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ABSTRACT  

Developing data-driven fault detection systems for chemical plants requires managing 

uncertain data labels and dynamic attributes due to operator-process interactions. 

Mislabeled data is a known problem in computer science that has received scarce 

attention from the process systems community. This work introduces and examines the 

effects of operator actions in records and labels, and the consequences in the development 

of detection models. Using a state space model, this work proposes an iterative relabeling 

scheme for retraining classifiers that continuously refines dynamic attributes and labels. 

Three case studies are presented: a reactor as a motivating example, flooding in a 

simulated de-Butanizer column, as a complex case, and foaming in an absorber as an 

industrial challenge. For the first case, detection accuracy is shown to increase by 14% 

while operating costs are reduced by 20%. Moreover, regarding the de-Butanizer column, 

the performance of the proposed strategy is shown to be 10% higher than the filtering 

strategy. Promising results are finally reported in regard of efficient strategies to deal 

with the presented problem.  

KEYWORDS: fault detection, mislabeling, label noise, underlying states, operational 

intelligence, interactive learning. 
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1. INTRODUCTION 

Monitoring of chemical processes, as many other activities, is required for determining 

the need for corrective actions and subsequent efficient operation. Indeed, abnormal 

situation management (ASM) is an essential task for loss prevention and safe operation of 

chemical plants. To achieve this aim, multiple protection layers (Fig. 1) are applied in 

industrial plants as per the international standard IEC61511 (2003), each one consisting 

of equipment and/or administrative controls coordinated with other protection layers 

(Isermann, 1994). Most automatic protection layers are triggered by actuators, while 

sensors’ readings indicate the violation of limiting thresholds. Despite all the progress in 

automatic risk reduction systems (hardware and software), the operator supervision and 

the corrective action in ASM is still indispensable. Indeed, the operator and the automatic 

controls, together, constitute operational intelligence (Rajaram & Jaikumar, 2000).  

 

The fault detection (FD) system is a core component of ASM that has attracted a lot of 

attention recently. Moreover, it is expected to be explicitly included in the standard 

IEC61511 in the near future. In fact, a fault consists of an unpermitted deviation of at 

least one property or parameter of a system from its acceptable, usual or standard 

condition (Isermann & Balle, 1997). FD methods are categorized in three main groups: 

quantitative model-based methods, qualitative model-based methods and data-driven 

methods (Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). Qualitative model-

based FD methods are not often deployed for complex chemical process, because the 

corresponding analytical description is rarely available. In addition, quantitative model-

based FD methods, so-called inference methods, are developed based on explicit 

structural knowledge and causalities (Korbicz, Koscielny, Kowalczuk, & Cholewa, 

2012). These methods, which rely on experts’ knowledge in a specific domain, are often 

costly and time-intensive to obtain. Thus, FD is commonly addressed by process history 

based methods, since for operating plants a large amount of historical process data is 

available (MacGregor & Cinar, 2012; Qin, 2012).  

Data-driven FD systems early developed based on multivariable statistical analysis e.g. 

principal component analysis (PCA) (Lu, Yao, Gao, & Wang, 2005), partial least squares 

(PLS) (Chiang, Braatz, & Russell, 2001). Recently, FD has been considered as a 

classification problem as well, and Machine Learning provides various tools for 

classification, which are categorized below (Isermann, 2006): 
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 Geometric classifier. e.g. k-nearest neighbourhood (kNN) (Pandya, Upadhyay, & 

Harsha, 2013);  

 Probabilistic classifier. e.g. Gaussian naïve Bayes (GNB) (Askarian, et al., 2015; 

Sáez-Atienzar, et al., 2015) and the hidden Markov model (HMM) (Li, Fang, & 

Huang, 2015); 

 Approximation classifier. e.g. polynomial support vector machines (SVM) 

(Danenas & Garsva, 2015; Namdari & JazayeriRad, 2014); 

 Soft computing techniques. e.g. fuzzy classifier (Serdio, Lughofer, Pichler, 

Buchegger, & Efendic, 2014) and artificial neural networks (Duda, Hart, & Stork, 

2001). 

The main advantage of FD using classification methods is the ability at dealing with 

unstructured information and implicit knowledge. However, each method poses some 

limitations that are discussed in detail by Isermann (2006). The major weak point of 

classifiers is vulnerability to mislabeling, which is the issue explored in this work.    

In Machine Learning, the standard approach consists in training a classifier from a 

labeled dataset to predict the class of new samples accordingly. Usually, labels are 

considered given and the labeling process is assumed to be reliable (Bootkrajang & 

Kabán, 2012). However, in industrial practice and process plants, assigning labels to 

training data may need attention and careful examination. Indeed, true labels 

corresponding to the state of system are usually unavailable. Mislabeling may occur for 

several reasons including expert errors, lack of information or data labeling by non-

experts (de França & Coelho, 2015). Label uncertainty is an important issue in 

classification, because most classifiers are built on the hypothesis of a perfectly labeled 

training set. Some Machine Learning literature exist regarding effects of uncertain labels, 

which shows that mislabeling may detrimentally affect the classification performance and 

the reliability of the learned models (Brodley & Friedl, 1999; Frénay, de Lannoy, & 

Verleysen, 2011). 

Numerous methods have been proposed to deal with label noise. Filter approaches aim at 

identifying and removing any mislabeled instances (Brodley & Friedl, 1999; Zhang, Li, 

Yang, & Yong, 2014). A residual-based fault detection is developed which solely relies 

on sensor’s data; and labels required for pattern recognition of fault is not demanded 
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(Serdio, Lughofer, Pichler, Buchegger, Pichler, et al., 2014). Some algorithms are 

naturally robust to label noise (Teng, 2005). Some methods have been modified to take 

label noise into account in an embedded fashion or to model the process of label 

corruption as part of modeling the data (Swartz, Haitovsky, Vexler, & Yang, 2004). The 

current literature on learning with label noise is a lively mixture of theoretical and 

experimental studies that clearly demonstrate both the complexity and the importance of 

the problem. Frénay and Verleysen (2014) comprehensively discussed different families 

of algorithms that have been proposed to deal with label noise.  

A particular case of mislabeled training data occurs while operator-process interactions 

are involved in industrial practice. In case of abnormal events in chemical plants, 

operators take preventive actions as early as possible. On the one hand, one of such 

actions could be taken as an indication of the fault and used for training an automatic 

fault detection system. On the other hand, human error and lack of information about the 

underlying state of the system can mislead the operator, so that an unnecessary action is 

taken. Furthermore, the operator recognition (normal, symptom, fault…) strongly 

depends on his or her personal characteristics and preferences (conservative / risky, 

experienced / untrained etc.). Although the operator is the ultimate decision maker 

regarding ASM, it is an actor interfering the process history, as well. Such a case is of 

special complexity and it is referred as mislabeling, label uncertainty and label noise, as 

addressed in the Machine Learning literature. 

In addition, the dynamic response of a chemical process following a fault and/or an 

operator action increases the complexity of situation (Si, Hu, Yang, & Zhang, 2011). 

Unnecessary actions alter process history and have adverse impacts on attributes of faulty 

and normal situations. Of course, plant decision makers are trading-off the cost of the 

action and the expected loss, and experimenting seems not an option. Nevertheless, 

incorrect interpretation of the system state by the operator causes mislabeling, and his or 

her unnecessary action impacts on the attributes.  

It is worth to mention that most computer science literature dealing with label noise 

interprets noise as an outlier (Frénay & Verleysen, 2014). In other words, mislabeling is 

considered for each instance of attributes. This strategy is appropriate for static problems 

such as image processing. However, fault detection in process systems requires a 
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different approach due to its dynamic behavior. This important aspect has received scarce 

attention in chemical engineering, and it deserves more investigation.  

These challenges motivate the development of a robust strategy for efficiently using the 

training datasets with uncertain labels produced in operating plants by human 

intervention. This strategy should be regarded as a part of a general operators’ decision 

support framework for FD and ASM. Since the main objective is aiding the operator to 

make better decisions, operator actions cannot be readily identified as true faulty labels. 

This will lead to a model of the operator preferences that could anticipate the operator 

actions, not the real process faults. Conversely, questioning the actions and the labels is 

the starting point of the strategy proposed in this work.   

This study mainly discusses about impact of human intervention on FD of a dynamic 

system, which is an unattended topic in the chemical engineering literature, and 

contributes a novel strategy to deal with this situation. The proposed FD approach 

includes a loop for fault detection via three parties -classifier, state space model and 

operator- which successively leads to evolution. The underlying state of the system is 

estimated using a state space model, which takes the advantage of sequential data 

analysis of time series. Then, the deviation from the normal state is characterized by the 

Mahalanobis distance, which eventually allows relabeling attributes. Iterative training of 

the Gaussian naïve Bayes classifier is proposed to improve the operator perception and 

refine attributes. The solution approach provides useful tools for the plant operator to 

assess the need of preventive actions respect to faults. Next, this strategy is validated and 

discussed in three case studies, a reactor, as an illustrative example; the de-Butanizer 

column, as a complex example; and an industrial sweetening unit in a gas refinery as a 

real challenge.  

 

2. ILLUSTRATIVE EXAMPLE  

A continuous stirred tank reactor (CSTR) is a most basic unit operation in chemical 

engineering which is a tank equipped with an impeller. Reactants and products are 

continuously added and withdrawn to the tank where reaction takes place. Mixing with 

impeller is required to achieve uniform composition. A fault and the subsequent operator 

action are simulated in a jacketed, non-adiabatic, and perfectly mixed tank reactor. A 
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single first-order exothermic and reversible reaction of two components, A↔B, takes 

place. A scheme of the equipment module is shown in a Figure 2, as well as input and 

output variables. Volume is assumed to be constant, and inlet and outlet flowrates are 

equal. Density, specific heat and heat of reaction are also assumed constant. Based on the 

mass and energy balances, equations in appendix A.1 are derived for simulation. 

The change of the feed stream concentration or temperature (input variables u1t or u2t, 

respectively) causes the change of the outlet composition and temperature. In order to 

keep the reactor temperature under a specified threshold (320 ºC) the operator can 

decrease the jacket temperature u3t. Although, this problem can be easily solved by using 

a proportional-integral-derivative (PID) controller, a manual control by the operator is 

discussed to illustrate the problems associated to human decision-making in industrial 

processes. In other words, operator-process interactions are required in open loop 

systems.  The input variables are assumed unobservable to the operator; the only 

information that can be monitored and recorded is that of the output variables. 

Furthermore, the process model is assumed unavailable to the operator, who can only rely 

on the measurement of the reactor temperature to keep it below the limit. 

Scenario 1: CAf has a step change that is considered a fault in the operation. If the 

operator is unaware of the state of system, the reactor temperature will exceed the limit 

(Fig. 3 red line). Therefore, when T increases too fast (> 0.2 ºC/s ), the operator decreases 

Tj, so that T is kept under 320˚C (Fig. 3 blue line). 

Scenario 2: A minor step change in CAf  also increases T too fast, but it remains under the 

specified threshold (Fig. 4 red line). Therefore, it is called pseudo-fault. Since CAf is not 

observable, the conservative operator takes an action based on his or her intuition 

(experience of Scenario 1), although this time it is unnecessary. This is an overuse of 

cooling utility and extra cost. On the other hand, the operator labels the process data of 

this time interval as faulty. In addition, the preventive action changes the trend of 

attributes (Fig. 4 blue line).  

Hence, a robust FD system is expected to reveal pseudo-fault as normal in order to 

prevent unnecessary and expensive action. It is clear that using this raw information for 

designing a classifier will lead to a low FD performance. This performance is quantified 
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in Section 4.1. Although various scenarios can be defined, the scope of this illustrative 

example is limited to decision making by a conservative operator. 

The presented case study leads to a twofold problem: 

 Avoiding bad decisions in case of pseudo-fault produced the extra cost of 

unnecessary preventive actions; 

 Avoiding uncertain labels and attributes that will mislead the automatic diagnosis 

system. 

 

3. METHODOLOGY  

The initial FD system, which is designed based on basic information (namely attributes 

labeled by the operator), infers the state of the system in a way very similar to operator 

intuition. In other words, careless use of this information leads to model the pattern of 

operator behavior and preferences. Thus, this cannot support successful decision in 

regard of the optimization of the costs corresponding to unnecessary preventive actions or 

potential accidents. An improved strategy is required to deal with mislabeling and the 

subsequent impact of operator actions on attributes (system outputs). 

In order to improve FD performance, retraining with a refined dataset including reliable 

labels and attributes is inevitable. In general, improving operator perception is required to 

provide a chance of producing new datasets. In hindsight and without operator actions, it 

is often much clearer whether the state of system is a pseudo-fault or a risky fault. 

However, the operator is not aware of the underlying state of system, and taking no 

action is risky when perceiving a potential fault. Indeed, taking no action allows further 

learning, but may lead to an accident. On the other hand, the performance of the initial 

FD system is not reliable enough to make decisions based on its prediction. Thus, a 

gradual improvement of the FD system can be achieved by an interactive and iterative 

learning procedure with an acceptable risk at each phase.  

Figure 5 illustrates the interactive strategy proposed for training a classifier, which can 

provide a promising decision support system. It consists of three main parts shown by 

dashed bounding boxes: initializing, re-training, and validating. Rectangular and elliptical 

blocks represent available data and operations on data, respectively. The dotted elliptical 

blocks are flexible and can accept different tools. A grey block represents that it may be 

unavailable in some cases. In following sub-sections, the fundamentals of the most 
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significant blocks involved in this work are explained. They are included the dynamic 

linear model (DLM) to estimate the underlying state; Mahalanobis distance to 

characterize deviations from normal state, Gaussian naïve Bayes (GNB) to classify, a 

validation confusion matrix to evaluate performance, and an interaction index to forward 

to next interactive learning phases. Then, input-output information of these tools is 

demonstrated. Finally, the rules and interaction of these tools are described in the general 

strategy. 

 

3.1. Description of tools 

3.1.1. State space models 

This work proposes to take advantage of the state space model to analyze time series and 

estimate the underlying states of a dynamic system. Given m observations, Yt=(y1t, y2t, …, 

ymt), the n unobservable state variables, θt =(θ1t, θ2t, …, θnt), are recursively computed 

using a state space model. Figure 6 represents the information flow of the state space 

model, which satisfies the following assumptions: 

 θt is a Markov chain. In other words, θt and (θ0:t−2, Y1:t−1) are conditionally 

independent given θt-1; 

 Yt’s are independent conditioned on θt; and Yt depends on θt only (Petris, Petrone, 

& Campagnoli, 2009). 

The dynamic linear model (DLM) is a special case of a general state space model, being 

linear and Gaussian. A DLM is specified by a pair of observation equation and state 

equation: 

 t t t tY F vθ  ~ (0, )t m tv N V
                

1m

tY R 
        

m n

tF R 
      

1m

tv R 
        

m m

tV R   

(1) 

1 t t t tG wθ θ  ~ (0, )t n tw N W
 

1n

t R θ
         

n n

tG R 
      

1n

tw R 
       

n n

tW R   

(2) 

where Gt and Ft are system identification matrices and vt and wt are two independent 

sequences of independent Gaussian random vectors with mean zero and variance 

matrices Vt and Wt, respectively. Maximum likelihood estimation (MLE) is a common 

approach for parameter identification of the model (Petris, et al., 2009).  
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The current value of the state variables can be recursively estimated based on the 

attributes up to time t. In a DLM, the Kalman filter allows updating the current inference 

on the state variables as new data become available (Lendek, Babuška, & De Schutter, 

2008). Passing from the filtering density π(θt|Y1:t) to π(θt+1|Y1:t+1) is fully detailed 

described in appendix A.2.  

 

3.1.2. Mahalanobis distance 

The Mahalanobis distance, DM, of a vector θt =(θ1t, θ2t, …, θnt)T from another group of 

state variables, with mean µ=( µ1, µ2… µn)T  and covariance matrix, Σ, is defined as (Yu, 

2013): 

1( ) ( ) ( )T

M t

   t tθ θ μ θ μD  (3) 

 

3.1.3. Gaussian naïve Bayes classifier 

Gaussian naïve Bayes (GNB) classifier is a supervised learning method based on Bayes’ 

theorem that can be applied for fault detection. The probability of each fault as a class 

can be determined regarding attributes as below (Mehranbod, Soroush, Piovoso, & 

Ogunnaike, 2003): 

 
   

 
t

t t

t

Y F F
F Y

Y

 



  (4) 

where π(Yt|F) is the probability of attributes conditioned on the fault F and π(F) is the a 

priori probability, which gives the probability of the class before measuring any 

attributes. The divisor π(Yt) is merely a scaling factor to assure that a posteriori 

probabilities are normalized. 

 

3.1.4. Key performance indicators  

The performance of classifiers is evaluated by comparing predicted faults and true faults. 

In this order, FD outcomes are arranged in a validation confusion matrix (Monroy, Villez, 

Graells, & Venkatasubramanian, 2012) presented in Table 1.  
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Table 1: Validation confusion matrix  

  True label 

  F ¬F 

Predicted label 
F a b 

¬F c d 

where a is the number of samples corresponding to faulty situations and diagnosed as 

such (true positive); b is the number of samples diagnosed as faulty but were not (false 

positive); c is the number of samples  corresponding to faulty but not diagnosed 

situations (false negative) and d is the number of samples not happened and not 

diagnosed (true negative). Then, performance indexes including accuracy, F1, and true 

positive rate (TPR) are calculated as follows: 

Accuracy
a d

a b c d




     
(5)                                                             

1
2

2
F

a

a b c


   
(6) 

TPR 


a

a c
 (7) 

 

3.1.5. Interaction index 

Due to the unavailability of true labels in real practice, labels estimated by an operator 

and a classifier play some roles in interactive learning of the FD system described in the 

subsequent sections. As such, a comparison of classifier prediction and labels assigned by 

the operator based on his or her intuition is made by an interaction confusion matrix in 

Table 2.  

Table 2: Interaction confusion matrix  

  Operator label 

  F ¬F 

Predicted label 
F a’ b’ 

¬F c’ d’ 

 

where a’ is the number of samples to which the operator and the classifier assign fault 

labels to the state of a system; b’ is the number of samples diagnosed as faulty in contrast 

with operator opinion; c’ is the number of samples corresponding to faulty but not 
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diagnosed situations; and d’ is the number of samples for which both the operator and the 

classifier agree that no fault happens.  

It is generally agreed that the operator and the automatic FD system are complementary 

for ASM (Sheridan & Johannsen, 1976). However, it is required to take into account the 

conflict between operator labels and classifier predictions to manage uncertain records. 

For instance, a conservative operator hastily assigns a fault to the system regarding any 

minor disturbance or so called pseudo-fault. While the classifier predicts this situation as 

the normal state, it is reflected in c’. On the other hand, a risky operator may not react to 

a faulty situation which is diagnosed as such and is categorized as b’. 

The main idea is to gradually encourage an operator to provide a chance of generating 

more informative dataset, i.e. new trends of attributes in subsequent learning phases. It is 

required to determine to which extent the operator takes no action in potentially faulty 

situations at each phase. Thus, an interaction index is introduced in Eq. 8, which 

quantifies the conflict. 

( )( )interaction

d a
I Accuracy ARL

b d c a

 
  

    
 (8) 

where the first and second terms reflect extremes of risky and conservative operators 

conflicts with a classifier prediction, respectively; and a correction factor consists of 

accuracy of a classifier and ARL corresponding to acceptable risk level of a chemical 

plant. Indeed, the risk level is defined as multiplication of probability and consequence of 

a faulty situation (Bao, Khan, Iqbal, & Chang, 2011). An acceptable risk level depends 

on the type of chemical plants and the policy of owners.  Moreover, note that the various 

classifiers facing ideal datasets (certain labels) have different performance levels. 

Designing an FD system with a high performance classifier, the conflict (i.e. c’ and b’) 

reflects in an interaction confusion matrix is mainly due to wrong human perception. 

Thus, accuracy of classifier is a correction factor of Iinteraction.  

Based on the proposed procedure in Section 3.2, higher Iinteraction encourages more change 

in attributes of datasets in the next learning phase. In fact, this index is the extent of 

changes between learning phases. For example, involving a conservative operator leads 

to higher c’; and higher Iinteraction subsequently. If the classifier has high performance, the 

available interaction confusion matrix is more reliable, and keeps Iinteraction high. On the 

other hand while the chemical process deals with high risk, ARL is low. As such, Iinteraction 
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is adjusted accordingly to specify the acceptable change ratio in the next learning phase. 

In general, Iinteraction is a dynamic index which is updated in any learning phase, and 

specifies speed of learning.  

Finally, a general scheme of these significant blocks and their input-output information is 

represented in Figure 7. Parameters involved in each block as a part of a data-based FD 

system are fitted based on subsets of a typical dataset.   

 

3.2. Iterative and interactive procedure 

The operator continuously needs to make decisions, as well as the training data set can be 

continuously refined. However, in order to make a quantitative assessment, the proposed 

strategy (Fig. 5) is evaluated in different discrete phases in an offline manner. The dataset 

at each phase, Dp, includes attributes of the process system, 
1:

rp

TY , and paired labels, 
1:

rp

TF , 

as below: 

 1: 1:( , ) | 1: rp rp

p T TD Y F r R  p=0,1,2,…,  P (9) 

where T is the time horizon of the rth run; and R is the number of runs included in the pth 

phase. Total number of phases, P, depends on the required iterations. Each phase of data 

is spilt into training and testing subsets.  

Step 1: The initial dataset, Di|i=0, is a collection of R runs paired with operator labels. 

Note that in the initial learning phase, the only information source regarding labels is 

operator. After training the classifier, the predicted labels of the testing subset are 

compared with operator labels (Table 2). In addition, based on the comparison of 

predicted labels with true labels (Table 1), the key performance indicators (KPIs) (Eqs. 5-

6) are evaluated. It should be noted that 1:

rp

TY  and paired true labels of the illustrative case 

study (CSTR) are originated from the process model. Since it is not generally applicable, 

the process model block in Figure 5 is in grey.  

Step 2: The conflict between operator labels and GNB prediction is reflected in Iinteraction 

index (Eq. 8). In the next phase, operator action is taken or not in regard of this ratio, so 

that there is a chance to produce a new dataset at the expense of an acceptable risk level. 

In other words, Di|i=1 includes R×Iinteraction runs without action and R×(1-Iinteraction) runs 

with action when potential faulty situations are faced.  
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Step 3: Parameters of the state model, DLM, are identified using MLE. In fact, DLM 

identification is based on the normal samples predicted by GNB, which is trained in the 

previous learning phase. Then, each attribute sample of Di|i=1, rp

tY , is recursively 

projected to θt
rp

 =(θ1t, θ2t, θ3t) using the trained state model to explore the underlying state 

of the system.  

Step 4: Mahalanobis distance, DM, of each sample of the three dimensional state 

trajectories from the predicted normal subset is evaluated. The points beyond a specified 

threshold (median of all points) are labeled as faulty and others are labeled as normal. 

Step 5: After retraining the classifier based on Di|i=0,1, the labels predicted for the 

testing subset.  

Step 6: Gradual refining of Di is achieved by iteratively repeating steps 2-5. 

Finally, it is worth to note that various strategies dealing with mislabeling (Frénay & 

Verleysen, 2014) may be investigated and compared. However, this framework only 

focuses on the impact of human intervention on FD of a dynamic system, which is a new 

topic in the chemical engineering literature. In addition, fault prognostic is beyond the 

scope of this work. 

 

4. RESULTS AND DISCUSSION  

4.1. CSTR 

In Section 2, the CSTR case study has been introduced to illustrate some problems posed 

to FD by the operator-process interaction. In this section, the proposed data-driven 

algorithm is validated on the database generated by the CSTR model. The time horizon of 

each run is considered 400 s, while the step change (fault and pseudo-fault) happened at 

t=200 s for both scenarios (Figs. 3-4). In the simulation, random noise (in range of ±2%) 

was added to the input variables and propagated to the output variables. In addition, the 

conservative operator takes preventive actions while symptoms of a potential fault 

appear. Thus, operator labels of samples after action are all considered faulty.  

The initial dataset of the CSTR case study is a set of runs as defined below: 

 0 0

0 1:400 1:400( , ) | 1: 200 r rD Y F r  (10) 
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D0 is spilt into 70:30 ratio for training and testing the classifier. It is notable that true 

labels of samples after action regarding Scenario 1 are faulty, while regarding Scenario 2 

are normal.  

The performance of the trained GNB classifier regarding D0 is assessed in terms of F1 

and accuracy. The result reveals that the initial training phase seems inefficient for FD 

due to low discrimination performance (Table 3). Since the underlying state of system is 

hidden, operator-process interaction is under uncertain condition. Therefore, unnecessary 

preventive actions lead to mislabeling and masked attributes. In addition, based on the 

validation confusion matrix, the extra cost of utility consumption is proportional with the 

false positive rate (FPR) as follows:   

FPR 


b

b d
  (11)                                                             

which means that the operator wrongly distinguishes the situation as faulty and 

unnecessarily reacts. In fact, this initial FD system is not useful for reducing the excess 

cost. The main reason is that GNB emulates the operator behavior, but not the process at 

this iteration.  

Table 3: FD performance using iterative procedure 

 Learning phase Initial 1st  2nd 3rd 4th 

 Iinteraction % 0 5 13 21 32 

F1 Normal 0.82 0.89 0.92 0.93 0.94 

Fault 0.68 0.77 0.81 0.84 0.85 

Accuracy 0.77 0.86 0.89 0.90 0.91 

TPR % 99.16 98.58 98.81 98.95 99.07 

FPR %   Unnecessary 

utility consumption  
30.26 17.79 13.17 11.46 9.51 

FNR %   Accident  0.84 1.42 1.19 1.05 0.93 

 

In order to improve FD performance, it is essential to provide a successive refinement of 

the datasets, including reliable labels and comprehensive attributes. First, the datasets are 

gradually enriched by generating new trends of attributes. Then, labels are automatically 

assigned to skip human error. This goal is achieved by following steps 2-4 of the 

proposed procedure (Section 3.2). Thus, the operator behavior toward the process is 

systematically changed by considering Iinteraction. Because it is assumed that the operator is 

conservative, b’ is equal to zero; and the conflict of the operator and the classifier is 
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limited to c’ (Table 2). Moreover, for sake of simplicity, the correction factor in Eq. 8 is 

considered as one herein. Note complementary scenarios, investigation the effects of ARL 

and classifier accuracy, can be explored in further works; and it is not in line with the 

main goal of the present study. Here, operational intelligence intends to improve process 

operation in terms of reducing unnecessary actions. In this case study, for the first phase 

of retraining, 1

1:400

rY consists of 190 random runs with action and 10 random runs without 

action (95:5 ratio based on Iinteraction). The normal subset is separated by GNB which is 

trained in the initial phase. Then, this subset is used for identification of DLM by MLE in 

the first learning phase. Relabeling the new dataset is accomplished by exploring the 

underlying state of the system. In other words, each sample, 1 3 1r

tY R  , is projected to
 

1 3 1r

t R θ . After projecting 1

1:400

rY to three-dimensional state trajectories, DM is calculated 

for each sample. Most potential faulty samples of Scenarios 1 and 2 can be discriminated 

by a median threshold (Fig. 8). Therefore, 1

1:400

rF consists of fault label for each sample 

that exceeds the threshold and normal label for others.  

The GNB classifier is retrained and tested by 70:30 of available information, {D0, D1} 

respectively. Table 3 shows that significant improvement in terms of F1 and accuracy is 

achieved via the first learning phase, which leads to a reduction of utility consumption as 

well. On the other hand, the accident rate is proportional with the false negative rate 

(FNR) as follows: 

FNR 


c

a c
  (12)                                                             

The accident rate increases, because the operator takes a risk by not responding to some 

potential faulty situations. Indeed, a cost for providing comprehensive information and 

learning is quite reasonable; this is reflected in the accident probability in this case study.  

It is notable that the conflict between the operator and the classifier increases in this 

retraining phase in which Iinteraction is equal to 13%. Indeed, the proposed FD algorithm is 

successful in deviating from the prior operator perception and increasing the accuracy of 

prediction simultaneously. In other words, the FD system classifies the pseudo-fault as 

the normal state, despite the operator idea at the initial phase. It is mainly due to 

reflection the process state rather than the pattern of operator behavior.  
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There is a promotion of iteratively continuing this procedure to refine datasets and 

improve FD performance. In general, using two automatic discrimination tools in parallel 

(DLM and GNB) is complementary, since it reduces misclassification and results more 

reliable for the operator. In fact, the proposed methodology consists in a loop for 

assigning labels via three parties (classifier, state space model and operator), which leads 

to evolutionary improvement of the main learning elements: the data-based models and 

the understanding of the operator. As such, the operator perception regarding the state of 

system is more realistic after this interactive learning process. Table 3 represents the 

accuracy of discrimination of fault by FD system increases in 2nd to 4th retraining phases. 

In other words, the sole classifier is not efficient (note the initial accuracy), and the 

proposed strategy improves FD accuracy. In addition, unnecessary utility consumption 

has decreasing trend, which reveals that the last FD system successfully supports the 

operator in making decisions that are more profitable. In addition, the negative accident 

rate in the 2nd to 4th retraining phases is a promising result. Although the first retraining 

phase is more vulnerable to accidents, it provides a chance to take more information 

about the response of the system. In fact, the chance of more wrong decisions in the 

initial learning phase is possible. Thereafter, this prior information is useful for the 

discrimination of faults and the prevention of accidents (or any unwanted situation).  

 

4.2. Detection of Flooding in a Column  

4.2.1. Flooding in de-Butanizer column  

The goal of this part is to evaluate the FD system by addressing a common reported fault 

of the chemical industry in a simulation environment. Distillation is a widespread unit 

operation, which is used to separate some components in a feed stream. Figure 9 

illustrates the basic components of a distillation system i.e. De-Butanizer.  

The vapor from the reboiler flows up the column, countercurrent to the liquid flowing 

down the column. The components in the feed stream (No. 1-2 in Fig. 9) are separated 

according to their relative volatilities. Butane is the most volatile component and tends to 

concentrate in the vapor flowing up the column. Components with lower volatility tend to 

concentrate in the liquid flowing down the column. Eventually, the vapor enriched in 

Butane exits from the top of the distillation column, and after passing the condenser is 



17 
 

collected in the reflux drum. A portion of the condensed liquid is fed back into the 

column. The rest of the liquid exits the process as the top product (Ludwig, 1997).  

Flooding is a common abnormal process condition that leads to poor separation and off 

specification products (Kister, 2006). In runaway flooding, the liquid level continues to 

rise, and if it is not stopped, the column can actually overflow. Furthermore, flooding 

causes overpressure in the column, which potentially leads to burst of the rupture disc 

and to have process downtime. Less frequently, vapor slugging through the liquid also 

cause trays uplift and damage.  

Flooding may happen due to an excess of hydraulic traffic across the column which is 

represented in Figure 10. Usually, one cause of flooding is too much reflux rate which 

interrupts mass balance. Since reflux is assumed as a heat sink, excess reflux also 

interrupts energy balance and disrupts temperature profile. Consequently, it leads to 

condense of vapor and increase of liquid level in a tray which makes flooding worse. An 

operator usually recognizes flooding through an increase of deferential pressure of the 

column. Thereafter, inevitable flaring of the off-specification products results in 

economic loss. Meanwhile, in order to recover the normal state, the manual corrective 

action is reconfiguration of controllers (Fig. 10). In other words, an operator moderates 

the fault by changing set points and retuning control loops which is assumed as a 

supervision control.  

Another cause of potential flooding is an increase of the relative vapor velocity (Fig. 10). 

Excess reboiler heat duty causes too much vapor to be boiled up, which increases the 

vapor flow up the column. This abnormal hydraulic traffic leads to an increase of the 

differential pressure, which is monitored by an operator. Although, a temporary 

perturbation via this pseudo-fault happens, flaring and corrective actions by an operator 

are not required in most of the cases. Since excess vapor in the column increase 

temperature of trays, a temperature controller automatically decreased the reboiler duty 

(Fig. 10). Thus, the state of column is automatically recovered to normal state in a short 

time. Generally, operator interaction with process in this case is sort of mislabeling the 

FD dataset.  
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4.2.2. Relabeling strategy  

 The dataset required for developing the FD system is provided by a simulation of the de-

Butanizer in the Dynamic Aspen-Plus environment. This complex case study includes 5 

closed control loops (Fig. 9). In order to resemble data streaming, the occurrence time of 

the fault is unknown. In other words, either the fault or the pseudo-fault is randomly 

triggered on unfixed time in each simulation run.  Records of 30 process variables are 

collected in the initial dataset: 

 0 0

0 1:3000 1:3000( , ) | 1:100 r rD Y F r  (13) 

The initial trained GNB classifier based on D0 is evaluated in terms of F1 and accuracy. 

In this order, the true labels are determined by the Kister-Hass factor (Kister, 1992) based 

on the hydraulic state of the de-Butanizer column. Then, the iterative procedure of FD is 

implemented. The results (Table 4) reveal that the final FD system produces higher 

accuracy than the sole classifier in the initialization. The rates of fault impacts, i.e. flaring 

and runaway flooding, are also decreased. Therefore, the proposed strategy promises a 

successive refinement of the datasets, and consequently an efficient diagnosis system. 

Regardless of the classifier types and the state space model, this positive trend is 

expected, because the strategy is focused on the refinement of attributes and labels.  

Table 4: Diagnosis performance of flooding using iterative procedure 

 Learning phase Initial 1st  2nd 3rd 4th 5th  6th  

 Iinteraction % 0 3 9 13 16 18 20 

F1 Normal 0.83 0.85 0.87 0.89 0.91 0.92 0.93 

Fault 0.65 0.72 0.78 0.82 0.86 0.88 0.90 

Accuracy 0.70 0.76 0.81 0.85 0.88 0.90 0.92 

TPR% 99.62 99.48 99.43 99.46 99.48 99.49 99.60 

FPR %  Unnecessary 

flaring  
31.03 20.69 18.17 15.98 13.51 

11.02 9.58 

FNR %  Runaway flooding  0.38 0.52 0.47 0.44 0.42 0.41 0.40 

 

It is worth to consider that the control loops in the process make it robust with regards to 

small perturbations due to a pseudo-fault. This robustness is a kind of passive fault-

tolerance (Patton, 2015). In this way, the interaction of an operator with the process is 

less demanded, which leads to lower potential human error. Consequently, the change of 

Iinteraction in sequential learning stages is smoother for closed loop systems rather than for 
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open loop ones. However, for a severe process fault exceeding this tolerance, the control 

system cannot compensate the fault. Thus, an active fault-tolerant system requires fault-

detection methods and a reconfiguration mechanism. 

Moreover, the correction factor of Iinteraction (Eq. 8) is a controller of the speed of learning. 

The less the plant can tolerate unwanted situations, the more the ARL and Iinteraction is 

reduced. In addition, an inaccurate classifier adversely impacts on the confidence of the 

FD system. Consequently, Iinteraction adjusts the extent of changes and the chance of wrong 

decisions. In general, learning from the experience improves operator understanding, and 

enhances the FD system. Certainly, there is a trade-off between the cost of learning (the 

cost of the risk, depending on the situation and the process) and the reward from learning 

(the better FD and flaring reduction, in this particular case). Optimization of this problem 

is beyond the scope of this work and deserves further research. 

 

4.2.3. Filtering strategy  

There are various strategies dealing with mislabeling (Frénay & Verleysen, 2014). The 

aim of this subsection is the comparison of the proposed approach with a filtering 

approach. In order to improve the quality of the training data, the samples with uncertain 

labels can be removed following the procedure described in Section 3.2 except Stages 3-

4. Alternatively, any sample inconsistently labelled by the operator and the classifier is 

omitted from the database. The idea is to refine the training data via selecting reliable 

samples; and to develop a more efficient classifier.  

The filtering strategy is iteratively implemented on the de-Butanizer dataset. Figure 11 

shows its performance in terms of accuracy, and it is compared with the proposed 

strategy. Despite the increasing trend of accuracy in sequential learning stages of the 

filtering strategy, but it is not as efficient as relabeling strategy. The main reason is that 

the relabeling strategy tries to consider the pseudo-fault as the normal state, despite the 

operator idea at the initial phase. Indeed, it is important to include the pseudo-fault subset 

into normal subsets, which leads to the improvement of the discrimination boundary. 

This strategy shows to have higher performance than discarding the pseudo-fault subset. 

As such, the FD system upgrades to distinguish pseudo-faults from risky faults. 
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4.3. Industrial Challenge  

The real nature of the problem is next illustrated in an industrial challenge, for which the 

methods and tools proposed are applied in a limited way. The problem is first described 

and next it is analysed in regard of the available information and the data processing 

produced for the first learning stage.  

Implementing the iterative strategy proposed in an industrial plant, and accordingly 

obtaining new data from it, is beyond the scope of this study since the necessary feedback 

cannot be afforded in the short term. Therefore, the results obtained reveal the 

opportunities to improve the operator decision-making, and indicate the course for further 

action. 

The removal of sour gas components from gas streams, using chemical solvents such as 

amines, is a requirement in most gas processing plants. The acid gas constituents (H2S 

and CO2) react with an aqueous solvent in a high-pressure absorber which is a column 

equipped with trays (Fig. 12). Subsequently, the solvent is directed to a regenerator and 

stripped from the acid gas in at elevated temperature to reuse it.  

One of the most frequent problems in a gas-sweetening unit is amine foaming in the 

absorber, which results in loss of proper vapor-liquid contact, solution hold up and poor 

solution distribution. The adverse consequences include off-specification product, 

excessive amine loss, reduced gas-treating capacity, and energy loss. For resolving the 

problem, antifoam is injected into the amine recirculation system at several sensitive 

points. Antifoams are chemicals formulated to allow expansion of liquid film of amine 

bubbles and formation of thin spots, which subsequently lead to rupture of bubbles 

(Sheilan, Spooner, Street, & van Hoorn, 2005). 

In practice, the operator monitors online data to estimate the state of the system. The 

following symptoms are usually helpful to the operator for foaming detection: 

 Fluctuating pressure drop in the absorber  

 Increase of flash gas  

 Amine carryover from absorber or flash tank 

 Swinging liquid levels in any vessel 

 Decrease in H2S removal with increase in CO2 removal 

 Off-specification treated gas 
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Furthermore, it is possible to get samples of the amine solution to check foaming 

potential using the shake test. However, this offline test is not common due to delay in 

getting results and hazard of sour gas in the amine solution. On the other hand, 

developing an accurate first principle model of this industrial process is impracticable. As 

such, achieving true labels regarding the dataset is almost challenging. Therefore, online 

monitoring and state estimation typically is preferred to redundant shake test, which is 

herein required for validation.  

In case of severe foaming, the operator can inject fast and massive antifoam by a 

centrifugal pump. Indeed, an online foaming sensor and a close control loop are not 

available in the plant. On the other hand, the operator may be misled by temporary 

pressure fluctuation of the absorber column due to vortex of liquid in the bottom of the 

column (a pseudo- fault). Then, unnecessary antifoam injection by an operator can lead to 

long-term process drawbacks, such as the reduction of amine filter efficiency or the 

formation of heat stable salts. Wrong decision-making leads to extra costs, direct and 

indirect, including antifoam consumption, more frequent filter maintenance, and 

corrosion due to salts. Therefore, it is required that the operator makes right decisions 

regarding the convenience of antifoam injection (Kister, 2006; Sheilan, et al., 2005).  

An efficient FD system can aid the operator to deal with this dilemma. First, records of 

26 in-situ sensors of pressure, level, flow and temperature in significant parts of the gas-

sweetening unit of a real plant are provided. An initial dataset including observations and 

operator labels is as follows: 

 0 0

0 1:4000 1:4000( , ) | 1: 24 r rD Y F r  (14) 

The GNB classifier is fitted based on the training subset of D0.  In order to evaluate 

performance, the 3-folded cross-validation is implemented. The cross validation is 

important to check the classification robustness against the particular choice for the 

training and testing datasets. The predicted labels of the testing subset are compared with 

the true labels, which have been achieved according to the shake tests (Table 5). 

Thereafter, the conflict between operator labels and FD predictions is investigated. 

Iinteraction reveals the existence of unnecessary actions and indicates a promising 

opportunity for improving FD in further refining phases. In addition, the low standard 
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deviation values () of the 3-folded validation (Table 5) show the stability of the 

classifier in prediction.  

Table 5: The initial learning phase of the foaming detection system 

 Iinteraction Accuracy 

1st fold 0.8382  0.6246 

2nd fold 0.8322 0.6218 

3rd fold 0.8384 0.6291 

3-folded Validation [µ,] [ 0.8332,0.0031] [0.6251,0.0052] 

 

In order to improve the performance of the initial FD system, its implementation in the 

industrial plant is required, so that new datasets can be generated. However, this is highly 

resource consuming and getting more information from industrial practice, this is beyond 

the scope of the work presented. On the other hand, this case study highlights the 

industrial challenges of operator-process interaction on FD, and the significance of this 

problem, which clearly needs more attention and further investigation. 

  

5. CONCLUSIONS 

This work addresses efficient data-driven FD for complex chemical processes in the 

framework of operational intelligence, for which the effect of the inevitable operator-

process interaction on process history records needs to be taken into account.  

On the one hand, prior operator knowledge is required, as well as operator preventive 

actions, which are in turn considered true indications of faulty situations. However, some 

historical records in the database may be mislabeled due to human error. This has an 

adverse impact on the performance of an automatic FD system based on such data and 

such labels. On the other hand, the operator actions, necessary or not, alter the system 

dynamics and may interrupt the recording of process data (dynamic attributes) 

corresponding to a true fault. 

Results of the illustrative CSTR case study showed that the GNB classifier trained based 

on the initial dataset just provides a model of operator preferences. Furthermore, it also 

showed that this policy incurred in unnecessary utility consumption. Thus, there was a 

motivation to provide refined datasets by managing label uncertainty and dynamic 

attributes of the system.  
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In order to resolve mentioned FD challenge, an iterative framework was proposed. 

Relabeling was done based on the estimation of the underlying state and a discrimination 

criteria defined as median of Mahalanobis distance. In addition, operator behavior toward 

the system was also shown to improve by considering the interaction index and an 

acceptable risk level. Indeed, this procedure provided the chance of generating new 

attributes at each training phase.  

The FD system was developed and tested for a CSTR and flooding of a simulated de-

Butanizer column. Iterative retraining of the GNB classifier through successive refined 

datasets led to higher detection performance in terms of accuracy and F1. The proposed 

FD system aided the operator to make better decisions in regard of the extra cost 

connected to unnecessary actions. Furthermore, the results revealed that the proposed FD 

strategy is more efficient than the filtering strategy. Nevertheless, collecting new 

information on the system response in the absence of operator actions was shown to be at 

expense of increased accident rate in the early phases of learning, as should be expected 

in regard of natural learning. Thereafter, this information was shown to be useful for 

more efficient discrimination in further learning phases, which leaded to decreasing rate 

of accidents (or unwanted situations). The cost of learning, and the trade-off with the 

associated risks and losses, suggests a challenging optimization problem and further 

research lines including incremental learning can be envisaged from this work. Thus, 

more parameters need to be involved; e.g. fault intensity and its consequences. 

Furthermore, a foaming case study in a gas refinery introduces an industrial challenge 

which reveals that FD under operator-process interaction is an important open research 

problem. However, the cost of obtaining data from true faulty situations in industrial 

practice is difficult. 

Finally, the main issue in this work was fault detection, which is a binary classification 

(normal - abnormal). A limitation of the proposed scheme is the incapacity of dealing 

with multiple faults, which needs more general discrimination boundaries. In fact, the 

bottleneck is the criteria based on Mahalanobis distance which is binary. In addition, for 

fault prognosis, it is required to include additional modules into the proposed framework 

in a further work.  
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NOMENCLATURE 

a  number of true positive samples 

a’   number of faulty samples by the operator and the classifier  

b  number of false positive samples  

b’  number of samples diagnosed as faulty in contrast with operator  opinion  

c  number of false negative samples 

c’  number of samples labeled faulty by operator but not diagnosed  

CA  concentration of A in the outlet stream 

CAf  concentration of A in the feed stream 

CB  concentration of B in the outlet stream 

d  number of true negative samples  

d’ number of samples which both the operator and the classifier have 

agreement on no fault happened. 

DM  Mahalanobis distance 

Dp   dataset at each phase 

F   fault  

Ft  identification matrices of observation equation 

Gt  identification matrices of state equation 

Iinteraction interaction index 

m   number of attributes 

pth   counter of phase 

R   number of runs 

rth   counter of runs 

T   temperature of the reactor 

t   time  

T  time horizon 

Tf  temperature of the inlet stream 

Tj  temperature of the jacket   

vt  Gaussian random vectors of observation equation 

Vt  variance matrices of observation equation 

wt  Gaussian random vectors of state equation   

Wt  variance matrices of state equation 

Yt  attributes 
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Greek symbol 

θt  state variables 

Σ  covariance matrix 

µ   mean  

  standard deviation  

π  probability  

Acronyms 

ASM   abnormal situation management  

ARL  acceptable risk level 

CSTR  continuous stirred tank reactor 

DLM  dynamic linear model 

FD  fault detection  

FDA   Fisher discriminant analysis  

FPR  false positive rate 

FNR  false negative rate 

GNB  Gaussian naïve Bayes 

HMM   hidden Markov model  

KPI  key performance indicator 

MLE   maximum likelihood estimation 

PCA   principal component analysis  

PID  proportional, integral and derivative  

PLS   partial least squares  

SVM  support vector machines  

TPR  true positive rate 
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APPENDIX 

A.1. Energy and mass balances equation of the CSTR 
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. ( )

0.




rE

R T t

r rk k e  
(13) 

( )
.( ( ) ( )) ( )A

AF A

dC t F
C t C t r t

dt V
    (14) 

( ) ( ) ( )B Af AC t C t C t   (15) 

( ) .
.( ( ) ( )) . ( ) .( ( ) ( ))

. .
F j

p p

dT t F H U A
T t T t r t T t T t

dt V C C 
      (16) 

Table 6: CSTR model parameters 

Volumetric flowrate (m3/s) F=1 Forward activation energy 

(J/mol) 
Ef=49614 

Volume of CSTR (m3) V = 150 
Reverse activation energy 

(J/mol) 
Er=50242 

Density of A-B mixture (kg/m3) ρ =833  Forward  pre-exponential 

factor (1/s) 

kf0= 

3.4·107 

Specific heat of A-B mixture 

(J/kg·K) 
Cp = 0.12 

Reverse pre-exponential factor 

(1/s) 
kr0 =2·107 

 Heat of reaction (J/mol) H=-5960 Overall heat transfer 

coefficient (W/m2·K) 
U=7 

Universal gas constant (J/mol·K) R=8.31451  Area (m2) A=100 

A.2. Recursive Kalman filter of DLM 

Consider the DLM specified by: 

 t t t tY F vθ  ~ (0, )t m tv N V  (17) 

1 t t t tG wθ θ  ~ (0, )t n tw N W                     (18) 
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Let consider: 

1 1: 1 1 1| ~ ( , )   t t t tY N m Cθ   (19) 

Then the following statements hold. 

(i) The one-step-ahead predictive distribution of θt given Y1:t-1 is Gaussian, with 

parameters 

1: 1 1( | )  t t t t ta E Y G mθ   (20) 

1: 1 1( | ) 
  t t t t t t tR Var Y G C G Wθ   (21) 

(ii) The one-step-ahead predictive distribution of Yt given Y1:t-1 is Gaussian, with 

parameters 

1: 1( | ) t t t t tf E Y Y Fa   (22) 

1: 1( | )
  t t t t t t tQ Var Y Y F R F V   (23) 

(iii) The filtering distribution of θt given Y1:t is Gaussian, with parameters 

1

1: 1( | ) 


  t t t t t t t tm E Y a R FQ eθ  (24) 

1

1:( | )   t t t t t t t t tC Var Y R R FQ F Rθ  (25) 

where et=Yt-ft is the forecast error. 

 

B. Supplementary data 

Datasets associated with this article including CSTR and gas-sweetening unit 

measurements can be found, in the online version.  
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