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A B S T R A C T 

Expert systems for diabetes care need to automatically evaluate glycaemia measurements in relationship 
to meals to correctly determine patients' metabolic condition and generate recommendations about ther­
apy adjustments. Most glucose meters allow patients to manually label each measurement with a meal 
tag, but as this utility is not always used, a completion procedure is needed. Classification methods are 
usually based on predefined mealtimes and present insufficient accuracy that might affect the automatic 
data analysis. Expert systems in diabetes require a reliable method to manage incomplete glycaemia data 
so that they can determine if patients' metabolic condition is altered due to a specific meal or due to an 
extended fasting period. 

This paper presents the design and application of a classification module to automatically assign the 
appropriate meal and 'moment of measurement' to incomplete glycaemia data. Different machine learn­
ing techniques were studied in order to design the best classification algorithm in terms of accuracy. 
The selected classifier was implemented with a C4.5 decision tree with 7 input features selected with a 
wrapper evaluator and the genetic search algorithm, which achieved 95.45% of accuracy with the training 
set on cross-validation. The classification module was integrated in the Sinedie expert system for gesta­
tional diabetes care and was evaluated in a clinical environment for 8 months with 42 patients. A total 
of 7,113 glycaemia measurements were uploaded by patients into the Sinedie system and were completed 
by the "classification module". The 98.79% of the measurements were correctly classified, while patients 
modified the automatic classification of 1.21% of them. Classification results were improved by 21.04% 
compared to a classification based on predefined mealtimes. The automatic classification of glycaemia 
measurements minimizes the patient's intervention, allows structuring measurements in relationship to 
meals and makes automatic data interpretation by expert systems more reliable. 

1. Introduction 

As in other types of diabetes, the prevalence of Gestational 
diabetes mellitus (GDM) is increasing throughout the world (IDF, 
2015). If the new International Association of Diabetes Study 
Group diagnosis criteria (IADPSG, 2010) -recently proven to be 
cost effective (Duran, Saenz, & Torrejon, 2014) - are adopted, the 
prevalence could be doubled. Several adverse outcomes are asso­
ciated with hyperglycaemia in pregnancy, as foetal macrosomia, 

shoulder dystocia or caesarean section (Metzger, Lynn, & Lowe, 
2008). Although most cases resolve with delivery, both mother 
and foetus are at a higher risk of developing type 2 diabetes in 
the future (Boney, 2005; Franks, Looker, & Kobes, 2006). 

Maternal glycemic control reduces adverse GDM outcomes 
(Harding, Dryden, & Guthrie, 2013) so patients are prescribed to 
self-monitor their blood glucose (BG) levels with a glucose meter 
around main meals. Although measurements are stored in the glu­
cose meter memory file, patients usually note down their results 
in a paper logbook, structuring measurements in relationship to 
meals. They indicate the specific meal which the measurement is 
related to (breakfast, lunch or dinner) and whether it was made 
before (preprandial) or after the meal (postprandial). Clinicians 
evaluate the patients' measurements each week or every other 



week to determine the appropriate treatment, which consists of 
nutritional prescription, physical activity and, if necessary, insulin 
therapy. It has been observed that patients commit errors when 
manually reporting their BG levels, being the mean values signif­
icantly higher than the logbooks' ones (Given, 0' Kane, Bunting, 
& Coates, 2013). Although this could mask a bad glycemic control 
and make clinicians establish a wrong therapy, they still prefer 
to examine logbooks instead of meter memory files (Polonsky, 
Jelsovsky, & Panzera, 2009). The reason might be that logbooks are 
easier to be reviewed, as they provide structured information that 
glucose meter memory lacks, like associations of measurements to 
meals, which are essential to make therapy adjustments. Logbooks 
also provide additional information such as food intakes, insulin 
doses or exercise. 

Telemedicine allows patients to send their BG data to the 
system to be remotely evaluated, which avoids unnecessary dis­
placements (Carral, Ayala, del, & Fernández, 2015; Pérez-Ferré, 
Galindo, & Fernández, 2010) and improves access to specialized 
care in rural areas (Mohan & Pradeepa, 2014). Furthermore, by 
a more exhaustive and frequent evaluation of accurate data, 
telemedicine is capable of improving glycemic control (Wojcicki, 
Ladyzynski, & Krzymien, 2001) and reducing GDM adverse out­
comes (Dalfra, Nicolucci, & Lapolla, 2009; Ferrara, Hedderson, & 
Ching, 2012). Monitoring data in telemedicine systems should be 
presented to clinicians organized as they appear in paper logbooks 
to facilitate their interpretation. 

The use of telemedicine could increase clinician's workload 
as it favors the generation of a greater amount of data to be 
evaluated by clinicians. Expert systems can solve the potential 
increment of clinicians' workload (Klonoff & True, 2009) by auto­
matically analysing patients' monitoring data according to expert 
specifications (Hernando, Gómez, Corcoy, & del Pozo, 2000). The 
automatic analysis of monitoring data could optimize clinician's 
time by notifying which patients are evolving satisfactorily and 
which ones need a deeper examination. Expert systems, like 
clinicians, need to analyze glycaemia data in relation to meals to 
be able to determine patients' condition and to generate specific 
recommendations about therapy adjustments. 

Glycaemia data entry in expert systems can be performed 
by patients either manually or by uploading the data stored in 
their glucose meter (El-Gayar, Timsina, Nawar, & Eid, 2013a). The 
automation of data entry is preferred as it minimizes transcription 
errors (Given et al., 2013), results in more data captured, sim­
plifies the date entry process and increases patients' satisfaction 
(El-Gayar, Timsina, Nawar, & Eid, 2013b). One of the problems that 
expert systems in diabetes have to face is the management of 
incomplete glycaemia measurements. A measurement is consid­
ered incomplete if it lacks its association with a meal or with a 
moment of measurement. Newer glucose meters can include the 
functionality to allow registering these data manually, but even 
if they do, it is a time-consuming task and patients sometimes 
forget to introduce it. Without an accurate method to manage 
incomplete glycaemia data, expert systems cannot determine if 
patients' metabolic condition is altered due to a specific meal that 
should be adjusted or due to an extended fasting period. 

The majority of studies available in literature about expert sys­
tems do not explicit describe the method used to retrieve the as­
sociated meal and moment of measurement of glycaemia data or 
how they manage the lack of this information. Some expert sys­
tems allow patients to add a meal tag to glycaemia measurements 
after uploading data from the glucose meter (Cafazzo, Casselman, 
& Hamming, 2012; Lim, Rang, & Shin, 2011; Quinn, Clough, & Mi­
nor, 2008), but it has been observed that sometimes patients for­
get to label some of the measurements (Mackillop et al., 2014) 
so they cannot be automatically analyzed. To solve this problem, 
the expert system can preselect a meal tag for each measurement 

downloaded and allow patients to modify it. Bromuri et al, pre­
select glycaemia meal tags based on previous measurements, so, if 
the last measurement was taken before dinner, an after dinner pe­
riod is preselected (Bromuri, Puricel, & Schumann, 2016). However, 
this method might present problems when dealing with repeated 
or missing measurements, for example if the patient forgets to 
measure her glycaemia after dinner, she measures it the following 
day before breakfast and she, by mistake, accepts the preselected 
meal tag. Some commercial applications automatically classify the 
glycaemia measurements downloaded by patients according to 
patient's predefined mealtimes (Sanofi Diabetes, 2015), but this 
method might present an elevated rate of errors as we will see in 
the following sections. We propose an innovative method for gly­
caemia meal tag preselection using machine learning techniques. 

This paper presents the methodology to design an automatic 
classifier to associate the appropriate meal and moment of mea­
surement to each glycaemia data downloaded from a glucose 
meter, its integration within the Sinedie expert system for GDM 
and the classification results obtained in a pilot study at Hospital 
de Sabadell with 47 patients for 8 months. 

2. Material and methods 

This section describes the Sinedie expert system and how the 
automatic classifier is integrated with the BG levels uploading 
procedure. We explain the two different classification strategies 
studied to design the classifier: a simple algorithm based on the 
patient's mealtime schedules, measurements' time and BG level; 
and a more complex algorithm based on machine learning tech­
niques. Finally, we describe the design of the clinical evaluation 
experiment. 

2.1. Sinedie expert system for GDM 

Sinedie is a telemedicine platform enhanced by an expert sys­
tem to manage the treatment of GDM patients. It aims to improve 
health care processes by reducing the evaluation time per patient, 
avoiding unnecessary displacements and improving the access 
to specialized healthcare. The expert system available in Sinedie 
computes the patients' metabolic condition and generates advice, 
to both patients and physicians about treatment changes, including 
the need to start an insulin therapy. The BG classifier presented in 
this paper was integrated in the Sinedie system as a classification 
module, whose functionality is to assign an appropriate mealtime 
and a moment of measurement to each incomplete measurement 
uploaded to the system with the glucose meter. The glucose 
meter memory file provides information about date and time of 
each measurement, as well as its value (see :ig. 1). Additionally, 
patients can enter the corresponding moment of measurement 
(preprandial or postprandial) or the associated mealtime if they 
have a glucose meter that allows registering such information. 
The classifier allows structuring the BG levels obtained from the 
glucose meter file to be visualized in an e-logbook in Sinedie 
(Fig. 1). This completion procedure is executed in a preprocessing 
step prior to the automatic data analysis performed by the expert 
system and it is essential to detect anomalous conditions in 
patient's health. After each data download, patients verify if the 
automatic classification is accurate and otherwise correct it. 

2.2. Classification problem analysis 

A preliminary study (study 1) was carried out to determine 
which would be the optimal classifier to be implemented in 
Sinedie. As part of this study, we examined measurements' distri­
bution along the day according to time and BG level to analyze the 



GLUCOSE METER MEMORY FILE E - LOGBOOK 

<IMP0RT> 
<ACSPIX Type="2106" SN="UI00346822" Ver= 
<DEVICE Name="Aviva" SN="36815015" Dt=' 
Tm="10:49" BGUnit="mg/dL"/> 
<RECENTREC Dt= "2014- l l - 24 " Tm="17:07"/> 
<BG0ATA> 
<BG Val= 
<BG Val= 
<BG Val= 
<BG Val= 
<BG Val= 
<BG Val= 
<BG Val= 
<BG Val= 
<BG Val= 
<BG Val= 
<BG Val= 
<BG Val= 

'118" D t= "2014- l l -24 " Tm="17:07' 
'126" D t= "2014- l l - 24 " Tm=" l l :09 ' 
'99" D t= "2014- l l - 24 " Tm="09:12" 
'116" D t= "2014- l l - 23 " Tm="23:58' 
'135" D t= "2014- l l - 23 " Tm="21:25' 
•132" D t= "2014- l l - 23 " Trrt="17:12' 
'133" D t= "2014- l l - 23 " Tm=" l l :29 ' 
'94" D t= "2014- l l - 23 " Tm="09:47" 
'116" D t= "2014- l l -22 " Tm="23:31' 
•121" D t= "2014- l l - 22 " Tm="17:25' 
'144" D t= "2014- l l -22 " Tm=" l l :13 ' 
'144" D t= "2014- l l - 22 " T m = " l l : l l ' 

<BG Val="83" D t= "2014- l l -22 " Tm="09:15" 

"3.0O.02"/> 
2015-02-06" 

D= ' , l " /> 
D = " l " / > 

D = " l " / > 
D = " l " / > 
0 « " l " / > 
D = " l " / > 
D = " l " / > 

D=" l '7> 
D = " l " / > 
D = " l " / > 
D = " l " / > 
D = " l " / > 

D=" l " /> 

Classification 

• 

Date-r 

24/11/14 

23/11/14 

22/11/14 

21/11/14 

20/11/14 

19/11/14 

18/11/14 

17/11/14 

16/11/14 

15/11/14 

14/11/14 

13/11/14 

12/11/14 

Prep, 
breakf. 

99 

94 

83 

98 

91 

93 

90 

91 

97 

94 

105 

100 

95 

Post, 
breakf. 

126 

133 

114 

132 

117 

117 

133 

142 

133 

147 

140 

Prep, 
lunch 

Post, 
lunch 

118 

132 

121 

147 

124 

154 

122 

125 

129 

115 

118 

117 

Prep, 
dinner 

135 

Post, 
dinner 

116 

116 

145 

130 

168 

129 

134 

113 

149 

146 

132 

130 

Others 

3 

5 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

5 

Fig. 1. Built patient e-logbook from the glucose meter memory file in the Sinedie system. The Sinedie e-logbook shows the 6 main intervals around main meals, when 
patients usually perform a BG measurement. Most of the patients also measure their glycaemia in other intervals, or perform several measurements in the same one. The 
column ("Others") shows the total number of measurements performed by the patient on a specific day, and shows all measurements' details when the cell is clicked. 

feasibility of using a simple algorithm based on patient's mealtime 
schedules, measurements' time and BG level. 

2.2. J. Glycaemia data description 
The study 1 dataset (DSG) includes retrospective data from 25 

GDM patients from the Hospital de Sabadell in Barcelona, Spain. 
Fifteen of the patients were treated only with diet and ten of them 
also with insulin therapy. Patients with insulin therapy adminis­
tered either fast insulin associated to one or more meal intakes, 
and/or slow insulin at night. Patients used the Accu-check Aviva or 
the Accu-check Nano glucose meter (Roche Diagnostics, 2013a, b) 
over an average period of 60.9 ±33.5 days, and were requested to 
perform at least 4 measurements a day: before breakfast (breakfast 
preprandial) and after each main meal (breakfast postprandial, 
lunch postprandial and dinner postprandial). Patients also filled in 
a paper logbook with the four BG measurements requested. The 
DSG dataset includes a total of 6025 BG measurements from pa­
tients' glucose meters (241.0 ± 134.8 per patient) and it is formed 
by two features obtained directly from the glucose meter memory 
file: 

• "time": Time of the day when the measurement was taken in 
absolute minutes. 

• "bg": Glycaemia value in mg/dl. 

BG measurements were labeled with the meal information 
registered manually in the patients' paper logbooks. The concor­
dance detected between meter files and logbooks was 93.50%, 
considering concordance as the measurements correctly registered 
in the logbook out of those registered at all (Given et al., 2013). 
The "underreported" measurements, the ones appearing in the 
memory file but not in the logbook, were 5.05% of the stored 
measurements and were labeled by the authors including the 
following tags: lunch preprandial, dinner preprandial, repeated, 
morning, afternoon and night. We will refer to these measure­
ments in the rest of the document as "additional measurements". 
BG values differed between the meter file and the logbook in 
1.78% of the measurements registered; in that case the meter file 
value was maintained. We also found that 1.98% of the logbook 
measurements registered did not appear in the meter file. 
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Fig. 2. Glycaemia measurements distribution of patient P5 along the day. 

2.2.2. Measurements scatter plots 
Twenty five scatter plots, one for each patient, were created 

in order to visually analyze the distribution of glycaemia mea­
surements along the day. Each plot was generated according to 
measurement time and BG value. All scatter plots showed that 
measurements were clearly distributed in three groups corre­
sponding to the three main meals: breakfast, lunch and dinner. 
It was also observed an overlap in breakfast preprandial and 
postprandial measurements time and, in some cases, BG values 
as well. An example of these assessments can be observed in 
Fig. 2, which shows the measurements' distribution of one patient 
treated only with diet. 

Fig. 2 shows the time overlap in P5 breakfast measurements 
(white and black circles) from 9:43 to 11:20. It also presents four 
additional measurements: one at 10:52 in the morning (+symbol) 
that falls in the breakfast interval and three in the afternoon 
(xsymbols), two of them coincide with the postprandial lunch 
interval and the last one is a preprandial dinner (black triangle 
symbol). These additional measurements were observed in 18 
out of the 25 patients, ranging from 1 to 134 measurements per 
patient. At the left side of the chart we can see an example of a 
midnight dinner which should be grouped with the rest of the 
meals at dinnertime instead of with the breakfast ones. It would 
be logical to think that the postprandial BG levels would be higher 
than the postprandial ones, due to carbohydrates intake as we 
observe in P5 values. But, as shown in Section 2.2.3, we found that 
this is not always true. 

2.2.3. Statistical analysis 
A further statistical analysis performed with the PSPP tool 

(PSPP, 2013) confirmed our visual appreciations. Four intervals 



Table 1 
Measurement time variability for each patient in the four mealtime intervals defined, distinguishing 
between weekdays and weekends (w). 

Patient 

PI 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 
P10 
Pll 
P12 
P13 
P14 
P15 
P16 
P17 
P18 
P19 
P20 
P21 
P22 
P23 
P24 
P25 
Mean 

Bpre 

IQR 

277 
39 

7 
37 
60 
59 

188 
29 
78 
67 
86 
42 
19 
33 
80 

104 
85 
33 
19 
43 
38 
24 
60 
81 
63 

66 ±57 

IQRw 

143 
49 

144 
37 
60 
57 
84 
50 
67 
57 
92 
58 
29 
38 
80 
92 
61 
81 
74 
28 
75 
67 
34 
73 
68 

68 ±29 

Bpos 

IQR 

94 
42 
32 
33 
60 
46 

135 
74 
87 
65 
88 
35 
19 
45 
76 
96 
92 
31 
27 
47 
62 
38 
54 
72 
60 

60 ±28 

IQRw 

49 
34 
85 
34 
62 
48 
49 
49 
97 
48 
87 
43 
23 
83 

110 
104 
82 
84 
63 
77 
45 
64 
47 
63 
73 

64 ±23 

Lpos 

IQR 

46 
30 
13 
33 
32 
49 
65 
46 
43 
59 
79 
59 
39 
34 
49 
116 
40 
11 
27 
64 
47 
59 
48 
47 
43 

47 ±21 

IQRw 

45 
69 
39 
10 
91 

114 
73 
55 
26 

106 
62 

116 
47 
98 
66 
49 
48 
34 
13 
31 
40 
66 
58 
42 
63 

58 ±29 

Dpos 

IQR 

83 
33 
32 
68 
27 
43 
62 
48 
20 
67 
47 
23 
26 
35 
66 
64 
30 
13 
44 
57 
37 
62 
70 
53 
66 

47 ±19 

IQRw 

53 
44 
41 

107 
41 
96 

114 
45 
43 
69 
37 
68 
33 

114 
46 
47 
42 
62 
47 
69 
60 
73 
39 
49 
36 

59 ±25 

Interquartile range expressed in minutes. 

were established: preprandial breakfast (Bpre), postprandial break­
fast (Bpos), postprandial lunch (Lpos) and postprandial dinner 
(Dpos) in order to study the variability in measurement time in 
each one of them. For each interval, we calculated the measure­
ment mean time and interquartile range (IQR) for each patient, 
globally and differentiating between working days and weekends. 
We used the IQR instead of the standard deviation because it bet­
ter shows the variability in the patients' usual measurement times, 
not considering the extreme values. Midnight measurements, from 
0:00 to 3:20, were modified by adding 1440min (24h*60min) 
to the original value, in order to elude cyclical distances issues. 
Table 1 shows the results of the statistical study about measure­
ment time variability of each patient over the four meal intervals 
defined. 

The observed average IQR exceeds 45 min in all the intervals. 
Focusing our attention on breakfast's intervals, the average IQR 
in both preprandial and postprandial subintervals is of 66 and 
68 min respectively. This elevated IQR, over 60 min, was detected 
in 13 out of the 25 patients in "Bpos" interval and 12 out of 25 
in "Bpre" interval. Furthermore, we detected a delay in the mean 
measurement time at weekends of 47 min at breakfast, 30 min at 
lunch and 16 min at dinner. These behavioral changes at weekends 
could be a criterion to take into account in our classification 
algorithm. However, in 3 patients no delay was observed. 

In order to study the glycemic preprandial and postprandial 
ranges at breakfast time, we calculated the minimum and maxi­
mum BG level of the two breakfast intervals establishing for each 
patient its glycemic range: (Bpregmax - Bpregmin) and (Bposgmax -
Bposgmin). We calculated the percentage of preprandial measure­
ments whose BG value fell within the postprandial glycemic range 
and vice versa. The percentage of coincidence found for insulin 
treated patients (P3, P4, P6, P7, P8, Pll, P16, P17, P18 and P19) 
was of 47.92% (656 measurements out of 1367) and of 41.71% 
(599 measurements out of 1436) for non-insulin treated patients, 
reaching more than 50% in 3 patients using insulin and in 5 non-

insulin treated patients. Fig. 3 shows the breakfast preprandial 
and postprandial measurements' boxplot where preprandial and 
postprandial BG levels overlap can be appreciated in the patients' 
breakfast measurements. 

The variability observed in the statistical analysis indicates that 
a classification algorithm based only on the time of measurement 
according to patients' mealtime schedules could present problems 
when distinguishing between preprandial and postprandial mea­
surements in the same mealtime interval, as well as additional 
measurements. In GDM this is especially problematic at breakfast 
interval, when it is necessary to discriminate between fasting and 
postprandial measurements. 

Neither is enough to add the BG level information to the algo­
rithm, since we observed over a 40% of coincidence in glycaemia 
ranges at breakfast time regardless insulin administration, which 
makes it really complex to discern whether the measurement is 
preprandial or postprandial. For these reasons, we consider that 
a machine learning algorithm is needed to perform a rigorous 
and more accurate classification of measurements to correctly 
complete the uploaded measurements with the associated meal 
and moment of measurement. 

2.3. Machine learning for classification 

We evaluated different machine learning techniques applied 
to automatic classification. In order to evaluate whether the 
consideration of more parameters could improve classification 
accuracy, we obtained a larger set of features (DS18) from the 
DSG. We tried 6 different feature selection (FS) methods over 
the DS18 to select the most relevant features and to remove 
the redundant ones. Three datasets were obtained using FS 
(DSCFS, DSWB and DSWG) in addition to the initial DSG, the 
DS18, and a feature subset defined by an expert (DSE). We 
evaluated two learning algorithms in terms of accuracy, the 
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Fig. 3. Boxplot of breakfast preprandial and postprandial measurements of all patients. Blood glucose level in mg/dl. 

C4.5 decision tree (Quinlan & J. Ross, 1993) and the Multilayer 
perceptron neural network (Haykin, 1994) with the 6 different 
subsets. 

We used the Weka data mining tool (Witten, I. H. & Frank, 
E, 2005) due to its Java library that provides all the algorithms 

implementation we needed. It was also chosen for its ease of inte­
gration in the Sinedie system, as it is also developed in Java. Weka 
default parameters were maintained in all the algorithms tested 
and a 10-fold cross-validation was applied for FS and learning 
algorithms evaluation. 



2.3.1. Search of input and output features 
We obtained a total of 18 input features from the DSG and from 

the patients' clinical history. In a previous study performed for pa­
tients with type 1 diabetes (García-Sáez, Alonso, & Molero, 2009), 
an expert specified that for measurement's meal assignation, 
besides time and BG level, it was relevant to know when the pre­
vious measurement was taken and whether the patient was under 
insulin therapy or not. Following these recommendations, we ob­
tained the DSE subset with 'time', 'bg' and two additional features: 

• "insulin": Boolean that indicates whether the patient has in­
sulin therapy or not. 

• "iprev": Time difference in minutes from previous measurement 
of the same day if any. 

As the expert considered relevant the insulin treatment and 
time interval between measurements, we added 6 more features 
related to those parameters: 

• "instype": Indicates the type of insulin administered and the 
moment of administration if any. 

• "fib": Fast insulin dose at breakfast time. 
• "fil": Fast insulin dose at lunchtime. 
• "fid": Fast insulin dose at dinnertime. 
• "sin": Slow insulin dose at night time. 
• "ipos": Time difference in minutes until posterior BG measure­

ment if any. 

The consideration of time intervals between measurements led 
to the idea of evaluating groups of three measurements instead of 
evaluating isolated ones. So, two more features were calculated: 

• "bgprev": Previous BG value if any. 
• "bgpost": Posterior BG value if any. 

To study if weekends, holidays or even the seasons of the year 
affect the patterns of the patients' measurements, and to identify 
which rules could be established related to this, we calculated the 
following 5 features from the date of measurement: 

• "work": Boolean value that indicates if it is a working day or 
not. 

• "dow": Day of the week. 
• "doy": Day of the year. 
• "day": Day of the month. 
• "month": Month of the year. 

As we verified in patients' scatter plots, measurements could 
be grouped in three clusters related to the three main meals, so 
that a last feature denominated "intake" was obtained. This feature 
indicates which cluster the measurement belongs to, and can take 
three different values: Breakfast, lunch or dinner. The feature 
is calculated clustering each patient's measurements according 
to its time with the Expectation Maximization algorithm (EM) 
(Dempster, Laird, & Rubin, 1977), specifying the number of clus­
ters. Measurements after midnight were corrected, as explained in 
Section 2.2.3, to be grouped in the dinner cluster instead of the 
breakfast one. We also performed the clustering using the K-means 
(MacQueen, 1967) and X-Means (Pelleg & Moore, 2000) algorithms, 
but we obtained worse results than with the EM algorithm. 

Regarding the classifier output features, ten classes were 
defined: "breakfast-prep", "breakfast-post", "lunch-prep", "lunch-
post", "dinner-prep", "dinner-post", corresponding to preprandial 
and postprandial main meals measurements, and "morning", "af­
ternoon", "night" and "repeated" corresponding to the additional 
measurements that some patients make. 

2.3.2. Feature selection 
In order to discover the optimal feature subset that achieves 

the best accuracy with the minimum complexity we tested 6 

different FS methods by the combination of 2 evaluators and 2 
searching algorithms. 

There are 2 main approaches in FS evaluators, wrappers and 
filters, so we tested one evaluator of each approach. The wrapper 
evaluates feature sets by using a learning scheme (Kohavi, 1996) 
and it is computationally intensive. Among the filter models we 
chose the Correlation based feature selection (CFS), that evaluates 
the worth of a subset of attributes by considering the individ­
ual predictive ability of each feature along with the degree of 
redundancy between them (Hall, 1999). 

As not all searching algorithms perform equally before differ­
ent datasets, we tested two algorithms belonging to two of the 
three main categories available: "Sequential search" and "Random 
search" (Liu & Yu, 2005). We excluded the "Complete search" 
category as it might be computationally infeasible when working 
with a large number of features. From the first category we tested 
the Best First algorithm (Witten & Frank, 2005), which searches 
the space of features subsets by greedy hill climbing augmented 
with a backtracking facility. It is simple and fast. We tried the 
three searching strategies: forward, backward and bidirectional. 
The other algorithm tested was the Genetic search (Goldberg, D. 
E., 1989), which belongs to the second category that can avoid 
local minimal problems. These 6 FS methods were applied to the 
DS18 obtaining 6 features subsets. 

To determine which features should form the resulting subsets 
from FS, we initially included the features selected the greatest 
number of times. Then, we followed a sequential forward strategy 
adding the rest of the features one by one, selecting the most 
popular each time and stopping when accuracy decreased. 

2.3.3. Learning algorithms 
The algorithms evaluated to build the classifier are the C4.5 

decision tree and a neural network with the multilayer perceptron 
(MLP) architecture. Both algorithms have been widely and suc­
cessfully used in diabetes clinical domain with multiple purposes 
like retinal disease diagnosis (Bourouis, Feham, Hossain, & Zhang, 
2014), impaired glucose metabolism or type 2 diabetes mellitus 
identification (Hische, Luis-Dominguez, & Pfeiffer, 2010; Mohlig, 
Floter, & Spranger, 2006; Shankaracharya, Mallick, & Shukla, 2012; 
Upadhyaya, Farahmand, & Baker-Demaray, 2013), or to identify 
significant factors influencing diabetes control (Huang, McCullagh, 
Black, & Harper, 2007). However, they have not been used for 
BG level classification in mealtime intervals. The C4.5 algorithm 
implementation used is the ¡48 and for the MLP the Multilayer 
Perceptron, both defined in Weka. 

2.4. Clinical evaluation 

The classifier was integrated in the Sinedie system as part of a 
classification module, which is also responsible for acquiring the 
input features required by the classifier. The classifier implemen­
tation is based on the results obtained in study 1. We selected the 
classification algorithm and the set of input features that achieved 
the highest accuracy in the second part of the study {2.3. Machine 
learning for classification). The implemented classifier was trained 
with the same data used in study 1. 

The clinical evaluation was performed at a Spanish hospital, 
the "Hospital de Sabadell" for 8 months. During this period, 42 
patients with GDM have uploaded a total of 7113 measurements 
to the Sinedie system, which have been automatically classified by 
the classification module. 

In order to evaluate the classification results that would have 
been obtained using an algorithm based in predefined mealtimes 
we implemented a second classifier based on usual Spanish 
mealtimes. At the end of the clinical study, we categorized the 
measurements that patients had uploaded into the system with 



Table 2 
Features selected by each method in 10-fold cross validation. In bold and 
underlined the features selected by us to be included in the features 
subsets. 

Feature 

day 
month 
doy 
dow 
work 
time 
iprev 
ipos 
bgprev 
bg 
bgpos 
insulin 
instype 
flb 
lil 
fld 
sin 
intake 

Wrapper 

Best First 

J48 

1 
1 
1 
2 
1 
9 

10 
10 

1 
9 
0 
1 
1 

1 
3 
1 
8 
9 

MLP 

0 
1 
0 
2 
0 

10 
9 

10 
0 

10 
10 
6 
0 
4 
2 
4 
0 

10 

Genetic 

J48 

2 
1 
0 
0 
5 

10 
10 
10 
4 
9 
0 
4 
4 
4 
4 
2 
9 

10 

MLP 

0 
2 
1 
0 
4 

10 
2 

10 
7 

10 
10 
10 

1 
4 
2 
8 
6 

10 

CFS 

0 
0 
0 
0 
0 

10 
10 
10 
50 
10 
10 
0 
0 
0 
0 
0 

10 
10 

the classifier based on fixed time intervals and compared the re­
sults obtained with the labels assigned by the classifier integrated 
in Sinedie, which were verified by the participants in the clinical 
study. 

3. Results 

In this section we present the results obtained in the machine 
learning techniques evaluation, considering FS and learning al­
gorithms tests, the classification module structure specification 
and its performance in the Sinedie expert system where it was 
integrated. 

3.1. Machine learning 

3.Í.Í. Feature selection 
Table 2 shows the number of times (from 0 to 10) that each 

feature was selected by each FS method during the 10-fold cross 
validation. The table is divided into three main columns (features 
name and the two evaluators tested, Wrapper and CFS). The col­
umn -corresponding to the Wrapper evaluator- is divided into 
two sub-columns, one for each searching algorithm used: Best 
First and Genetic Search. These two columns are subdivided into 
two sub-columns according to the learning algorithms tested (J48 
and MLP). The CFS algorithm, as it evaluates attributes correlation, 
does not depend on any learning algorithm. CFS obtained the 
same results with the two searching algorithms so its results are 
shown in a single column, the last one. In the Best First algorithm, 
the result obtained with the "Forward" search strategy is shown as 
it had similar results than the "Bidirectional" strategy and slightly 
better results than the "Backwards" one in MLP. 

All FS methods selected 7 features apart from the wrapper-
MLP-genetic combination, which selects 9. There are 4 features 
selected by all the methods in 9 or 10 folds: "time", "ipos", "bg" 
and "intake". There are two other features that were selected by 
all the methods except one: the "iprev" feature (not selected by 
the wrapper-MLP-genetic) and the slow insulin dose "sin" (not 
selected by the wrapper-MLP-Best First). The MLP combinations 
selected the boolean feature "insulin" in more folds than the "sin", 
on the contrary of J48. The posterior BG measurement "bgpos" is 
selected by MLP in all the folds and CFS but it is never chosen by 

the J48. The "work" feature seems not to have a high impact as 
it has been selected only in three methods in half of the 10 folds, 
but as it is shown in Table 3, it belongs to the combination that 
achieves the best accuracy. 

3.1.2. Learning algorithms performance 
Table 3 shows the accuracy results obtained by each candidate 

dataset obtained in the FS process, as well as with the DSG, the 
DS18 and the DSE with both learning algorithms (J48 and MLP). 

The results show that the J48 learning algorithm achieves 
higher accuracy than MLP with all the datasets tested. Accuracy 
improves when increasing the attributes number from 2 (DSG) 
to 18 (DS18), and reaches the highest values when removing the 
redundant ones by feature selection (DSCFS. DSW*). We achieved a 
4% enhancement with the DSE, adding two features to the initial 
DSG. When adding the rest of features calculated, a total of 18 
forming the DS18, we obtained a slight improvement with the 
J48 algorithm (1.42%), and of 4.3% in MLP algorithm. This might 
be explained because the J48 achieved a 3.6% more accuracy 
than the MLP with the initial DSG, remaining fewer margin for 
improvement. It is observed that with few features, 2-4, the J48 
algorithm performs substantially better than the MLP but when 
we increase the features number up to 18 the performance is 
similar, over 94% with just a 0.67% of enhancement over the MLP. 
The MLP cross-validation execution time shows how the algorithm 
complexity also increases with the number of features. The J48 
achieved the best accuracy result, 95.45% and it is also faster to be 
trained than the MLP (Is vs. 2 min comparing the best accuracy 
results of each algorithm) so we decided to build the classification 
module based on the J48 learning algorithm discarding the MLP. 

The selected feature subset was the one with highest accuracy, 
the Wrapper evaluator and the Genetic search algorithm (DSWG) 
using the J48 learning algorithm. 

3.2. Classification module structure 

We implemented the automatic BG measurements classifier as 
a C4.5 decision tree, with the J48 algorithm. The features chosen 
as inputs were the 7 selected by the FS method formed by the 
wrapper evaluator and the genetic search algorithm: "time", "ipre", 
"ipos", "bg", "intake", "work" and "sin". 

The classification procedure is divided in two stages: 1) ac­
quisition of input features and; 2) classification of the glycaemia 
measurements. In the first stage ("Acquisition of inputs features" ), 
the set of measurements uploaded by the patient (Mupid), formed 
by 3 input features (date, time and BG level), is transformed to 
obtain a measurement set composed by 7 inputs features (M7), 
which are required by the classifier in the second stage ("Classi­
fication" ). The 7 features are obtained from: 1) Mup|d; 2) Mprev: 
dataset with the glycaemia measurements from the previous 
download if they exist; and 3) S: dataset with the slow insulin 
doses related to the measurements uploaded, in case the patient 
uses insulin treatment. Mprev and Mupid with midnight time rec­
tification ("cotime" ) are the inputs to the cluster that obtains the 
dataset (I) with the "intake" features related to each measurement. 
Clusters are recalculated in each measurement's upload so the "in­
take" feature adapts to possible changes in patients' schedules due 
to pregnancy progress or to other reasons. When patients upload 
their glycaemia data for the first time, if the number of measure­
ments is lower than three, the "intake" attribute is obtained with 
a simple logic rule based on fixed mealtime intervals to solve 
errors detected in the clustering results with a small number of 
measurements. 

The "Classification" stage involves the classification of the M7 

dataset, obtaining as a result the measurements' relationship to 
main meals. The classifier output (C) is a set of pairs of values 
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Fig. 4. Classincation module structure diagram. The inputs and outputs of submodules are datasets whose features are indicated in brackets. 

Table 3 
Accuracy results of both learning algorithms with the 7 datasets tested with 10 fold cross-validation. 

Set 

DSG 

DSE 

DS,8 

DSCFS 

DSWB 
DSWG 

J48 

Accuracy 

89.20% 

93.44% 

94.82% 

95.19% 

95.20% 

95.45% 

F-Measure 

0.876 
0.925 
0.947 
0.951 
0.951 
0.954 

Execution Time 

Is 
Is 
Is 
Is 
Is 
Is 

MLP 

Accuracy 

85.61% 
89.86% 
94.15% 
94.58% 
95.10% 
95.00% 

F-Measure 

0.847 
0.895 
0.938 
0.944 
0.949 
0.947 

Execution Time 

l m l 3 s 
1 m23s 
8m22s 
lm59s 
2m4s 
2m26s 

DSCFS, DSWB y DSWG correspond to features sets obtained by the CFS; and the wrapper evaluator with 
the Best First (WB) (Forwards) and the Genetic search algorithms (WG) respectively. 

(meal-moment) related to each measurement uploaded. The four 
outputs related to the additional measurements "morning", "af­
ternoon", "night" and "repeated" have moment "unknown". Only 
incomplete measurements are automatically classified. Whenever 
a patient introduces either the meal or the moment in her glucose 
meter, this data is maintained and the missing value is completed 
with the automatic classifier output. Classified measurements 
(Mcisf) are presented to the patient through the Sinedie graphical 
user interface for verification, offering the possibility of reclassify­
ing them (Mrev) before the automatic data analysis is performed 
by the expert system. The classification module structure is shown 
in Fig. 4. 

3.3. Clinical evaluation 

The classification module integrated in the Sinedie expert sys­
tem achieved a 98.79% of accuracy when being used by patients. 

Only 1.21% (86) of the measurements was reclassified by patients, 
out of the 7113 measurements transmitted by them and automati­
cally classified by the system. Among the reclassified ones, 53.49% 
(46) were automatically classified as "repeated", 15.12% (13) as 
"preprandial-breakfast", 12.79% (11) as "postprandial lunch", 10.47% 
(9) as "postprandial breakfast", 3.49% (3) as "preprandial dinner", 
3.49% (3) as "postprandial dinner" and 1.16%(1) as "preprandial 
lunch". Table 4 shows the reclassification changes made by the 
patients. 

Most classification errors (46 out of 86) are made in the identi­
fication of repeated measurements. However, in half of these cases 
(23 out of 46) patients only reclassify the moment of measurement 
from "unknown" to "postprandial" or "preprandial" maintaining 
the meal determined by the classifier ("Repeated"). We consider 
the automatic classification of these 23 measurements correct, as 
the classifier does not specify the moment of measurement in 
repeated measurements. 

http://tlme.bg
http://ipos.bg


Table 4 
Classifier confusion matrix. 

Aclsf 

Bpre 
Bpos 
Morn. 
Lpre 
Lpos 
Aftrn 
Dpre 
Dpos 
Night 
Runk 

/ Prclsf* Bpre 

1743 
1 
0 
0 
0 
0 
0 
0 
0 
3 

Bpos 

5 
1724 
0 
0 
2 
0 
0 
0 
0 
10 

Morn. 

0 
1 
0 
0 
4 
0 
0 
0 
0 
0 

Lpre 

0 
0 
0 
1 
2 
0 
0 
0 
0 
0 

Lpos 

0 
2 
0 
1 
1718 
0 
1 
1 
0 
4 

Aftrn 

0 
0 
0 
0 
0 
0 
2 
0 
0 
0 

Dpre 

0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

Dpos 

6 
1 
0 
0 
0 
0 
0 
1706 
0 
6 

Night 

0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

Runk 

0 
0 
0 
0 
0 
0 
0 
0 
0 
107 

Rpre 

2 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Rpos 

0 
4 
0 
0 
3 
0 
0 
0 
0 
22 

The rows show the tags assigned by the automatic classifier and the columns the tags assigned by the patients. Bpre: Break­
fast preprandial; Bpos: Breakfast postprandial; Morn: Morning; Lpre: Lunch preprandial; Lpos: Lunch postprandial; Aftrn: 
Afternoon; Dpre: Dinner preprandial; Dpos: Dinner postprandial; Runk: Repeated unknown; Rpre: Repeated preprandial; 
and Rpos: Repeated posprandial. 

a Aclsf: Automatic classification 
b Prclsf: Patient reclassification. 

Other noteworthy errors are the 6 measurements reclassified 
as dinner postprandial. These measurements belong to the same 
patient and were taken between 2a.m and 5a.m. 

The accuracy achieved by the classifier based in Spanish pre­
defined mealtimes, was 78.00%, a 21.04% lower than the classifier 
based in machine learning techniques. 

4. Discussion 

Machine learning techniques have confirmed our initial hypoth­
esis about the need of using more variables than the 3 initially 
proposed (mealtime schedules, BG level and measurement time) to 
obtain better accuracy results that optimize the automatic classi­
fication process. Increasing the number of input features improved 
classification accuracy in both learning algorithms tested, but it is 
by the application of feature selection methods how we achieved 
the highest performance. The common 6 features selected by all 
the FS methods are: measurement time (time), time interval be­
tween measurements (iprev, ipost), BG level, insulin treatment (sin 
or insulin) and mealtime interval (intake). The selection of time 
intervals between the measurements confirms the importance 
of evaluating groups of three measurements instead of isolated 
ones. The best result in MLP selects the boolean attribute "insulin" 
instead of the integer "sin" selected in CFS or in C4.5 best results. 
The slow insulin is administered to lower fasting glycaemia, so 
its selection could help to differentiate between preprandial and 
postprandial measurements at breakfast time interval. Apart from 
the 6 common features mentioned before, while the CFS selects 
the "bgpos" as relevant, the Wrapper for the C4.5 does not. In­
stead, the combination that obtained the best result, wrapper-C4.5 
genetic, selects the "work" attribute, which gives information about 
whether the measurement was taken during the weekend or not. 
A delay in the average measurement time during weekends was 
observed in all the patients but three, so this also validates the 
idea that this information should be considered. 

The classification module presented in this paper was suc­
cessfully integrated in the Sinedie expert system, where it was 
validated in a clinical environment during 8 months at one hos­
pital. In this period, 42 patients sent a total of 7113 measurements 
which were completed by the automatic classifier developed. Only 
1.21% of the measurements were reclassified by patients, so we 
consider that 98.79% were correctly classified by the module. 
The classifier presented has a good generalization ability, as the 
accuracy achieved in the clinical evaluation with new glycaemia 
data is 3% better than the one achieved in study 1 with the 
cross-validation of the training dataset. 

Even if all patients had a glucose meter with the functionality 
to manually add the meal information to each measurement, 
the automatic classifier integrated in Sinedie would still be an 
essential part of the expert system to manage the incomplete 
measurements that patients may forget to label. In the clinical 
study, the Sinedie expert system was able to detect all situations 
that required a therapy adjustment due to altered glycaemia val­
ues, and all recommendations generated about diet modifications 
affected the appropriate meal intake. 

The published studies on expert systems for diabetes that de­
scribe the method used for glycaemia measurements' classification 
do not report the accuracy achieved with the method used. For 
that reason, it is not possible to compare our results with the 
results obtained by other classification methods. Considering our 
results, the classifier defined in this article presents the strength of 
obtaining higher accuracy than the algorithms based on patients' 
mealtimes' schedules or on previous measurements. A greater 
accuracy in glycaemia classification results in lower patient in­
tervention when registering monitoring data into expert systems, 
which speeds up the process and makes it less tedious. The po­
tential limitation of the tested classifier would be determined by 
the training set used and the generalization ability in the presence 
of a different population than the one treated at the Hospital de 
Sabadell. In case of reduced accuracy with different populations 
the classifier could be trained with a different training set. 

Possible future research lines include: 1) evaluation of the 
generalization ability of the classifier; 2) enhancement of the 
identification of repeated measurements and those belonging to 
optional moments of measurement (preprandial, morning, after­
noon and night); 3) comparison of the results obtained with the 
classifier proposed and the ones that would be obtained with 
mealtime schedules specified by patients; 4) extension of the clas­
sifier functionality to include other types of diabetes like type 1 
and type 2; 5) Integration of the classifier in a mobile application 
that connects with the Sinedie expert system. 

To evaluate the generalization ability of the classifier it would 
be necessary to test it with patients from different regions from 
Spain or different countries. In case the classifier does not gener­
alize correctly, it would require to be trained with a different data 
set from patients treated at the hospital where the classifier will 
be used. 

Training the classifier with a more homogeneous dataset could 
improve the identification of repeated and optional measurements. 
In the dataset from study 1, which was used to train the GDM 
classifier, the measurements labeled as "repeated" only represent 
the 3.5%, of the whole data set. The training of the classifier can 
be performed in parallel without requiring a system interruption. 



Then, it would be necessary to replace the file where the trained 
classifier is stored with the new retrained one, and reboot the 
system for the changes to take effect. In any case, to minimize 
the reclassification of this type of measurements is complicated, 
as the criteria about which measurement, either the first or the 
last one, should be considered as "Repeated", is ambiguous. We 
also observed that, sometimes, when facing several repeated 
measurements, some patients tend to label the ones with higher 
BG values as "Repeated". 

In order to confirm the theory proposed in this article, about 
the accuracy enhancement that machine learning algorithms 
present in comparison to the accuracy achieved by algorithms 
based on patient's mealtime schedules, it would be interesting 
to compare the performance of both types of algorithms in the 
Sinedie system. Patients could specify their mealtime's schedules 
when they are registered in the system, with the possibility of 
modifying them in the system whenever they want. The evalua­
tion could be done comparing the accuracy results obtained with 
the machine learning classifier (already integrated in Sinedie), 
and those that would be obtained using the mealtime schedules 
specified by each patient. 

A similar methodology as the one presented in this paper could 
be followed to build a classifier for other types of diabetes. As 
glycaemia ranges and recommended moments of measurement are 
different depending on the type of diabetes, it would be necessary 
to implement a new classifier, in order to classify other types 
of diabetes measurements, performing a new feature selection 
with retrospective data of patients with the corresponding type of 
diabetes and create a new training dataset. Based on the learning 
curve of the presented GDM classifier, we estimate that the size 
of the dataset needed to perform a new study for a different 
type of diabetes should be over 5000 instances. However, from 
2500 instances our classifier accuracy is stabilized at around 95% 
with the training dataset from study 1, achieving the maximum 
accuracy value with around 5000 instances. 

The last future research direction identified is the implementa­
tion and integration of the classifier presented in the article into a 
mobile phone application. Mobile phones are smaller than laptops 
and therefore easier to carry when patients are out of home. 
Patients would download their monitoring data to their mobile 
phones and then the application would transmit the classified 
data to the Sinedie expert system for evaluation. Finally, patients 
would be able to verify the results of the data classification in the 
same mobile application. 

5. Conclusions 

Machine learning tools have proved to be effective to design an 
automatic classifier for glycaemia measurements, required to pro­
vide automatic recommendations based on an expert system for 
gestational diabetes. All methods tested obtained accuracy results 
above 80%, but the highest performance was achieved with the 
C4.5 decision tree learning algorithm with 7 inputs selected by a 
wrapper evaluator and the Genetic search algorithm. The selected 
classifier not only performed well with the training dataset with 
cross-validation, achieving a 95.45% of accuracy, but also in the 
Sinedie expert system, when being used to classify new glycaemia 
measurements uploaded by patients in clinical practice (98.79%). 

The scarce methods available in literature for glycaemia classi­
fication based on previous measurements or predefined mealtimes 
present a high rate of errors that prevent expert systems from 
correctly determining patients' condition or generating recommen­
dations about therapy adjustments. If the expert system detects 
altered glycaemia values but it is not able to determine whether 
they are caused by the breakfast or the lunch, it will not be able 

to recommend the reduction of carbohydrates in the appropriate 
intake or the administration of insulin to metabolize them. 

Automatic classification is essential in Sinedie expert system to 
analyze incomplete glycaemia measurements registered, to min­
imize patients' intervention, to automatically detect the patients' 
metabolic condition and to generate recommendations about 
therapy changes in specific mealtimes. In addition, the information 
added by the classification module in the Sinedie expert system 
allows structuring measurements in relationship to meals so that 
the medical team can visualize and evaluate them as fast as they 
usually do with paper logbooks. 
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