section 3.1.3)
of the corpus is also displayed on the plots in this figure as a reference value. The
musical output corresponding to each of the runs visualised in Figure 5 is dis-
played in Figures 6, 7 and 8. These music sheets were presented to the bagana
expert for evaluation together with the rendered audio files. Table 3 shows that
the generated music is different from the template piece, where similarity is mea-
sured as the percentage of notes that are the same in both the generated piece and
the template piece.

XE DI DE XEu DIu DEu XEi DIi DEi

Similarity (%) 29 36 26 23 29 52 48 36 48
Cover of range (%) 100 100 100 100 100 100 100 100 100
Number of unwords 0 0 0 0 0 0 0 1 0

Table 3: General characteristics of the generated music displayed in Figures 6, 7
and 8

High probability sequences (XE)

Fragment 1 in Figure 6 shows the output of minimizing the cross-entropy with the
VNS. As also found by Lo and Lucas [2006], the minimal cross-entropy sequence
can be very repetitive. According to the transition matrix, the finger transitions
corresponding to the note sequences A–C, C–A, F–D and D–F are indeed high
probability transitions, still the global result is not the one a listener would enjoy
as there is a lot of oscillation. The model generates two high probability transi-
tion loops (A–C and D–F). Figure 5a confirms that minimizing the cross-entropy
using VNS causes a rapid decrease in cross-entropy. This is similar to the experi-
ment done by the authors with first species counterpoint [Herremans et al., 2014],
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Figure 5: Evolution of cross-entropy and distance of transition matrices over time
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(a) High probability (XE)
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(b) TM distance (DI)
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(c) Delta cross-entropy
(DE)
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(d) High probability with
unwords (XEu)
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(e) TM distance with un-
words (DIu)
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(f) Delta cross-entropy
with unwords (DEu)
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(g) High probability with
information contour (XEi)
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(h) TM distance with in-
formation contour (DIi)
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Fragment 1: High probability (XE) 
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Fragment 2: TM distance (DI)
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Fragment 3: Delta cross-entropy (DE) 
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Figure 6: Musical output by using the three main evaluation metrics (XE, DI and
DE)

where it was shown that VNS is an efficient method for generating high proba-
bility sequences, and that VNS rapidly converges to the minimum cross-entropy
sequence. It is also noticeable from Figure 5a that optimizing with the XE metric
does not cause a decrease in the DI metric, but rather undirected movement.

Minimal distance between TM of model and solution (DI)

When minimizing the distance between the transition matrices of the model and
a generated solution with VNS, we again see a rapid decrease in this metric in
Figure 5b. The cross entropy measure converts to the average cross-entropy value.
This means that by minimizing the DI metric, the cross-entropy moves toward the
average value. The music generated music is not too repetitive and the expert
listener considered the fragment (Fragment 2 of Figure 6) to be very good.

Delta cross-entropy (DE)

The average of the 37 cross-entropy values, calculated with leave-one-out cross-
validation as described in Section 3.1.3, in the bagana corpus is E = 1.7. The
algorithm is able to reach the average cross-entropy value quickly (Figure 5c).
The DI metric is not constrained during DE minimization, and changes randomly
throughout the generation process. This is an interesting observation, as minimiz-
ing the DI metric in the previous section did constrain both the DI metric to the
minimum and the cross-entropy to the average value. This means that optimizing
with the DI metric is stronger, more constrained, than solely with the DE metric
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Fragment 4: High probability and unwords (XEu) 
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Fragment 5: TM distance and unwords (DIu) 
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Fragment 6: Delta cross-entropy and unwords (DEu) 
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Figure 7: Musical output by using the main three evaluation metrics combined
with unwords (u)

as it seems to constrain two metrics. The resulting music (Fragment 3 of Figure 6)
was described by the expert as “not easy to sing with”.

Unwords (u)

When minimizing the number of unwords together with the three previously dis-
cussed metrics, the evolution of the algorithm is very similar (Figures 5d, 5e
and 5f). This is probably due to the fact that unwords sometimes occur when
using the other techniques (see Table 3), yet they do not dominate. The high
probability sequence still has a lot of repetitions, though slightly decreased.

The expert found the sequence generated with the DEu metric (Fragment 6 of
Figure 7) very good, with the remark that a player would rather play A–G–F–D
in pattern A3 instead of A–F–D. This comment is supported by the higher tran-
sition probability A–G and G–F versus A–F. The DEu metric optimizes towards
the average cross-entropy of the corpus, thus not always preferring the highest
probability transitions. The expert also found specifcally the pattern A3 generated
by the DIu metric (Fragment 5 of Figure 7) very good. The result with the XEu
metric (Fragment 4 of Figure 7) is less good as it is too repetitive.

Information contour (i)

Constraining the information contour together with the first three metrics dis-
cussed seems to have a positive influence on the quality of the generated music.
When minimizing the cross-entropy, it forces the music out of the high probabil-
ity loops and thus prevents oscillation. This results in a much more varied music
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Fragment 7: High probability and information contour (XEi) 
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Fragment 8: TM distance and information contour (DIi) 
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Fragment 9: Delta cross-entropy and information contour (DEi) 
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Figure 8: Musical output by using the main three evaluation metrics combined
with information contour (i)

(Fragment 7 of Figure 8). The plots in Figures 5g, 5h and 5i have a similar evolu-
tion as before.

The expert found the piece generated with the XEi metric (Fragment 7 of
Figure 8) extremely good. The results generated with the DIi metric (Fragment 8
of Figure 8) was considered very good, with exception of pattern A3 which has
some issue with the combination of rhythm and pitch. This is an interesting issue
that the authors hope to address in future research by building a statistical model
with takes both duration and pitch into account. The piece generated with the DEi
metric was considered as good music, with the remark that a player would rather
play C–D–F–D instead of C–F–D. Similarly as in the above section, C–D and D–
F have much higher transition probabilities than C–F. This can again be explained
because the algorithm that was run with the DEi metric (Fragment 9 of Figure 8)
optimizes towards the average cross-entropy of the corpus instead of the lowest
cross-entropy.

5 Conclusion
The results of the experiments conducted in this paper show that there is no one
good metric to use in the objective function. Minimizing cross-entropy can lead
to oscillating music, a problem which was corrected by combining this metric
with information contour. Minimizing the distance between the transition matrix
of the model and the generated music also outputs more varied music and seems
to constrain the entropy to the average entropy of the corpus. This relationship
is not valid in the opposite direction. By constraining the cross-entropy to the
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average value, the DI metric is not minimized. Optimizing with the DI metric is
thus more constraining then optimizing solely with the DE metric. The bagana
expert found that generating with the DI metric produces good musical results.
The cross-entropy, TM distance minimization and delta-entropy metric all pro-
duce good outcomes when combined with information contour. Forbidding the
occurrence of unwords in the solution when combined with XE is not enough to
avoid oscillations, because in fact even in the corpus extended oscillations do oc-
cur, hence they are not significant unwords. It does however make the generated
music better from a musicological point of view.

While the comments of the bagana expert are very positive, one possible im-
provement would be to model and generate into a more complex template with
more cyclic patterns. This can equally be handled by the approach used in this pa-
per simply by specifying an alternative pattern structure for the template piece. It
would also be interesting to build a statistical model with takes both note duration
and pitch into account. This would address some of the comments of the bagana
expert concerning the combination of certain notes with durations.

There are other techniques besides those mentioned above that could be used
to improve and measure musical quality of music generated based on a Markov
model. One option would be to enforce repetition of note patterns or look at a mul-
tiple viewpoint system [Conklin and Witten, 1995, Conklin, 2013b] that includes a
viewpoint modelling coherence in finger number sequences. This is already partly
implemented on a high level by generating into a certain fixed structure. Another
possible idea would be to relax the unwords metric to include antipatterns, i.e.,
patterns that do occur, but only rarely.

All of the metrics above are based on models created from an entire corpus.
Conklin and Witten [1995] additionally consider short term models for which the
transition matrix is recalculated based on the newly generated music. This is
done for each element, based on the notes before it. This metric might enforce
even more diversity as it stimulates repetition and the creation of patterns. This
interesting approach is left for future research.

The VNS algorithm allows us to specify a wide variety of constraints. When-
ever a neighbourhood is generated, the solutions that do not satisfy these con-
straints are excluded. This simple mechanism allows the user to implement all
types of constraints, ranging from fixing the pitch of certain notes, to forbidding
repetition and only allowing certain pitches.

In this research different ways are proposed to construct evaluation metrics
based on a Markov model. These metrics are used to evaluate generated bagana
music in an optimization procedure. Experiments show that integrating techniques
such as information flow, optimizing delta cross-entropy, TM distance minimiza-
tion and others improve the quality of the generated music based on low order
Markov models. A method was also developed that allows the enforcement of a
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structure and repetition within the music, thus ensuring long term coherence.

6 Acknowledgments
This research is partially supported by the project Lrn2Cre8 which acknowledges
the financial support of the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research of the European Com-
mission, under FET grant number 610859.

References
M. Allan and C. K. I. Williams. Harmonising chorales by probabilistic inference.

Advances in neural information processing systems, 17:25–32, 2005.

D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46–62, 1980.

G. Assayag, C. Rueda, M. Laurson, C. Agon, and O. Delerue. Computer-assisted
composition at IRCAM: from PatchWork to OpenMusic. Computer Music
Journal, 23(3):59–72, 1999.

C. Avanthay, A. Hertz, and N. Zufferey. A variable neighborhood search for graph
coloring. European Journal of Operational Research, 151(2):379–388, 2003.

J. A. Biles. Genjam in perspective: A tentative taxonomy for GA music and art
systems. Leonardo, 36(1):43–45, 2003.

F. P. Brooks, A. L. Hopkins, P. G. Neumann, and W. V. Wright. An experiment
in musical composition. Electronic Computers, IRE Transactions on, (3):175–
182, 1957.

J. E. Cohen. Information theory and music. Behavioral Science, 7(2):137–163,
1962.

D. Conklin. Antipattern discovery in folk tunes. Journal of New Music Research,
42(2):161–169, 2013a.

D. Conklin. Multiple viewpoint systems for music classification. Journal of New
Music Research, 42(1):19–26, 2013b.

D. Conklin and S. Weisser. Antipattern discovery in Ethiopian bagana songs. In
Proceedings of 17th International Conference on Discovery Science, October
8-10, Bled, Slovenia, 2014.

21



D. Conklin and I. Witten. Multiple viewpoint systems for music prediction. Jour-
nal of New Music Research, 24(1):51–73, 1995.

R. B. Dannenberg and N. Hu. Pattern discovery techniques for music audio. Jour-
nal of New Music Research, 32(2):153–163, 2003.

S. Davismoon and J. Eccles. Combining musical constraints with Markov transi-
tion probabilities to improve the generation of creative musical structures. In
Applications of Evolutionary Computation, pages 361–370. Springer, 2010.

B. Dennis. Repetitive and systemic music. The Musical Times, pages 1036–1038,
1974.

S. Dubnov, G. Assayag, O. Lartillot, and G. Bejerano. Using machine-learning
methods for musical style modeling. IEEE Computer, 36(10):73–80, 2003.

M. Farbood and B. Schoner. Analysis and synthesis of Palestrina-style coun-
terpoint using Markov chains. In Proceedings of the International Computer
Music Conference, pages 471–474, 2001.

J. D. Fernández and F. Vico. AI methods in algorithmic composition: A compre-
hensive survey. Journal of Artificial Intelligence Research, 48:513–582, 2013.

K. Fleszar and K. S. Hindi. Solving the resource-constrained project scheduling
problem by a variable neighbourhood search. European Journal of Operational
Research, 155(2):402–413, 2004.

M. Geis and M. Middendorf. An ant colony optimizer for melody creation with
Baroque harmony. In IEEE Congress on Evolutionary Computation, pages
461–468, 2007.

P. Hansen and N. Mladenović. Variable neighborhood search. In Handbook of
Metaheuristics, volume 57 of International Series in Operations Research &
Management Science, pages 145–184. Springer US, 2003.
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J. Kytöjoki, T. Nuortio, O. Bräysy, and M. Gendreau. An efficient variable neigh-
borhood search heuristic for very large scale vehicle routing problems. Com-
puters & Operations Research, 34(9):2743–2757, 2007.

M. Y. Lo and S. M. Lucas. Evolving musical sequences with n-gram based train-
able fitness functions. In Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, pages 601–608. IEEE, 2006.

C. Manning and H. Schutze. Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, MA, 1999.

A. F. Moore. Categorical conventions in music discourse: Style and genre. Music
& Letters, 82(3):432–442, 2001.

J. A. Moorer. Music and computer composition. Communications of the ACM, 15
(2):104–113, 1972.

F. Pachet. The Continuator: musical interaction with style. Journal of New Music
Research, 32(3):333–341, 2003.

F. Pachet and P. Roy. Markov constraints: steerable generation of Markov se-
quences. Constraints, 16(2):148–172, 2011.

A. Papadopoulos, P. Roy, and F. Pachet. Avoiding plagiarism in Markov sequence
generation. In Proceedings of AAAI 2014, Quebec, 2014.

23



R. C. Pinkerton. Information theory and melody. Scientific American, 194(2):
77–86, 1956.

K. Potter, G. A. Wiggins, and M. T. Pearce. Towards greater objectivity in music
theory: Information-dynamic analysis of minimalist music. Musicae Scientiae,
11(2):295–324, 2007.

O. Sandred, M. Laurson, and M. Kuuskankare. Revisiting the Illiac Suite – a rule-
based approach to stochastic processes. Sonic Ideas/Ideas Sonicas, 2:42–46,
2009.

S. Tipei. MP1: a computer program for music composition. In Proceedings of
the Annual Music Computation Conference, Univ. of Illinois, Urbana, Illinois,
pages 68–82, 1975.

N. Tokui and H. Iba. Music composition with interactive evolutionary computa-
tion. In Proceedings of the Third International Conference on Generative Art,
volume 17:2, pages 215–226, 2000.

M. W. Towsey, A. R. Brown, S. K. Wright, and J. Diederich. Towards melodic
extension using genetic algorithms. Educational Technology & Society, 4(2):
54–65, 2001.

C. Truchet and P. Codognet. Musical constraint satisfaction problems solved with
adaptive search. Soft Computing-A Fusion of Foundations, Methodologies and
Applications, 8(9):633–640, 2004.

S. Weisser. The Ethiopian lyre bagana: An instrument for emotion. In Proceedings
of the 9th International Conference on Music Perception and Cognition, pages
376–382, 2006.

S. Weisser. Emotion and music: The ethiopian lyre bagana. Musicae Scientiae,
16(1):3–18, 2012.

S. Weisser and D. Demolin. Etude ethnomusicologique du bagana, lyre d’Ethiopie
/ Ethnomusicological study of the Bagana lyre from Ethiopia. PhD thesis, Uni-
versite Libre de Bruxelles, 2005.

R. P. Whorley, G. A. Wiggins, C. Rhodes, and M. T. Pearce. Multiple viewpoint
systems: Time complexity and the construction of domains for complex musi-
cal viewpoints in the harmonization problem. Journal of New Music Research,
42(3):237–266, 2013.

24



I. H. Witten, L. C. Manzara, and D. Conklin. Comparing human and compu-
tational models of music prediction. Computer Music Journal, pages 70–80,
1994.

I. Xenakis. Formalized Music: Thought and mathematics in composition. Num-
ber 6. Pendragon Pr, 1992.

25


