Universiteit
Antwerpen

This item is the archived preprint of:

A pattern based predictor for event streams

Reference:

Zhou Cheng, Cule Boris, Goethals Bart.- A pattern based predictor for event streams
Expert systems with applications - ISSN 0957-4174 - 42:23(2015), p. 9294-9306

Full text (Publishers DOI): http://dx.doi.org/doi:10.1016/j.eswa.2015.08.021

Handle: http:/hdl.handle.net/10067/1287560151162165141

————

Institutional repository IRUA

uantwerpen.be

http://anet.uantwerpen.be/irua

A Pattern Based Predictor for Event Streams

Cheng Zho@"# Boris Culé, Bart Goethafs

aDepartment of Mathematics and Computer Science, Uniyensifntwerp, Belgium
bScience and Technology on Information Systems Engineksibgratory, National University of Defense Technologyir@h

Abstract

Recently, new emerging applications, such as web clickastr mining, failure forecast and ffi@ analysis, introduced a new
challenging data model referred to as data streams. Minioky data can reveal up-to-date patterns, which are usefptéalicting
future events. Consequently, pattern mining in data stsdara popular field in data mining that presents unique chadls. The
data is large and endlessly keeps on coming, making it inifplest store it, or to re-analyse historical data once it basn
discarded. To solve this, we first present a novel method foing sequential patterns from a data stream, in which weimiag
memory usage in order to achieve higher accuracy in termsspiits. In a second step, we use the discovered patterndentor
try to predict future events. We propose a number of waysd@as score to each pattern in order to generate predictitmes
prediction performance of these scoring strategies is ¢lxeansively experimentally evaluated. The predictéers an opportunity
for a faster detection and response to an important, thoagdiaps unexpected, event, which will occur in the future.

Keywords: pattern mining, event stream, prediction, lossy counting

1. Introduction the sliding window model (Mannila, Toivonen, and Verkamo,
) o ~1997), to transform each batch into a sequence database, in
Recently, new emerging applications, such as web clickyhich we find frequent sequential patterns. Throughout the

stream mining, failure forecast andfiia analysis, introduced rocess, we maintain a list of sequential patterns thatrare f
a new challenging data model referred to as data streams. Ehent in the whole stream, and we update this list at the end of

this setting, datasets are Iarge,.and are considergd tgfibe iNaach batch, based on the newly discovered information.
nite, as new data keeps on coming. As a result, historical dat

cannot be stored and cannot be reassessed once it has beennﬁgtfue to the nature of stream mining, we will never be able

cessed. The field of sequential pattern mining in data stsea iep exadct n:ft(?]rmatlo_n ?bout tptimsl_cover((a:d pa;[_terneuttr;] d
has mostly been limited to a setting where the stream caensis ork, we adopt the main lines of the Lossy L.ounting metho

of incoming sequences. A sequential pattern is then tylpical Manku and Motwani, 2002) to keep track of the frequent pat-

defined as a sequence that often occurs within these incomir} rlrlls..tll:hLoZ?y ?Ol;nt'ng’ a'usetr.-deflne;]d error par?mettﬁae]lc Y
sequences (Ezeife and Monwar, 2007; Mendes, Ding, and Haft, "'t th€ @lect ol approximations when computing the fre-

2008: Koper and Nguyen, 2011). Some work has also gong'uency of a pattern, WhiCh then allows us to give certain-guar
into mining patterns from multiple streams, where a pattern antees about the quality of the output. More concretelysyos

considered frequent if it occurs in many streams (Raissi; Po Counting always finds all truly frequent patterns, but the ou

celet, and Teisseire, 2005: Chen, Wu, and Zhu, 2005: Tanbe ut could also contain a number of patterns that are not truly
Ahm(,ad, Jeong, and,Lee, é008). \’Ne p,ropose to,mine éequenti pauent, or false positives. An error parameter is usedits-g

patterns in a setting where the stream consists of inconaitsy s ?ntgeltha;chthegrequefncy of thetshe falr']sel dpo|_s| ftves W'I.If ?h:\ee '
of events, and a sequential pattern consists of eventsraogur arbelowthe chosen irequency threshold. HOWEVeT, | er

in separate transactions that took place sequentiallyria.ti bound is set too high, we will generate too many false pasitiv

Since an event stream is continuous and unbounded. witWh'Ie the algorithm will run out of memory if it is set too lown

events often coming at a high rate, we need to process the datd’ work, we propose to dynamically determine the optimal er

efficiently and keep only the necessary information before dis'°" parameter by maximising the memory usage. We show that

carding data from the past. In our framework, we first spkt th t)y ?r?mgtrslo’ we Wllk: either enci UPLW'th ac:smaltler error rr)]grgme-
stream into batches of fixed size. This allows us to proceds ea er fﬁn N uster—fc osinlone °'Tt. 0SSy o.ltjr? 'nhg’ 'r?w Ic8 cas
batch at a time, meaning we only need to update the discoy¥© WI'l generate lewer false positives, or with a higher epa

ered patterns at the end of each batch. Within a batch, we uggmeter, in which case we will still be able to produce output
’ while the Lossy Counting algorithm will run out of memory.

. _ On top of mining patterns, another important application of
Corresponding author. Tek:32483387164. stream mining is to try to predict what events will occur ie th
Email addressescheng . zhou@uantwerpen.be (Cheng Zhou), : . .
boris.culeGuantwerpen. be (Boris Cule), near future. Stated simply, if eveats often closely followed
bart.goethals@uantwerpen.be (Bart Goethals) by eventb, then we could use this pattern to predict that event

Preprint submitted to Expert Systems with Applications October 26, 2015

b will occur soon if event has just occurred. Naturally, rather 2013), intensive care (Casanova, Campos, Juarez, Femande
than simply looking at how often events follow each othegréh Fernandez-Arroyo, and Lorente, 2015), etc.
are numerous other ways to evaluate how useful a pattern is fo Laxman, Tankasali, and White (2008) used Hidden Markov
making a prediction, and how reliable a generated predictio Models based on frequent episodes mined from historical dat
could be. In this paper, we propose a humber of novel predicfor a prediction task in a stream. However, this method can
tion strategies, and experimentally evaluate their perforce only predict whether a predefined target event type will occu
in comparison to existing standard measures. and is not suitable for predicting arbitrary events. Basethe
The rest of the paper is structured as follows. We describe thdefinition of the latest minimal occurrence of the antecéden
related work in Section 2, before presenting the prelimiasar of an episode rule, Cho, Wu, Yen, Zheng, and Chen (2011)
and the basic concepts in Section 3. In Section 4 we lay out theroposed two algorithm€£)eMO and CBS-Tree to match an
framework of our method and describe our algorithms in tletai episode rule over event streams for the prediction of the con
The experimental evaluation is provided in Section 5, while sequent event. Zhu, Wang, Wang, and Shi (2011) introduced
conclusions are presented in Section 6. an approach to match multiple episode rules for stream pre-
diction after proposing an algorithm to generate all repnes
tative episode rules based on frequent closed episodes- How
2. Related Work ever, using episode rules to predict an event in a sequence is
computationally expensive because of the complex strecfir
Stream mining is an important field in data mining, with a an episode rule. Given the sequential nature of data streams
number of interesting applications (Garofalakis, Gehiked we propose a novel method for the prediction task in streams,
Rastogi, 2002). Data streams pose a number of challengesing sequential patterns, which seem naturally closehéo t
which are not present when analysing static databases ¢Cherstream structure.
Ke, and Ng, 2008). Due to not being able to store all histori- All of these approaches get the patterns from historical,dat
cal data from the incoming stream, a lot of work has gone intavhile, in a streaming environment, we need to get the latest
solving the problem of how to mine patterns in a setting whergnformation from the current data since up-to-date pasteme
approximations must be made, while still being able to giveuseful for predicting. Therefore, we present a novel atbari
reasonable guarantees on the quality of the output. for finding patterns in data streams by maximising memory us-
Lossy Counting (Manku and Motwani, 2002) was one of theage in order to achieve higher accuracy. Then, we make keliab
first algorithms for finding frequent items and itemsets fram on-the-fly predictions for future events in the stream bamed
data stream. Lossy Counting provides an accuracy guarantgenerated patterns. férent from using traditional measures
on the set of frequent items or itemsets and their reporeed fr (support or confidence), we have designed new scoring func-
quencies by setting a user-specified support threshadehd an tions by combining new measures of a pattern to improve the
error bounde. The method attempts to approximate the truepredictor.
frequency of each pattern, and is guaranteed to find allnoatte
that have a true frequency higher thaN, but could also out-
put some patterns that have a true frequency lower &sn
but higher thand — €)N, whereN is the current length of the An event stream is a list of events representecE&s =
data stream. A number of other studies were based on this ide€ge;, 1), (e, t2), . . ., (n, tn), . . .), Whereg is an eventd € E), t;
(Arasu and Manku, 2004; Metwally, Agrawal, and El Abbadi, is atime stampt(e Nand 4 <t; < ... <t, <...)ande,is the
2005; Dimitropoulos, Hurley, and Kind, 2008), all of them re latest event that has already occurrids the set of all possible
quiring a user-chosen error bound. Along similar lines, in aevent types anifl is the set of natural numbers. For simplicity,
problem setting most similar to ours, Mendes, Ding, and Harnn our examples, we omit the time stamps and implicitly assum
(2008) proposed to mine sequential patterns in data streamghey are consecutive natural numbers. Note that multipetsy
The memory usage of the Lossy Counting-like algorithmsiis, i can occur at the same time stamp, which we take into account
theory, unbounded, and they will run out of memory if the erro when we define sequential patterns below.
bound is set too low. However, i is set too high, the output An eventsequencés an ordered list of event sets denoted by
will contain too many false positives. In this paper, we @ms® s = (aj, ay,...,an), With a C E. We denotdg as the length
a method to mine frequent sequential patterns in a strealm wit of sequences. The prefix of a sequence is defined ass =
out setting a fixed error bound, thus increasing the qualfity o{a;, a,, ..., am 1). A sequences = (by, by, ..., by) is said to be
the output, and making the algorithm easier to use. a subsequencef sif there exist integers K i; < iz < ... <
The prediction of future events has greatimportance in many < msuch that; € a;,,b, C &,,...,bx C a,, denoted as
applications, like prediction of users’ requests on the wels C s(if s # s, written ass' C). Given a set of sequenc8s
(Gundiiz andDzsu, 2003; Jalali, Mustapha, Sulaiman, and Ma-and a sequenge we define thérequencyof pin S asfre(p) =
mat, 2010), forecast of failures (Gu, Papadimitriou, Yud an |{s € S|p C s}|.Given a minimum support threshahlinSup if
Chang, 2008; Martin, Méger, Galichet, and Becourt, 2012;fre(p) > [minSupx |S[], p is considered a frequent sequential
Wang, Ma, Chow, and Tsui, 2014; Bala and Chana, 2015)pattern inS.
traffic analysis (Chrobok, Kaumann, Wahle, and Schreck- Once a frequent patterp = (c;,Cp,...,Ck) is discovered,
enberg, 2004; Merah, Samarah, Boukerche, and Mammeliits prefix p must be frequent too. Therefore, each pattern

2

3. Problem Statement

can also be used to generateude: (ci,Cp,...,Ck1) = Ck. Given an input stream, the goal of our method is two-fold.
The confidenceof this rule is defined asonf(p = ¢) = First of all, we wish to reliably mine frequent sequentiat-pa
fre(p)/ fre(p). Given a sequence= {(a;,ay,...,am), if there terns, while taking into account that in a streaming conmext
exists ani, 0 < i < m, such thatp C s while p Z ¢ cannot keep an exact frequency count for each pattern. We wil
wheres' = (g, a:1,...,am), We say thap matches sWe de- show that we are able to guarantee that we find all truly fragjue
fine the minimum match length gf in sasminMatch{p,s) = patterns, while keeping the number of false positives asdew
Orgll?n{ts(m) — tg(i) + 1}, wherets(m) andts(i) denote the time possible. Our second goal is to then use the discoveredpsatte

stamps at which event setg anda; occurred, respectively. For 1N order to predict future events. In order tfieiently mine
example, given a frequent pattepn= (a, b, ¢) and a sequence patterns, we will update the set of discovered patterns afaly

s = (a,b,c a b,d), patternp matchess andminMatch(p, s) = ter processing an entire batch of data. However, based on the
3. already discovered patterns, we are able to make new predic-

In order to dficiently process the input stream, we will divide tions at any moment in time.

it into batches. Given a batch sizeldfme units, we define the
ith batch of event streai8S as 4. Algorithms

Bi = {(et)l(e.t) e ESandt e [(i — 1)l + 1,il]}. Since the goal of our method is two-fold, our algorithm,
SPEP(Sequential Pattern based Event Prediction), also con-
We traverse the stream using a sliding window of lengitlfror sists of two main stages, a frequent sequential patternrmine
each time stamps, with ts € N, we define the corresponding (SPEPPM) and an event predictoSPEREP). Algorithm 1

window as shows the high level structure of the algorithm. Line 1 ini-
tialises a batch id, line 2 initialises the content of the current
Wis = {(e t)l(e,t) e ESandt € [ts—w + 1, ts]}. batchbatchDataand line 3 initialises an error bourdLines 4-

17 contain the main part &PEP When an event comes in (line
Note that each window is itself a sequence. We denote thé set), we update the content of the current batch (line 5). L&8s
windows generated from a batBhasS;. Note thatthe first\— generate a prediction based on the already discoveredrseque
1 windows ofB;.1 contain some events that actually occurredtial patterns. Note that this can only be done ohélarger
in B;, which enables us to capture patterns whose occurrenc@san 1, since no patterns are found until the first batch hes be

may have spanned over two batches. processed. If we have reached the end of a batch (line 9), we
mine sequential patterns in the batch (line 11). After pssee
Example 1. Given an input stream ing the batch, we update the batch iand reset théatchData
variable (line 12-13). Line 14 stores the last window of thst |
(a,c,b,d, e a,b,d achb, f,dachbdefachbd...). batch since this historical data is needed to make predtbd
the beginning of the next batch (see line 7). Finally, we tpda
The first two batches of size 10 are the error bound (line 15).
In the following subsections, we discuss the individuat ele
B1=(ac,b,d,eab,dac ments of the main algorithm in detail.
and

4.1. Sequential Pattern Miner
B2 = (b f,d.a.cb,defa. Algorithm 2 shows the outline of mining frequent sequential
Assume that w 4. The windows obtained fromyBind B, are Patterns from a batcB;. There are three phasesSERPM.
shown in Table 1. In the first phase, we run a modified SPADE algorithm (Zaki,
2001) to get the set of all frequent sequential patt@nshich
we sort by ascending pattern size (line 2). In the second

___Table 1: Example of Sliding Windows phase,updatePatternTablés called to update the pattern ta-
Windows ofB, (Sy) | Windows ofB; (S2) ble T, which contains the sequential patterns mined from the
ID_Sequence ID_Sequence complete event stream seen so far. After the first two phases,
1 @ 11 (d,ac,b) some of the patterns i may not be frequent enough any more.

2 (@o 12 (achb,f) Thus, in the last phase, we prune the patterns that are not fre

3 (ach 13 (c.b, f.d) quent (line 4). We discuss these three phases in detail in the

4 (achbd 14 «b,f.d,a) following sections.

5 <(cb,d,e 15 (f,d,a,c)

6 <(bdea 16 (d,a.c,b) 4.1.1. Modified SPADE algorithm

; 22;?3; i; 22’ g g g; Some algorithms have been developed to mine sequential

9 (a:b d’ a) 19 (b’ d, e’) patterns in data streams. Some.important algorithms (Chen,

10 (b d’a:C> 20 <d,e;f’a) Wu, and Zhu, 2005; Mendes, Ding, and Han, 2008; Koper
> > and Nguyen, 2011) are derived from PrefixSpan (Pei, Han,

Algorithm 1 SPEP support thresholdup at which the memory usage of SPADE is
Input: event streankES, batch sizeB|, sliding window length ~ smaller than a user defined memory limit. Then, the new error

w, prediction time spaspanand maximum number of pat- bound is set te; = S“,g,‘l.
terns kept in memorgaxNum
i1 4.1.2. Updating pattern table

We use a hashmap to store the sequential patterns mined

g Zaicg;Data_ g from the event stream. The key ®fis the corresponding se-
4: while ES.nextEvent: null do qgential patternp and the value of the key contains five at-
5. updatebatchData tributes of the pattern:

6 ifi> 1then _ (1) sumE the sum of the frequencies pffound by SPADE

- SPEPEP(batchDataH;, span; in all batches processed so far;

s endif (2) lastF: the frequency ofp found by SPADE in the last
9: if end of a batctthen processed batch; _

10: B = batchData . (3) A: the maximum possmle error for the frquencypf
11: SPEPPM(B,, i, 6); (i.e., the maximum possible frequencymin batches in which
12: i+ 4 p was infrequent);

13 batchData= 0: (4)wSum the sum of the lengths of known minimal windows
14: Hi = Wi_18; which coverp in all batches processed so far; . .
15: & = updateErrorBoungmaxNumi): (5) wCount the count of the known minimal windows which
16: endif coverp in all batches processed so far.

17: end while

Example 2. Consider Example 1, and suppose that we want
to get the minimal windows of pattefd, a) after B.. Denote
Algorithm 2 SPEPPM(B;, i, €) the lengths of the minimal windows of pattétha) in batches

1 and 2 as minWirls = {3,2} and minWing8 = {2, 2,4}, re-
spectively. After mining the frequent patterns from batciv@
could have one of two possible casegdlfa) already exists in
the pattern table T, the set of lengths of the known mininal wi
dows of patterrd, ay after B, is minWins= {3, 2, 2, 4}, which

is not the bag union of minWitsnd minWing since the win-

)] dow spanning over both batchéd, a, ¢y, would be duplicated.
Mortazavi-Asl, Wang, Pinto, Chen, Dayal, and Hsu, 2004) (4 ay was not frequent in batch 1, the set of lengths of the
PrefixSpan shows good performance and scales well in memy,own minimal windows of patterd, a) after B is (2,2, 4)

ory, but, when dealing with dense databases, the perfornangince the minimal windows of the pattern in batch 1 are not
of PrefixSpan may be worse than that of SPADE (Gomarizg,ailable.

Campos, Marin, and Goethals, 2013). As a result, we choose

SPADE as our sequential pattern miner. Note that any other |n order to solve the problem described in Example 2, we

existing sequential pattern miner would have done the i, t need to mark the minimal windows spanning over two batches.
In order to make good predictions, we not only want to getin our implementation we do this by adding a minus before

the frequency of each pattern, but we also wish to determinthem, i.e.minWing = {-2, 2, 4} in Example 2.

. Sj = the set of sliding windows from batds;
: P = modifiedSPADES;, g);
updatePatternTab(®, i);

: pruning, i);

the lengths of its minimal occurrences. In a given winddv The algorithm for updating the pattern table is given in Algo
within the input streankS, a subsequenceof W, is called a rithm 3. The algorithm consists of two stages. In the firsjsta
minimal windowof patternpif pC sand¥s C s,p%Z S. lines 1-23 update pattern table for each sequential pattern

We therefore made two modifications to the original SPADEp € P. If patternp is already inT (line 2), we first compute
algorithm. First, we added a function to get the minimal win-the sum and count of new minimal windows pf(lines 3-4).
dows of a frequent pattern by tracking the occurrences of allhen, we update the patterrssmF, lastF, wSumandwCount
the items composing the pattern. Second, as the densities aftributes (lines 5-8). Ipis not yet inT, we storep and its new
different batches in the data stream can vary, we noted thatéttributes intal' (lines 9-21). Lines 10 and 11 compute the sum
can be dfficult to set an appropriate support threshold to getand count oiminWinsof p. Note that there is no error for the
enough patterns for prediction and, at the same time, ettseire frequency ofp in batch 1 (line 12), while we need to compute
algorithm will not run out of memory in one of the batches. the error afterwards (lines 13-19). The method to get theimax
Therefore, we add a memory limit to SPAD&padeMemory mum possible positive erroAf for the frequency op is based
We monitor the memory usage of SPADE in the process of enwsn three observations:
merating frequent sequences (Zaki, 2001). First we run SPAD 1. An upper bound for tha of a pattern which is not yet il
with an absolute support threshdld x |B|] + 1 to mine the isUPB1=|g X (i — 1) x |B|], wherei is theid of current batch.
patterns in a set of sequenc®s If this proves infeasible, we 2. One occurrence of a pattgprtontributes at most—|p|+1
use an optimisation method to try to find the smallest absolutto the frequency of the pattern.

4

3. If patternX is the prefix of patterr, the frequency Algorithm 3 updatePatternTab(®, i)
of Y cannot be larger than the frequency Xf The max-
imum possible frequency oK in the past batches should

1: for each patterp € P do

be maxFrePaqiX) = X.maxF — XlastF, where X maxF = 2 ifpe T_then]
X.sumF+ X.A. Assume thatX occursk times in the past 3: Sum;_zmep-m‘”"‘””s %”dv\“;.o m 4 O
batches, it holds tha¥ occurs at mosk times in the past 4: coun T:Hnilmef p..mln ins and m- Of;
batches and the maximum possible frequency ahould be 5: p'lsuTFj —fp. .re,
maxFrePagtX) — k based on observation 2. In other words, an- 6: P- a; N p_. re,
other upper bound for th& of a patterrY that is frequentin the 7: p.wCum+ - _sum
current batch, and is not yetin but its prefixX already is inT, 8: o p.wCount+ = count
is UPB2 = maxFrePaqtX) — min{k}, wheremin{k} is the mini- 9'_ = 3]
mum possible value df. We know thamin{k} = [Z2Fera0y - 10 Sum—t_Zmep-min\\/Nvi_ns|mL
based on observation 2. 11: ZOET)__ Ip.minWing,

As a result, we seh of a patternp whose prefixp is not 12: " - ’1th
in T to g x (i —1)x|B|] (line 14). HoweverA of a pattern : IA>— ‘en. 1) % (Bl
whose prefix is inT is set tomin{UPB1, UPB2 based on the it __LE'_I_X”(]' —1)xBI;
observations above (lines 15-18). Note that this is why we so ! ze_ enF P maxFrePas() .
the found patterns by ascending pattern size, ensuringathat 16: Al—_ ”?az rAe .as(tﬁ) = ¢
prefix of a pattern is always inserted infobefore the pattern q ? MinA, Ac;
itself. Finally, we update the attributes of pattgrr{line 20) gn.f !
and store it and its attributes info(line 21). 00 Snl ! _ (p.fr fre. A -

In the second stage, we update thattribute for the patterns 21: Ta lijet(_ (\f)z;\lug' p-fre, A, sum couny;
in T that were not found in the current batch. Line 25 finds . end'i? b, ’
patternsP’ that exist inT but not inP. The A of each such '

i . : . 23: end for

pattern is updated by adding the maximal possible frequehcy .

. : : ; 24: if i > 1 then
an infrequent pattern in the current batch, ile.x |B|] (lines P_T_pP
26-28). : B o

Our algorithm can be asked to output the discovered frequenztG' for ?ach patterip E P’ do

. . 27: p’.A+ = |g X |B|];

patterns at any point. We output a patterif X.sumF+ XA >
. i . 28: end for
[i x |B| x minSup, wherei is the number of batches processed 20: end if

so far. By doing so, we are guaranteed to output all truly fre-
quent patterns (sinakis an upper bound for the true frequency
of a pattern in batches where the pattern was infrequerd), anAlgorithm 4 pruning(e;, i)
as discussed already, we output fewer false positives thiat: e

ing methods. 1: for each patterp e T do
2 p.maxF= p.sumF+ p.A
. 3 if pmaxF< g xix|B|then
4.1.3. Pf“”'“? o 4 removep fromT;
After updating and adjusting the pattern table, some pa&ter 5. gngif
in T may have become infrequent. We say a patterh is not 6: end for

frequent enough if the upper bound of its frequency is lower
than the current error threshold (obtained by multiplyihg t
number of processed windows with the current value of the dyfhan the previous error bound (line 10), otherwise, thererro
namic error parameter). The complete method for removin%ound remains the same (line 12)

the infrequent patterns from the pattern table is given igoAl '

ithm 4 Consider Example 1 from Section 3, and suppose the max-

imum number of patterns to be kept in memory is set to 10.
. The pattern table after processing batch 1 is shown in Table 2
4.2. Updating Error Bound Since we can only keep a maximum of 10 patterns in memory,
Algorithm 5 describes the procedure for updating the errogll patterns with a frequency of 3 or lower had to be removed.
bound. If the size of the pattern table has become larger thafs @ result, the error bound for the next batch has been set to
maxNumwe first sort all the patterns storedlirby descending €2 = 0.3. Therefore, we try to use an absolute support threshold
maxFand store them in a pattern lisst (line 2). We then get 0.3x 10+ 1 = 4 to mine frequent patterns By (as defined in
themaxFvalue of the highest ranked pattern that no longer fitsTable 1).
into the table and find thiadexof the last pattern ifist whose The pattern table after processing batch 2 is shown in Table 3
maxF is larger than this value (lines 3-4). Then, we removeThe last two patterns in this table were infrequent in batcol
the patterns ranked below thiedex (lines 5-7). Finally, we theirA attribute has been set to 3 (the highest possible frequency
compute a new error bound (line 8), and return it if it is large of a pattern that was infrequent in batch 1). However, naé th

5

Algorithm 5 updateErrorBoun{maxNumi)

Output: ¢

1. if T.siz€) > maxNunthen

2. list = getS ortedPatterr(}

3: b =maxFofthe (maxNum 1)th pattern irist;

4: i =index of the lasp € list whosemaxF > b;

5. for jth patternp € list wherej > i do

6: removep from T;

7. end for

8 b= m;

9: if b>¢g_1then

10: return b;

11: €ese

12: return ¢_q;

13: endif

14 else

15: return €-3;

16: end if

Table 2: Pattern Table aft@;

Pattern maxF sumF lastF A wSum wCount
(a) 9 9 9 0 3 3
(b 8 8 8 0 2 2
(d) 7 7 7 0 2 2
(b, d) 6 6 6 0 4 2
(c) 5 5 5 0 2 2
(a,b) 5 5 5 0 5 2
e 4 4 4 0 1 1
(a,¢) 4 4 4 0 4 2
(d, a) 4 4 4 0 5 2

4.3. Event Predictor

The algorithm for predicting future events is shown in Algo-
rithm 6. Note that we use a window of lengthto discover
patterns, whilespandefines the time span we want to predict.
Line 1 gets the training data by getting the latest events in a
window of lengthw-span Then we find the patterpps match-
ing the training data from the pattern tadl€line 2). Two op-
tional parametersninSupandminConf can be used to limit the
patterns only to those wittumF+ A > [minSupx (i — 1) x |B[]
andconf> minConf whereconf= p.sumF p.sumF We use a
hashmaf to store the predicted events obtained froetPre-
dictions(line 3). The key is the predicted event and the value
of this key is the score of the predicted event which measures
the likelihood of the event appearing in the future. We pnése
a discussion of a number of possible scoring policies in Sec-
tion 5.5. Given a user-defined paramdtemwe return the top
k predicted events after sorting on their scores in descgndin
order.

Algorithm 6 SPEREP(batchDataH;, span

1: td = getTrainingDatgbatchDataH;, span;
2: ps= findMatchedPatterrftd, T, minSupminConj;
3: Z = getPredictionéps k)

Example 3. Let us go back to Example 1, and assume we want
to predict which events will occur after batch 2. Suppose the
sliding window length i, and the time span we want to predict

is 2, so we can use the latest events in a window of length 2, i.e.,
(f,a) after batch 2 is processed, to predict the future events.
Assume that the pattern table after batch 2 contains, among
others, patternga, by and (a, ¢y, and that these two patterns
are the only patterns matching the training dgtqa). Events

b and c will, therefore, be predicted if ¥ 2 (assuming both

the wSumandwCountvalues of these two patterns are basedpatterns satisfy the frequency and confidence thresholds).

on batch 2 alone. Meanwhile, pattejg), that was frequent in
batch 1, has now dropped out of the table. ThaxF of (e)
after batch 2 is 7, which is not high enough to be considere
frequent. Indeed, note that all patterns shown in Table & hav

maxFvalue of at least 9.

Table 3: Pattern Table aft®&>

Pattern maxF sumF

lastF A wSum wCount

(@)
(b)
(d)
()
(b,d)
(a,b)
(a,c)
(d, a)
(f)
(c,b)

16
16
16
12
11
9

© © © ©

16
16
16
12
11
9

o OO O

[22N 236 NG IE -3, BEN N (e e JEN|

WWOOOoooo o

EvEREoRocwasapro

MNAWADNWMIMNO

g. Experimental Evaluation

We implemented our method in java and ran it on a PC with
Intel Xeon CPU at 2.90GHz, setting the maximum heap size
to 2GB. The operating system was Ubuntu 12.04.4. All ex-
periments were performed on four real-life datasets, wittyv
differing characteristics, allowing us to cover a variety of set
tings.

5.1. Datasets

FIFA is a long sequence obtained by merging 20450 se-
quences of click stream data from the website of the 1998 FIFA
World Cupt. KOSARAKis a long sequence obtained by merg-
ing web sessions from a Hungarian news pértélere the se-
quences shorter than 30 items have been removed to keep only
46815 sequencesBIBLE contains the full text of the Bible,

httpy/www.philippe-fournier-viger.corispmfdatasetd | FA. txt
2httpy/fimi.ua.ac.bgdatakosarak.dat

where each word is considered to be an eeALARMcon- bound was set lower than the final values we obtained for our
tains a sequence of alarms triggered in a factory, stregabwer ~ dynamic error bound. We therefore chose slightly higher val
18 months. An entry in the dataset consists of a time stamp anges for theSSBE error bounds, namely,@002, 00016, 00005

an event type. Note that the first three datasets are dernde, amnd 00001 for the four datasets, respectively. This allowed us
have no time stamps, but, implicitly, the events are assumed to make a fair comparison, but it should be noted that, with
have “taken place” on consecutive time stamps. The first twahese valuesSSBE could still be expected to run out of mem-
datasets are merged to form two long streams, respectiwely, ory soon, as the streams continue to grow. Table 5 shows the
adding a gap of 50 time stamps between the original sequencasumber of patterns generated by SPADE (column Baseline) and
since we never use a sliding window greater than 50 on thesthe two streaming algorithms, output after every 10 batches
two datasets. In this way, we wish to avoid erroneously im-Note that the WAs in the columns ofFIFA mean that this data
plying that events at the end of one stream have an influencgream is not long enough to run 100 batches. We can see that
on the start of the next one. The time stamp&AltARMare SPERPM always has a lower false positive rate tHa8BE.
expressed in seconds, and most time stamps are not asdocialéhere are two reasons for this. Firstly, as a result of masimi
with any event. Furthermore, this dataset also containsteve ing memory usageSPEPPM uses a lower error bound than
that occur at the same time, which is never the case in othé3SBE, especially in the early batches. Secondly, we minimise
datasetsBIBLE, unlike the other three datasets, does not origthe maximum possible positive error for the frequency ofta pa
inate from a stream, but we wanted to test our method on textern based on the information of its prefix, as shown in Algo-
data, which, in other contexts, could indeed form an incgmin rithm 3.

data stream. Table 4 summarises the characteristics obthe f

real-life datasets. The second column contains the nunfber o

events in the stream, the third the support of the most freque 5-3. Bficiency Analysis of Pattern Mining

item, the fourth the average length of a sequence in thewicst t

datasets and the fifth the number of unique events in thestrea The runtime of our algorithm is composed of the runtime
of the pattern miner§PERPPM) and the event predictor. The

minSupand minConfonly affect the number of patterns used
for making a prediction and we find that the parameters do

Table 4: Characteristics of the used datasets not make a dierence for the runtime of the event predictor.

Dataset Size MaxSup AvglLen #ltems . .
EIFA 741092 018 3624 2990 Therefore, we now compare théieiency of our pattern miner
KOSARAK 3510442 13 7499 25926 against another state-of-the-art sequential patternngiaigo-
BIBLE 787066 w076 NA 13905 rithm (SSBE) for streaming data at fferent batch sizes and

sliding window lengths, respectively. That is because othe
parameters don't influence the runtime of pattern mining for
streaming data except the error bound parameter. Howeeer, w
do not analyse the impact of error bound since our patteremin
5.2. False Positive Rate dynamically determine the optimal error bound by maxingsin
tt_he memory usage.

ALARM 514502 0023 NA 5001

In our first set of experiments, we demonstrate that our pa .))))
tern mining method improves the accuracy of existing method ~ Figure 1 shows the runtimes of the algorithms with vari--
We compare our method to ttRSBE algorithm proposed by ©OUS batch sizes where the length of the processed stream is
Mendes, Ding, and Han (2008), which, like the original Lossy720 000, the §I|d|ng window length is fixed at 10 amdxNum
Counting idea, mines patterns from a data stream with a fixefpr SPERPM s set to 50 000 for each dataset. The results show

user-chosen error bound. In order to evaluate the false poshat as the batch size increases, the runtim&R@rPM and

tive rate for the two methods, we first needed to obtain antexaS2BE decrease. This is because a larger batch size will reduce
number of truly frequent patterns. For this, we trea8A the number of batches that need to be processed. We find that

KOSARAK BIBLE and ALARM as static sequence databases,SSBE is more time consuming with smaller batch sizes since
and used the SPADE method to find all frequent patterns. WeSBE needs to maintain the information of a larger number of
set the minimum support threshohinSupto be 001, 01, Patterns.

0.02 and 00003 forFIFA, KOSARAKBIBLE andALARM, re- Figure 2 shows the runtimes of the algorithms for a vary-
spectively. Using a sliding window length of 10 for all four ing length of sliding window. In this experiment, the length
datasets, we set the batch size to be 20 000, 20 000, 10 000 a@the processed stream is 720000, the batch size is 6 000
200 000 forFIFA, KOSARAKBIBLE andALARM respectively. andmaxNumfor SPERPM is set to 50 000 for each dataset.
The error bounds o8PEPPM at the end of the four datasets Generally, the runtime grows when the length of sliding win-
were 000015, 000155, 00004 and 0009, respectively. We dow increases since there will be more frequent patterns in a

then needed to set fixed error bounds for #8BE algorithm. ~ batch with a larger sliding window. We find that the runtime
We know thatSSBE would run out of memory if the error 0f SPERPM is more stable as on tH8IBLE and KOSARAK

datasets, there is actually a jump in runtime$&BE. This oc-
curs becaus8SBE keeps much more patterns when using the
Shttpy/www.philippe-fournier-viger.corispmfdatase#8IBLE. txt sliding window length at the jump point.

Table 5: Comparison of the False Positive Rates oSREPPM andSSBE algorithms

Batches _ FIFA _ KOSARAK _ BIBLE _ ALARM
Baseline SPEP SSE | Baseline SPEP S3E | Baseline SPEP S3BE | Baseline SPEP S3BE
10 270 270 279 52 55 78 188 188 196 69 78 108
20 285 285 293 56 56 75 198 198 203 39 55 90
30 286 286 289 53 53 72 196 196 206 35 45 88
40 282 282 295 54 54 75 189 189 193 30 40 74
50 285 285 297 52 52 74 170 170 181 25 35 68
60 289 289 301 53 53 74 171 171 180 23 37 70
70 288 288 300 53 53 73 171 171 176 20 28 65
80 288 288 299 52 52 72 N/A N/A N/A 16 25 60
90 N/A N/A N/A 53 53 72 N/A N/A N/A 18 23 54
100 N/A N/A N/A 52 52 74 N/A N/A N/A 19 27 59
. FIFA \ KOSARAK = Number of events predicted correctly
° izzipgpm m ' recall= Number of events that took place

0

)

Runtime

Q
ow

Runtime
AN
o

1

<G

0 2000 4000

1Bl

10
6000 8000 10000 O

2000 4000‘3‘6000 8000 10000

(s)

Runtime

BIBLE ALARM
10°

—O— SPEP_PM —O— SPEP_PM
——SS_BE —— SS_BE

)

£102

€ _

x fl\v ’

o000

7

7

0 2000 4000

800

1B

10"
6000 8000 10000 O

2000 4000, 6000

8000 10000
1Bl

Figure 1: Impact of the batch size on the runtime

FIFA

KOSARAK

Runtime (s)
B (2]
o o
o o

N
o
=]

—O— SPEP_PM
——SS_BE

<

Runtime (s)
() B
o
o

500

o
=]

N

00

So~e_

[—c—spPer_PM
—7—SS_BE

6 10 14 18132 26 30 34 38 4

BIBLE

100

6 10 14 18 152 26 30 34 38 42
ALARM

—©— SPEP_PM
—v—SS_BE

400

300

(s;

Runtime
N
o
o

100

—O— SPEP_PM
——SS_BE

6 10 14 18 “2]2 26 30 34 38 42

30 60 90 120 llSUO 180210 240270 300

Figure 2: Impact of the sliding window length on the runtime

5.4. Evaluation Framework for the Predictor

The best known ways to measure the performance of a pre;

dictor are precision and recall:

precision=

Number of events predicted correctly

Number of predicted events

8

The main metric we use for evaluation is thg-measure,
which is defined as:

precisionx recall

F]_ =2X —
precision+ recall

In our context, these definitions are not as trivial as they
seem. We use a sliding window of lengthto search for pat-
terns, and yet we are able to make predictions at each pessibl
time stamp for a user-chosen predictgpan Therefore, a pre-
diction we make at timeis based on events that occurred in the
time interval [— w+ span+ 1,t], and the prediction stays valid
for the time interval{ + 1,t + spa.

For example, if the prediction span is 10, and the sliding-win
dow length 60, a prediction generated at time stamp 100 will b
based on events occurring in interval [300]. If we predict
that eventx will occur within the next 10 seconds, this predic-
tion will be deemed correct ik occurs at any time stamp in
interval [101 110].

In our experiments, we make new predictions at each time
stamp. Obviously, the longer the sliding window, the higther
chance that some (or even most) predictions will be repeated
from one time stamp to another. For example, assume we have
identified a strong rul@a = b, and that the window length is
60 and prediction span is 10. If evembccurred at time stamp
5, we will predict thato will occur in the time interval [615].
However, at time stamp 6, if has not occurred, we will prob-
ably again predict thai will occur in interval [7,16] (based on
the same that occurred at time stamp 5). We could, in theory,
continue to make the same prediction based on the samél
time stamp 55, by which time we could again start predicking
based on anotharor another rule altogether. It would be coun-
terintuitive to count each such duplicate prediction agpasse
prediction, as both the number of correct and incorrectipred
tions could end up being higher than the number of events that
actually took place. We will therefore now formally deserib
our evaluation framework, that will be used to compute preci
sion and recall in this context.

First of all, we define th@vent countit timet, EC, as the
wumber of events that took place at tilé&C; = |(e,t) € ES|.

We say an evergthat occurred at timewas predicted correctly once again predict that b will occur soon (BM b), but, since

if a prediction was made at any time stamp in the interval [b is already in the set of currently valid predictions, we dx n
spant—1] that evene would occur within timespanfrom the need to add another b, and, therefore, N0. As a result, we
prediction being made. At each time point, we will thereforeonly increase the event count tywhile the prediction count
need to keep track of the currently predicted items. To startor time 2 remains0. At time3, event ¢ occurs, and we predict
with, we denote the set of predictions made at tinflnrough that event d will occur in time intervéddl, 6]. We increase both
the topk selection) a® M. Attimet, the set of valid predictions the event count and the prediction count. At tifeanother

will consist of predictions made in the intervaH span+ 1,t - a occurs. At this point, we know that the prediction we made
1] and the newly made predictio®V. We define the set of at time1 has been proved wrong. At that point, we predicted
existing valid predictionat timet as that event b would occur within three time units, and this pre
diction has now expired (EP= b). The set of existing valid
PP = Uiet-spant-11(PM; — {(e,t') € ESIt" € [i + 1,]}). predictions (PR) now contains only d. However, since another

.) o] a occurred, we once again make a prediction that b will hap-
We then define the set ofirrently valid predictionsit timet as pen, this time within time intervds, 7]. Therefore, NR = b,

CP = PRUPM,. Note that the set of valid predictionsincludes 4 the set of currently valid predictions now contains b dnd
all items that have been predicted at the Esantime stamps, \we once again increase both the event count and the predictio
apart from those that have already occurred in the stream afy i Finally, at times, event b occurs. Since b was in & We

ter they have been predicted. Therefore, in order to count ho oo ectly predicted this occurrence. We increase both trene

many predictions have actually been made, we need 0 oMy nt and the correct prediction count, and remove b from the
pute how many new items have been added to the set of valigy; o currently valid predictions.

predictions at each time stamp. Note that, at tiredl predic-
tions made at time stamp- spanwill expire. We define the

set ofexpired predictionsit timet asEP; = CP_1 N NPi_span, ___Table 6: Anillustration of our evaluation framework
whereNPy_spanis the set of new predictions added@®_spay ¢t | EPt PR PM NP Ch EC PG CPC
at timet — span Recursively, we define the set oéwpre- 1 & - - b b b 1 1 0
dictionsat timet asNP; = PM; — (PP, - EP,). Havingdone 2 & - b b - b 2 0 0
this, we can compute the number of predictions made at time3 ¢ - b d d bd 3 1 0
t asPC, = NP Finally, we define theorrect predictons 4 @ b ~d b b bd 4 1 0
countat timet, CPG, to be equal to the number of eventsthat 5 b - d - - d 5 0 1

took place at timd that were predicted correctly. Formally,
CPG = |{(e,t) e ESle€ CP_4|. Assume now that we want to evaluate the performance of
At any given moment, we can evaluate the performance obur predictor at this point. We can see that five events have
our predictor on the stream seen so far. To do this, we need teccurred, of which we only predicted one. Therefore, recall
compute three values. The first is the total number of events computed to be equal t/5 = 0.2. We can also see that
that have occurred since we started predictii@,= .; EG, we have made three predictions, one of which has come true.
wherets is the time stamp at which we started predicting futureHowever, for one of those predictions, namely that d would oc
events. The second value we need is the total number of evalgur within interval[4, 6], we do not know whether it will prove
ated predictionsPC = (3., PC) — CPy,, wherete is the cur- correct or incorrect. We therefore have to leave this prédic
rent time stamp, an@P;, the set of currently valid predictions, out of our computations. Hence, we compute the precision to
for which we still do not know whether they will be proved be equal tal/2 = 0.5.
correct or incorrect, and we therefore disregard them frioen t
computations. Finally, we need to compute how many corre
predictions we have mad€PC = };,; CPG. Once we have
computed these values, we can compute precision and recall | this set of experiments, we propose and evaluate five dif-
along the lines described above, ferent scoring policies that can be used for making premfisti
cPC Our goal is to be able to, at each moment in time, generate re-
BC and recall, = EC- !lable predictions as to Whlgh events can be expected toroccu
in the near future. To do this, we first check which of the dis-
Example 4. Consider an incoming stream ESaacab.., and covered patterns apply. At timriewe select only those patterns
assume we are using a sliding window of lengtrand a pre- whose prefix can be found in the recent past, but whose last el-
diction span of siz8. Further assume we have discovered twoement has not occurred since the last occurrence of the prefix
prediction rules, namely & b, and c= d. Table 6 gives an Once we have all such patterns, we can predict that the last el
overview of the evaluation process introduced in Secti@ras. ement of each of these patterns will occur in the near future.
the stream progresses. At timgevent a occurs, and we pre- However, at each time stamp we may only predlievents, so
dict that event b will occur in the coming prediction intekgd ~ we need to rank the applicable patterns using a scoringimct
size3, i.e., at time stam@, 3 or 4. We increase the event count The five proposed scoring policies are defined as follows:
and the prediction count by. At time2, another a occurs. We (1) Support policy:sugp) = p.sumF

9

C!TS.S. Prediction Scoring Policies

precision, =

The Support policy simply says that a prediction is most rewe used the Combination policy in our remaining analyses in
liable if it is based on the most frequent pattern. the coming sections.

(2) Confidence policycon{p) = p.sumF p.sumF

The Confidence policy ranks the patterns according to their ..]
confidence. However, neither the Support nor the Confidence %1

0314 KOSARAK
0.304

0.294
/]
0284 &/ /
/

policy take the prediction context into account. 034+ 027
. .Si L-0324 /) e 1/
(3) Match policy:match{(p) = sz x conf(p) 020 ¥ P

0.28 4

The Match policy reduces the value of a prediction if the]
events that caused the prediction have occurred furthdren t 0]

0.24 4
0.234
0.22

past. For example, if we are predicting that evemtill occur 12 3 4 5,6 7 8 9 R J’AS‘L];\;M})

0.26 4 0.46 4

soon based on patteta, b), this prediction will score higherif oz %
a had just occurred, than#had occurred, say, 10 time stamps o2
ago, even ifais still within the relevance span. ool

l_':021.

0.44
0.42
0.40
_o0384 //

(4) Fit policy: fit(p) = 0201 036
confp) if p.minMatch< p.avgLen< p.maxMatch 018 034+
.avglLen . . 0.174 0.32
pﬂqinfﬂatchxcon(p) if p.avgLen< p.minMatch ool el
p.maxMatch f k k
p.avgLen X Contp) if p-anLen> p.maXMatCh —Bsup @ conf —/\match —yfit —¢—comb |

Note that the Match policy can sometimes predict an event
too early. Assume that the average length of a minimal oc-
currence of pattera, by is 5, then it might not be a good
idea to predict an occurrence bfjust after eventa had oc-
curred. The Fit policy assigns a higher value to those pat
terns whose average occurrence length falls within the-inte
val containing the possible minimal occurrence lengthshef t
current occurrence of the pattern, assuming that the pestic
event occurs within the prediction span. AboganaxMatch=
p.minMatch+ span- 1 andp.avgLen= p.wSunjip.wCount

(5) Combination policycomi{p) =

match{p) if p.minMatch< p.avgLen< p.maxMatch

pavgLen . match{p) if p.avglLen< p.minMatch

Figure 3: Performance of theftérent scoring policies

Taking into account the distribution of items in the four
datasets, as shown in Table 4, we see that our predictor does
a lot better than if we simply predicted the most frequlent
items at each time stamp, which demonstrates the usefulness
of the found patterns. Both our pattern miner and the predict
achieved satisfying runtimes. Table 7 shows the average run
time of our pattern miner to process a batch and the average
runtime of the predictor to make a prediction, where the pa-
rameters are fixed at values defined in Section 5.5. To mention

just two examples, it took on average 1.45 seconds to process
B:%L&“ﬂféfé‘h a full day of incoming data in thALARMdataset, while in the

pavgen X Matck(p) if p.avgLen> p.maxMatch BIBLE dataset it took on average 29.@8&to generate a single
Finally, since policies (3) and (4) takeftiirent insights from prediction.

the prediction context into account, we test whether they ca
also reinforce each other by combining them into a unified
Combination policy.

Figure 3 shows the performance offdrent scoring policies,

Table 7: Runtime of mining a batch and making a prediction
Dataset Mining a batch Making a prediction

for varying values ok. In our experiments, we use the first FIFA 134s 2696 ms
100 batches solely to mine patterns, and we start making pre- KOSARAK 127s 2441 ms
dictions from the 101th batch, and continue all the way to the BIBLE 183s 2978 ms

ALARM 145s 508 ms

200th batch (naturally, we still update the pattern listaftach
batch). We setnaxNunto 50 000 minConfto 0.3 andminSup
to 0 (meaning that we just use the current error bogirad the . i
minimum support threshold for the next batch which we want to>-6- Parameter Analysis for the Predictor

predict) for all of the datasets. Additionally, we set basite To further explore the performance of the predictor usirgg th
and the sliding window length to 2000 and 10, respectivelyCombination policy, we conducted an analysis of tffea of

for the three dense datasets, and to 86 400 (one day) and 12@rying parameter values on the precision and recall oroiine f
respectively, for theALARM dataset. Finally, in thdLARM datasets. Thé& parameter is set to 3, 4, 4 and 8 fBIFA,
dataset, we also set the optiomahxsize parameter to 5, in KOSARAKBIBLE and ALARM respectively, since these val-
order to limit the size of the discovered patterns. We dolikis ues ofk produced the best predictor results, as shown in Fig-
cause in some dense batches, the patterns could grow vgey lar ure 1. The remaining parameters are fixed at values defined in
resulting in an unnecessary growth of the error bound, antl a | Section 5.5, except the parameter we varied in a given experi
of useful (short) patterns being pruned. At the same tinrgg lo ment.

patterns are rarely matched in the prediction task, anchare+

fore less useful in this context. As can be seen in Figurees, th5.6.1. Support threshold

Combination policy consistently showed the best perfomean We first experiment with dierent support thresholds{n-
although Match was always only narrowly second. ThereforeSup. As shown in Figure 4, the precision typically improves

10

0.35 T T T T 0.56 0.42 T T T T 0.34
with increasing support thresholds while the recall desgea FDO/O . KOSARAK e
since there are fewer matched patterns with a higher support....
0.384
threshold. However, the quality of the matched pattern®is b cox| *vanisuns . <
3 g 0528 50.36- 0.263
ter as a result. / £% . 0osd
I —m—precision oo N 0.22
05 40 046 035 0.29] / 0324 Lo20
FIFA KOSARAK ©
045 \ / 0% 0449 oo 028 0 50(300 10000% 150‘000 ZDD‘OUO 048 0 0 50(300 100‘00(&\/ 150‘000 ZDD‘OUO 018
5 025_ g BIBLE . ALARM Loso
50404 \o—o\ / ozag %040 ozu?: 0.344 L0.30 0.59 \. O/o oo
ol s 038 015 _om L N — o O) 4 /o/o 7;:
0.10 036 0.10 2028 3 5056 f .\'\. toasg
03 il S 005 ozl i i i —Loos go 26 R o—° [z 2’_055 \. ro34Z
0.001 0.005 0. OOS‘MSH; 013 0.017 0.021 0.0020 0.0024 rS’i:g?ul; 0.0032 0.0036 0244 /Op,o/O’ —apreceon Lo.22 054 o/ ———— \ 10.33
0.36— : : : : —0.20 0.76 22 0224 /O/O/O Fo.20 0534 I
035 3 BIBLE 0.74 ALARM [0 0.20 ‘ 0.18 052 702:)
1 Lo.18 : 0 Y Y Y) 0 Y Y
oae) Lo1s 0724 / \ [ow 50000 W%ﬁg‘g\’um 150000 200000 0 50000 19’?‘22%’“” 150000 200000
- :0707 0.14
2033 Lo16g 2068 e precon| [0128 . . . :
1 §2 :><D “=presision | |08 Figure 6: The impact of dierent maximum numbers of kept patterns
S0.324 ot oss T [0
031 To—s [o.08 T — 65 0.4 -— 030
0624 o oo 048] FIFA e Low KOSARAK oz
30 w - 0.46 e m—m
o 0001 0005 0009 0013 0017 0021 o1 06000019 00021 00023 00025 00027 ovoozeo2 0469 o071 s L o. / - [0-26
minSup ‘minSup 044 O/ >'/g/ 055 044] o— \\ L ozs
0427 o/ \O\ o 5042 Q £0.22
Figure 4: The impact of dierent support thresholds on precision and recall ;2:2 "o Zi: Goao . /. roxof
—Mm— precision o ro1s
o VAN
0s2] © Loso 036 ~~0—o—0—0—0 014
030 é 1b 1‘A 1‘8 2‘2W2‘6 Gb 3‘A 3‘8 4‘2 46 2 034 2 6 10 14 18 22‘,26 30 34 38 42 460 2
. . . 0.70 T T T T T T T T T T 0.30 0.4 T T T T T T T T T T 42
5.6.2. Confidence threshold
i i i 065 BIBLE Loz 062 ALARM o loso
Figure 5 shows the performance of our predictor &edént 050/ o e ™ o
.. . . 1 o o £0.36
minimum confidence threshold®i{nConf). From Figure 5, we [~ / S o oo foa]\ i Lo
: SO.SQ— - " L ~
can see that the performance of the predictor is strongiyeel o1 4 PR el N]
to the confidence threshold, as the precision increaseshand t %o/ /// e] VAT NS
recall decreases when the confidence threshold is raised. o] 4 lore oss] © VA
0 ”2 6 10 14 18 22 26 30 34 38 42 460 " 054 3‘0 éO Qb 150 1%0 1é0 21‘0 2“10 2%0 360 3 0'20
R FIFA 1 T KosArak ’ "
004 3 /. Los0 ZZE: " Loso i . X . .
Z: \ / Lo onol O\ /_/' loso Figure 7: The impact of dierent sliding window lengths
8 0504 —o—recall 2 37 —0— recall 2
040 /.X e "o °* 5.6.4. Sliding window length
- e} Lo.10 o £0.10
ol B N L - o low Figure 7 shows the precision and recall of the predictor unde
00 01 02 03 04 0 96 07 08 09 10 00 01 02 03 04 03 06 07 08 09 10 various settings of sliding window length where the predic-
;;7 T aEe ‘/' 060 o ‘ tion span is set t@"g"J. From the figure we can see that the pre-
001 17 on cision and recall often vary a lot with the changes of therstjid
Loy 0 oed window length. We conclude that the window size should be
o ~o —losg 2 3
:e” N : s .8 setsensibly depending on the dataset, as neither incgeasin
e . decreasing it guarantees better results.
0304 ././ 0\\ 0.10
0 ﬂOO 0.1/02 03 04 05 06 007\008\09 10000 0 0.0 0‘1 0‘2 0‘3 0‘4 0‘5 0‘6 0‘7 O‘B 0‘9 1.0 o H H
ninConf S O ® O 00 00 5.6.5. Prediction span

Figure 8 shows the performance of our predictor under var-
ious settings of the prediction span where the sliding winmdo
lengths are 30, 30, 30 and 120 falFA, KOSARAKBIBLE and
ALARMrespectively. We can see that increasing the prediction
5.6.3. Number of patterns kept in memory span, as expected, resulted in higher precision and resate

Figure 6 shows the performance of our predictor with a varyPredictions remained valid for longer.
ing maximum number of patterns kept in memonyakNun).
As can be seen, the performance of the predictor is quite st%-6.6. SPADE Memory Limit
ble with different maximum number of patterns for predic- Figure 9 shows the performance of our predictor under dif-
tion. However, the precision decreases a little with astend ferent memory limits of SPADE, which is used when mining
maxNumwhile the recall grows since there are more matchedequential patterns from one batch of data. We conclude that
patterns when more patterns are kept in memory. while this parameter can result in a lower false positive rat

11

Figure 5: The impact of dierent confidence thresholds

065 ——— 56 0.60 — 040 0 0.5 T T T T 50
FIFA KOSARAK KOSARAK
0.60- o [084 055 0.55-] 045 Foas
_—o—O0" -—" 0.35
055 o0 [0.52 050 e 050 040 040
o " 0.45 —n—n
050 ¥ o t0.50 F0.30 0as 035 m—m—"—8—=—= 035
0.40 1 1
S 0.45- /O - ro48_ § & 5
B o - @ 5035 L0.25@ % 0.40 % 0.30 L0303
2 =9 o = 0035 2025{ o—0——0—0—0—0—0—70 Lo25=
8.0.35- / Fo4s & o -0— recall Lo.20 5035 £ o
—m—precision
] 020 F0.20
0.25 / Lo4o 015 [—0—0—0—0—0—0—0—0 : 0.25 0.15 —o—recall Lo.15
o 38 0.10 0.10 020 0.10 10

T T T T T T T T T T T T T T T y y T T T T T T T T —-0.
0 3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30 500 1000 1500 2000 2500 3000 3500 4000
span span B|

BIBLE = ALARM ALARM
o7 n 0.35 _u 035 0651 o 0.55
- 060 . Fo.37 ~au
06 - : — 0604 ~. 0.50
1 7 0.30 -~ e 0.30 L I e
- . [0.36 0554 » 045
509 - £ 7 5 5
5 55 - S5 58 5
204 o——cfo%;—fo—o—o—o—o 0258 -3 O/ ro3sg 2 0.25 0.25 § 2 0.50 . 0. 40§
L9 @0 kg B —O—_, %
o = 9050 2 o o 0— O——O0——O——O—— =9 i le} 0, =
5 / 020 & los £o20] o—o0—o0—0—0—0—o——0 | .= oss o \ 035
—o—recall o015 045 —O—recall L 0.5 P Fois o —o—recall
024 0.33 —0—recall 0.354 0.25
¥
0.1 y — r r — r v 0.10 0.40 0.32 0.1 T T T T T T T U 0 0 T T y —10.20
0 3 6 9 12 15 18 21 24 27 30 10 20 30 40 50 60 70 80 90 100 110 500 1000 1500 2000 2500 3000 3500 4000 43200 86400 129600 172800
span span |B| |B|
Figure 8: The impact of dierent prediction spans Figure 10: The impact of elierent batch sizes

when mining patterns, it has very littléfect on the prediction

performance.
frequent sequential pattern miner and an event predictae D
R L T T kosamak to the nature of stream mining, we propose an on-line sequen-
oso] T T s oo tial pattern miner based on Lossy Counting to dynamically de
£ oo o termine the optimal error bound by maximising the memory

Soel uB fom| oo o o o o o |s usage. Through experimental evaluation, we show that our se

“o 030 02 Loz quential pattern miner results in a lower false positive thain
e A DG st O existing methods. Furthermore, we use the discoveredrpatte

O R 0 1% 8001000 10 e to predict future events, and the extensive experimensalie
= Teed [T T A show that the predictor works well since we considered new
040 o0 0% % quality measures for patterns to improve the predictor.

c 03 038 c 062 °*

Q T ot | Qo : The proposed event predictilo'n framework can be used to
oa] o—oo—o—0—0—0—0 lomy make a system that has the ability to learn patterns fromteven
R N streams, to get new probabilistic associations over time ta
MR G v e alo o o 4o "0 oo o o 2dn afn o%n 6 do real-time monitoring continuously on the forthcomingneo

cerning events. We believe that the proposed framework-high
Figure 9: The impact of dierent memory limits used for SPADE lights the directions in building real-time alerting sexes$ that
predict significant events of interest.

5.6.7. Batch Size There are still some limitations of our work. First, there ar

Figure 10 shows the performance of our predictor under difseveral user-chosen parameters for our predictor. Howewer
ferent batch sizes. We find that changing the batch size ha@g those parameters will increase the burden of a user.neco
virtually no efect on either precision or recall, as long as thewe do not assign éfierent importance to patterns based on how
data is uniformly dense. If not, a very dense batch couldiresuljong before the prediction time they occurred in the histlri
in alarge error bound, and a loss of patterns, which would negdata. However, it might be the case that a pattern that has not
atively dfect the performance of the predictor, as was the casgccurred often recently does not have a large predictinggpow
in the ALARMdataset.

Due to the above limitations, in future work, we will first at-
6. Conclusions tempt to reduce the number of user-chosen parqmgters Ehat ar
currently needed by our predictor. Then, we will investigat

Mining continuously massive data streams to discover uphow to build a new model that would give more value to pat-
to-date patterns is valuable for timely strategic decisiorhis terns that occurred often in the recent past than to thoge tha
calls for the design of new mining methods to replace tha-trad mostly occurred long ago when predicting future eventsdase
tional ones, since those would require the data to be fireédto on them. Besides, we intend to explore ways to optimise mem-
and then processedfdine using complex algorithms that make ory usage further, in order to be able to achieve even higher
several passes over the data. accuracy. Additionally, we hope to be able to improve thexdat

In this paper, we introduce a sequential pattern based evestructure for storing the generated sequential patteynssing,
prediction framework for streaming data, which consistaof for example, a lexicographical tree.

12

Acknowledgements

Cheng Zhou is financially supported by the China Scholar,

ship Council (CSC).

References

Arasu, A., Manku, G. S., 2004. Approximate counts and glemtver sliding
windows. In: Proceedings of the 23rd ACM SIGMOD-SIGACT-3I&T
symposium on Principles of database systems. ACM, pp. Z8%-2

Bala, A., Chana, |., 2015. Intelligent failure predictiorodels for scientific
workflows. Expert Systems with Applications 42 (3), 980-989

Casanova, |. J., Campos, M., Juarez, J. M., Fernandez+tgndarroyo, A.,
Lorente, J. A., 2015. Using multivariate sequential pateo improve sur-
vival prediction in intensive care burn unit. In: Artificidhtelligence in
Medicine. Springer, pp. 277—-286.

Chen, G., Wu, X., Zhu, X., 2005. Sequential pattern miningpiritiple streams.
In: Fifth IEEE International Conference on Data Mining. IEfpp. 4-7.
Cheng, J., Ke, Y., Ng, W., 2008. A survey on algorithms for iminfrequent
itemsets over data streams. Knowledge and InformatioreByst6 (1), 1-

27.

Cho, C.-W.,, Wu, Y.-H., Yen, S.-J., Zheng, Y., Chen, A. L., 200n-line rule
matching for event prediction. The VLDB Journal 20 (3), 3834-

Chrobok, R., Kaumann, O., Wahle, J., Schreckenberg, M.4200ferent

Metwally, A., Agrawal, D., El Abbadi, A., 2005. fcient computation of
frequent and top-k elements in data streams. In: DatabaseryHCDT.
Springer, pp. 398-412.

ei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., €h®., Dayal, U.,
Hsu, M.-C., 2004. Mining sequential patterns by pattermagh: The pre-
fixspan approach. IEEE Transactions on Knowledge and DaginE&ering
16 (11), 1424-1440.

Raissi, C., Poncelet, P., Teisseire, M., 2005. Need fordsplning sequen-
tial patterns in data streams. BDAO5: Actes des 2liemesi@esrBases de
Donnees Avancees.

Tanbeer, S. K., Ahmed, C. F., Jeong, B.-S., Lee, Y.-K., 2@Bcient frequent
pattern mining over data streams. In: Proceedings of the ACM confer-
ence on Information and knowledge management. ACM, pp.-14448.

Wang, Y., Ma, E. W., Chow, T. W., Tsui, K., 2014. A two-step @aetric
method for failure prediction in hard disk drives. IEEE Tsantions on In-
dustrial Informatics, 419-430.

Zaki, M. J., 2001. Spade: Arfiicient algorithm for mining frequent sequences.
Machine learning 42 (1-2), 31-60.

Zhu, H., Wang, P., Wang, W., Shi, B., 2011. Stream predictising represen-
tative episode rules. In: IEEE 11th International Confeseon Data Mining
Workshops. IEEE, pp. 307-314.

methods of tréiic forecast based on real data. European Journal of Oper-

ational Research 155 (3), 558-568.

Dimitropoulos, X., Hurley, P., Kind, A., 2008. Probabilistossy counting: an
efficient algorithm for finding heavy hitters. ACM SIGCOMM Contpu
Communication Review 38 (1), 5-5.

Ezeife, C., Monwar, M., 2007. Ssm: a frequent sequentia gaeam patterns
miner. In: IEEE Symposium on Computational Intelligencel &ata Min-
ing. IEEE, pp. 120-126.

Garofalakis, M., Gehrke, J., Rastogi, R., 2002. Queryind amning data
streams: you only get one look a tutorial. In: Proceedingb®2002 ACM
SIGMOD International Conference on Management of Data3p. 6

Gomariz, A., Campos, M., Marin, R., Goethals, B., 2013. @la&n eficient
algorithm for mining frequent closed sequences. In: Adeanio Knowl-
edge Discovery and Data Mining. Springer, pp. 50-61.

Gu, X., Papadimitriou, S., Yu, P. S., Chang, S.-P., 2008ir@rfailure fore-
cast for fault-tolerant data stream processing. In: |EEf 2dternational
Conference on Data Engineering. IEEE, pp. 1388—1390.

Gundiiz, S.0zsu, M. T., 2003. A web page prediction model based on click-

stream tree representation of user behavior. In: Procgedifthe 9th ACM
SIGKDD international conference on Knowledge discoverg data min-
ing. ACM, pp. 535-540.

Jalali, M., Mustapha, N., Sulaiman, M. N., Mamat, A., 2010ebffjum: A
web-based recommendation system to predict user futurements. Ex-
pert Systems with Applications 37 (9), 6201-6212.

Koper, A., Nguyen, H. S., 2011. Sequential pattern minimgnfistream data.
In: Advanced Data Mining and Applications. Springer, pp82791.

Laxman, S., Tankasali, V., White, R. W., 2008. Stream ptexfiaising a gener-
ative model based on frequent episodes in event sequencé¥okceedings
of the 14th ACM SIGKDD international conference on Knowledtjscov-
ery and data mining. ACM, pp. 453—-461.

Manku, G. S., Motwani, R., 2002. Approximate frequency dsunver data
streams. In: Proceedings of the 28th international conteren Very Large
Data Bases. VLDB Endowment, pp. 346-357.

Mannila, H., Toivonen, H., Verkamo, A. |, 1997. Discovery foequent
episodes in event sequences. Data Mining and Knowledge@isg 1 (3),
259-289.

Martin, F., Méger, N., Galichet, S., Becourt, N., 2012. dearsting failures
in a data stream context application to vacuum pumping Bysi®gnosis.
Transactions on Machine Learning and Data Mining 5 (2), 86-1

Mendes, L. F., Ding, B., Han, J., 2008. Stream sequenti&¢mamining with
precise error bounds. In: Eighth IEEE International Cogriee on Data
Mining. IEEE, pp. 941-946.

Merah, A. F., Samarah, S., Boukerche, A., Mammeri, A., 2013equential
patterns data mining approach towards vehicular routeigifed in vanets.
Mobile Networks and Applications 18 (6), 788-802.

13

