
Evaluating machine learning classification for 

financial trading: an empirical approach 

EDUARDO A. GERLEIN1,3, MARTIN MCGINNITY 1,2, AMMAR BELATRECHE1,  

SONYA COLEMAN1 

gerlein-e@email.ulster.ac.uk, {tm.mcginnity, a.belatreche, sa.coleman}@ ulster.ac.uk  

1Intelligent Systems Research Centre, University of Ulster, Londonderry, U.K. 

2School of Science and Technology, Nottingham Trent University, Nottingham UK 

3Electronics Department, Pontificia Universidad Javeriana, Bogotá, Colombia 

Technical and quantitative analysis in financial trading use mathematical and statistical tools 

to help investors decide on the optimum moment to initiate and close orders. While these 

traditional approaches have served their purpose to some extent, new techniques arising from 

the field of computational intelligence such as machine learning and data mining have emerged 

to analyse financial information. While the main financial engineering research has focused on 

complex computational models such as Neural Networks and Support Vector Machines, there 

are also simpler models that have demonstrated their usefulness in applications other than 

financial trading, and are worth considering to determine their advantages and inherent 

limitations when used as trading analysis tools. This paper analyses the role of simple machine 

learning models to achieve profitable trading through a series of trading simulations in the 

FOREX market. It assesses the performance of the models and how particular setups of the 

models produce systematic and consistent predictions for profitable trading. Due to the inherent 

complexities of financial time series the role of attribute selection, periodic retraining and 

training set size are discussed in order to obtain a combination of those parameters not only 

capable of generating positive cumulative returns for each one of the machine learning models 

but also to demonstrate how simple algorithms traditionally precluded from financial 

forecasting for trading applications presents similar performances as their more complex 

counterparts. The paper discusses how a combination of attributes in addition to technical 

indicators that has been used as inputs of the machine learning-based predictors such as price 

related features, seasonality features and lagged values used in classical time series analysis are 

used to enhance the classification capabilities that impacts directly into the final profitability. 

Keywords: Trading, Financial Forecasting, Computer Intelligence, Data Mining, Machine 

Learning, FOREX Markets. 

1. Introduction 

Data mining is the process of finding hidden patterns within data using automatic or semi-automatic methods (Witten, 

Frank, & Hall, 2011). In particular, machine learning (ML) techniques have shown impressive performance in solving 

real life classification problems in many different areas such as communications (Di, 2007), internet traffic analysis 

(Nguyen & Armitage, 2008), medical imaging (Wernick, Yang, Brankov, Yourganov, & Strother, 2010), astronomy 

(Freed & Lee, 2013), document analysis (Khan, Baharudin, Khan, & E-Malik, 2009), biology (Zamani & Kremer, 2011) 

and time series analysis (Qi & Zhang, 2008). Although complex models such as Neural Networks (NN) and Support 

Vector Machine (SVM) techniques are studied within the ML field, several other approaches also exist, characterized by 

a greater degree of simplicity when compared with NN and SVM. Despite this apparent simplicity, some of the ML 

techniques may be well-suited for quantitative analysis within the financial industry, as their capabilities for finding 

hidden patterns in large amounts of data may help in financial forecasting for trading. 

 Financial trading of securities using technical and quantitative analysis has been traditionally modelled by statistical 

techniques for time series analysis such as the ARMA (Box et al., 1994) and ARIMA models, and the more sophisticated 

ARCH technique (Engle, 1982). In contrast to these statistical approaches, complex models coming from the ML field 

have emerged attempting to predict future movements of securities’ prices (Yoo, Kim, & Jan, 2007). The extensive 

literature has shown how some ML techniques specializing in classification and regression tasks have demonstrated that 

they are well-suited for quantitative analysis within the financial industry, as their capabilities of finding hidden patterns 

in large amounts of financial data may help in derivatives pricing, risk management and financial forecasting. One of the 

most published projects that uses such techniques in financial applications is Standard & Poor’s Neural Fair Value 25 

portfolio (Smicklas, 2008), which selects on a weekly basis 25 stocks using an artificial NN, from a total of 3,000 stocks 



yield relative to that of the S&P 500 index, attempting to outperform the market by calculating a stock's weekly fair value 

based on fundamental analysis. Particularly for securities trading, the utility of complex models such as NN, SVM and 

hybrid models (Cai, Hu, & Lin, 2012) have been extensively studied and have led to promising results. Nevertheless, 

information regarding the incorporation of such methods into trading floor operations tends to remain hidden to the public, 

for commercial proprietary reasons (Yamazaki & Ozasa, n.d.)(Duhigg, 2006)(Patterson, 2010). 

In terms of financial trading, analysts in the industry (usually referred to as “quants”) have developed technical 

indicators that are used to identify the most suitable moments to open and close trades, and are possibly the most popular 

tools currently used in technical trading. Published research that aims to incorporate Computational Intelligence (CI) in 

financial prediction shows how those technical indicators have been used as inputs to ML models to find the hidden 

patterns or relationships among them, in order to predict future prices, trends or a percentage of confidence in those 

predictions. With the possible exception of long term averages, those technical indicators are constructed using 

information of prices over short periods in the past, no more than 20-30 trading periods in order to incorporate the 

historical behaviour in a single value. The selected trading period is part of the trading strategy and might vary from long 

frames of 1 day to small frames of 1 minute, or even smaller time windows as in the case of high frequency trading. The 

construction of such indicators can be seen as a process used in large scale time series data sets called dimension reduction 

(Wang et al., 2005) that attempts to transform the series to another domain seeking a version of the data set that might be 

much simpler to analyse. In contrast to time series analysis where the data set is seen as a whole entity, ML classification 

tasks construct independent instances that are representative examples of the concept to be learned.  

Financial predictions that incorporate ML approaches construct the training, test and off-sample data sets as a collection 

of instances using popular technical indicators as reported in a number of papers. Hence, an instance is created usually 

using the value of the current price and the instantaneous values of the mentioned indicators, generating a static picture 

of the situation of the market for the exact time that the instance is constructed. In this scenario, each instance, i.e. prices 

and their correspondent technical indicators used as attributes, becomes itself an independent example of the problem, 

which avoids the time dependence in the series, approaching the problem as simple classification task rather than a time 

series analysis in the strict meaning of the word. The hypothesis in this case is that once a ML model is trained, it may be 

able to classify individual instances using the technical indicators as attributes, due to the fact that those unseen instances 

represent in turn the invariant circumstances of the market at certain points in time, and that the result of the classification 

task can be interpreted as a trend forecast. The main implication of this hypothesis is that the financial forecasting can 

benefit from the use of simpler ML techniques rather than using complex time series analysis approaches, simplifying the 

use of computational resources while at the same time avoiding indexing and ordering issues in the data sets. 

This paper addresses the question of the usefulness of low-complex ML classifiers in financial trading, and in particular 

will demonstrate if such low-complexity binary classification approaches are able to generate consistent profitable trading 

over an extensive period of time. The paper’s main contribution resides in the fact that simple machine learning models 

that traditionally have been precluded from financial applications, as opposed to the more complex NN and SVM, can be 

used to generate profitable transactions on the long term with the correct combination of periodic retraining, training set 

size and attribute selection. The work is motivated mainly by the results reported in (Barbosa, 2011), which claims 

outstanding financial results using simple classifiers. In this case, a simple model is characterized by the low 

computational requirements for both the training and the classifying process due to the inherent simplicity of the learned 

model (instance-based classifiers, decision trees and rule-based learners). While the main objective of ML classification 

is to maximise accuracy, this might not be the best metric to evaluate the performance of such systems when used in the 

context of financial trading. The most important metric when assessing trading strategies is undoubtedly profitability, 

reflected in this paper as cumulative return over a specific trading period. In this paper, it is developed an empirical 

comparison between average accuracy and cumulative return as the main metrics of performance of a set of six machine 

learning models (OneR, C4.5, JRip, Logistic Model Tree, KStar and Naïve Bayes). The models produce a binary 

classification used later to predict price movement (up or down in the next trading period) for the USDJPY currency pair 

using six hour time frames over a trading time-frame of six years. The six hour time frame was selected to be able to 

validate and compare with the results reported in (Barbosa & Belo, 2008b), although the same approach used in the 

experiments can be applied to different time frames. A set of experiments was conducted where the results of modifying 

three variables were studied: training set size, period of retraining and number of attributes for the training and test sets. 

The results show relative low accuracy, only a few points over 50%, but at the same time, very promising results in terms 

of profitability. Later, further experiments are conducted on simulated trades over the same period of time using EURGPB 

and EURUSD currency pairs, and similar results are reported. 

The remainder of the paper is organised as follows: Section 2 discusses related work using ML in financial forecasting 

applications. Section 3 presents the general experimental setup, describing the data sets, and the attribute selection to feed 

the models and briefly describes the different ML algorithms used in the experiments as well as their particular parameter 

set up in order to present comprehensive information for future experiment replication. Section 4 discusses the results 

detailing each one of the simulated trading scenarios. Finally, Section 5 concludes the paper and explores future work.  



2. Machine Learning in Financial Forecasting 

Within the financial trading chain two main areas can be identified, where the use of ML techniques have reported 

particularly successful implementations: derivatives pricing, risk management and financial forecasting. Financial 

forecasting is possibly the most important application within ML for data mining in Capital Markets. ML techniques for 

forecasting include expert or rule-based systems, decision trees, NNs and genetic computing. Applications within the 

trading cycle such as Algorithmic Trading Engines1 and Order Matching Engines2 (Hendershott, 2003) have the potential 

to incorporate different levels of CI, and in particular ML techniques. The majority of existing ML-based methods for 

trading use technical indicators as part of the training attributes extracted from the financial series instead of using the 

raw prices as a training vector. Maggini et al. (Maggini, Giles, & Horne, 1997) had pointed out that there is an inherent 

difficulty in generating statistically reliable technical indicators, due to the fact that the rules inferred to produce accurate 

predictions are changing continually in financial time series, and that it is even possible to evidence the presence of a high 

number of contradictory instances in the training sets due to the fact that market data exhibit statistical characteristics 

found in other types of time series. This situation is reflected in the large volume of papers (Chen & Shih, 2006; Eng, Li, 

Wang, & Lee, 2008; Kim, 2003; Lee, Park, O, Lee, & Hong, 2007; S. Li & Kuo, 2008; Tenti, 1996) that have reported 

accuracies under 60% with ML models which have shown impressive performance in areas other than financial prediction. 

According to Sewell and Yan (Sewell & Yan, 2008), for certain markets such as futures and FOREX, it may be necessary 

to generate predictions with an accuracy marginally higher than the one obtained by a random classifier to obtain profits 

due to two main factors: low costs and leverage.  

Artificial NNs are probably the most common method utilized in financial forecasting. Early works such as that of 

Tenti (Tenti, 1996) compared the performance of three recurrent neural networks based on their returns in the simulated 

forecasts on currency futures. The inputs to the networks include technical indicators (average directional movement 

index, trend movement index and the rate of change). Tenti also takes into account trading costs, and reports positive 

returns in the trading simulation, demonstrating that NN techniques can indeed be used as forecasting tools. Wu and Lu 

(Lu & Wu, 2009) show another example of stock market forecasting with artificial neural networks. The paper compared 

a NN model’s performance against the ARIMA model, predicting the direction of future values of the S&P 500 Index. 

The experiments showed that the NN-based system outperformed the ARIMA model only in stable market conditions, 

since the system only exhibits a modest 23% level of accuracy against the ARIMA’s 42% in more volatile scenarios. 

Kamruzzaman & Sarker (Kamruzzaman & Sarker, 2003) compared the performance of the ARIMA model with several 

NN models when forecasting exchange rates of currency pairs in the FOREX market. The NNs were trained with back-

propagation, scaled conjugate gradient and back-propagation with Bayesian regularization, using exchange rates in the 

previous period and moving averages as inputs. The accuracy in the prediction as well as the normalized mean square 

error and the mean absolute error were used to measure global performance, showing that all NN models outperformed 

the ARIMA model with an accuracy of 80%. Taking into account that only the best results obtained were reported and 

that, in general ML techniques do not present high levels of accuracy with unseen data that differ significantly from the 

training sets, these impressive results must be considered with care. McDonald, et. al. (McDonald, Coleman, McGinnity, 

Li, & Belatreche, 2014), investigate the effectiveness of a number of machine learning algorithms and their combinations 

at generating one-step ahead forecasts of a number of financial time series. The authors found that hybrid models, 

consisting of a linear statistical model and a non-linear machine learning algorithm, are effective at forecasting future 

values of the series, particularly in terms of the future direction of the series. 

While artificial NNs are considered the most popular technique in financial forecasting, other reports also show 

promising results with different data mining models. Using SVM, Kim (Kim, 2003) attempted to forecast daily price 

directions of the KOSPI stock index. The model used technical analysis indicators (momentum, Williams %R and 

commodity channel index) as inputs and the best accuracy obtained after training several models with different parameters 

was 57.83%. The work also presented a comparison with the back propagation NN (with 54.76% of accuracy) and nearest-

neighbour model (51.98% of accuracy). This middle-range level of accuracy is expected due to the high volatility of 

financial time series, but to achieve it several models needed to be trained. This study concludes that no single model is 

perfectly suited in all market conditions, and even more importantly, the models must be retrained frequently to maintain 

the forecasts accurate. In another study, Tay and Cao (Tay & Cao, 2001) also compared SVM with back propagation NN 

to forecast prices of five types of futures contracts. On average, the SVM approach obtained better accuracy than the back 

propagation NN, but also in middle-range levels: 47.7% by SVM against 45.0% obtained by back propagation NN. SVM 

also outperformed a back propagation NN in the work presented by Chen and Shih (Chen & Shih, 2006), where these 

                                            
1  Algorithmic trading engines in the buy side, are essentially semi-automatic computer aided systems that help retail investors to take the best financial 

decisions in terms of high returns at lowest possible risks, and by means of programming specific rules the system are capable of transmitting pre- and 

post-trade data about quotes and trades to other market participants (Hendershott, 2003)(Chan, 2008). The literature also reports the use of algorithmic 

trading engines in the sell side, brokers and investment banks, to manage the vast amount of daily orders from the clients usually arrived before the 

market opening hours, deciding how and when to execute those orders taking into account existing regulations and at the same time, minimizing the 

effect on prices [53]. 
2 An order matching engine is a trading system that facilitates the exchange of financial instruments between multiple parties by means of a transaction 

algorithm that translates orders into trades pairing buyers with sellers in terms of transaction prices and quantities(Hendershott, 2003). 



techniques were used to predict the value of six Asian indices, obtaining 57.2% level of accuracy with SVM and 56.7% 

with NN models. 

Apart from NN and SVM, in the study presented in (Maggini et al., 1997) the authors proposed a heuristic method to 

select different inputs for a non-linear machine learning algorithm, discarding the option of time series prediction and 

limiting the problem to classification to determine the class of price variation, although there is no specification in the 

paper if the problem is restricted to a binary (up/down) or multi-class classification (up/down/stable) problem.  The 

selected method is the K-nearest neighbours with a sliding window dataset used to retrain the model at every time step. 

The metric selected to evaluate the performance was mean square error. The paper concludes that it is impossible to 

predict price variation with enough accuracy, discouraging the use of this approach and attributing the poor results to the 

weakness of the model and a poor selection of inputs that might affect the price movement. Nevertheless, the authors 

seem to be focused on accuracy and do not provide any financial results in the trading period used in the simulation. Li 

and Tsang (J. Li, Tsang, & Park, 1999) predicted expected return in the Dow Jones Industrial Average using Financial 

Genetic Programming, and compared it with random decisions and C4.5 decision tree classification. They used some 

simple technical indicators such as short and long term moving averages and long and short term price filters. The authors 

did not focus only on accuracy of predictions but also on annualized returns and positive returns of a simulated set of 

investments following the predictions. They reported over 60% in positive returns and over 40% in annualized returns 

over a trading period of four years for the Genetic Programming model and over 40% for the C4.5 decision tree. In both 

cases, the results represent an outstanding financial return even without taking into account trading costs, which suggest 

that technical indicators might generate profitable rule-based models to predict complex financial time series. 

Barbosa and Belo presented several reports using single agents to execute algorithmic trading in the FOREX Market 

(Barbosa & Belo, 2008b), a micro-society managing a hedge fund (Barbosa & Belo, 2010) and a multi-agent system for 

multiple markets trading (Barbosa & Belo, 2008a), focusing on profitability and maximum drawdown as performance 

metrics. The proposed architecture is divided into three modules in charge of (a) predicting the immediate next trend by 

means of an ensemble of binary classifiers, (b) a risk management module to decide how much to invest in each trade by 

a case-based engine that analyses past trades, and (c) a rule-based system, where a set of rules resulting from human 

experience can be incorporated to enhance the trading decision and add limit and stop-loss orders, trading and closing 

policies. The system performs learning by means of an update to the weighted ensemble according to the results of the 

individual simple ML models such as OneR, C4.5, JRip, Logistic Model Tree, KStar, NN, SVM and Naïve Bayes, and 

also retrains the classifiers at fixed periods to adapt to new market regimes. What is interesting in this development is that 

even though the classifier module only produced a not very impressive 52.74% accuracy, the complete system produced 

a success rate of 66.67% in profitability over the tested period, performing fewer but more profitable trades and avoiding 

trades that were expected to be unprofitable due to the combination of the different modules, with a high level of 

automation. 

In all these works, there is a general agreement in favour of the use of ML models for performing financial forecasting. 

Most articles report positive results and may be seen as empirical evidence against the efficient market hypothesis3, to 

demonstrate that there is some predictability of market prices based on historical data (J. Li et al., 1999). With the possible 

exception of the work presented by Barbosa and Belo, in general all the reviewed reports focused on the use of 

sophisticated data models such as NN, SVM and genetic programming approaches, using technical indicators as inputs. 

These approaches are shown to be well-suited for financial data modelling and forecasting, but still there is a need to 

study in depth the capabilities and limitations of these techniques for one of the most competitive industries in the world. 

The lack of reports that explore data mining approaches with an inherent simplicity of the learned model such as instance-

based classifiers, decision trees and rule learners to generate consistent profitable trading suggest the further exploration 

and discussion in this area, and is the main motivation for this paper. Additionally, it is important to establish a relationship 

between accuracy and profitably in ML-based trading, due to the fact that financial trading incurs considerable costs, 

which must be included in the assessment of any new technique. 

3. Experimental Setup  

In order to validate the assumption suggested by Barbosa and Belo in (2008a) where low complexity ML models can 

be used to trade in a consistent profitable fashion, a multiagent system is implemented to carry out a series of trading 

simulation experiments over a two year period. A six hour time frame gives the opportunity to open and close trades four 

times per day, expecting greater price movements during the interval, and consequently opening the possibility to obtain 

                                            
3 The financial industry still debates the idea of accepting that there is no possibility to “beat the market” and in consequence, that instrument prices are 

not predictable. In other words, that is impossible to be able to obtain a consistently return higher than an index growth with a simple buy-and-hold 

strategy (Becket & Essen, 2010). The efficient market hypothesis claims at any given point in time, an instrument’s price always fully reflects all the 

information available. The random walk hypothesis says that stock prices follow a random walk model, i.e. the variations in price from one time step 

to the next one are completely independent. The martingale hypothesis suggest that forecasting based on historical prices is ineffective(Becket & Essen, 

2010). However several famous investors (Ellis, 2001), have been successful for decades making profitable financial forecasts, something that should 

not be possible if asset prices were completely random. 



greater profit per trade on average compared to low range time frames such as 1-hour or less. At the same time, as 

suggested in (Barbosa & Belo, 2008a), the convenience of selecting six-hour time frames, starting at midnight, will 

guarantee that the trades do not coincide with the traditional times where major reports are released such as the Nonfarm 

Payrolls Employment or the interest rates, avoiding the high volatility associated with those events that impact directly 

in slippage4.  

The multiagent system is built using a JAVA-based multiagent framework called BESA (González, Avila, & 

Bustacara, 2003). The Organizational Approach for Agent Oriented Programming methodology proposed by (González 

& Torres, 2006) was followed. The machine learning models used in these experiments to predict price trends were 

integrated in the agents’ forecasting modules using the WEKA toolbox (Witten et al., 2011). Given the “open-source” 

nature of the tool, WEKA-based classifiers are imported and instantiated as JAVA objects, providing a seamless 

integration with a custom application, great flexibility and simplified implementation, focusing the efforts on the feature 

extraction task. 

 

Figure 1. Trading Engine - A Multi-agent system composed of two agents. A trading agent in charge of predicting price trends and generating market 

orders. A market agent is in charge of keeping track of an order book and sends market information using a historical data base. 

Figure 1 depicts the general architecture of the system, where two agents are shown: a Market Agent and a Trading 

Agent. The role of the Market Agent is to encode financial information using Japanese Candlestick charts (open, low, 

high, close prices at the pre-defined 6-hour time frames) and a 32-bit UNIX timestamp. Additionally, the Market Agent 

sends the instrument information to the Trader Agent, and maintains an order book to keep track of the orders as well as 

the profits of the client (Trader Agent).  

The Trader Agent receives information about the state of the market as raw price data in Japanese Candlestick format, 

and outputs market orders to open and close trades at every trading period. An internal pre-processing module is in charge 

of calculating different technical indicators as part of the feature extraction task, which serve as an input feed to one of 

the six classifiers selected. The classifier module in turn is in charge of generating a price trend forecast for the next 

trading period: “the price will increase in the next trading period” or “the price will decrease in the next trading period”. 

Finally, using the result of the classifiers, the Trader Agent generates opening and closing orders and sends them to the 

Market Agent. The ML models inside the Trading Agent are set up to produce a binary classification output predicting 

the direction of the price of the financial instrument of interest for the next trading period. The classification results are 

used to decide if the instrument should be bought (long trade) or sold (short trade). The first set of experiments included 

six different models trained with historical exchange data of the USDJPY currency pair. Details on the particular set up 

(attributes and training parameters) are discussed in the following sections.  

3.1. Data Set and Attribute Selection 

From the raw prices data, nine attributes are constructed off-line to build the attribute vectors that comprise the initial 

training set. The particular attribute selection is based on (Barbosa & Belo, 2008a), which suggests that the integration of 

a diverse types of features such as seasonality features, lagged values and technical indicators such as moving averages, 

                                            
4 Slippage is defined as the difference between the expected price for a trade and the effective price at which it is executed. In FOREX, slippage often 

occurs at high volatility periods where the prices exhibit unexpected movements, generally during news events releases, which makes very difficult to 

execute an order at a specific price. Slippage in the trading of stocks is related to the spread between the ask and bid prices, usually at execution of 

market orders at the time of a spread movement generally caused by the presence of large orders executed when there is not enough buyers/sellers to 

fill the desired price level to maintain the expected price of trade. 



RSI and WR, are used in the construction of the models to enhance the classification capabilities in both the training and 

prediction processes. The characteristics of the data and the selected attributes are shown in Table 1: 

Table 1. Description of the Training and Test Sets – No-retrain experiments 

 

The nine attributes are calculated off-line for the training set derived directly from the historical price information. The 

trading simulation is performed using a test set comprised of off-sample instances covering a two year period as described 

in Table 1. For the test set (off-sample data), the trader agent is in charge of calculating the corresponding attributes every 

new trading period. The particular details of the selected attributes are:  

• HOUR: time of the day in when the instance is captured, e.g., trading fixed 6-hour time frame. The possible 

values are: 0, 6, 12 and 18. 

• DAY_OF_WEEK: nominal attribute represented as a list of nominal labels, i.e., {Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday, Sunday}. The last two attributes are selected taking into account seasonality factors 

in the price change (Nawaz & Mirza, 2012) (Maggini et al., 1997). 

• CLOSING_PRICE: numeric attribute that represents the price of the instrument at the end of the trading period. 

• PERCENTAGE_PRICE_CHANGE: this numeric attribute describes the relative change in the price during the 

current trading period given by equation (1). 

ppci+1 = ((closePricei+1 - closePricei)/ closePricei ) × 100 (1) 

• LAGGED_PERCENTAGE_PRICE_CHANGE: This numeric value is used in time series analysis such as 

ARIMA to integrate to values of the past values of the series. In this case, the lagged percentage price change 

will be described by the preceding period percentage price change as: 

 (2) 

• LAGGED_PERCENTAGE_PRICE_CHANGE_MOVING_AVERAGE: this numeric attribute is calculated 

constructing the average of prices changes in the last n periods, given by: 

lagged_ppci= ppci-1=((closePricei-1 - closePricei-2)/ closePricei-2 ) × 100 (3) 

• WILLIAMS_%R: this numeric attribute represents a technical indicator whose value oscillates between 0 and -

100. When Williams %R oscillator is below -80 or over -20, it means that the instrument is oversold or 

overbought respectively. The Williams %R compares the closing price in the current period with the lowest and 

highest prices in the last n periods and it is calculated as: 

williams_R(n)i=   ((closePricei-1 - highn)/( highn - lown ))×100 (4) 

• RELATIVE_STRENGTH_INDEX: this attribute is also a technical indicator which compares the magnitude of 

recent gains to recent losses in an attempt to determine overbought and oversold conditions of an instrument. 

The relative strength index oscillates from 0 to 100 and indicates an overvalued asset when its value reaches 70 

and therefore a price drop is expected, or otherwise if the index reaches 30 it indicates that the asset may be 

undervalued and a price rise will occur. The relative strength index is calculated: 

relative_strength_index(n)i=100 - 100×( 1/(1-RS(n)i) (5) 

RS(n)i indicates a ratio between the average of past n periods where the price increased and the average of n 

periods where the price decreased, given by equations (6), (7) and (8): 

 RS(n)i =UP_avg(n)i/DOWN_avg(n)i (6) 

UP_avg(n)i=(Σk(closePricek - openPricek))/n (7) 

where k is a period characterized by the close being higher than the previous close, and 

DOWN_avg(n)i=(Σj(openPricej - closePricej))/n (8) 
where j is a period characterized by the open being higher than the previous opening price. 

• CLASS: The class will be defined as a nominal feature that is attempted to be classified by the ML models. It 

shows the direction that the price will take in the very next trading period. The labels for the class are UP and 

Number of Instances Period

Training Set 5191 Wednesday, 02 January 2002 00:00:00 - Friday, 29 December 2006 18:00:00.

Test Set (Off-Sample Data): 2510 Thursday, 18 January 2007 12:00:00 - Monday, 22 Jun 2009 00:00:00.

Nine attributes

Attributes

Hour, Day of the Week, Closing Price, Percentage of Price Change, Lagged Percentage of Price 

Change, Lagged Percentage of Price Change Moving Average (10 periods), Relative Strength Index, 

Williams %R, Class.

USDJPYCurrency:



DOWN, describing if the closing price is expected to rise or decrease compared to the opening price in the very 

next trading period respectively.  

3.2. Performance Metrics 

Many different techniques have been proposed to evaluate the performance of classifiers, such as repeated cross-

validation which is probably the one of the most popular choice especially in a situation with limited-data. In theory, a 

cross-validation procedure delivers a more confident metric on the future performance of a particular model over unseen 

new data while at the same time provides a consistent procedure to compare the classification capabilities for different 

models applied to the same problem. Initially, a 10-fold cross-validation was used to assess classification capabilities 

measuring the accuracy (not the profitability) of the models in the retraining experiments. Every retraining procedure 

returns a rate of success from a 10-fold cross-validation routine using the current sliding window as a training set. Finally, 

all the individual values from each training are averaged to present an expected performance metric of the models. The 

average 10-fold cross-validation value for each experiment set-up is finally presented as an evaluation metric in the 

general results. 

The financial prediction problem must be assessed also from a different perspective due to problems that can invalidate 

the prediction results such as bias, variance and data snooping. One of the main issues in ML is to find a trade-off between 

bias and variance (Witten et al., 2011). Bias is understood as the error rate, i.e. the proportion of wrongly classified 

instances over a whole data set. Variance is the error that results from perfectly fitting an over-complex model to a finite 

data set, which might not reflect the whole set of patterns present in the universes of instances for a particular application. 

In these experiments the use of reduced training sets during retraining does not reflect patterns in a global wider historical 

data set, but in turn will locally minimise the bias deliberately avoiding a variance minimisation mechanism during 

predictions made in between retraining periods. Therefore, periodic retraining allows the adjustment of the bias of the 

models in the short term, while at the same time addressing variance in the long term, avoiding the need of using a larger 

sample of the time-series to build the models (Maggini et al., 1997). This situation is especially desirable in financial 

forecasting, where the time-series are influenced by many factors than can possibly be captured by a comprehensive set 

of technical indicators (Maggini et al., 1997).  

The approach followed in this paper uses the same data set at each iteration of parameters, situation usually associated 

with data snooping. According to White (2000), this problem is virtually impossible to avoid in time series analysis, and 

especially in financial analysis due to the existence of an unique set of historical data. The approach used in this paper is 

entirely empirical in the sense that the variation of parameters in each experiment attempts to observe the impact in the 

selected metrics rather than being an attempt to prove the model validity or performance.  

To minimize the effects given by data snooping a modified procedure of the leave-one-out cross-validation is used. In 

the traditional approach of the leave-one-out cross-validation, each instance in the dataset is left out once and the training 

is performed on all the remaining instances. The results of all classifications, one for each instance in the dataset, are 

averaged to obtain the error estimate. In this experiments a retraining procedure is effectuated at predefined periods of 

time. During each retraining, the first instances in the training set are replaced with the latest and more up-to-date instances 

and the classifiers are discarded and reset using the new training set. This can be seen as a leave-n-out over a sliding 

window where n is the retraining period. This procedure ensures unbiased results because the training data is kept 

separated from the test data and the results of classification over the test data results are never used for optimization as in 

other ML applications where the optimization is desirable as new data is being processed. In this sense, the models receive 

unseen data to classify which in theory do not exist because they represent points in the future, approaching the evaluation 

of the classification capabilities to the usage that the models would experience in real life trading while at the same time 

avoiding the effect given by data snooping, i.e. a forward-testing mechanism as opposed a back-testing mechanism. Using 

the leave-n-out over a sliding window, allows to calculate the cumulative accuracy along the trading period, which is used 

in this study to validate the different models, which in addition incorporates the temporal component to the assessment 

as it evaluates performance over time.  

It is important to note that for trading applications, higher accuracy in predictions does not always imply higher profits. 

If the returns obtained in a series of successive trades are not high enough to overcome the associated trading costs (among 

others: commissions, spreads and slippage) any trading strategy will eventually lose money, even though the strategy 

seemed to be profitable on paper. In this sense, the cumulative return over an extensive period of time represents a more 

adequate metric for this type of study. Cumulative return takes into account the underlying accuracy of the predictions 

that triggered the series of trades. In addition, it also represents a weighted average of the successful rate as the positive 

predicted trades are associated with the individual profit obtained. Financial trading strategies are to be evaluated by 

observing their historical trading track records, so the returns are mandatory, which in turn represents a clear and simple 

performance of investment indicator of interest for financial traders. The results of the trading simulations are assessed 

using the following metrics: 

• Accuracy (%): percentage of accurate predictions for the entire trading period. 

• UP_Accuracy (%): percentage of accurate UP predictions for the next trading period. 



• DOWN_Accuracy (%): percentage of accurate DOWN predictions for the next trading period. 

• Cumulative Return (%): percentage of return accumulated at the end of the trading cycle. The cumulative return 

for the i-th period is calculated as: 

CumulativeReturni = (1+CumulativeReturni-1 ) × (1+Returni ) - 1 (9) 

• Maximum Drawdown: The maximum drawdown measures the historical maximum peak-to-valley decline of an 

equity value or in a trading strategy using the cumulative returns to keep track of the movements. In other words, 

the maximum drawdown indicates the maximum accumulated loss the trading agent experienced while trading. 

• Average Return per trade: indicates the average return obtained in all the trades at the end of the trading cycle. 

• Long_Accuracy (%): Long accuracy is tied to the UP_Accuracy since an UP prediction will produce a buy order 

(long trade). The long accuracy will measure the percentage of those trades that actually presented positive profit 

without taking into account trade costs.  

• Short_Accuracy (%): the short accuracy is tied to the DOWN_Accuracy since a DOWN prediction will produce 

a sell order (short trade). The short accuracy will measure the percentage of those trades that actually presented 

positive profit without taking into account trade costs.  

3.3. Machine Learning Classifiers 

From the extensive spectrum of data mining algorithms, six models are used in the study presented in this paper to 

generate the financial prediction capabilities. In addition to their inherent simplicity, the selection of the algorithms was 

made in a way that ensured a representative algorithm coming from several approaches traditionally used in data mining 

was present in the experiments: instance-based classifiers (also called lazy models), decision trees and rule learners. The 

agents’ decision modules are built using the WEKA library5 (Witten et al., 2011). Before discussing the experiments 

related to financial prediction, it is important to mention the basic characteristics and set-ups used for the classifiers in 

this work.  

The naïve Bayes is an instance-based classifier which generalization rules are derived from the Bayes’ theorem of 

conditional probability. For nominal or discrete attributes, the probability of an attribute to belong to a particular class is 

calculated by determining their relative frequency in the training set. On the other hand, numeric attributes can be 

discretized and treated similar to nominal attributes, or otherwise, it is assumed that the values of the attributes follow a 

particular probability distribution function. In this paper, the normal distribution was assumed to model the numeric 

attributes.  

The K* model (Cleary & Trigg, 1995) is also an instance-based classifier that tests a new instance by determining 

those instances in the training set that are closer to it using a similarity measurement, and assigning the predominant class 

to the new instance. The distance between two instances in K* is calculated by measuring the “complexity” of 

transforming instance a into instance b using a sequence of predefined operations and calculating the probability of the 

occurrence of the sequence if the operations are chosen randomly. An important parameter is used in the calculation of 

probabilities called “blending parameter”. Selecting the same “blending parameter” for all the attributes gives equal 

weighting to each one of them, and is usually the approach used when applying the K* algorithm. WEKA gives the option 

of setting the blend parameter for the experiments, and in this work, it was set at 20%. The experiments were conducted 

with the Blend setting modes parameter set to “spherical”. 

The C4.5 (Quinlan, 1993) is an internally structured tree, in which each leaf represents a classification, while the 

branches that connect the leaf to the root node equate to conjunctions of conditions that lead up to that classification. The 

C4.5 algorithm makes use of entropy to grow the tree iteratively from the training instances separating the training 

instances into different branches, according to the values of a specific attribute until all the instances in the branch belong 

to the same class or when none of the potential splits results in an information gain. For the WEKA usage of the C4.5 

classifier, the confidence threshold for the pruning parameter was set to 0.25, and the minimum number of instances 

accepted per leaf was set at 2.   

Logistic Model Tree, LMT (Landwehr, Hall, & Frank, 2005), is a classifier that implements two models for 

classification: linear logistic regression and tree induction. The implementation of WEKA uses the LogitBoost algorithm, 

as a numeric optimization tool to estimate the parameters needed in the logistic regression procedure. To find a root node, 

the LogitBoost algorithm is run over the training set to build a logistic regression model in a five-fold cross-validation 

iterative process. The data are then split using the C4.5 criterion discussed previously. The building of the model and the 

splitting of the data are continued as long as there are at least the minimum number of instances (set as parameter) present 

at a node. For the experiments conducted in this paper, the parameters required by the WEKA API were: the number of 

iterations for LogitBoost set to 1, the minimum number of instances at which a node can be split set to 15, the weight 

trimming for LogitBoost was set to 0 for no weight trimming. 

                                            
5 WEKA information, API and source code is available at: http://www.cs.waikato.ac.nz/ml/weka/ 



The Repeated Incremental Pruning To Produce Error Reduction – RIPPER – rule learner (Cohen, 1995), takes one 

class at a time, and attempt to create a rule that covers as many instances of that class as possible, by iteratively adding 

conditions to it that apply only to the class being targeted. The method for picking the best attribute is based on 

maximization of the accuracy for the class under scrutiny. Rules are created greedily adding antecedents to a rule until it 

becomes 100% accurate. In each iteration, the condition to be added is selected by testing every possible value for each 

attribute, and picking the condition with the highest information gain. The parameters used in the WEKA implementation 

were: number of folds set to 3, the minimal weights of instances within a split set to 2, the number of runs of optimizations 

set to 2 and the seed for randomization set to 1. 

4. Experimental Results: Trading Simulations  

A preliminary set of experiments was conducted where the Trading Agent trained a specific ML model and posteriorly 

simulates a total of 2,510 trades over the whole test set period shown in Table 1. The results in this scenario were poor in 

terms of both accuracy of the predictions and cumulative returns. A subsequent set of experiments was conducted where 

periodic retraining was used while investigating the performance effect of varying three variables: retraining set size, 

period of retraining and number of attributes. The inclusion of periodic retraining in the models has shown that profitable 

trading can be achieved by selecting a trade-off in these variables, which might be different for each ML model.  To 

validate these experiments, the same procedure was used to simulate trades using GPBUSD and EURUSD currency pairs. 

4.1. Single Training Experiments 

The first set of experiments consists of an initial training of the ML models using the entire training set described in 

Table 1 with a total of 5,191 instances. Once the models are built, the Market Agent feeds the Trader Agent with the price 

information from the off-sample data. The system simulates the trading activity for each one of the selected ML models 

and generates as output the final order book with the respective trades at the end of the off-sample period. 

  Table 2 presents the trading results for the six machine learning models and an additional random trader. As can be 

seen, the accuracy of the models is not higher than 51.5%. Intuitively it is possible to think that an accuracy of 

approximately 50% in trading is not better than a random guess, as suggested by the results obtained in the cumulative 

returns which are similar to the negative profits obtained by the random trader. Surprisingly, OneR being the simplest 

classifier, obtained positive cumulative return at the end of the trading cycle as opposed to the results shown by the other 

classifiers using the same setup. OneR constructed its model based on the Williams %R oscillator, generating a complex 

set of more than 200 conditions to test the generated prediction rule creating fine grain set intervals while the value of the 

indicator might fall when applied to unseen instances. The question that arises at this point is whether the OneR classifier 

is indeed able to identify the most meaningful attribute to predict the behaviour of the price for the next trading period, 

or if in this particular case, are the good results a are consequence of mere luck. 

It is worth to note form Table 2 is how comparable accuracies, e.g. between K* with 49.84% and JRip with 49.76%, 

leads to considerably different cumulative returns of -13.59% and -22.08, respectively. The same case is observed for the 

C4.5 and OneR which have comparable accuracy, 51.08% and 51.27% respectively, yet considerably different cumulative 

returns of 1.2% and 31.96%. Even though the final accuracy seems to be comparable, the return per trade is showing that 

the K* was less prone to lose money than the JRip in the first case. While it is true that OneR’s accuracy is not significantly 

higher than the other models, what captures attention is its positive average return per trade of 0.0119%, significantly 

higher than the rest of the classifiers, and which made the model profitable at the end of the trading cycle. Data not present 

in Table 2 showed that the average return per trade is 0.06537% for the long trades and 0.2691% for short trades, which 

means that the OneR classifier was extremely profitable in downwards periods for this particular experiment. For the 

other classifiers, while prediction accuracies may be similar to those observed in the literature (Chen & Shih, 2006; Eng 

et al., 2008; Kim, 2003; Lee et al., 2007; S. Li & Kuo, 2008; Tenti, 1996), the average return per trade does not allow the 

models to have a positive return at the end of the trading period. These initial results suggest that it is possible to generate 

positive return with modest middle range accuracy. The premise in (Barbosa & Belo, 2008b) points out that a low value 

of accuracy, such as the ones observed in Table 2, is not necessarily a bad situation if the return per trade resulted from 

the correctly predicted trades are profitable enough on the long term to overcome the loses of those trades incorrectly 

predicted. This situation is precisely what an investor would expect in real life trading, where an individual cannot win 

all the time, just expect to be profitable when trades go well. In these experiments the cumulative return is calculated as 

a relative metric that is updated every period including the profit of the last trade as shown in equation (9).  



Table 2. Simulation results of the USD/JPY trading agents, Single training at inception. 

 

Figure 2 presents a detailed cumulative accuracy during the first 100 periods. As one can expect according to the results 

of Table 2, all the models tend to reach steady values of approximately 50%, but also an interesting feature can be noted: 

the first 50 trading periods after the initial training showed accuracies over 60% for most of the models, specifically for 

Naïve Bayes, OneR, K* and JRipper. Consequently, it could be presumed that if a periodic retraining process is executed 

after n periods (with n approximately less than 50), the cumulative accuracy may perform similar to the initial period and 

thus sustain a higher average than the 50% obtained for the single training case. 

   

Figure 2. Cumulative Accuracy Single training experiment, first 100 trading periods. 

4.2. Retraining Experiments 

The hypothesis that periodic retraining may increase the average accuracy, motivated the next set of experiments where 

the retraining period was varied as long as two different sets of attributes were used to create the instances, as shown in 

Table 3. While the previous experiment followed the set up proposed in (Barbosa & Belo, 2008b), at the time of 

conducting the experiments for this paper, several more years of data were available. Information of prices of four 

additional years were included in the test set.  

Table 3. Description of the Training and Test Sets – Retraining experiments. Two sets of attributes were used 

 

Ticker

Training Set Size

Attributes

Accuracy
DOWN 

Accuracy
UP Accuracy

SHORT 

Accuracy

Long 

Accuracy
MAXDD

Average 

Ret/Trade

Cummulative 

Return
Trades

(%) (%) (%) (%) (%) (%) (%) (%)

K* 49.84 50.72 49.14 49.02 49.14 29.68 -0.0068 -13.59 2510

C4.5 51.08 53.06 50.20 51.89 50.20 23.32 0.0034 1.20 2510

Jrip 49.76 50.59 49.02 49.41 49.02 33.10 -0.0090 -22.08 2510

NB 50.60 51.65 49.83 50.61 49.83 34.30 -0.0132 -26.45 2510

LMT 50.92 52.96 50.06 52.15 50.06 26.71 -0.0054 -10.46 2510

OneR 51.27 50.06 52.96 50.98 50.43 13.13 0.0119 31.96 2510

Rand 48.49 47.58 49.34 48.26 47.58 39.59 -0.0142 -31.47 2510

Model

USDJPY

5242

Attributes : <hour>,<day>,<closing_price>,<ppc>,<lppc>,<lppcma>,<RSI>,<Williams%R>,<class> (9 attributes)

Number of Instances Period

Training Set 5242 Wednesday, 02 Jan 2002 00:00 - Thursday, 18 Jan 2007 06:00

Test Set (Off-Sample Data): 6442 Thursday, 18 Jan 2007 12:00 - Wednesday, 17 Apr 2013 00:00

Five attributes

Nine attributes

Hour, Day of the Week, Lagged Percentage of Price Change, Percentage of Price Change Moving 

Average (10 periods), Class.

Hour, Day of the Week, Closing Price, Percentage of Price Change, Lagged Percentage of Price 

Change, Lagged Percentage of Price Change Moving Average (10 periods), Relative Strength Index, 

Williams %R, Class.

Currency: USDJPY

Attributes



 

Figure 3. Cumulative Accuracy for financial prediction of USDJPY discriminated by the machine learning models in the first 150 trading periods, for 

periodic retraining every 50 periods and incremental training set size. Accuracies for the different classifiers tend to flatten at the final average value 

from early times in the trading periods which consisted in a total of 6442 points in time. 

4.2.1. Periodic Retraining every 50 periods, Incremental Training Set Size, 9 attributes 

A first periodic retraining experiment was executed, setting the retraining period to 50 trades. The training set size was 

incrementally grown incorporating the information of the past 50 trading periods as new training instances. As expected, 

the time consumed in retraining the models was also incremented every new iteration. Contrary to what was expected, 

the cumulative accuracy did not show the expected recovering behaviour at the retraining points. The tendency to flatten 

around the 50% for the average accuracy has persisted. Figure 3 shows the cumulative accuracy for the retraining period 

n=50 and incremental training set size since inception for the first 150 trading periods. 

Table 4 presents the results obtained for retraining the models every 50 trading periods with an incremental training 

set size. An increment of two points in the total average accuracy was reached for all the models with the exception of 

the OneR classification which decremented its average accuracy. Additionally, C4.5, JRipper and LMT obtained positive 

returns, although not significant for a trading period of almost six years. Given the results of Table 4, it is clear that the 

incremental augmentation of the size of the training set did not show a major effect on the average accuracy. On the other 

hand, it had a significant effect on the cumulative return reflected on the average returns per trade. This general increment 

in the profits may be caused by the fact that the periodic retraining allowed the models to learn new unseen patterns in 

the price trend. This characteristic seems to be critical when trading during 2008 and 2009, years where the financial 

system suffered erratic behaviours and high volatility. 

The training set is incrementing its size every retraining procedure; thus it is also possible to infer that a big set of 

instances used for retraining might be generating noisy information in the construction of the models, due to the fact that 

the patterns in the distant past might be poorly related to the current situation of the market and in some cases opposite 

relationships might be encountered in the training set. The simple models used in these tests might not be able to generalize 

rules from such a large amount of data. Cumulative results obtained by Naïve Bayes, OneR and K* may be evidence of 

this assumption. 

Table 4. Prediction results for USDJPY. Retraining period = 50, Retraining test size = incremental since inception, 9 attributes 

 

Ticker

Retrain Set Size

Retrain Periods

Attributes

Accuracy
DOWN 

Accuracy
UP Accuracy

SHORT 

Accuracy

Long 

Accuracy
MAXDD

Average 

Ret/Trade

Cummulative  

Return

Long 

Average 

Ret/Trade

Short 

Average 

Ret/Trade

Trades

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

OneR 49.86 51.19 48.59 48.61 48.71 31.59 -0.0005 -7.22 -0.0032 0.1560 6441

C4.5 52.25 54.57 50.78 52.39 50.74 20.28 0.0104 87.50 0.0065 0.3000 6441

Jrip 50.81 52.17 49.54 51.34 51.05 23.13 0.0042 25.81 0.0015 -0.0239 6441

LMT 52.84 54.58 51.41 51.41 52.34 22.42 0.0048 30.98 0.0019 0.0213 6441

Kstar 50.73 52.05 49.45 50.33 49.88 37.21 -0.0002 -5.17 -0.0028 -0.1077 6441

NaiveBayes 52.59 53.42 51.51 50.98 51.26 41.07 -0.0034 -23.13 -0.0070 -0.1716 6441

Model

USDJPY

Incremental

50

Attributes : <hour>,<day>,<closing_price>,<ppc>,<lppc>,<lppcma>,<RSI>,<Williams%R>,<class> (9 attributes)



4.2.2. Experiments with variable Retraining Set Size (sliding window), Retraining Periods and Number of 

Attributes. 

Periodic retraining improved the average accuracy and cumulative profits, but the incremental size of the training set 

size may be affecting the classifiers’ performances in a negative way. While it is important to give the opportunity to the 

models to learn unseen patterns in the price trends, at the same time, it will be desirable that they are able to predict using 

a more “up to date” training set that represents a fresher situation of the market without taking into account particular 

conditions located too far in the past. Thus in further tests, four sizes in the training set were selected using the last n 

instances using a sliding window approach, trying to cover a range of training set sizes. The selected values where n = 

[500, 1000, 2000, 4000]. The retraining period is being also varied every 5, 10, 15 and 20 trades, and the instances are 

constructed using both sets of attributes shown in Table 3. It is important to clarify that the objective of varying the 

parameters was not to optimize, but an empirical evaluation of the effects on models prediction performance at varying 

the retaining period and the number of attributes. A heuristic approach was used to vary the parameters. In total 12 

different setups were used to cover different combinations of the variables in order to visualize the effects of these 

parameters in the model predictions and the subsequent simulated trades, i.e. small retraining set size with frequent 

retraining, medium training set size with higher period and the use of both five and nine attributes, and large retraining 

set size with less frequent retaining. Table 5 presents a consolidated summary of the 12 different configurations used for 

the experiments. In all the cases the average accuracy was not higher than 55% for the USDJPY data set, but on the other 

hand, the cumulative profit was greatly improved. 

A group of experiments was conducted with a retraining set of size 500, setups 1, 2 and 3 in Table 5. Retraining every 

five trading periods and using five attributes, presented similar effects compared to the results obtained with a retraining 

period of 10. Average accuracies experienced an increment in one or two points compared to the results observed in Table 

4 that use an incremental training set size, reaching values of approximately 52-53% with the exception of OneR that 

maintained an accuracy between 49-50% while at the same time decreasing drastically its cumulative return. What is 

notable is the substantial increment in the cumulative return for the rest of the models. When retraining occurs every 15 

periods using nine attributes, the average accuracies experienced a slight decay, reflected as well in the cumulative profits 

at the end of the trading season. Eventhough OneR experienced an increment of one point in its accuracy and a substantial 

increase in the cumulative return, it is still negative. K* presents a reversed behaviour observed in 49.7567% of accuracy 

while maintaining a high positive cumulative return.  

The next group of experiments were conducted using a retraining set of size 1000 instances, the results are presented 

in setups 4 to 9 in the Table 5.  Setup 4 with a retraining period of 10 and using five attributes, exhibited that the OneR 

classifier benefited from the increased size of the training set compared with the previous setup presenting a slight upturn 

in the accuracy but on the downsize, it experienced a reduction its cumulative return, which might suggest that the rule 

learned from a smaller set of attributes is not adequate to generate profits. OneR – One Rule, selects minimum-error 

attribute for prediction. For this classifier, a greater training set might include higher error values as the number of training 

instances increased or at the same time, if the number of attributes is incremented, because just one of the attributes may 

not exhibit enough correlation with the prediction of the class. K* did not seem to perceive substantial improvements 

over the previous setup but again presented a reverse effect when compared with the case of using nine attributes while 

maintaining the retraining set size and the retraining periods, although it continued presenting positive returns for all the 

setups using 1000 instances for the training set. For the rest of the models, the increment in the training set, compared 

with size 500, as well as the reduction of the number of attributes generated beneficial effects in the average accuracy and 

cumulative profit. What is starting to appear is the fact that higher accuracy may not imply higher return. This is the case 

for K*, which showed an accuracy of 49.76% and a cumulative return of 62.47% in setup 3, but exhibited 49.30% 

accuracy with an impressive 130.74% cumulative return for the setup 6. The opposite effect is observed with JRipper, 

which obtained 51.92% accuracy with 41.86% cumulative return in setup 3, and 52.32% accuracy with a smaller 12.46% 

cumulative return in setup 7.  

A more frequent retraining seems to have a positive effect on the general classifier performance, but at the same time, 

having a bigger retraining set compared to the previous set up may produce positive results as well. Naïve Bayes uses 

normal distribution to estimate the weights of the numeric attributes and a conditional probability derived from the 

frequency of occurrences for the nominal attributes, thus the bigger training set size will imply wider normal distribution 

shapes since the longer the training periods, the more prone they will be to exhibit different financial time series regimes. 

A smaller training set may produce values more closely related to the current trend in the prices, and thus, the model can 

exhibit higher accuracy. A longer retraining period of 15 using nine attributes per instance used in setup 6, also exhibits 

a slight increase in most of the accuracies. K* presented an impressive cumulative return of 174.64%, higher than the one 

obtained in other setups which may suggest that this model is better at generating more profitable trades when using the 

set of nine attributes. The less frequent retraining points seems to affect the JRipper model which was more capable of 

generating profitable trades retraining every 10 periods instead of 15. LMT seems not to be greatly affected by the change 

in the number of attributes. Naïve Bayes and C4.5 tend to be more accurate and more profitable with a reduced set of five 

attributes in all the experiments so far.  



Table 5. Consolidated results for the experiments with variations in retraining set size, retrain period, and number of attributes. 

 

OneR C4.5 Jrip LMT Kstar NaiveBayes

Accuracy 49.29 53.38 51.79 53.17 51.79 52.99

DOWN Accuracy 48.35 52.82 51.01 52.86 51.19 52.25

UP Accuracy 50.16 53.82 52.43 53.39 52.81 53.65

10-Fold Cross-Val. 53.71 51.90 53.51 53.31 48.90 50.90

Cumulative Return -55.79 116.88 18.25 106.17 69.94 142.89

Accuracy 49.56 52.97 51.41 53.00 51.48 52.74

DOWN Accuracy 48.61 52.35 50.59 52.64 51.16 51.98

UP Accuracy 50.41 53.48 52.05 53.25 52.77 53.42

10-Fold Cross-Val. 51.70 52.10 52.71 52.30 52.71 51.30

Cumulative Return -53.02 116.04 6.97 107.96 64.02 123.55

Accuracy 50.49 52.00 51.92 52.76 49.77 52.20

DOWN Accuracy 49.61 51.29 51.29 52.33 50.44 51.50

UP Accuracy 51.36 52.53 52.34 53.04 52.06 52.75

10-Fold Cross-Val. 51.30 49.10 51.90 51.10 51.90 53.31

Cumulative Return -14.69 18.61 41.86 41.48 62.47 54.76

Accuracy 50.01 53.89 52.37 53.72 51.01 53.58

DOWN Accuracy 49.11 53.18 51.53 53.57 51.29 52.86

UP Accuracy 50.87 54.53 53.16 53.82 52.94 54.23

10-Fold Cross-Val. 50.15 50.85 51.25 50.05 50.85 52.95

Cumulative Return -15.35 146.06 84.50 145.19 70.22 136.94

Accuracy 49.98 53.69 52.96 53.70 51.17 53.56

DOWN Accuracy 49.09 52.96 52.25 53.59 51.37 52.84

UP Accuracy 50.84 54.34 53.56 53.78 53.02 54.21

10-Fold Cross-Val. 51.35 51.35 50.15 49.65 49.75 51.75

Cumulative Return -30.87 140.40 92.24 156.82 81.05 127.91

Accuracy 51.13 52.88 52.46 53.45 49.30 52.20

DOWN Accuracy 50.25 52.24 51.82 53.19 50.92 51.43

UP Accuracy 51.98 53.39 52.96 53.64 52.48 52.85

10-Fold Cross-Val. 50.35 52.45 50.55 52.05 49.85 53.35

Cumulative Return -0.67 65.21 45.69 169.88 174.64 30.91

Accuracy 51.53 52.68 52.32 53.17 49.30 52.29

DOWN Accuracy 50.66 52.04 51.63 52.83 50.51 51.52

UP Accuracy 52.37 53.18 52.88 53.41 52.12 52.96

10-Fold Cross-Val. 51.85 52.15 48.35 51.05 50.55 54.25

Cumulative Return 4.49 50.30 12.46 105.99 130.75 30.41

Accuracy 51.02 52.94 52.49 53.84 49.30 52.04

DOWN Accuracy 50.14 52.32 51.74 53.69 50.86 51.25

UP Accuracy 51.85 53.44 53.13 53.95 52.41 52.72

10-Fold Cross-Val. 50.05 52.25 51.05 51.95 51.45 52.75

Cumulative Return -10.14 74.82 74.00 156.45 145.05 26.91

Accuracy 49.65 54.03 53.02 53.78 50.86 53.45

DOWN Accuracy 48.75 53.34 52.30 53.71 51.35 52.72

UP Accuracy 50.52 54.64 53.65 53.82 53.00 54.12

10-Fold Cross-Val. 50.55 51.15 51.45 51.35 51.15 51.55

Cumulative Return -31.07 147.86 59.15 153.56 74.61 132.82

Accuracy 49.90 53.86 54.01 53.11 50.70 53.41

DOWN Accuracy 48.99 53.38 53.48 52.99 51.91 52.67

UP Accuracy 50.75 54.23 54.45 53.19 53.45 54.07

10-Fold Cross-Val. 50.08 53.38 52.93 53.08 50.58 52.28

Cumulative Return -3.33 181.29 137.54 28.30 74.27 72.54

Accuracy 49.84 52.99 53.08 53.27 52.10 52.77

DOWN Accuracy 48.93 52.51 52.38 52.91 51.38 52.05

UP Accuracy 50.70 53.34 53.69 53.52 52.89 53.39

10-Fold Cross-Val. 49.67 52.88 52.48 53.48 51.53 53.63

Cumulative Return -12.67 98.07 68.40 25.04 137.52 1.72

Accuracy 50.21 53.28 52.54 52.65 51.32 52.86

DOWN Accuracy 51.89 55.65 53.69 54.18 52.63 53.82

UP Accuracy 49.28 51.33 50.99 51.48 50.00 51.67

10-Fold Cross-Val. 48.53 53.32 53.42 53.94 51.77 53.34

Cumulative Return -3.86 104.05 53.54 14.04 31.49 17.74

Currency Pair: USDJPY

Experiment 

Setup

Retrain 

Set Size

Retrain 

Periods

# of 

Attributes Metrics

Machine Learning Models

Setup 1

500

5 5

Setup 2 10 5

Setup 3 15 9

Setup 4

1000

5 5

Setup 5 10 5

Setup 6 15 9

Setup 7 5 9

Setup 8 10 9

Setup 12 4000 20 9

Setup 9 15 5

Setup 10

2000

15 5

Setup 11 15 9



   

  

Table 6. Combination of parameters for (a) maximum cumulative return and (b) maximum average accuracy, by model. As seen, in some cases, both 

maximums do not reflex a direct correlation.

 

A small group of experiments was conducted with a retraining set size of 2000 instances shown in setups 10 and 11 in 

Table 5. When retraining every 15 periods and using nine attributes, C4.5, JRipper and K* increased their accuracy with 

the increased training set. Nevertheless, again K* presented a reverse effect, increasing its accuracy but reducing the 

capability of generated profitable trades as can be seen in the reduction of the cumulative profit from 174.63% (setup 6) 

to 137.52% (setup 11), although still attractive from an investor point of view. OneR decreased its accuracy and 

cumulative return as the training set increased. Naïve Bayes also reduced its accuracy and cumulative profit, a situation 

that offers strong evidence to the premise that the increase of the training set can generate negative effects on the 

performance for these two models.  Although the LMT model decreased its performance, the results are still outstanding, 

obtaining 137.54% cumulative return in setup 10. For LMT, higher values in its accuracy and cumulative return were 

obtained with a smaller training set of 1000 when using nine attributes. 

For a larger retraining set size of 4000 instances, a longer retraining period of 20 was set, using 9 attributes, as shown 

in setup 12 in Table 5. It should be noted that as the size of the training set is incremented, the time consumed in building 

the models is also greatly increased. In general, the models obtained positive cumulative returns but not as high as the 

ones obtained with smaller training sets. 4000 instances represent 76% of the initial training set, thus this situation may 

be replicating the negative effects in the prediction performance observed for the first two setups when no retraining was 

implemented or an incremental training set was used. 

4.3. Results Analysis 

It is possible to note from Table 5, that the results obtained by the average 10-fold cross-validation does not seem to 

exhibit a correlation with the cumulative accuracy and the cumulative returns. Taking for example, the Setup 1 and the 

Setup 2 for the Naïve Bayes model, it can be noted that both the accuracy and the cumulative return decreased 

simultaneously, from 52.99% to 52.74% for the accuracy and 142.89% to 123.55% for the cumulative profit, whilst the 

assessment obtained by the 10-fold cross-validation increased from 50.90% to 51.30%. Following the Setup 3 also for 

the Naïve Bayes classifier, the 10-fold cross-validation rises even more 53.31% but the accuracy and cumulative return 

diminished to 52.20% and 54.76 respectively. For the Setup 4 and Setup 5 for the Naïve Bayes model, the 10-fold cross-

validation follows decrementing behaviour observed by in the accuracy and cumulative return. Similar contradictory cases 

can be found along Table 5, suggesting that 10-fold cross-validation might not be the more appropriate method for this 

type of study. The traditional fold cross-validation divides the data set series into sets used to train and generalize, usually 

using a random approach. As discussed, the models does not generalize well using a large training set, due to the fact that 

similar market conditions represented by the particular values of the attributes in the instances can present opposite 

classes. In those cases, classifiers as the ones used in these experiments are unable to generalize rules. The rationale 

behind using smaller training sets relies in the fact that points in time closer to the trading period that need to be predicted 

are more likely to exhibit similar conditions related to the market and therefore the training procedure will use them. A 

10-fold cross-validation cannot ensure that the more recent points in time series are kept in the training set during a 

particular fold, and the obtained performance over the training set might not reflect the future performance of the classifier 

in the incoming unseen instances.  

The models used in the experiments present high sensitivity to the size of the training set and the number of attributes 

as can be seen in the consolidated results presented in Table 5. Table 6 presents the maximum values obtained by each 

model under two criteria: (a) maximum cumulative return and (b) maximum average accuracy. OneR, JRipper and K* 

presented a direct correlation between accuracy and cumulative profit. C4.5, LMT and Naïve Bayes share the number of 

attributes used to construct the models in both cases, but with vary retraining periods and retraining set size.  

One of the best set ups for the experiments consisted of a retraining set of size 1000 instances, retrained every 10 

periods, and five attributes, in which five out of six classifiers presented positive and high cumulative returns. Figure 4 

presents a comparison of the evolution of the cumulative return over the entire off sample trading period for the classifiers. 

What is interesting to note in Figure 4 is that the period of trading between 2007 and 2009 does not present good 

performance, possibly as a result of very volatile behaviour in the economy for that particular period of time. On the 

contrary, the plot shows a consistent increase in the cumulative return after 2010 for most of the classifiers with the 

exception of OneR. This may suggest that the selection of simple ML models for trading may be useful in times of 

OneR C4.5 Jrip LMT Kstar NaiveBayes OneR C4.5 Jrip LMT Kstar NaiveBayes

Accuracy (%) 51.53 53.86 54.01 53.45 49.30 52.99  Max Accuracy (%) 51.53 54.03 54.01 53.84 52.10 53.58

Max Cumulative Return (%) 4.49 181.29 137.54 169.88 174.64 142.89 Cumulative  Return (%) 4.49 147.86 137.54 156.45 137.52 136.94

Retrain Set Size 1000 2000 2000 1000 1000 500 Retrain Set Size 1000 1000 2000 1000 2000 1000

Retrain Periods 5 15 15 15 15 5 Retrain Periods 5 15 15 10 15 5

# of Attributes 9 5 5 9 9 5 # of Attributes 9 5 5 9 9 5

(a) (b)



“normal” behaviour of the market, but that such models will not respond well to extreme events such as the economy 

crisis during 2008 and the subsequent period of recovery. Each model seems to respond to a particular semi-optimal 

combination of retraining set sizes and number of attributes, but the retraining period does not affect the final accuracies 

significantly. 

Table 7. Experiment set ups for (a) maximum cumulative returns for EURGPB, (b) maximum accuracies for EURGPB, (c) maximum cumulative 

returns for EURUSD and (d) maximum accuracies for EURUSD 

 

 

Similar experiments were conducted with other currency pairs. Table 7 shows the experimental set ups that produced 

maximum cumulative returns and maximum accuracies for EURGPB and EURUSD currency pairs. While cumulative 

returns obtained by the classifiers with these new currencies were not as impressive as the ones obtained in the USDJPY, 

with an appropriate balance between the retraining set size, retraining period and number of attributes, the models still 

manage to obtain positive returns. The lower return for EURGPB and EURUSD currency pairs might reflect the fact that 

those pairs are less volatile than the USDJPY, i.e. the exchange rate moves only a few pips from one trading period to the 

next limiting the possibility of obtaining high returns per trade. 

 

Figure 4. Cumulative Return for the experiment setup: Retraining Set Size = 1000; Retraining Period = 10; Number of Attributes = 5 

From a managerial point of view, the trading strategy followed in this paper must be refined. As seen in Figure 4, the 

models are subject to individual loses that were especially critical during 2008 and 2009, years where the financial system 

suffered erratic behaviours and high volatility. Once a more stable situation in the markets appeared, the models tend to 

recover and follow a gaining trend in their cumulative returns. The year 2008 kept all the models except K* on negative 

profits.  The trading simulation does not take into account trading cost and leveraged trading. If the return obtained in 

each trade is not high enough to cover for the associated costs, the strategy will lose money even though the prediction is 

accurate. In this sense the average profit per trade can be an important metric to evaluate how much the associated costs 

affect the strategy performance. Additionally, when trading under leverage, the profits can be multiplied extensively but 

also are the losses, where a single trade can generate a margin call. In addition, each of the machine learning models act 

as an individual trader. A more efficient strategy can be implemented combining the predictions of the different models 

OneR C4.5 Jrip LMT Kstar NaiveBayes OneR C4.5 Jrip LMT Kstar NaiveBayes

Accuracy (%) 58.9003 64.0882 63.7465 64.3678 56.8810 63.6844 Accuracy (%) 58.9003 64.2280 63.7465 64.5076 61.4477 63.6844

Max Cumulative Return (%) 32.0090 57.1697 95.9409 39.4583 73.1667 22.6258 Cumulative Return (%)32.0090 27.2639 95.9409 43.4592 21.8619 22.6258

Retrain Set Size 500 1000 1000 1000 500 1000 Retrain Set Size 500 2000 1000 1000 2000 1000

Retrain Periods 15 10 5 5 15 15 Retrain Periods 15 15 5 15 15 15

# of Attributes 9 5 5 9 9 5 # of Attributes 9 5 5 9 5 5

OneR C4.5 Jrip LMT Kstar NaiveBayes OneR C4.5 Jrip LMT Kstar NaiveBayes

Accuracy (%) 52.5074 56.4974 56.8079 56.7614 56.9207 53.7184 MaX Accuracy (%) 53.3613 57.3513 56.8079 57.7861 58.7869 57.2116

Max Cumulative Return (%) 14.5224 33.3007 37.0147 10.3977 92.0795 -9.5586 Cumulative Return (%)14.1643 4.5894 37.0147 4.7742 2.8077 -11.8703

Retrain Set Size 500 2000 4000 500 500 500 Retrain Set Size 500 1000 4000 2000 2000 4000

Retrain Periods 10 15 20 10 5 15 Retrain Periods 15 10 20 15 15 20

# of Attributes 5 9 9 5 5 9 # of Attributes 9 5 9 9 5 9

(c) EURUSD Maximum Cumulative Return (d) EURUSD Maximum Accuracy

(a) EURGPB Maximum Cumulative Return (b) EURGPB Maximum Accuracy



in a classification ensemble that generates trades according to a weighted voting mechanism based on the past accuracy 

of the individual models. A weighted decision in addition to risk management strategies such as stop loss and take profit 

limits must be considered if ML approaches are to be used in a real life automated trading strategy. 

4.3.1. Accuracy Comparison 

Even though the rationale behind this study is to evaluate the trading capabilities of ML models that exhibit a greater 

degree of simplicity when compared to the traditional NNs and SVM, at this point in the discussion is worth to examine 

the current results in light of other applications that have focused in those complex models. The following analysis must 

be taken carefully since the financial instruments that have been assessed are generally not the same, neither are the 

selection of attributes and training strategies. The main objective of this section is to compare and illustrate the prediction 

capabilities of machine learning in trading applications.  

In (Tenti, 1996) the comparative the performance of three recurrent neural networks is presented based on their returns 

in the simulated forecasts on currency futures, reporting accuracies between 43% and 48.5%. Wu and Lu (2009) compared 

a NN model’s performance against the ARIMA model, predicting the direction of future values of the S&P 500 Index. 

The experiments reported a modest 23% level of accuracy against the ARIMA’s 42% in more volatile scenarios. In turn, 

in (Kamruzzaman & Sarker, 2003) the authors compared the performance of the ARIMA model with several NN models 

when forecasting exchange rates of currency pairs in the FOREX market, showing that all NN models outperformed the 

ARIMA model with an accuracy of 80%. Taking into account that only the best results obtained were reported and that, 

in general ML techniques do not present high levels of accuracy with unseen data that differ significantly from the training 

sets, these impressive results must be considered with care. Using SVM, the work presented in (Kim, 2003) attempted to 

forecast daily price directions of the KOSPI stock index, using technical indicators (momentum, Williams %R and 

commodity channel index) as inputs and the best accuracy obtained after training several models with different parameters 

was 57.83%. The work also presented a comparison with the back propagation NN (with 54.76% of accuracy) and nearest-

neighbour model (51.98% of accuracy). In another study (Tay & Cao, 2001) a comparison between SVM and back 

propagation NN is presented to forecast prices of five types of futures contracts. On average, the SVM approach obtained 

better accuracy than the back propagation NN, but also in middle-range levels: 47.7% by SVM against 45.0% obtained 

by back propagation NN. SVM also outperformed a back propagation NN in the work presented by Chen and Shih (2006), 

where these techniques were used to predict the value of six Asian indices, obtaining 57.2% level of accuracy with SVM 

and 56.7% with NN models. In addition to simple models, Barbosa and Belo (2008b) also analysed the performance of 

SVM in the Forex market reporting cumulative accuracy 53.4% with a positive cumulative return of 56.0% trading a 

currency pair over a two year period.  

As seen, the attempts to predict financial time series tend to exhibit modest accuracies, not far from the experiments 

shown in this paper. Machine Learning approaches are still far from being optimal solutions for financial forecasting due 

to the complex nature of the financial time series and market erratic behaviours and the possible presence of extreme 

events that can undermine any generalization or pattern found on them as shown in the capabilities and limitations of the 

models observed in this paper and in other studies.  

5. Conclusions and Future work 

This paper discusses the usefulness of simple ML models applied to trading scenarios, to verify if it is possible to 

obtain consistently profitable returns while taking advantage of the computational simplicity of binary classification 

models. An extensive set of trading simulations in the FOREX market was conducted in which six ML models were used 

to classify a set of instances constructed from historical price data for USDJP, EURUSD and EURGPB currency pairs. 

The result of the classification was interpreted as a prediction and used to simulate a series of orders over a trading period 

of six years. While the paper does not attempt to incorporate new theoretical contribution in the model construction, it 

provides a valuable insight in the use of machine learning classification to elaborate predictions in financial time series. 

To the best knowledge of the authors, other related papers focus the construction of sophisticated models that are evaluated 

by accuracy and/or RMSE. A theoretical contribution in the model construction exceeds the scope of this paper, but opens 

the door to explore in the construction of machine learning models that are tuned for the particular conditions given by a 

set of non-discriminatory attributes such as technical indicators and time series related indexes in financial applications.   

The selected models present a low computational cost in both the training phase and the classification procedure which 

benefit their implementation for more frequent trading time frames. The use of simple machine learning allow a seamless 

upgrade if new attributes are selected. The results have shown that while it is possible to obtain profitability using simple 

classifiers, each model needs a particular setup taking into account variables such as the retraining period, the retraining 

set size and the number and type of attributes selected to construct the model. The complexities of the market require a 

particular combination of the parameters that might change in different market conditions and seasons for the same 

instrument. The models need to learn new patterns in order to cope with the dynamics of the market, but at the same time, 

must only use a training comprised of recent values of the time series using a sliding window approach, to avoid noisy 

patterns that might not be related to the current market situation. A heuristic approach was used to find pseudo-optimal 



combination of the variables mentioned, but a more systematic approach would be needed to find an optimal trade-off 

that maximizes both accuracies and cumulative profits, taking into account the particularities of different financial 

instruments. Most of the models exhibited positive returns for certain experimental setups and combination of parameters, 

nevertheless their middle range accuracy might be seen as the main weakness of the approach used in this paper.    

Attribute selection represents a critical aspect in the construction of the ML models, since a good set of attributes 

derived from the financial time series will ease the process of classification. In this paper a set of attributes was selected 

from diverse fields that include price related features such as the price itself and the percentage of price change, seasonality 

features such as the day of the week and the hour of the day, lagged values used in classical time series analysis such as 

lagged percentage of price change and its moving average, and of course technical indicators, which in this case are 

represented by the Williams %R oscillator and the RSI which relates recent gains and losses over the past trading periods. 

The attributes must be used in conjunction due to the fact that those values by themselves do not produce enough 

information regarding the future trend of the price that allow to separate effectively the classes in both the training set and 

the off-sample data, due to the complexity of financial markets. For instance, it is possible to observe is that technical 

indicators that present an oscillatory behaviour will repeat their values with time as well as the seasonality features. The 

prices also move typically around certain ranges during short periods of time and the percentage of price change is also 

comparable from one instance to another when reduced trading periods are selected, i.e. minutes and hours. These 

attributes have shown not to be highly discriminative observed in instances with similar attributes that might present 

contradictory classes for different market conditions. Thus the use of attributes coming from technical analysis and classic 

time series analysis provides means to represent the state of the market in a particular point in time and as it has been 

demonstrated in this paper, allows to produce profitable trading despite the fact that the obtained accuracy is not 

impressive. Future work will include the use of an extended set of attributes that explores some from the extensive offer 

of technical indicators available in the trading literature for the construction of the classifiers. The main risk of a large 

group of characteristics is the presence of attributes that represent redundant information. To overcome this drawback, a 

feature selector can also be implemented such as the one presented in (Cai, Hu, & Lin, 2012) which implements a 

Restricted Boltzmann Machine to extract features from technical indicators which in turn are the inputs for a SVM-based 

regression model. Future research will also include new ML models, and other markets besides FOREX. Dynamic 

retraining windows and variable training set sizes can be investigated for particular ML models in order to determine the 

precise moment in time when a model needs to be replaced with a better setup of parameters. 
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