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Abstract 

Due to the error-prone nature of garment manufacturing operations, it is challenging to 

guarantee the quality of garments. Previous  research has been done to apply fuzzy 

association rule mining to determine process settings for improving the garment quality. 

The relationship between process parameters and the finished quality is represented in 

terms of rules. This paper enhances the application by encoding the rules into 

variable-length chromosomes for optimization with the use of a novel genetic algorithm 

(GA), namely the slippery genetic algorithm (sGA). Inspired by the biological slippage 

phenomenon in DNA replication, sGA allows changes to the chromosome lengths by 

insertion and deletion. During rule optimization, different parameters can be inserted to 

or removed from a rule, increasing the diversity of the solutions. In this paper, a slippery 

genetic algorithm-based process mining system (sGAPMS) is developed to optimize 

fuzzy rules with the aim of facilitating a comprehensive quality assurance scheme in the 

garment industry. The significance of this paper includes the development of a novel 

variable-length GA mechanism and the hybridization of fuzzy association rule mining 

and variable-length GAs. Though the capability of conventional GA in rule optimization 

has been proven, the  diversity in the population is inherently limited by the fixed 

chromosome length. Motivated by this phenomenon, the sGA suggested in this paper 

allows various parameters to be considered in a rule, improving the diversity of the 

solutions. A case study is conducted in a garment manufacturing company to evaluate 

the sGAPMS. The results illustrate that better quality assurance can be achieved after 

rule optimization.  

Keywords: Genetic algorithm, fuzzy association rule mining, biological slippage, quality 

assurance, garment industry 

1. Introduction

In view of improved standards of living, customers nowadays are having higher 

expectations on products during purchasing. To remain competitive in the market, 

manufacturers are urged to improve their product quality while at the same time to lower 

the costs and increase the speed to market. Nevertheless, there is a common trade-off 

between product quality and production efficiency. Some manufacturers tend to increase 
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the production efficiency to meet the demand, causing adverse impacts on the resultant 

product quality. On the contrary, some manufacturers, especially those in labor-intensive 

industries, think that they have to sacrifice production efficiency if they attempt to 

guarantee the product quality. Such a trade-off phenomenon plagues many industries, in 

particular, the garment industry as it is an experience-rich industry with relative low 

technological capabilities. Most decisions involved in the garment industry are 

determined based on human experience, without a clear-cut theory to determine what 

production parameters should be used to optimize both efficiency and product quality. 

Without any knowledge support tools, there are no standardized approaches for 

monitoring the production processes while having product quality taken into 

consideration. This has attracted many researchers to apply the use of data mining and 

artificial intelligence techniques in order to discover knowledge to support decision 

making in garment production. Previous research has described the use of fuzzy 

association rule mining (FARM) for determining appropriate process parameters for 

quality assurance (Lee et al., 2014). The knowledge discovered was, however, mainly 

based on the occurrence of frequent patterns. As a consequence, parameters having rare 

associations are usually not considered, nor included, in the rules. 

In addition, genetic algorithms (GAs) have been applied to hybridize FARM for 

optimization. In traditional GAs, the length of the chromosomes is fixed, depending on 

the parameters appearing in the set of rules. The rules obtained in FARM usually serve 

as the initial population. Considering that parameters having rare associations are not 

considered during optimization, the diversity in the population and the knowledge 

discovered are inherently limited. This paper makes an attempt to use a novel GA 

mechanism, namely the slippery genetic algorithm (sGA), to overcome this limitation. 

The proposed slippery genetic algorithm-based process mining system (sGAPMS) 

allows changes to the chromosome length by insertion and deletion. Consequently, 

different combinations of parameters can be considered in a fuzzy rule, increasing the 

diversity of solutions. The knowledge discovered in the rules in this paper is used to 

support quality assurance in the garment industry. 

Previous research work has shown that the use of Boolean association rule mining 

is promising for the formulation of effective Quality Improvement (QI) strategies in the 

garment industry (Lee et al., 2013). With the use of Boolean association rule mining, 

product defects appearing in the rules showed no relationships with the parameters 

settings used in the production. This could be a drawback as one of the critical aspects of 

QI planning is to discover relationships between the process parameters and theproduct 

quality (Lau, Ho et al., 2009). On the other hand, considering that decision making in 

production always requires consideration of various uncertainties (Azadeganm et al., 

2011; Petrovic and Duenas, 2006), it is more convenient for operators to describe the 
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process parameters by using natural language such as “low” and “high”, instead of using 

quantitative values of the parameters. Since there are always no clear-out theories to 

judge whether a particular process parameter is “very low”, “low”, “high” or “very 

high”, it is important to take the fuzziness of data into consideration when discovering 

the relationships between the process parameters and the product quality. In this paper, 

attempts are made to hybridize fuzzy set concepts with association rule mining to 

diagnose the quality problems at the parameter level. The fuzzy association rules 

obtained represent knowledge in fuzzy linguistic terms which are easily understandable 

by human beings and can provide direct knowledge support for quality assurance. 

This study is a continuing work, based on our recent research, which applied 

FARM for quality assurance in the garment industry (see Lee et al., 2014). The proposed 

sGAPMS in this paper acts as an enhancement of the Radio Frequency Identification-

based Recursive Process Mining System (RFID-RPMS) described in Lee et al. (2014) by 

optimizing the rules. This paper is a pioneer work in imitating and transcribing the 

biological slippage into GAs. The aim is to propose a new scheme of variable-length 

GAs to overcome limitations caused by fixed-length GAs with an objective of enhancing 

garment quality. The contributions of this paper include a novel GA framework with 

slippage concepts, an integration of GA and FARM specifically in the garment industry, 

and a more comprehensive quality assurance scheme supported by the hybridization of 

artificial intelligence (AI) techniques. A dataset collected in a garment manufacturing 

company has been used to test the proposed system and compare the results with that of 

using a rule mining system without the sGA. By so doing, the advantages brought by the 

sGA in achieving better garment quality are confirmed. 

 
2. Literature Review 

In today’s customer-oriented market, QI of products has become a critical task in the 

manufacturing industry. Since QI requires analysis of data (Köksal et al., 2011), many 

researchers have applied data mining and artificial intelligence (AI) techniques to 

perform QI activities. Association is a popular data mining technique to identify groups 

of items that occur together from datasets, and the knowledge discovered is in the form 

of IF-THEN rules. The Boolean association rule mining problem over basket data was 

firstly introduced in Agrawal and Srikant (1994). Two stages are involved in the 

algorithm (i) to find the frequent itemsets, and (ii) to use the frequent itemsets to 

generate association rules (Alatas et al., 2008). However, in real-world applications, the 

data concerned are usually not Boolean, but numeric (Chen et al., 2009). Furthermore, in 

the manufacturing industry, it is common that numeric data contain uncertainties or 

vagueness which could arise from market demand, capacity availability, process times, 

and costs (Aliev et al., 2007; Mula et al., 2007; Martín et al., 2014). In this sense, fuzzy 
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association rule mining (FARM) is more meaningful than Boolean association rule 

mining especially for application in the manufacturing industry. 

Compared with other manufacturing industries, the garment industry is more 

complicated in nature as it consists of various machines, workers and thousands of 

bundles of cutting pieces producing different styles simultaneously (Gunesoglu & Meric, 

2007). In addition, quality inspection of garments is performed manually (Wong et al., 

2009; Yuen et al., 2009). Without any mechanisms for analyzing the hidden correlations 

between quality problems, defect prediction and defect diagnosis cannot be carried out 

effectively, causing failure in achieving QI (Lee et al., 2013). Therefore, an attempt 

should be made to investigate the capability of FARM in providing the garment industry 

with knowledge support for achieving better garment quality. 

Previous research has been done to apply FARM to help garment manufacturers 

understand the relationship between parameter settings and finished quality (Lee et al., 

2014). The results showed that FARM is capable of capturing process parameters and 

quality features of products to support knowledge discovery for quality assurance. In the 

abovementioned work, the data considered were expressed in linguistic terms, such as 

“medium” and “high”, in the rules. These rules are useful in the development of a fuzzy 

rule base for the application of fuzzy logic. If they are of good quality, the results of the 

fuzzy logic can be greatly enhanced (Tahera et al., 2008). In view of this, integrating 

fuzzy set concepts with genetic algorithms (GAs) has become an active research area to 

generate an optimal set of fuzzy rules and membership functions (Wang et al., 2000; Ho 

et al., 2008; Lau, Tang et al., 2009). However, recent researches show that the 

applications of GAs in the manufacturing sector mainly focus on scheduling of 

production orders (Ishikawa et al., 2015; Jun & Park, 2015; Rahman et al., 2015; Zhang 

et al., 2015), and logistics operations during or after production (Joo and Kim, et al., 

2014; Mohtashami, 2015; Pramanik et al., 2015). GA applications focusing on QI of 

products have been scarce. In view of this, one of the highlighted contributions of this 

paper is that GA is applied to refine the rules for improving the product quality in the 

garment industry. 

GA operates based on the principles of genetics and natural selection in which 

crossover and mutation are the two basic operators. A possible solution for a given 

problem in GA is called an individual or a chromosome. The crossover operator 

generates two offspring (new candidate solutions) by recombining the information from 

two parents, followed by the mutation operator in order to perform a random alteration 

of some values in a chromosome (Juang, 2004). Wang et al. (2000) applied GA to the 

integration of multiple fuzzy rules sets. If some features were not used in individual 

rules, dummies would be inserted into the rules to ensure that all chromosomes were of 

the same length. In addition, Lau et al. (2009) used GA to generate an optimal or nearly 
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optimal fuzzy set and membership functions for the process parameters. After the 

domain knowledge was represented with a fuzzy rule set, the obtained fuzzy rules and 

the associated memberships were encoded into chromosomes. Each chromosome 

represented one fuzzy rule and the related problem. Through the crossover and mutation 

operations, an optimal or nearly optimal fuzzy set and membership functions for the 

process parameters were discovered. Furthermore, Chen et al. (2009) integrated GA and 

the fuzzy concepts to discover suitable minimum supports, membership functions and 

useful fuzzy association rules from historical transactions. Each chromosome in the 

population represented a possible minimum support and membership functions for an 

item. The chromosomes in the same population were of the same length. In a similar 

vein, Yan et al. (2009) designed a GA-based strategy for identifying association rules 

without specifying actual minimum support. However, in their design, only Boolean 

association rules were considered. In the abovementioned work, only classical GAs with 

fixed length chromosomes were used. As a result, previous knowledge is required to 

define constraints, for instance the number of rules in the rule base (Rajesh & Kaimal, 

2008). Furthermore, the best achievable fitness is inherently limited by the chromosome 

length and it is difficult to define an optimal chromosome length, especially for design 

optimization problems (Kim & De Weck, 2005). 

To overcome this limitation, different variable-length GAs have been proposed to 

increase the diversity of the chromosome lengths. This can be done by introducing 

additional mutation operators to vary the length of the chromosomes and to perform 

crossover on chromosomes of differing lengths (Hutt and Warwick, 2007). The earliest 

example of a GA with variable length was the messy GA proposed by Goldberg et al. 

(1989). It replaced crossover with cut and splice operators to produce variable-length 

chromosomes. Furthermore, Han et al. (2002) designed an adaptive length chromosome 

hyper-GA (ALChyper-GA) with two new mutation operators, namely removing-worst 

mutation and inserting-good mutation. The comparison between the sGA and the 

abovementioned GA is shown in Table 1. Among these variable-length GAs, only sGA is 

biologically inspired, in particular, by the slippage phenomenon in DNA replication. 

Therefore, it is more appropriately matching the biological genetic representation. In 

addition, the messy GA was developed to eliminate the bit positional dependencies in a 

standard GA. Bit values in a messy GA chromosome, each of which is tagged with a 

name indicating its position, are extracted from the chromosome and reordered, based on 

their names. As a result, bits are no longer in fixed positions and can move around on a 

chromosome. However, one of the limitations of the messy GA is that it focuses on bits. 

If there are n variables, each of which need k bits, there will be n2nk additional bits in the 

messy GA. In this sense, the messy GA may not be a feasible solution if the problems to 

be solved are complicated, involving a large set of variables. On the other hand, the 
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ALChyper-GA has a new crossover method, best-best crossover. The best group of 

genes in  the chromosomes are selected and exchanged during crossover. This  was 

followed the removing-worst mutation and inserting-good mutation. The former one 

removes the worst group of genes in the selected chromosome while the latter one 

inserts the best group of genes from a randomly selected chromosome to a random point 

of the desire chromosome. As genes are removed or inserted, the length of the 

chromosomes in each generation changes. The ALChyper-GA was applied to solve the 

personnel scheduling problem, and problems such as allocation of staff to timeslots and 

possibly locations can be solved by the ALChyper-GA. Only quantitative values were 

considered in the chromosomes. Nevertheless, the sGA proposed in this paper integrated 

fuzzy set concepts into the GA and solved optimization problems while taking the 

fuzziness of data into consideration. Though the use of sGA in the paper is illustrated to 

the case of the garment industry, it can be applied in other manufacturing industries for 

industrial process parameter optimization. Considering that many real data possess many 

forms of uncertainties, the application areas of the sGA are more diverse than those of 

the messy GA and ALChyper-GA, as the fuzziness of data can be embedded into the 

sGA chromosomes.  

 

Table 1. Comparison between the sGA and existing variable-length GAs 

sGA Messy GA (Goldberg et 

al., 1989) 

ALChyper-GA (Han et 

al., 2002) 

Biologically 

inspired 

Yes, inspired by the 

slippage phenomenon in 

DNA replication 

No No 

Crossover Uniform crossover No Best-best crossover 

New mutation 

operators 

Slipped insertion, slipped 

deletion 

Cut, splice Removing-worst 

mutation,  

inserting-good mutation 

Application 

area 

Industrial process 

parameter optimization 

Elimination of bit 

positional dependencies 

in a standard GA 

Personnel scheduling 

 

In this paper, the sGA, which is a novel variable-length GA, is developed. It is 

introduced to imitate and transcribe a biological phenomenon, namely biological 

slippage, in a way that chromosomes are of variable lengths. In a DNA molecule, there 

are two strands complementary to each other: (i) the new strand, and (ii) the old strand. 

The new strand is synthesized using the old strand as a template during DNA replication. 

Scientists have observed that a strand often slips and misaligns with the other strand 
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when there are repeating patterns of bases in the DNA (Petruska et al., 1998; Huntley & 

Golding, 2006). This phenomenon is called slippage and will result in two types of 

mutation: (i) insertion, and (ii) deletion (Caporale, 2003a). If the slipped part is on the 

new strand, insertion mutation occurs and the length of strands is increased. On the other 

hand, if it is on the old strand, deletion mutation occurs and the length of strands is 

shortened. 

Biological slippage is able to provide new and advantageous solutions to allow 

organisms to adapt to changing environments. In the same analogy, a computational 

slippage operation can be designed for a GA to enhance the search for novel, as well as 

superior, solutions. In this paper, the sGA is proposed for integrating with FARM with 

the aim of supporting quality assurance in the garment industry. A slippery genetic 

algorithm-based process mining system (sGAPMS) is developed and the details are 

presented in Section 3. 

 
3. A Slippery Genetic Algorithm-based Process Mining System 

The sGAPMS, as shown in Fig. 1, consists of three modules, namely (i) Rule Generation 

Module, (ii) Rule Optimization Module, and (iii) Decision Making Module. Details of 

each module are discussed in  the following sections and the notations used in the 

sGAPMS are listed in Table 2. 

 
3.1 Rule Generation Module 

The core function of the Rule Generation Module is to discover hidden relationships 

among parameters by FARM. The parameters are extracted from the historical 

production data stored in a centralized database. In general, they can be classified into 

two types: (i) process parameters, and (ii) quality features. The process parameters, such 

as the speed of sewing machines and the water temperature during laundering, refer to 

those parameters which are adjustable, while the quality features, such as the number of 

broken stitches and areas of thread discoloration, are the parameters used to measure the 

overall quality of the products. Hereafter, these two types of parameters are collectively 

referred to as the parameters. 

Since FARM integrates fuzzy set concepts and data mining techniques to generate 

rules, fuzzy linguistic terms and membership functions have to be firstly defined for 

each parameter. Based on the definitions, the quantitative values of the parameters can 

be converted into fuzzy sets through the fuzzification process. In addition, the minimum 

support and confidence thresholds have to be defined in order to determine frequent 

itemsets among the parameters. Only the rules satisfying the threshold values are 

regarded as useful fuzzy association rules and can be transferred to the Rule 

Optimization Module. All the parameters are inputted into a series of computational 
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procedures for FARM. Details of the mining algorithm are described below. An example 

of the application of the algorithm is given in Lee et al. (2014).  

 

 

Fig. 1. A slippery genetic algorithm-based mining system 
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Table 2. Notations used in the sGAPMS 

Symbol Description 
 

n The number of historical order records 

N={1,2,…,n} The set of indexes of historical order records 

Rθ The θth order record, ✯ ∈N 

s The number of production workstations in an order record 

S={1,2,…,s} The set of indexes of production workstations in an order record 

Wi The ith production workstation, ✯i ∈S 

ei The number of processes in ith production workstation, ✯i ∈S 

Ei={1,2,…ei} The set of indexes of processes in ith production workstation 

δij The jth process of ith production workstation,  ✯i ∈S, ✯j ∈Ma 

kij The number of process parameters in jth process of ith production 

workstation 

Kij={1,2,…kij} The set of indexes of process parameters in jth process of ith 

production workstation 

Pijt The tth process parameters of jth process of ith production workstation 

τijt The quantitative value of tth process parameters of Pij of Wi, ✯t ∈Kij 

Fθijt The fuzzy set converted from τijt in Rθ 

aijt The number of fuzzy classes of Pijt 

Aijt={1,2,…,aijt} The set of indexes of fuzzy classes of Pijt 

fijtr The rth fuzzy classes of Pijt, ✯r ∈ Aijt 

Mθijtr The fuzzy membership values of Pijt in Rθ in fuzzy class fijtr 

Countijtr The summation of Mθijtr, representing the support count of fijtr 

MAX-Countijt The maximum value among Countijtr of Pijt 

MAX-Fijt The fuzzy classes of Pijt with MAX-Countijt 

Ix The set of itemsets with x items 

dijt The predefined minimum support threshold of Pijt 

Ω The predefined minimum confidence threshold of rules 

c The number of chromosomes in the population 

C={1,2,…,c} The set of indexes of chromosomes in the population 

Hσ The σth chromosome, ✯ ∈C 

z The number of slippage operation 

Z={1,2,…,z} The set of indexes of slippage operation 

l The lth slippage operation, ✯𝑙 ∈Z 

α The slippage rate 

β The crossover rate 

γ The mutation rate 
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Step 1: For each production order Rθ, convert the quantitative value τijt of the tth 

parameter of the jth process in the ith production workstation into fuzzy set Fθijt based on 

the predefined membership functions. Represent Fθijt as (Mθijt1 / fijt1 + Mθijt2 / fijt2 +…+ 

Mθijta / fijta). 

 
Step 2: Calculate the support count Countijtr of each fuzzy class fijtr of parameter Pijt as 

𝐶𝑜𝑢𝑛𝑡ijtr = ∑ 𝑀θijtr 

✯𝜃∈𝑁 
 

 

Step 3: Select the maximum values of the support count MAX-Countijt among the fuzzy 

classes of each parameter and identify the corresponding fuzzy class MAX-Fijt to 

represent the fuzzy characteristic of Pijt in the later mining process. 

 
Step 4: Set x=1, and temporarily put the parameters into Ix as items. If MAX-Countijt is 

larger than or equal to its predefined minimum support threshold 𝑑ijt, keep it in Ix. 

Otherwise, remove it from Ix. 

 
Step 5: Generate every combination of items in Ix to form (x+1)-itemsets. For each 

itemset v with items (v1,v2,…,vx+1), identify the maximum value of the threshold support 

counts among items as 𝑝v. If the minimum value of the support counts among items is 

equal to or larger than 𝑑v, temporarily put v in Ix+1. 

 
Step 6: If Ix+1 ≠ null, go to the next step. 

If Ix+1 = null and x=1, exit the algorithm. If Ix+1 = null and x>1, go to Step 11. 

 
Step 7: Calculate the fuzzy membership value Mθv of v in Rθ as 

M𝜃𝑣 = 𝑚i𝑛 (ƒ𝜃𝑣1 
, ƒ𝜃𝑣2 

⋯ , ƒ𝜃𝑣𝑥+1 
). 

 
Step 8: Calculate the support count of v as 

𝐶𝑜𝑢𝑛𝑡v = ∑ M𝜃𝑣 

✯𝜃∈𝑁 
 

 

Step 9: If Countv is larger than or equal to 𝑑v, keep v in Ix+1. Otherwise, remove it from 

Ix+1. 

 
Step 10: If Ix+1 ≠ null, set x= x+1 and repeat Steps 5-10. 

If Ix+1 = null and x=1, exit the algorithm. If Ix+1 = null and x>1, go to Step 11. 
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Step 11: Extract items from Ix for x ≥ 2 to construct possible rules. Calculate the 

confidence value of each rule. 

 
Step 12: If the confidence value of a rule is larger than or equal to the predefined 

minimum confidence threshold Ω, the rule is regarded as a useful fuzzy association rule. 

 
After a set of fuzzy association rules is obtained, they are transferred to the next 

module where GA is applied for optimization. 

 
3.2 Rule Optimization Module 

In the Rule Optimization Module, slippage concepts are adopted as an enhancement to a 

conventional GA framework. The proposed sGA is an algorithm in which slippage takes 

place to increase diversity in the population by varying the chromosome length. This 

module starts with a set of fuzzy rules obtained in the Rule Generation Module being 

encoded into chromosomes. Since only parameters which appear in the fuzzy rules are 

included in the initial population, slippage takes place to let different parameters have a 

chance to be inserted into or removed from the chromosomes. Because of the 

randomness, constraints could be violated and chromosome repairing is thus required. 

The fitness of each chromosome is then evaluated before selecting chromosomes for 

crossover and mutation. Before the termination criteria are reached, crossover and 

mutation repeatedly occur to generate different solutions. When the termination criteria 

are fulfilled, the chromosomes are decoded into new fuzzy association rules and stored 

in the knowledge repository for future decision making. 

 
3.2.1 Chromosome encoding 

In the sGAPMS, each chromosome is a solution for discovering the nearly optimal fuzzy 

rules for enhancing the finished quality of the products. The basic idea of the 

chromosome encoding scheme comes from Ho et al. (2008). There are two regions in 

each chromosome: (i) the production workstation and process correlation region, and (ii) 

the parameter region. 

 
(i) Production workstation and process correlation region 

In the production workstation and process correlation region, the value of each gene is 

either 0 or 1. A gene containing a value of 1 implies that the corresponding production 

workstation, process or parameter appears in the fuzzy rule. For example, if process 

parameter 1 in process 1 in production workstation 1 appears in the rule, then the values 

of the three corresponding genes, W1, δ11 and P111, will be 1. On the other hand, if 

production workstation 2 does not appear in the rule, the value of gene W2 will be 0 and 
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that of other genes correlated with production workstation 2, such as δ2j and P2jt (for 

j=1,2,…., e2 and t=1,2,…,k2j), will also be 0. 

 
(ii) Parameter region 

In the parameter region, the values of the genes reflect the associated fuzzy classes of 

the corresponding parameters that appear in the rule. For ease of clarification, hereafter, 

the symbol Q is used to distinguish the quantitative value of a quality feature from that 

of process parameter τijt. The values of genes in the parameter region represent the 

belonging fuzzy classes after the quantitative values of process parameters or quality 

features are converted into fuzzy classes. Assuming that there are r fuzzy classes of 

parameter τ111, the value of gene τ111 will range between 0 and r. If τ111 is associated with 

the rth fuzzy class, the gene will contain r. Similarly, if Q1 is associated with the gth 

fuzzy classes, the gene will contain g. For parameters that are absent in the rules, the 

values of the corresponding genes are encoded as 0. An example of a chromosome 

encoding a fuzzy rule is shown in Fig. 2. The condition part of a fuzzy rule considers the 

process parameters while the consequent part considers the quality features. 

 

Fig. 2. Chromosome encoding a fuzzy association rule 

 
3.2.2 Population initialization 

The rules obtained from the Rule Generation Module are used to form the initial 

population of the sGA. However, only those parameters with frequent associations can 

be mined and appear in the rules. As a result, parameters which rarely appear but are 

significant to the overall production will be neglected. In this sense, the knowledge 

obtained solely by FARM is not sufficiently sophisticated to solve problems in actual 

production environments. In view of this, slippage operation is introduced so that those 

initially neglected parameters have a chance to be inserted into the chromosomes, whilst 

some parameters existing in the initial rules can also have a chance to be removed from 

the chromosomes. 
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3.2.3 Slippage operation 

By imitating the biological slippage behavior, the slippage operation allows insertion 

and deletion so as to vary the number of genes in a chromosome. Each chromosome 

undergoes a slippage operation if the random number being generated is smaller than or 

equal to the predefined slippage rate. When slippage occurs, a position for slippage is 

selected randomly. For instance, if the slippage position being generated is r, then 

slippage will take place at the rth gene. In addition, the length of the slipped part is 

generated randomly and it represents the number of genes to be inserted into or removed 

from the original chromosome, starting from the selected position. During slippage, 

whether insertion or deletion should be performed in the chromosome, is chosen 

randomly. 

 
(i) Insertion 

When insertion is chosen, the parameters for insertions are randomly selected and the 

number of parameters for insertion is dependent on the length of the slipped part 

generated. The values of the inserted genes are identical to that of the gene at the 

slippage position. For example, if the length of the slipped part is n and the value of the 

gene at the slippage position is 1, the length of the chromosome will be increased by n 

units of genes and the extra genes will all carry the value of 1. An example of the 

insertion operation is shown in Fig. 3. The slippage position is 6 and the 6th gene 

contains the value of 1. If the length of slipped part is 3, the length of the chromosome 

will then be increased by 3 units of genes and the extra genes will all carry the value of 

1. 

 

 

Fig. 3. Example of insertion 

 
(ii) Deletion 

Deletion leads to a decrease in the length of the chromosomes. According to the length 

of the slipped part generated, a certain number of consecutive genes will be removed 

from the chromosomes. If the length of the slipped part λ is generated, λ genes will be 

removed, starting from the slippage position. An example is shown in Fig. 4 with λ = 4. 

Four consecutive genes are removed from the chromosome and the sequence of the 

remaining genes is unchanged. 
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Fig. 4. Example of deletion 
 

(iii) If the predefined number of the slippage is larger than 1, a chromosome can 

experience slippage more than once. Since there is no restriction to the choice of 

insertion and deletion, it is possible that each chromosome undergoes both insertion and 

deletion, generating a completely different set of fuzzy rules. 

 
3.2.4 Chromosome repairing 

After slippage, crossover and mutation, chromosome repairing is performed to ensure 

that every chromosome obeys the encoding scheme. The aim of chromosome repairing 

is to fix any chromosomes which have any of the above violations. There are four 

possible types of violations of the chromosome encoding scheme after slippage occurs. 

The first type of violation refers to when there are inconsistencies between the two 

regions of a chromosome. If the genes in the production workstation and process 

correlation region contain 1, the related genes in the parameter region should contain a 

non-zero number to maintain consistency. Otherwise, forward repairing is performed by 

randomly assigning the related genes in the parameter region to a non-zero number. On 

the other hand, if the genes in the parameter region contain values larger than 1, the 

related genes in the production workstation and process correlation region should 

contain 1. Otherwise, backward repairing is carried out by changing the values of the 

corresponding genes in the production workstation and process correlation region into 1, 

to maintain consistency. 

The second type of violation occurs when some expected genes are missing in the 

chromosomes. For example, it is expected that τ111 exists in the chromosomes when W1, 

δ11 and P111 exist. Otherwise, there are no fuzzy classes representing P111, violating the 

structure of a fuzzy rule. To deal with this type of violation, the values of the genes 

which are correlated with the missing genes will be changed to 0. With reference to the 

aforementioned example, genes W1, δ11 and P111 have to carry a value of 0 when τ111 is 

absent in the chromosome. 

The third type of violation occurs when the values of the genes in the production 

workstation and process correlation region are neither 0 nor 1. In such a case, a binary 

number is randomly assigned to the genes concerned during chromosome repairing. 

The fourth type of violation exists when the values of the genes in the parameter 
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region of a chromosome exceed the number of fuzzy classes of the corresponding 

parameters. To repair the chromosome, the values of the genes concerned are changed to 

random values. Though there are other researchers fixing such a violation by adjusting 

the values to maximum allowable values (Ho et al., 2008), random values are more 

preferable in the sGAPMS for minimizing unnecessary upward bias.  

 

3.2.5 Fitness function evaluation 

In the sGAPMS, a fit chromosome should be able to predict the finished quality with 

high accuracy. Therefore, the fitness function is used to minimize the differences 

between the predicted quality features and the actual quality features. The predicted 

quality features can be obtained by using fuzzy logic in which defuzzification is carried 

out to convert them into quantitative values based on the obtained rules. Consequently, 

the proposed fitness function is represented as: 
 

1 Minimize fitness = ∑ ∑ 𝑤 
 

 
(𝑞 

 
− 𝑞 

 
')2 

n j ij ij 

iC𝑁 jCF 

where n is the number of testing samples, N is the set of index of testing samples, Y is 

the set of index of finished quality features, qij is the predicted quality features achieved 

by defuzzification, qij’ is the actual quality features, and wj is the weighting assigned to 

each quality feature. 

 
Finally, chromosome decoding is carried  out to convert the chromosomes into 

fuzzy association rules when the termination criteria of the sGAPMS are satisfied. 

 
3.3 Decision Support Module 

The Decision Support Module is used to estimate the resultant product features when a 

set of parameters are given. When the parameters used in the production order in hand 

are inputted into the module, relevant decision rules are triggered. Based on the 

knowledge stated in the rules, the quality features are predicted. The defuzzification 

process is used to convert the fuzzy terms of the quality features into quantitative values. 

With the knowledge supported by the system, manufacturers are provided with feedback 

on their parameter settings. The knowledge is useful for the adjustment of appropriate 

parameter settings and the formulation of an effective quality assurance scheme. 

 
4. Implementation of the sGAPMS in a Case Company 

In order to analyze the performance of the sGAPMS, the sGAPMS is implemented in a 

case company. The case company is a Hong Kong-based garment manufacturing 

company founded in 1977 and is one of the largest manufacturers in the Hong Kong 
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garment industry. Its manufacturing capacities include production facilities in Hong 

Kong, China, Malaysia, Thailand and Vietnam. It produces more than 15 million pieces 

of garments annually for exporting to European markets. In current practice, the garment 

quality is determined by human inspection. Defective garments will be sent to relevant 

operations for reworking or discarding. Inspectors do not have any information for 

causal analysis and thus operators receive no feedback on their choice of production 

parameters. As a result, FARM is a useful tool to provide them with knowledge support 

to determine appropriate process parameters which can have positive impacts on the 

resultant product quality. sGA is used to optimize the fuzzy rules obtained in FARM. 

The implementation of the sGAPMS is undertaken in one of its factories located in 

Shenzhen, China. The procedures involve four phases, which are (i) Data collection for 

FARM, (ii) Definition of parameter setting in the sGA, (iii) Application of fuzzy logic 

for defuzzification, and (iv) Regular rule evaluation. 

 
4.1 Data collection for FARM 

The FARM algorithm is performed with the dataset provided by the case company. It 

starts with the FARM to generate a set of rules as the initial population. Thus, data 

essential for the FARM have to be collected. They include the process parameters 

involved in each production workstation and the quality features of the garments, all of 

which can be collected from existing production orders and quality reports. There are 

four production workstations considered in this case study, which are (i) spreading and 

cutting workstation, (ii) sewing workstation, (iii) finishing workstation, and (iv) quality 

inspection. Examples of the process parameters identified for data collection include the 

ply height of the fabric, cutting speed, sewing speed and washing temperature. Their 

settings will have a direct impact on the resulting product quality. On the other hand, the 

quality features, representing the overall quality of the garments, include the average 

numbers of critical defects, major defects and minor defects per garment in each 

production order. 

In order to determine the fuzzy sets and the membership functions, interviews are 

conducted so as to have the domain experts defining linguistic terms and the universe of 

discourse of each parameter. Compared to other methods, fuzzy inference uses 

qualitative descriptions to provide quantitative values. Therefore, it is essential to 

determine some conventional linguistic terms for describing the parameters. There is no 

restriction on the number of linguistic terms for each parameter, however, the linguistic 

terms determined have to be easily interpreted by the domain experts, otherwise, there 

will be difficulties when constructing a set of fuzzy rules. In addition, domain experts 

have to define a range of the values in which there are no clear-cut boundaries in order 

to associate most values to a single linguistic term. Within this range, membership 
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functions are positioned in such a way that the input values can be associated with more 

than one complementary membership function. Some examples of the membership 

functions of the parameters are shown in Fig. 5. The choice of membership functions is 

based on subjective judgment, and the initial values rely heavily on trial and error 

approaches. Considering that most domain experts have limited technical knowledge, 

only triangular and trapezoidal membership functions are provided for their selection. It 

is believed that users who lack AI knowledge will find it easier to understand triangular 

and trapezoidal membership functions, compared to other smooth functions such as 

Gaussian functions. 

 
 

Fig. 5. Examples of membership functions of parameters 

 
In addition, the minimum support threshold values of the parameters and the 

minimum confidence threshold values of the rules have to be determined before useful 

association rules can be mined. This requires a trial-and-error approach to determine 

suitable threshold values. If the threshold values are set too high, it could be difficult to 

mine any rules. On the contrary, if the threshold values are set too low, a lot of rules, 

including trivial and inexplicable ones, could be generated. The minimum support 

thresholds of some of the parameters are shown in Table 3. After executing the 12 steps 

in the FARM approach, a set of fuzzy association rules is obtained. Only particular rules, 

with the condition part consisting of the process parameters and the consequent part 

consisting of the quality features of products, are considered. Table 4 lists some 

examples of the rules obtained for a confidence threshold value of 0.75. 
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Table 3. Examples of minimum support count parameter thresholds 

Parameter Minimum support count threshold 

Ply height of the fabric 20.2 

Speed of the sewing machines 15.9 

Washing time 21.6 

Average number of critical defects per garment 10.5 

 
Table 4. Examples of fuzzy association rules obtained after the use of FARM 

Rule 1 

IF The sewing distance is long AND 

The number of trims for attachment per garment is large AND 

The speed of the sewing machines is high AND 

The speed of the finishing machines is high 

THEN 

 

Rule 2 

 
The average number of minor defects per garment is small. 

IF The ply height of the fabrics is low AND 

The number of cutting pieces per garment is small AND 

The length of the marker is long AND 

The speed of the cutting machines is normal 

THEN 

The average number of major defects per garment is normal. 

 

4.2 Definition of parameter settings in the sGA 

Like the traditional GA approach, the sGA involves parameters which have to be defined 

before the execution of the algorithm. Firstly, a crossover rate β, ranging between 0 to 1, 

is defined by users. To decide which pair(s) of chromosomes should be chosen for 

performing crossover, there are c random numbers ranging between 0 and 1 generated, 

each of which represents the crossover probability index of a chromosome. If the 

crossover probability index of a chromosome is smaller than β, crossover occurs in the 

chromosome. In the sGAPMS, the uniform crossover method is adopted. A mask 

containing μ random binary numbers is generated where μ is the number of genes in the 

shortest chromosomes in the parent pool. Each binary number in the mask corresponds 

to one gene of the chromosomes, parent A and parent B. If the binary number 

corresponding to a gene is 1, the particular genes of parents A and B are exchanged. If 

not, the genes remain unchanged. 

Similar to the crossover rate, a mutation rate γ, ranging between 0 to 1, is defined 

by users, and a random number within 0 and 1 is then generated for each gene. If the 
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random number is smaller than γ, mutation occurs at the corresponding gene. In the 

production workstation and process correlation region, bit-flip mutation is used to 

convert the value of the gene from 0 to 1, or vice versa. On the other hand, in the 

mutation in the parameter region, a fixed value amount is added to or subtracted from 

the selected gene. The fixed value amount is generated randomly in each iteration of the 

sGAPMS. 

Apart from the crossover and mutation rates, the slippage rate has to be defined in 

the sGA. The definition of parameter settings in the sGA is case sensitive and it is thus 

unwise to adopt the values directly from other related work. To ensure their suitability, a 

trial-and-error approach is used to determine the appropriate crossover, mutation and 

slippage rates. In this case study, the uniform crossover method with two different 

crossover rates: 0.7 and 0.9 is selected. In addition, three slippage rates: 0.01, 0.02 and 

0.05, and two mutation rates: 0.01 and 0.02 are used to control the rate of diversification. 

Different combinations of the settings are used to compare their effects on the generated 

solutions. The parameters, which can generate solutions, are averaged from 50 

independent runs, with the best fitness values up to 4000 iterations selected for 

implementation. In this case study, the suggested crossover, mutation and slippage rates 

are 0.7, 0.02 and 0.05, respectively. 

 
4.3 Fitness function evaluation 

The evaluation of the fitness of the chromosomes requires the defuzzification process. 

The centre of gravity is used as the defuzzification method. In addition, a weighting 

factor is assigned to each quality feature in the fitness function. More serious quality 

problems are assigned with larger weights. According to the domain experts, weights 

assigned to the numbers of critical defects, major defects and minor defects are 0.5, 0.3 

and 0.2 respectively. 

Suppose there is a chromosome stating that “IF the ply height of fabrics is large and 

the cutting speed is high, THEN the average number of critical defects per garment is 

high, the average number of major defects per garment is normal, and the average 

number of minor defects per garment is small”. A searching process is then started to 

look for any historical orders in the database fulfilling the condition part of the 

chromosome, i.e. having quantitative values of the ply height of the fabrics and cutting 

speed belong to fuzzy classes of “large” and “high” respectively. For instance, according 

to one historical production order in which the condition part of the chromosome is 

fulfilled, the actual average numbers of critical defects, major defects and minor defects 

were 0.72 ,1.01 and 1.25 per garment respectively. The quantitative values of the ply 

height of the fabrics and the cutting speed that appeared in the order are then extracted 

and inputted for defuzzification. Based on the given chromosome, the predicted average 
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numbers of critical defects, major defects and minor defects are 0.51, 0.89 and 1.43 per 

garment respectively. In this case, the fitness value of the chromosome = 0.5x(0.51-

0.72)2 + 0.3x(0.89-1.01)2 + 0.2x(1.43-1.25)2 = 0.03285. Chromosomes with 

minimum fitness values are regarded as better solutions, capable of predicting the 

product quality more accurately. Thus, more appropriate parameter settings can be 

determined based on these solutions. 

 
4.4 Regular rule evaluation 

After the chromosomes are decoded, a set of fuzzy association rules is obtained. These 

rules are expected to be of good quality and can predict the quality features with little 

deviation. However, considering that the actual production environment is dynamic, 

regular rule evaluation is required to ensure that the rules are reliable and responsive to 

the actual environment. Quality engineers are responsible for checking whether the 

output of the sGAPMS predicts the resultant product quality with high accuracy, with 

reference to the actual quality control reports. When necessary, domain experts are 

allowed to adjust the parameter settings involved in the sGAPMS. The objective of their 

adjustment is to improve the mining process so as to generate rules with better quality. 

Based on the knowledge discovered in the verified rules, operators are able to determine 

the process parameters to be used in garment production in order to achieve high quality 

products. 

In the case study, through the use of the sGA, different parameters can be inserted 

into or removed from the chromosomes. Table 5 lists the two fuzzy association rules 

with the greatest confidence values after the use of the sGA. It is expected that rules 

with greater confidence values are more responsive to the actual production environment. 

Thus, the knowledge discovered by these rules is more significant and can help the 

decision makers realize strong relationships between the process parameters and the 

product quality. In addition, some parameters, as shown in Table 5, such as thread 

tension, were initially ignored in FARM but are now re-considered during rule 

optimization and appear in the rules. They are considered in the chromosome because of 

the insertion operation, one of the slipped mutations in the sGA. On the other hand, there 

are also some parameters removed from the chromosomes because of the deletion 

operation. As a result, different combinations of parameters can be considered in a rule, 

increasing the diversity of the solutions. 
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Table 5. Examples of fuzzy association rules obtained after the use of sGA 

Rule Confidence 

Rule 1 

IF The speed of the sewing machines is high AND 

The thread tension is high 

THEN The number of broken stitches is high. 

Rule 2 

IF The ply height of fabric is low AND 

The speed of the cutting machines is low AND 

The length of the marker is short 

THEN THEN the number of major defects is low. 

0.91 

 

 

 

 

0.87 

 
 

 

5. Results and Discussion 

It is believed that the laws of nature provide a good source for the inspiration of 

effective meta-heuristic algorithms for solving complicated problems and developing 

intelligent systems. For instance, GAs and differential evolutionary algorithms are 

inspired by biological evolutionary processes; particle swarm optimization algorithms, 

artificial bee colony algorithms, and ant colony optimization algorithms are inspired 

from animal behavior. These nature-inspired algorithms have been widely applied in 

various fields. Because of their proven efficiency and merit in discovering novel and 

better solutions to hard problems, with nature-inspired algorithms attracted more and 

more attention from researchers and engineers in various fields of production research. 

The sGA proposed in this paper was inspired by the biological slippage phenomenon 

commonly found in DNA replication. In fact, slippage is one of the most widespread and 

powerful means of providing genetic variation for evolution (Kashi & King, 2006). Due 

to biological slippage, organisms can keep generating diversity, allowing them to find 

the right approach in order to adapt to changing environments (Moxon et al., 1994; 

Kashi et al., 1997; Trifonov, 1999; Verstrepen et al., 2005). For instance, fruit flies that 

cannot maintain their body temperature, can still survive in extreme climates because 

fruit fly variants have different lengths of chromosomes for managing their biological 

clock at different temperatures (Caporale, 2003a). Additionally, Haemophilus influenza, 

a bacterium surviving in the human nose and throat, keeps changing its coat by slipping 

at locations with repetitive gene sequences so that it can find a coat which does not 

trigger an immune response (Caporale, 2003b). Compared with other fixed-length GAs, 

the sGA is more appropriately matched to biological genetic representation as biological 

genomes have been proven to vary in length during evolution (Burke et al., 1998). When 

the chromosomes are used to encode fuzzy rules, the sGA allows changes to the length 

of chromosomes and thus different combinations of parameters can be considered in the 
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rules. 

Traditional association rule mining without integrating fuzzy set concepts can only 

discover the relationship between the existence of items. For instance, Chougule et al. 

(2011) used association rule mining to detect anomalies in the field that causes customer 

dissatisfaction, and the knowledge discovered was used for root cause identification. In a 

similar vein, Lee et al. (2013) applied the same tool to detect the correlations among 

different garment defects, providing knowledge support for defect prediction. However, 

the knowledge discovered by traditional association rule mining is at a Boolean level 

and is not sophisticated enough to provide decision support on quality management. 

Thus, it is a drawback to use traditional association rule mining for solving quality 

problems because one of the critical aspects of planning for QI is to discover the 

relationship between items at the parameter level (Lau, Ho et al., 2009). On the contrary, 

FARM approaches are able to discover knowledge at a parameter level by describing the 

quantitative values of the parameters in fuzzy terms. Lee at al. (2014) applied FARM to 

investigate the relationships between production parameters and the resultant product 

quality. Their goal was to help operators to determine the appropriate process parameters 

for production. However, in their study, the decision rules obtained might not be optimal. 

On the other hand, Ho et al. (2008) used GA to optimize the fuzzy association rules. The 

GA they applied was a classical GA with fixed chromosome length. As a result, the best 

achievable chromosome fitness is inherently limited by the fixed chromosome length. 

Comparing with the above mentioned work, the sGAPMS integrates fuzzy set concepts 

to traditional association rule mining, Its performance is better than that of tradition 

association rule mining approaches as it allows the planning for QI to be conducted at 

the parameter level. In addition, it also outperforms some existing FARM-based 

approaches as proposed by Ho et al. (2008) and Lee at al. (2014) because the fuzzy 

association rules obtained in the sGAPMS are optimized by a variable-length GA. 

Limitations caused by the fix-length chromosome length can thus be eliminated. 

Table 6 compares the sGAPMS with the Kaisen QI tool. In general, Kaisen 

signifies small improvements made in the status quo as a result of ongoing efforts. It is a 

process-oriented approach to solve problems in a rational way. In usual practice, 

suggestions for improvement are generated from workers and the suggestions are posted 

on the wall of the workplace in order to encourage competition among workers. It is 

expected that each suggestion, once implemented, leads to a revised quality standard. In 

Kaisen, when a quality problem occurs, the organization will check on the resources 

such as machines, tools and workers, and find out the root cause. Elimination of waste is 

encouraged so as to ensure that all existing activities can add value to the organization. 

Standardization is also carried out for prevention of recurrence. It can be seen that the 

cycle time for conducting a Kaisen project is relatively long and is also dependent on the 
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self-discipline of the workers. On the other hand, the sGAPMS designed in this paper is 

a parameter-oriented approach for managing the product quality. Suggestions for QI are 

generated through a series of mining procedures based on the historical data. In 

particular, different combinations of parameters can be considered because of the 

variable-length sGA scheme. Once the hidden relationships between the process 

parameters and the quality features are discovered, learnt process parameters are 

available for adoption in the actual production environment, achieving ongoing 

improvement. As the quality problems are analyzed quantitatively, together with the 

solutions determined by the sGAPMS, time spent on identifying the root causes is 

eliminated. As such, the time for QI with the use of the sGAPMS is shorter than that of 

Kaisen. In any time-sensitive industry, such as the garment industry, the sGAPMS is a 

better choice for improving the product quality. 

 
Table 6. Comparison between Kaisen and sGAPMS 

 Kaisen sGAPMS 

Approach Process-oriented Parameter-oriented 

Suggestion for QI Generated from workers Generated based on 

historical data 

Way of achieving ongoing 

improvement 

Elimination of waste, and 

standardization 

Adoption of learnt process 

parameters recursively 

Cycle time Longer Shorter 

In this paper, improvement achieved in the company by the use of the sGAPMS is 

measured in terms of the rework cost, the production efficiency, and the numbers of 

critical defects, major defects and minor defects. The results are compared with those 

achieved by the RFID-RPMS in Lee et al. (2014) in which quality assurance was 

supported solely by FARM without the application of GA. Therefore, it is believed that 

the differences found in the comparison are mainly due to the introduction of sGA in the 

system for optimization purposes. Table 7 compares the results obtained after a six-

month pilot run of the system, and the results are discussed in the following sections. 

 
Table 7. Improvement achieved by the use of the sGAPMS and the RFID-RPMS 

 With the use of the 

sGAPMS 

With the use of the 

RFID-RPMS (Lee et al., 2014) 

Rework cost 34% 30% 

Production efficiency 23% 26% 

The number of critical defects 9% 7% 

The number of major defects 22% 20% 

The number of minor defects 27% 24% 
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(i) Reduced Rework cost 

After a six-month pilot run of the system, the sGAPMS reduced the rework cost by 34%, 

which is 4% higher than the RFID-RPMS. By looking at the mined relationship between 

process parameters and quality features, quality engineers are able to conduct causal 

analysis of the defect problems and provide feedback on the performance of different 

production workstations so as to avoid rework of garments. The sGAPMS achieved 

better cost reduction than the RFID-RPMS because more parameters can be considered 

in the fuzzy association rules in the sGAPMS. In the sGAPMS, parameters which are 

initially ignored in the FARM can have a chance to be re-considered during rule 

optimization. Because of the slippage concepts in the sGA, different combinations of 

production process parameters can appear in the rules by insertion and deletion, 

allowing knowledge to be discovered for quality assurance in a more comprehensive 

way. On the contrary, the RFID-RPMS only considers parameters based on their 

frequent association. As a result, the knowledge mined by the RFID-RPMS is limited. 

 
(ii) Increased production efficiency 

The production efficiency is improved by 23% after the use of the sGAPMS. One of the 

reasons is that the time for rework of garments is significantly reduced. As a 

consequence, the average production lead time is shortened. However, such an 

improvement is 3% slightly less than that achieved by the use of the RFID-RPMS. This 

could be attributed to the absence of RFID technologies. In the RFID-RPMS, RFID was 

employed for data collection, allowing the manufacturers to identify any bottlenecks in 

production and take proactive measures to adjust process settings on a real-time basis. In 

this sense, the RFID-RPMS is superior to the sGAPMS in terms of the improvement in 

production efficiency. To further improve the benefits of the sGAPMS, one can consider 

having the RFID included in the production lines for data collection. 

 
(iii) Improved quality features 

The quality features are improved after the implementation of the sGAPMS. In 

particular, the numbers of critical defects, major defects and minor defects are reduced 

by 9%, 22% and 27%, respectively. This reveals that the knowledge discovered by the 

sGAPMS is useful for improving the resultant quality of the garments. As the condition 

part of the fuzzy association rules concerns the production process parameter settings, 

the quality assurance is supported by the sGAPMS at the parameter level. This allows 

garment manufacturers to adjust the process parameters directly in order to achieve the 

desired product quality. Through the defuzzification process, the sGAPMS can predict 

the resultant quality features based on adjustment of the parameters. Compared with the 

RFID-RPMS, the sGAPMS improves the quality features to a larger extent. This is 
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because the diversity of rules is increased with the use of the sGA and the overall quality 

of the rules can be improved eventually. These rules with better quality can predict the 

quality features with less deviation. As a result, more reliable quality assurance activities 

can be carried out. 

 

 The sGA is compared with a fuzzy version of the ALChyper-GA and the results are 

shown in Fig. 6 and Fig. 7. A total of 50 rules is used to form the initial population and 

the fitness functions are compared up to 1000 and 2000 iterations. It is found that the 

fitness function obtained by the fuzzy version of the ALChyper-GA is better than that 

obtained by the sGA when the number of iterations is set to be 1000 as shown in Fig. 6. 

No convergence is observed in the sGA. However, when the number of iterations is 

increased to 2000, convergence is found in both algorithms and the fitness function 

obtained by the sGA becomes slightly better than that obtained by the fuzzy version of 

the ALChyber-GA as shown in Fig. 7. In this sense, when a longer time is allowed for 

executing the algorithms, the sGA is more preferred as the slippage operations increase 

the diversity of solutions, compensating the limitations of FARM due to the subjective 

choice of minimum support count threshold values. On the other hand, the fuzzy version 

of ALChyper-GA is more preferred when only a shorter time is allowed for execution. 

This can be contributed by the inserting-good mutation and removing-worst mutation in 

the ALChyper-GA as they can rapidly improve the quality of rules. In the ALChyer-GA, 

genes which give the most improvement of the fitness function are regarded as best 

genes for insertion, while genes which give no improvement to the fitness function are 

regarded as worst genes for removal. However, in the experiments in this paper, there 

are no clear guidelines on the definition of best genes for insertion or the definition of 

worst genes for removal. Impacts of a single gene on the fitness function improvement 

are difficult to measure in this case problem, increasing the difficulties in choosing 

particular genes for insertion and deletion. Subjective judgment is currently adopted to 

pre-define which genes are to be inserted to or removed from the chromosomes in the 

fuzzy version of the ALChyper-GA. As a result, the comparison results here are case-

sensitive to some extent and more research efforts should thus be done on the 

determinations of best genes and worst genes based on their impacts on fitness function 

before the execution of the fuzzy-ALChyper-GA for solving the QI problems.  
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Fig. 6. Comparison between sGA and the fuzzy version of ALChyper-GA with number 

of iterations = 1000 

 

Fig. 7. Comparison between sGA and the fuzzy version of ALChyper-GA with number 

of iterations = 2000 

 
6. Conclusions 

In this study, a slippery genetic algorithm-based process mining system is developed to 

support quality assurance in the garment industry. A novel variable-length GA 

framework, sGA, is introduced to optimize a set of fuzzy association rules. It imitates 

the biological slippage phenomenon during DNA replication to enhance the search for 

superior solutions. Compared with classical GAs, the sGA can increase the diversity of 

solutions and discover knowledge more comprehensively thereby achieving better 

product quality. The results reveal that the sGAPMS can effectively help garment 

manufacturers guarantee the quality of products with optimal process parameters. 

  According to the literature, traditional expert and intelligent systems for quality 

management have focused on the manufacturing sector as a whole, without considering 

the specific needs of the garment industry. However, in practical situations, the quality 

management of the garment industry is more challenging than other manufacturing 
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industries because of the error-prone nature of the processes involved in garment 

manufacturing. Therefore, instead of developing a generic system architecture for the 

manufacturing sector, this paper aims to develop an intelligent system that specifically 

considers the needs of the garment industry in order to support QI activities. Another 

significant aspect of the research includes the design and development of a novel 

nature-inspired algorithm, sGA. In the past decades, more and more researchers have 

suggested that the laws of nature are good sources for inspiration of effective 

meta-heuristic algorithms in expert and intelligent systems. This has stimulated many 

researchers to develop novel algorithms which are inspired by natural phenomenon. The 

sGA proposed in this paper is inspired by the biological slippage phenomenon 

commonly found in DNA replication. Unlike conventional fixed-length GAs, it allows 

changes to the length of each chromosome and thus different combinations of 

parameters can be considered in a fuzzy rule. This is considered as having remarkable 

significance in this paper since results of previous related research applying GA in fuzzy 

rule optimization have been inherently limited by the chromosome length. 

Despite the contributions made by this paper in both academia and the garment 

industry, there are some limitations in the sGAPMS, compared with other existing 

expert and intelligent systems. Firstly, the relationships between the process parameters 

and the resultant quality features are discovered in terms of fuzzy association rules. They 

serve as knowledge support for the garment industry to assure better product quality. 

However, the determination of the appropriate process parameters still relies on the 

system users to some extent to analyze the rules mined, and to test and input different 

combinations of process parameters into the system for estimating the quality features. 

Therefore, extra investigation may be required to assist the users in their analysis. 

Secondly, the threshold values of the parameter support counts, the slippage rate, the 

crossover rate and the mutation rate are defined by trial-and-error approaches. To ensure 

the suitability of their definition, it could be a time-consuming task to have the system 

users determine the appropriate values of these parameters before a set of useful fuzzy 

association rules can be generated. Hence, automatic methods for determining these 

values could be considered in order to avoid the trial-and-error approaches. 

Future research work in expert and intelligent systems could be conducted in four 

directions: (1) In the sGAPMS, the choice of membership functions of the parameters is 

based on subjective decision criteria and the initial values rely on trial and error 

approaches. In addition, the membership functions are assumed to be static. In view of 

these, particular learning methods, such as Artificial Neural Networks, could be 

incorporated in variable-length GA-based Expert and Intelligent Systems to dynamically 

determine the optimal membership functions for the parameters so as to respond to the 

actual production environment; (2) Future work could also focus on a comparison of the 



28 
 

sGA performance with different parameter settings from a theoretical perspective. In 

particular, the parameters settings used in the sGA, namely the population size, the 

number of iterations, the slippage rate, the crossover rate and the mutation rate, are 

compared. It is expected that the sGA under different parameter settings will perform 

differently in terms of the best fitness values and the convergence. Based on the results, 

some decision criteria for selecting appropriate parameter settings can be obtained; (3) 

More research efforts related to expert and intelligent systems could be paid on 

optimizing the fuzzy rules by using other existing fixed-length GAs and comparing their 

results with that of the sGA. It is suggested that their performances could be compared 

under different population sizes and numbers of iterations. The results will be useful for 

identifying scenarios in which the sGA outperforms fixed-length GAs; (4) In the sGA, 

each parameter has the same possibility of being inserted into or removed from the 

chromosomes. Considering that some parameters could have more significant impacts 

on the resultant quality features, weightings should be considered to give higher 

priorities to those parameters for being considered in the fuzzy association rules; (5) In 

reality, a process parameter setting is a crucial issue due to its great impact on the 

finished quality. Small changes of the process parameters are regarded as less complex, 

and manufacturers are always willing to minimize this complexity by reducing the 

number of process parameter settings in different departments and processes. However, 

in the paper, the sGAPMS only considers the minimization of the variance between the 

actual and estimated quality features of the products. It is suggested that, when 

developing expert and intelligent system for production process control and monitoring, 

other factors such as the complexity of the process change could also be incorporated.  

 

Acknowledgement 

The authors would like to thank the Research Office of the Hong Kong Polytechnic 

University for supporting the project (Project Code: RPXV). 

 
References: 

Agrawal, R., and Srikant, R. (1994), Fast algorithms for mining association rules in large 

databases. In Proceedings of 20th international conference on very large databases, 

Santiago de Chile (pp. 487–489). 

Alatas, B., Akin, E. and Karci, A. (2008). MODENAR: Multi-objective differential 

evolution algorithm for mining numeric association rules. Applied Soft Computing 

8(2), 648-656. 

Aliev, R.A., Fazlollahi, B., Guirimov, B. G. and Aliev, R. R. (2007). Fuzzy-genetic 

approach to aggregate production-distribution planning in supply chain management. 

Information Sciences 177(20), 4241-4255. 



29 
 

Azadeganm, A., Porobic, L., Ghazinoory, S., Samouei, P., & Kheirkhah, A. S. (2011), 

Fuzzy logic in manufacturing: A review of literature and a specialized application, 

International Journal of Production Economics 132(2), 258-270. 

Burke, D. S., De Jong, K. A., Grefenstette, J. J., Ramsey, C. L., and Wu, A. S. (1998). 

Putting more genetics into genetic algorithms. Evolutionary Computation 6(4), 387-

410. 

Caporale, L. H. (2003a). Foresight in genome evolution: Selection favors a certain 

amount of predictable variation in genomes, a capacity that protects populations. 

American Scientist 91(3), 234-241. 

Caporale, L. H. (2003b). “Slippery DNA and turning knobs,” In Darwin in the Genome: 

Molecular Strategies in Biological Evolution, The McGraw-Hill Companies, Inc., 

USA, pp. 59-69. 

Chen C.H., Hong, T. P., and Tseng, V. S. (2009). An improved approach to find 

membership functions and multiple minimum supports in fuzzy data mining. Expert 

Systems with Applications 36(6), 10016-10024. 

Chougule R., Rajpathak, D. and Bandyopadhyay, P. (2011). An integrated framework for 

effective service and repair in the automotive domain: An application of association 

mining and case-based-reasoning. Computers in Industry 62(7), 742-754. 

Goldberg, D. E., Korb, B. and Deb, K. (1989). Messy genetic algorithms: motivation, 

analysis, and first results. Complex systems 3(5), 493-530. 

Gunesoglu, S. and Meric, B. (2007). The analysis of personal and delay allowances 

using work sampling technique in the sewing room of a clothing manufacturer. 

International Journal of Clothing Science and Technology 19(2), 145-150. 

Han, L., Kendall, G., and Cowling, P. (2002). An adaptive length chromosome 

hyperheuristic genetic algorithm for a trainer scheduling problem. SEAL2002, 267-

271. 

Ho, G.T.S., Lau, H.C.W., Chung, S.H., Fung, R.Y.K., Chan, T.M., Lee, C.K.M. (2008). 

Fuzzy rule sets for enhancing performance in a supply chain network. Industrial 

Management and Data Systems 108(7), 947-972. 

Huntley, M A. and Golding G. B. (2006). Selection and slippage creating serine 

homopolymers. Molecular Biology and Evolution 23(11), 2017-2025. 

Hutt, B. and Warwick, K. (2007). Synapsing variable-length crossover: meaningful 

crossover for variable-length genomes. IEEE Transactions on Evolutionary 

Computation 11(1), 118-131. 

Ishikawa, S., Kubota, R. and Horio, K. (2015). Effective hierarchical optimization by a 

hierarchical multi-space competitive genetic algorithm for the flexible job-shop 

scheduling problem. Expert Systems with Applications 42(24), 9434-9440. 

Joo, C.M., Kim, B. S. (2014). Block transportation scheduling under delivery restriction 



30 
 

in shipyard using meta-heuristic algorithms. Expert Systems with Applications 41(6), 

2851-2858. 

Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimization for 

recurrent network design. IEEE Transactions on Systems, Man and Cybernetics – 

Part B: Cybernetics 43(2), 997-1006. 

Jun, S. and Park, J. (2015). A hybrid genetic algorithm for the hybrid flow shop 

scheduling problem with nighttime work and simultaneous work constraints: A case 

study from the transformer industry. Expert Systems with Applications 42(15-16), 

6196-6204. 

Kashi, Y. and King D. G. (2006). Simple sequence repeats as advantageous mutators in 

evolution. Trends in Genetics 22(5), 253-259. 

Kashi, Y., King, D. and Soller, M. (1997). Simple sequence repeats as a source of 

quantitative genetic variation. Trends in Genetics 13(2), 74-78. 

Kim, I.Y. and De Weck, O.L. (2005). Variable chromosome length genetic algorithm for 

progressive refinement in topology optimization. Structural and Multidisciplinary 

Optimization 29(6), 445-456. 

Köksal, G., Batmaz, I. and Testik, M. C. (2011). A review of data mining applications 

for quality improvement in manufacturing industry. Expert Systems with 

Applications 38(10), 13448-13467. 

Lau, H. C. W., G. T. S. Ho, K. F. Chu, W. Ho, and C. K. M. Lee. (2009). Development of 

an Intelligent Quality Management System Using Fuzzy Association Rules. Expert 

Systems with Applications 36(2), 1801–1815. 

Lau, H.C.W., Tang, C.X.H., Ho, G.T.S., and Chan, T.M. (2009). A fuzzy genetic 

algorithm for the discovery of process parameter settings using knowledge 

representation. Expert Systems with Applications 36(4), 7964-7974. 

Lee, C.K.H., Choy, K.L., Ho, G.T.S., Chin, K.S., Law, K.M.Y., and Tse, Y.K. (2013). A 

hybrid OLAP-association rule mining based quality management system for 

extracting defect patterns in the garment industry. Expert Systems with Applications 

40(7), 2435-2446. 

Lee, C.K.H., Ho, G.T.S., Choy, K. L. and Pang, G.K.H. (2014). A RFID-based recursive 

process mining system for quality assurance in the garment industry. International 

Journal of Production Research 52(14), 4216-4238. 

Martín, D., Rosete, A. and Fdez, J. A. (2014) A new multiobjective evolutionary 

algorithm for mining a reduced set of interesting positive and negative quantitative 

association rules, IEEE Transactions on Evolutionary Computation 18(1), 54-69. 

Mohtashami, A. (2015). A novel dynamic genetic algorithm-based method for vehicle 

scheduling in cross docking systems with frequent unloading operation. Computers 

& Industrial Engineering 90, 221-240. 



31 
 

Moxon, E. R., Rainey, P. B., Nowak, M. A. and Lenski, R. E. (1994). Adaptive evolution 

of highly mutable loci in pathogenic bacteria. Current Biology 4(1), 23-33. 

Mula, J. Poler, R. and Garcia-Sabater, J. P. (2007). Material Requirement Planning with 

fuzzy constraints and fuzzy coefficients. Fuzzy Sets and Systems 158(7), 783-793. 

Petrovic, D. and Duenas, A. (2006). A fuzzy logic based production 

scheduling/rescheduling in the presence of uncertain disruptions. Fuzzy Sets and 

Systems 157(16), 2273–2285.  

Petruska, J., Hartenstine, M. J. and Goodman, M. Y. (1998). Analysis of strand slippage 

in DNA polymerase expansions of CAG/CTG triplet repeats associated with 

neurodegenerative disease. The Journal of Biological Chemistry 273(9), 5204-5210. 

Pramanik, S., Jana, D. K., Mondal, S.K. and Maiti, M. (2015). A fixed-charge  

transportation problem in two-stage supply chain network in Gaussian type-2 fuzzy 

environments. Information Science 325, 190-214. 

Rahman, H. F., Sarker, R. and Essam, D. (2015). A genetic algorithm for permutation 

flow shop scheduling under make to stock production system. Computers & 

Industrial Engineering 90, 12-24. 

Rajesh, R. and Kaimal, M. R. (2008). GAVLC: GA with variable length Chromosome 

for the simultaneous design and stability analysis of TS fuzzy controllers. In Fuzzy 

Systems, 2008. FUZZ-IEEE 2008.(IEEE World Congress on Computational 

Intelligence). IEEE International Conference on (pp. 1389-1396). IEEE. 

Tahera, K., Ibrahim, R.N., and Lochert, P.B. (2008). A fuzzy logic approach for dealing 

with qualitative quality characteristics of a process. Expert Systems with 

Applications 34(4), 2630-2638. 

Trifonov, E. N. (1999). Elucidating sequence codes: three codes for evolution. Annals of 

the New York Academy of Sciences 870(1), 330-338. 

Verstrepen, K. J., Jansen, A., Lewitter Fran and Fink G. R. (2005). Intragenic tandem 

repeats generate functional variability. Nature Genetics 37(9), 986-990. 

Wang, C.H., Hong, T.P. and Tseng, S.S. (2000). Integrating membership functions and 

fuzzy rule sets from multiple knowledge sources. Fuzzy Sets and Systems 112(1), 

141-154. 

Wong, W.K., Yuen, C.W.M., Fan, D.D., Chan, L.K., and Fung, E.H.K. (2009). Stitching 

defect detection and classification using wavelet transform and BP neural network. 

Expert Systems with Applications 36(2), 3845-3856. 

Yan, X., Zhang, C. and Zhang, S. (2009). Genetic algorithm-based strategy for 

identifying association rule without specifying actual minimum support. Expert 

Systems with Applications 36(2), 3066-3076. 

Yuen, C.W.M., Wong, W.K., Qian, S.Q., Chan, L.K., and Fung, E.H.K. (2009). A hybrid 

model using genetic algorithm and neural network for classifying garment defects. 



 

Expert Systems with Applications 36(2), 2037-2047. 

Zhang, R., Ong, S.K. and Nee, A.Y.C. (2015). A simulation-based genetic algorithm 

approach for remanufacturing process planning and scheduling. Applied Soft 

Computing 37, 521-532. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




