
1

A Hash-based Co-Clustering Algorithm for
Categorical Data

Fabrı́cio Olivetti de França, Member, IEEE,

Abstract—Many real-life data are described by categorical attributes without a pre-classification. A common data mining method used
to extract information from this type of data is clustering. This method group together the samples from the data that are more similar
than all other samples. But, categorical data pose a challenge when extracting information because: the calculation of two objects’
similarity is usually done by measuring the number of common features, but ignore a possible importance weighting; if the data may
be divided differently according to different subsets of the features, the algorithm may find clusters with different meanings from each
other, difficulting the post analysis. Data Co-Clustering of categorical data is the technique that tries to find subsets of samples that
share a subset of features in common. By doing so, not only a sample may belong to more than one cluster but, the feature selection
of each cluster describe its own characteristics. In this paper a novel Co-Clustering technique for categorical data is proposed by using
Locality Sensitive Hashing technique in order to preprocess a list of Co-Clusters seeds based on a previous research. Results indicate
this technique is capable of finding high quality Co-Clusters in many different categorical data sets and scales linearly with the data set
size.

Index Terms—co-clustering, categorical data, data mining, text mining, biclustering

F

1 INTRODUCTION

IN many occasions, a textual description of our data
(i.e., categorical data) is presented and no clear or

precise labeling to perform a classification task. In order
to deal with this type of data, a Data Mining technique
called clustering is used. This techinique tries to segment
data into different groups such as all samples inside a
given group have higher similarity among themselves
than with samples from other groups. As such, it is
required that the data samples are comparable given a
similarity metric.

For the categorical data, metrics that accounts for the
number of common features shared by two samples are
commonly used. One example is the Jaccard metric that,
given the features sets of two objects, it calculates the
ratio between the length of their intersection by the
length of their union. One problem arises when we are
dealing with data on a high-dimensional space since the
probability of occurrence of common features between
samples decreases, making it difficult to tell similar from
dissimilar. This is called curse of dimensionality [1] and
it plagues many Machine Learning algorithms.

One way to deal with such problem is to transform
the data into a lower dimensional representation while
preserving enough information such as similar objects
remains similar after the transformation. One of such
methods is called Probabilistic Dimension Reduction [1].

• F. O. de França is with the Center of Mathematics, Computing and
Cognition (CMCC), Universidade Federal do ABC (UFABC) – Santo
André, SP, Brazil.
E-mail: folivetti@ufabc.edu.br

Probabilistic Dimension Reduction is performed ex-
ploiting the probability of two objects being very sim-
ilar. This is done by means of specially designed hash
functions that has a high probability of collision when
hashing objects with similarity above a certain threshold.
One of these techniques is called Minhashing, and it
was specifically crafted to approximate the Jaccard Index
between two sets. This is based on the fact that, given a
random permutation of the features set, the probability
that the first feature of two objects are the same is equal
to the Jaccard Index between those two. In order to be-
come computationally feasible, the random permutation
is approximated by using an universal hash function.

But even so, using this dimension reduction technique
may overlook hidden relationships between two samples
when they are similar under just a very small subset
of features. Ideally, the clustering procedure must be
performed in a two-way manner, i.e., by finding clusters
of samples related to clusters of features. This clustering
technique is called Co-Clustering.

Data Co-Clustering [2], [3], [4], [5], also known as
biclustering, tries to find subsets of samples and fea-
tures that maximizes the similarity of the select samples
when considering the chosen features. It exploits the fact
that a given sample may belong to different categories
when viewed by different aspects of its description. For
example, a given news text may report a story about
the economies of a football team. This document will
have terms that are related to sport and other terms that
relates to economy. So, this sample will belong to two
different classes when viewed by different features and,
as such, must be compared differently for samples of
different classes.

This technique allows several relaxations compared to

ar
X

iv
:1

40
7.

77
53

v1
 [

cs
.L

G
]

 2
9

Ju
l 2

01
4

2

the constraints of traditional clustering, such as, each ob-
ject may belong to more than a single cluster, whenever
they are viewed by different features. In the same way, a
given feature may appear in different features clusters as
it may have different meanings within different groups.
Also, it lacks the need of specifying the number of
clusters, since it simply tries to find every cluster with
well-defined properties, i.e., clusters of samples sharing
a subset of features.

Although this flexibility can be seem advantageous
since it can extract many more knowledge from a data
set, it can also result in some unintersting data relation-
ship given the focus of the study. Also, the creation of
algorithms with such flexibilities is not trivial, and such
algorithms have implications that make it difficult to
make a basis of comparison with the literature and give
theoretical guarantees. As such, many Co-Clustering
algorithms were created restraining some of these flex-
ibilities by impeding the overlapping of samples and
features among groups and pre-specifying the number
of samples and features clusters [3], [4].

Besides theses difficulties, there are some Co-
Clustering algorithms capable of dealing with such flex-
ibility, the most recents being the HBLCoClust [2] and
CoClusLSH [5]. They both have in common the use of
a probabilistic dimension reduction technique, Locality
Senstive Hashing, in order to pre-process the data set to
find possible co-clusters.

Apart from that, they differ in how they utilize such
probabilistic information and, thus, how they generate
the final co-clusters set. HBLCoClust, for example, de-
pended on graph partitioning techniques in order to
generate meaningful results, thus losing some of the
aforemetioned flexibilities. In this paper a reformula-
tion of this technique is proposed in order to keep its
scalability while producing more informative co-clusters
without depending on any kind of information, i.e.,
number of clusters. It will be shown in the next sections
that this approach is capable of finding a high quality set
of patterns while retained all of the flexibility expected
from a Co-Clustering algorithm.

In Section 2 the Co-Clustering definition will be de-
scribed in more details as well as some of its practical
applications. Section 3 details the proposed algorithm
detailing all of its key aspects and properties regarding
the flexiblity of a co-clustering algorithm and scalabil-
ity. Next, in Section 4, a complete set of experiments
will be performed in order to assess how well the
proposed algorithm performs on real-world scenarios
against another similar Co-Clustering algorithm. A brief
comparison with state-of-the-art algorithms will be given
when approppriate in order to establish the advantages
and disadvantages of Co-Clustering. Finally, Section 5
will comment on the concluding remarks together with
some future perspectives.

 1 1 1 1
1 1 1 1
1 1 1 1


(a)

 1 1 1 1
2 2 2 2
3 3 3 3


(b) 1 2 3 4

1 2 3 4
1 2 3 4


(c)

 3 2 1 5
4 3 2 6
2 1 0 4


(d)

Fig. 1. Example of different quality measures: (a) con-
stant bicluster, (b) constant rows, (c) constant columns,
(d) coherent values (rows or columns should exhibit high
correlation).

2 CO-CLUSTERING

Co-Clustering refers to the process of finding subsets of
rows and columns from a data matrix such as the values
of the extracted submatrix presents any kind of relation-
ship [2], [3], [4], [5], [6], [7], [8], [9]. Usually, the rows
and columns are described as objects, or samples, and
features respectivelly from a Data Mining perspective.
The relationship saught on this procedure will depend
on the nature of the data set, and it can be submatrices
with constant values, with constant values along the
rows or along the columns, correlated values, values
expressing any consistent ordering or dense submatrices
from sparse data (see Fig. 1).

This procedure was already applied to a diverse set
of applications such as gene expression analysis [9],
[10], [11], [12], text mining [3], [13], recommendation
systems [14], [15] and data imputation [16]. The most
popular variation of Co-Clustering algorithm are those
applied to large gene expression data in order to find
additive coherence [17] in subsets of genes and con-
ditions. Despite that, the application in the extraction
of information of categorical data has been on the rise
recently. In categorical data, samples are described by
the presence of some features from an usually large set
of possibilities. This type of data can be described as a
very sparse matrix where the present values indicate the
presence of a feature on a sample.

An example of such data is text documents where
each document can be described by the presence of a
number of terms extracted from a large set of possible
words. A Co-cluster of such data set would be a subset
of documents that share a subset of words in common
and, possibly, those words would describe the subject of
these documents.

Formally, given the sets O of objects and the set F of
features, a Co-Cluster C of a subset O′ ⊂ O, a subset
F ′ ⊂ F and a relation R ⊂ O × F can be described as:

C(O′, F ′) = {O′ × F ′ | o ∈ O′, f ∈ F ′, (o, f) ∈ R} , (1)

where O′ and F ′ can also be denoted as the objects and
features clusters respectively.

3

The relation R contains all the tuples (o, f) inside the
dataset. Notice though that the constraint that every pair
of object and feature on the co-cluster must exist in R
may be difficult to satisfy on very sparse data sets. For
example, in text document data extracted from a news
website, if we take three documents, one describing
the victories of a football team, the other one telling
about financial problems of this same team and the third
about a fight among the fans of this team against fans
of another one. Apart from common words, they will
probably share just a short set of terms associated with
the central theme. The more documents we try to insert
into the document cluster the more likely one or more
terms should be removed from the features cluster.

In order to maximize the number of elements inside
the clusters, without degrading the overall quality of a
co-cluster, the previous equation can be reformulated as:

C(O′, F ′) = {O′ × F ′ | |R′| ≥ ρ · |O′ × F ′|} , (2)

where |.| is the number of elements of a set and

R′ = {(o, f) ∈ R | o ∈ O′, f ∈ F ′} . (3)

Notice that there is no restriction whether an object or
a feature must belong to a single cluster. There are other
possible variations of this problem such as the k, l−Co-
Clustering, in which it seeks to partition the data into
k objects clusters and l features clusters by maximizing
the number of non-null elements from the submatrice
induce by each combination of k and l. Specifically, in
this work, the focus will be on the formulation given in
Eq. 2.

3 HASH-BASED LINEAR CO-CLUSTERING

This section will first describe some fundamental theo-
ries and algorithms in order to better understand the
proposed algorithm. First, the basics of probabilistic
data mapping through random hash functions will be
introduced. Following, an exact algorithm applied for a
similar problem, called InClose, will be explained and,
finally, the whole algorithm will be described in details.

3.1 Locality Sensitive Hashing

A popular approach when dealing with high dimen-
sional and high volume data sets is a probabilistic
approach called Locality Sensitive Hashing (LSH). This
algorithm exploits the fact that two very similar objects
will likely collide when mapped through a weak hash
function. In fact, depending on how this hash function
is created, the probability of this collision is known to
be proportional to their similarity.

One of such hash functions is the Minwise Indepen-
dent Permutation (MinHash) [18], [1] that states that the
probability of collision of two objects is proportional to
their Jaccard similarity. Jaccard Index or Jaccard Similar-
ity is used when the data set is described through sets

of categorical features. This similarity can be calculated
as:

J =
|O1 ∩O2|
|O1 ∪O2|

, (4)

where O1 and O2 are the two objects compared and
it returns a value between 0 and 1, with the former
meaning the two objects are equal.

Minhash algorithm generates a random permutation π
of the features set and take the first feature of each object
to be compared regarding the permutation order. The
probability that these two elements are equal is given
by:

P (O1π0 = O2π0) =
|O1 ∩O2|
|O1 ∪O2|

, (5)

that is equal to the Jaccard Index.
In order to have an estimate of such probability, it is

possible to sample M permutations and calculate the
ratio in which the two features were the same. Notice
that, for this to work, the permutation must follow an
uniform distribution. Since generating a random per-
mutation may be computationaly expensive, this can be
approximated by using an universal hash function such
as one of those proposed in [18]:

h(x) = a · x+ b mod P, (6)

where a and b are randomly chosen with uniform distri-
bution, and P is a large prime number. The variable x is
the value to be hashed, i.e., a number associated with a
given feature. This prime number should be at least as
large as the number of features. This hash function will
map each feature to an index in the range [0, P [. The
random values will ensure that those indeces generate a
random permutation of the feature set.

Notice that with this function the application of Min-
Hash is straightforward. For each object j, simply find,
for each hash function i, the feature x that has the
minimum value for hi(x):

mhi(Oj) = arg min
x

{hi(x) | ∀x ∈ Oj} . (7)

The complexity of this approach becomes O(N.D.M̄)
with usually M̄ << M on sparse data sets.

MinHash procedure made possible to go even further
on optimizing the Nearest-Neighbor algorithm with the
Locality Senstive Hashing [1] procedure. This procedure
creates p hash keys for each object by grouping together
a sequence of k Minhashes and, thus, defining a bucket.
Two objects, o1 and o2, will collied into the same bucket
with probability:

Pcollision(O1, O2) = 1− (1− Jp)k) (8)

where J is the desired Jaccard Index, p is the number of
hash functions per bucket and k is the number of group
of Minhashes.

4

So one can adjust the values of k and p in order to
find all pair of documents with Jaccard above a given
threshold with high probability.

3.2 Co-Clustering enumeration with Formal Concept
Analysis

In mathematics, there is a very similar field of study
called Formal Concept Analysis [19], which seeks the
same relationship as described in Eq. 1 extracted from
a boolean table. For such purpose they have devised
algorithms that find the exact set of Formal Concepts,
with exponential complexity, but with a reasonable time
for data sets with thousands of objects and hundreds of
features.

This is done by exploiting the lexicographical order of
the concepts so that not every possibility has to be evalu-
ated. This algorithm, called InClose [19] is summarized in
Alg. 1 and explained afterwards using the Co-Clustering
notation for an easier reference.

Algorithm 1: InClose
input : dataset D, minimum size of object cluster

minO and minimum size of feature cluster
minF

output: set of Co-Clusters C

Stack ← ([0..m− 1], ∅, 0);
while Stack 6= ∅ do

Oc, Fc, y ← pop(Stack);
Candidates← ∅;
for j ← y to n− 1 do

Oc′ ← Oc ∩ {i | Di,j = 1};
if Oc′ = Oc then

Fc← Fc ∪ {j};
else if length Oc′ ≥ minO and Oc′ is
canonnical then

Fc′ = Fc ∪ j;
Stack ← Stack ∪ {(Oc′, F c′, j)};

if length Fc ≥ minF then
C ← C ∪ {(Oc, Fc)};

In this algorithm, each candidate Co-Cluster is com-
posed of a set of objects (Oc), a set of features (Fc) and
an index indicating the last inserted feature (y). Initially,
the algorithm creates a candidate with every object from
the data set, an empty set of features and the first index
(0), stacking it for further reference. This algorithm then
goes through an iterative process until the stack is empty.

Inside the main loop, it checks, for each feature from
y to the maximum index, what objects has a relation
to it, forming a temporary object cluster Oc′. If this
cluster is equal to the current object cluster (Oc), then this
feature is inserted into the current feature cluster (Fc).
Otherwise, if this set has a minimum number of objects
and is considered cannonical (see below), then this set is

inserted into the stack with this temporary object cluster,
a feature cluster composed of the current one plus the
current feature j and with j being the starting index.

Finally, after checking every feature, if the number of
features on the feature cluster is above an established
minimum, then the object cluster and feature cluster is
inserted into a list of Co-Clusters (C).

An object cluster is considered cannonical if there is
no other feature before y that could be inserted into it
without removing any object from the cluster.

3.3 Proposed Algorithm
The Hash-based Linear Co-Clustering algorithm, ex-
tended from [2], connects the methods described on the
previous subsections in order to generate an inexact set
of Co-Clusters while maintaining computational scala-
bility and filtering the most interesting patterns. The
original algorithm was composed of three basic steps:

1) Generate object clusters with the application of the
LSH method, using the hash signature as the initial
feature cluster.

2) Expand these object clusters by inserting objects
and features to its corresponding clusters through
a simple local search.

3) Induce a graph by connecting any two objects
belonging to the same co-cluster and perform a
community detection algorithm to find the final co-
clusters set [optional].

This third step, while optional, is performed in order
to find fewer and larger co-clusters, while keeping them
informative regarding the goal of the study. Without this
step the algorithm produced too many small co-clusters
impractical to post-analysis.

But, although the reported results were competitive,
this last step made such algorithm dependable of a
specific community detection algorithm. Also, it would
restrain the algorithm to a k, l-co-clustering algorithm.
In order to improve such algorithm and remove such
constraints, a new general framework is proposed to it
by following six steps:

1) Pre-process the data set by removing any feature
that appears more than a given threshold (thr)
[optional].

2) Perform the LSH method on the pre-processed data
set to find the initial set of seed clusters.

3) For each seed cluster, create a new data set com-
posed of the union of the features set of each object
and the union of the objects set of each feature.

4) Perform the InClose algorithm to each of these
datasets.

5) For each generated co-cluster, insert objects and
features that do not make it sparser than a thresh-
old (spthr).

6) Merge any two co-clusters that contains the same
features cluster.

The first step is optional and may be required for
certain datasets that contains features that are related

5

to most objects and may induce some uninteresting co-
clusters into the data set. For example, in text documents
there are many common words that have a very high
probability of appearing, but do not describe the subject
of such documents. In text mining this is usually dealt
with by filtering through a stoplist, but this is not always
possible when dealing with different sources of data, so
a filtering threshold may be a better choice to generalize
the algorithm.

In the second step, same as the original algorithm, it
performs a probabilistic search on the dataset in order to
find objects and features that are likely to be clustered,
these clusters will be used as a seed for the next steps.

For each co-cluster seed, a new data set is generated
formed by the subset of objects that relates at least to one
of the seed features and the subset of features related
to at least one of the seed objects. These new data sets
will be generally small due to the sparse nature. So, the
InClose algorithm is applied to them in order to find
the exact set of co-clusters regarding these subset of data.
Notice though that this step does not guarantee the exact
solution for the original data.

Finally, in order to find significantly large co-clusters,
the density contraint is relaxed and it inserts every object
and feature that does not violate a maximum alowed
sparsity threshold. As discussed before, this will lead to
larger and less numerous co-clusters while maintaining
their significance.

As a last step, since each co-cluster is generated from
an incomplete view of the data set, the algorithm merge
co-clusters that share the exact same feature set.

As the second steps depend on the features hashing
signature, and since this algorithms is scalable regarding
the data set size, as it will be shown in the next section,
the five first steps are performed in the original data set
and the transposed data before fine-tuning to the final
solution.

Notice that beside the thr and spthr parameters, this
algorithm also requires four others: the number of hashes
to generate (nhashes), the number of hashes in each
LSH (nkeys), and the minimum number of objects and
features for each co-cluster (minO and minF) for the
InClose algorithm.

The overall algorithm is depicted in Alg. 2.
The first three steps have a linear complexity regarding

the data set size, the fourth step is exponential, but
regarding the average size of the subset of rows. The last
two steps have a quadratic complexity on the average
co-cluster size.

3.4 Comparative review

In the literature the only work that can be directly
compared with this approach, to the best of my knowl-
edge, is the one called CoClusLSH [5]. This algorithm
iteratively applies the LSH algorithm on objects and
features, independently, while merging the found objects
and features clusters by using an entropy metric. They

Algorithm 2: HBLCOCLUST
input : dataset D, minimum objects minO and

features minF , number of hashes nhashes,
nkeys groups of hashes, minimum feature
count thr and maximum sparsity spthr

output: set of Co-Clusters C

/* Step 1: Pre-process data */
D′ ← ∅;
for j ← 0 to n− 1 do

if
∑

iD[i,j]∑
i,jD[i,j] < thr then
D′ ← D′ ∪D[:, j];

/* Step 2: LSH */
minhashes← matrix of nhashes for o ∈ D′;
for i← 0 to m− n do

foreach key in group of nkeys from minhashes do
clusters[key]← clusters[key] ∪ {i};

/* Step 3, 4: Smaller datasets and
InClose */

C ′ ← ∅;
/* The value of an entry to clusters will

be a set of objects, while the key
is composed by a set of nkeys
features */

foreach (key, value) in clusters do
Oc← {o ∈ D′ | ∃f ∈ key, (o, f) ∈ R};
Fc← {f ∈ D′ | ∃o ∈ value, (o, f) ∈ R};
C ′ ← C ′ ∪ InClose(Oc, Fc);

/* Step 5: Insert elements */
C ← ∅;
foreach (Oc, Fc) in C ′ do

/* R′ is the set of relations in the
co-cluster defined by (Oc, Fc) */

(Oc, Fc)← {(o, f) ∈ D′ | |R′| > spthr};
C ← C ∪ (Oc, Fc);

/* Repeat steps 2 to 5 with DT
*/

/* Step 6: Merge Co-Clusters */
foreach pair (Oc1, F c1), (Oc2, F c2) ∈ C do

if Fc1 = Fc2 then
/* Merge both biclusters */

tested this algorithm with a diverse set of real world
data presenting competitive numerical results regarding
purity, mutual information and number of groups found.
They also found that their algorithm was scalable regard-
ing data set size.

Another notable algorithm is the so called SpecCo [4]
which reformulates the Co-Clustering problem as a
graph partitionoing problem. It then applies a modu-
larity maximization algorithm in order to find a k, l-co-
clusters set. The presented results are also very positive
but, unlike CoClusLSH and HBLCoClust, it does not
scales linearly.

6

As a basis of comparison, the results obtained by
HBLCoClust algorithm will be compared with those ob-
tained by CoClusLSH, except in some justified cases.
Additionaly, due to the unavailability of SpecCo source
code, the results presented here will be compared with
those reported in [4], with proper observations.

4 EXPERIMENTS

In order to position the HBLCoClust algorithm with other
approaches in the literature, a set of experiments is de-
vised in this section. The main goal of these experiments
is to quantify the quality of the obtained co-clusters set
as well as illustrate the practical applications of such
clusters. With this purpose, data sets of different natures
and applications were chosen from a set of widely used
and publicly available.

The HBLCoClust algorithm was implemented
in Python 2.7 and the source code is available
at https://github.com/folivetti/HBLCoClust while
CoClusLSH was obtained from http://www.cs.sunysb.
edu/∼leman/pubs.html and implemented in Matlabr.
Both algorithms was run under a Linux Debian 7.6
system on a i5-2450 @ 2.5 GHz machine with 6GB of
RAM.

4.1 Data sets and Applications
The experiments are divided into 4 different applica-
tions: categorical data clustering, text mining, topic mod-
elling and recommender systems.

Categorical data clustering is the process of finding
clusters of data, described by categorical features, that
shares common characteristics. When using a labeled
data set, the majority of the objects on a given cluster is
expected to be of the same category (purity). It should
be noticed, though, that in data clustering, that is not
possible to achieve in most of the time because all of
the features have the same weight. As such, if most
features point to a different classification then that of
the given label, the purity of the clustering may be lower
than the expected. In Co-Clustering application, clusters
of elevated purity are expected, whenever the correct
features are selected, and clusters of very low purity,
whenever the selected features correspond to a different
labeling.

For this application it was chosen the Zoo, House
Votes 84’, Soybean small and Soybean large data
sets [20]. The results obtained from these data sets were
compared with CoClusLSH, SpecCo algorithms and the
exact algorithm InClose.

Text mining refers to the extraction of information
from textual data, depending on the information avail-
able it may be used for topic classification, text clus-
tering, topic modelling and natural language process-
ing. In the same way as categorical data clustering, if
a label is available, the clusters are expected to have
a high value of purity. In the Co-Clustering scenario,
some text documents will belong to different clusters,

TABLE 1
Data set properties: number of objects, number of

features, the number of relations (non-zero elements)
and number of classes.

obj. # feat. Rel. k
Zoo 101 16 738 7

Soybean Small 47 21 880 4
Soybean Large 307 35 4865 19
House Vote 84 435 16 6568 2

Classic 3 3891 15034 227355 3
Multi 5 5000 44323 539933 5

Multi 10 10000 64444 987443 10
Movielens 943 4233 154628 −

when considering a different set of features. Because
of that, another possible quality measure is to calculate
the pointwise mutual information of the features set to
verify if they are more likely to co-occur than with any
other feature outside this set.

The text data sets chosen for this experiment was
the Classic-3 [21] data set containing documents
from 3 different collections named CISI, CRAN and
MED and two subsets of the 20-newsgroups [22]
data sets, named here Multi5 containing texts from 5
different newsgroups: comp.graphics, rec.sport.baseball,
rec.motorcycle, sci.space, talk.politics.mideast, and
Multi10 containing text from 10 topics: alt.atheism,
comp.sys.mac.hardware, misc.forsale, rec.autos,
rec.sport.hockey, sci.electronics, sci.crypt, sci.med,
sci.space, talk.politics.guns.

Topic modelling, one of the applications of text min-
ing, refers to the process of finding the terms of a
document that most describe its topics. It has many ap-
plications in summarization and finding meta-attibutes
to text data. This application is explored by using the
results from the Co-Clustering of Multi5 data set as it
will be explained in the next section.

Finally, the Collaborative Filtering is a recommenda-
tion system approach that try to models the preference
of each user for a serie of products through a rating
matrix. This can be performed by different machine
learning techniques such as nearest neighbor, clustering
and matrix decomposition. The data for this applica-
tion is usually descibed as a tuple (user, item, rate) but
this can be extended by including description of such
items as well, so we would also have tuples of the
type (user, description, rate), where the rate could be
the average rate of a given user for items containing
this description. Notice that by doing this we would be
dealing with two different data sets at the same time.
This application was chosen to illustrate the flexibility
of the proposed algorithm when dealing with data from
different sources.

For this purpose it was used a combination of the
Movielens data set [23] and the IMDB data avaliable
at ftp://ftp.fu-berlin.de/pub/misc/movies/database/.

Table 1 summarizes the properties of each dataset used
on these experiments.

https://github.com/folivetti/HBLCoClust
http://www.cs.sunysb.edu/~leman/pubs.html
http://www.cs.sunysb.edu/~leman/pubs.html
ftp://ftp.fu-berlin.de/pub/misc/movies/database/

7

The adopted parameters for the HBLCoClust are de-
picted in Table 2 for each dataset. The InClose parameters,
minO and minF are the same adopted by HBLCoClust.
For the CoClusLSH it was adopted the default parameters
of nhashes = 100 and nkeys = 3 after empirically
verified that these were optimal parameters regarding
the adopted metrics and memory consumption.

4.2 Metrics

In order to quantify the quality of the obtained Co-
Clusters, three metrics was chosen: Purity, Normalized
Mutual Information and Pointwise Mutual Information.

Purity of a Co-Cluster measures the ratio between the
number of the most frequent object label by the number
of objects in the cluster. It essentialy quantifies for a
given cluster if the majority of its objects are of the same
type, i.e. the cluster is coherent regarding the labels:

Purity(Oc) =
maxi | {o ∈ Oc | l(o) = i} |

|Oc|
, (9)

where l(.) is the label of a given object. This measure is
averaged over all Co-Clusters.

Normalized Mutual Information calculates how likely
is to find an object of a given label if a given co-cluster
is selected at random. This metric is related to Purity
but it also verifies the compactness of the Co-Clusters
set, i.e. if the set has a minimum number of Co-Clusters.
The highest possible value for this metric is impossible
to achieve in some situations by the proposed algorithm,
for example, when the data set contains two objects of
the same label that do not share any feature. Ideally, for
this metric, the Co-Clusters set should have the same
number of clusters as the number of classes and every
cluster has maximum purity:

NMI =
1

HCHl

∑
c∈C,o∈Oc

P (c, l(o))× log
P (c, l(o))

P (c)P (l(o))
,

(10)
where HC , Hl is the entropy of the Co-Clusters set and
the labels, respectively.

Finally, the Pointwise Mutual Information measures
the likelihood that the co-occurrence of any two features
of a Co-Cluster was not by chance. This verifies if
the subset of features selected by the Co-Cluster have
significance regarding its corresponding objects:

PMI = −
∑
Of∈C

∑
f1,f2∈Of

log P (f1,f2)
P (f1)P (f2)

logP (f1, f2)
. (11)

4.3 Results

The results for the first set of experiments, categorical
data, are depicted in Table 3 and 4. These Tables show
the average results for 30 runs of HBLCoClust and Co-
ClusLSH, a single run of InClose and the reported results
for SpecCo. The first table reports the number of found

Co-Clusters, percentage of covered objects and features
and average size of the Co-Clusters while the second
reports the Purity, NMI and PMI.

From these tables the number of Co-Clusters found
by HBLCoClust is just a small fraction of possibilities
enumerated by InClose. Nonetheless, it is still capable
of covering the entire set of objects. Since InClose only
searches for dense Co-Clusters, some objects that con-
tains less than minF features may not be covered by
the obtained set. Also, it is important to notice that
CoClusLSH gets closer to the number of classes than
HBLCoClust most of the time. Since the number of
clusters is a parameter for SpecCo, it will always return
the desired number of classes. Regarding the number
of features, HBLCoClust not always cover the entire set,
since it filters the uninteresting features it may not be
capable of doing so.

Regarding the quality metrics, the first thing to notice
is that CoClusLSH obtained a worse result in every data
set for Purity. This is due to its merging step that gives
more importance for the reduction of the number of
clusters than their sparsity. InClose obtained the best
purity for two of the four data sets, SpecCo was the
best in one of them and HBLCoClust obtained one best
result. Regardless, HBLCoClust was always close to the
best result.

When analysing the NMI, SpecCo will always have
the optimal number of clusters, regarding the data set
classes, and thus its NMI will always be higher than
the other approaches (except when it has a much lower
purity). Disregarding the SpecCo results, HBLCoClust
could obtain the best compromise between purity and
number of clusters, having a higher value of NMI.
Regarding PMI, HBLCoClust obtained a higher value for
two of those data sets, a close second place in one of
them and significant worse result in one of the sets.
Even so, it was capable of maintaining a positive value
significantly above zero, thus correctly finding coherent
set of features.

For the second set of experiments, textual data, it was
not possible to run neither InClose, due to computational
complexity limits nor CoClusLSH due to a memory con-
straint. In this situation we are dealing with much larger
data sets that most algorithms require some adaptation
to deal with. To give us a comparison baseline these
results will be compared to those reported by [4] for the
SpecCo algorithms on similar datasets: C150, composed
of 150 documents of Classic3 and 3625 words, NG5
and NG10, both composed of 500 documents extracted
from Multi5 and Multi10, respectively, and containig
2000 words. These words features were selected by the
authors with a supervised approach.

In this situation, HBLCoClust will deal with a much
larger object set and will blindly select the least frequent
words of each data set according to thr parameter.

From Tables 5 and 6, HBLCoClust still maintains a
much larger set of Co-Clusters but, the Purity obtained
by HBLCoClust was the same as the reported value for

8

TABLE 2
Parameters used for HBLCoClust on each data set.

dataset minO minF nhashes nkeys thr spthr

Zoo 4 6 1000 2 0.0 1.0
Soybean Small 4 8 1000 2 0.1 0.8
Soybean Large 4 10 1000 2 0.0 0.8
House Vote 84 10 10 1000 3 0.4 0.8

Classic 3 50 4 2000 3 0.2 0.5
Multi 5 5 5 1000 3 0.95 0.5
Multi 10 5 5 2000 3 0.95 0.5

Movielens 2 2 5000 4 0.0 0.8

TABLE 3
Statistics of obtained Co-Clusters set for the Categorical

data sets.

Zoo # Objs. Feats. Size
HBLCoClust 27.07 1.00 0.80 83.07
CoClusLSH 37.00 1.00 1.00 52.00

InClose 67.00 0.81 0.75 114.00
SpecCo 7.00 1.00 −− −−

Soybean S # Objs. Feats. Size
HBLCoClust 13.80 1.00 57.78 83.13
CoClusLSH 10.00 1.00 1.00 225.00

InClose 225.00 1.00 70.83 121.00
SpecCo 4.00 1.00 −− −−

Soybean L # Objs. Feats. Size
HBLCoClust 42.40 1.00 0.74 205.73
CoClusLSH 20.00 1.00 1.00 1089.00

InClose 6470.00 0.98 0.93 109.00
SpecCo 19.00 1.00 −− −−

House Votes # Objs. Feats. Size
HBLCoClust 23.30 1.00 0.85 1173.80
CoClusLSH 18.00 1.00 1.00 734.00

InClose 124371 0.95 1.00 225.00
SpecCo 2.00 1.00 −− −−

TABLE 4
Obtained results for the categorical data sets.

zoo Purity NMI PMI
HBLCoClust 0.88 0.29 0.18
CoClusLSH 0.79 0.25 0.29

InClose 0.93 0.19 0.21
SpecCo 0.90 0.92 −−

Soybean S Purity NMI PMI
HBLCoClust 0.89 0.40 0.25
CoClusLSH 0.56 0.30 0.08

InClose 0.59 0.09 −0.26
SpecCo 1.00 1.00 −−

Soybean L Purity NMI PMI
HBLCoClust 0.73 0.26 0.15
CoClusLSH 0.28 0.09 0.06

InClose 0.50 0.07 0.13
SpecCo 0.67 0.78 −−

House Votes Purity NMI PMI
HBLCoClust 0.91 0.29 0.43
CoClusLSH 0.85 0.24 0.45

InClose 0.93 0.10 0.26
SpecCo 0.87 0.47 −−

SpecCo for the Classic3 and much superior when regard-
ing the Multi5 and Multi10 data sets. When comparing
NMI, again the SpecCo has the advantage of having
the correct number of clusters, so it obtained a much
higher value. The features sets obtained by HBLCoClust

TABLE 5
Statistics of obtained Co-Clusters set for the Textual data

sets.

Classic3 # Objs. Feats. Size
HBLCoClust 219.20 1.00 0.60 2807.23

SpecCo 3.00 1.00 −− −−
Multi5 # Objs. Feats. Size

HBLCoClust 1054.97 1.00 0.18 1051.23
SpecCo 5.00 1.00 −− −−
Multi10 # Objs. Feats. Size

HBLCoClust 2819.33 1.00 0.16 661.00
SpecCo 10.00 1.00 −− −−

TABLE 6
Obtained results for the Textual data sets.

Classic3 Purity NMI PMI
HBLCoClust 0.86 0.14 0.20

SpecCo 0.86 0.73 −−
Multi5 Purity NMI PMI

HBLCoClust 0.91 0.18 0.37
SpecCo 0.59 0.53 −−
Multi10 Purity NMI PMI

HBLCoClust 0.82 0.14 0.33
SpecCo 0.57 0.55 −−

presented a considerable high value of PMI, meaning
that they are coherent regarding their corresponding
documents sets.

These obtained values of PMI for the textual data
is very close to the PMI obtained by topic modelling
approaches regarding a set of words describing the topic
of each document [24], with approximately the same size
of features clusters (hidden variables in topic modelling).
This creates the possibility of using the features set as a
set of topics describing a given document. To illustrate
this assumption, Table 7 contains the terms of 5 features
clusters chosen at random for the Multi5 data set each
one pertaining to one of the data set classes.

From this Table, almost every term associated with a
cluster clearly identifies the corresponding classification
of the documents. This application will be explored in
further details on future research.

Finally, as a last experiment, a simple recommendation
system was devised by using the information provided
by a Co-Clusters set. In order to create a categorical
data set from the rating data provided by the Movielens
Data Set, the tuple (user, movie, rating) was changed

9

TABLE 7
Terms extracted from features clusters of Multi5 data set.

sport.baseball reds, houston, standings, cincinnati, colorado, mets, scores, marlins, including, milwaukee, oakland,
pirates, city, expos, los, west, indians, minnesota, ocf, rangers, joseph, white, angels, texas, giants,
toronto, pittsburgh, phillies, cardinals, cubs, atlanta, mariners, orioles, mlb, lost, braves, louis, detroit,
teams, athletics, streak, hernandez, san, boston, cleveland, dodgers, sox, seattle, astros, blue, diego, jays,
jtchern, rockies, twins, brewers, tigers, red, francisco, philadelphia, kansas, yesterday, royals, california,
padres, berkeley, league, chicago, florida, angeles, april, montreal, yankees, baltimore, york

motorcycles handlebars, motorcycle, speed, countersteering, foward, handle, faq, awful, turns, debating, ummm,
uiuc, happens, turning, pushing, fgc, convert, unb, explain, duke, unbvm, acpub, slack, zkcl, infante,
cbr, eric, cso, csd, methinks, push

politics.mideast later, muslims, ohanus, vol, turkish, involved, roads, argic, hand, muslim, armenian, document, russian,
armenians, including, army, sahak, proceeded, serdar, soul, killed, among, children, published, blood,
appressian, mountain, often, exists, turks, armenia, general, soviet, serve, escape, genocide, melkonian,
ways, extermination, passes, closed

sci.space six, rigel, aurora, wings, mary, dfrf, alaska, dryden, spin, military, facility, speak, unknown, digex, prb,
flight, pilot, fly, kotfr, air, nsmca, pat, edwards, mig, wire, fighter, shafer

comp.graphics plot, recommend, pascal, hidden, routines, object, basic, cost, address, bob, cad, mac, info, frame, short,
offer, animation, price, sites, across, package, low, building, directory, removal, documentation, robert,
built, recommendations, libraries, various, tasks, shading, fast, files, code, objects, tools, handle, demo,
library, contact, book

into (user, movieY) if the rating given by the user to the
movie was higher than 2 and (user, movieN) otherwise.
Additionally, some meta-attributes were extracted for
each movie on this data set by using the IMDB interface
data. The chosen attributes were: genre, actors, actress,
directors and keywords. Each attribute was then related
to each user by averaging the ratings given by a user to a
movie containing this attribute and the averaged rating
was converted as in the movies tuples, so tuples with
the format (user, attributeY) and (user, attributeN) were
created.

This generated a data set containing 943 users, 4233
attributes and 154628 relations extracted from 80000
ratings from the Movielens training set. HBLCoClust
algorithm was applied to the positive (Y) and negative
(N) relations separatly in order to create a like and dislike
ruleset for each users cluster.

Afterwards, for each user it was created a like profile
containing every feature of every positive co-cluster this
user belonged to and, similarly, a dislike profile from the
negative co-clusters. The intersection of these two sets
were then removed from each profile.

For each of the remaining 20000 tuples (user, movie,
rating) from the Movielens test set, the attributes of each
movie was extracted in the same way as described above
and the Jaccard Index of the meta-attributes with the
like and dislike profile of this user was calculated, the
predicted rating is the one profile most similar.

Since not every movie was covered by the Co-Clusters,
only 12862 test ratings could be predicted. From this
total, this simple approach obtained an accuracy of
83.14%, a well-known approach from the literature, reg-
ularized SVD [25], obtained 79.68% from this same set of
predicted ratings. Another approach, Naive Bayes [26],
achieved 69.32% of accuracy.

Using the entire test set for the sake of compari-
son, Naive Bayes achieved 79.2% of accuracy while
regularized SVD achieved 66.01%. Besides obtaining a
higher accuracy, the Co-Clustering technique also pre-

select only the movies it has sufficient information to
form a co-cluster. While this might limits the amount of
possible predictions it also might tip on what predictions
are more relevant. Also, the information given by the
profiles can enrich the recommendation experience by
providing an explanation for them [14]. This experiment
still requires a more detailed investigation and as such
will be the subject of a future research.

In Table 8 the profiles of a given user, as well as some
of the movies rated by him is depicted.

Regarding the time complexity of this algorithm, each
step is proportional to the data size outputed by the
previous step. So, in order to verify its complexity re-
garding the number of relations contained in the data
set, the algorithm was run with for each of the presented
data sets with a fixed parameters set: nhashes = 1000,
nkeys = 3, minO = minF = 4, thr = 0.0, spthr = 1.0.
The result is shown in Fig. 2 together with a regression
line. It can be seen from this figure that this algorithm
seems to have indeed a linear complexity regarding data
set size.

5 CONCLUSION

In this paper a new algorithm for categorical data Co-
Clustering was presented extending the author’s previ-
ous approach. This algorithm consists of six sequential
steps and scales linearly with the number of non-empty
entries of the data set. This is achieved by using a
probabilistic approach to approximate the partial sim-
ilarity between objects, thus creating seed co-clusters.
These seed co-clusters are used to select a subset of
the whole data set allowing the use of an enumerative
algorithm called InClose, afterwards it merges those co-
clusters found by the different views of the data set.

The experiments performed on categorical data clus-
tering and text mining showed that this approach stays
on par with others Co-Clustering approaches on small
data sets and outperforms them when these data sets

10

TABLE 8
Profile generated for one of the user on Movielens data set.

Movies Jaws, Back to the Future, Twelve Monkeys, Dumb & Dumber, ...
like disaster, infidelity, horse, gunfight, USA, automobile, hospital, bathroom, jealousy, racism, elevator, fight,

beer, male-nudity, helicopter, impalement, good-versus-evil, outer-space, murder, washington-d.c., fire,
shot-to-death, los-angeles-california, independent-film, small-town, train, drunkenness, one-man-army,
baby, teenage-boy, lifting-someone-into-the-air, redemption, f-word, photograph, tough-guy, gangster,
main-character-dies

dislike second-part, beaten-to-death, haunted-by-the-past, Washington,DistrictofColumbia,USA, cell-phone,
vengeance, bulletproof-vest, obsession, book, die-hard-scenario

0 200000 400000 600000 800000 1000000
size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

tim
e (

se
c.)

Fig. 2. Time complexity estimation.

become larger. Also, unlike the other approaches, the cor-
responding features cluster of each co-cluster maintened
a high value of pointwise mutual information, leading
to meaningful features set that explains each cluster.

Examples of the usefulness of these features clusters
were provided by means of two applications: topic
modelling and collaborative filtering. In the first, it was
shown that the selected features of a given cluster cor-
rectly and coherently describes the grouped topic. In
the second example, not only a higher accuracy was
obtained when compared to traditional approaches but
also each user was given a profile of its taste, thus
explainning why a movie is recommended.

For the future researches following this paper, the
previous applications examples will be further explored
with a more thorough set of experiments and positioning
among the state-of-the-art in each of these problems.
Also, a further inspection of the usefulness of the fea-
tures cluster will be investigated together with other
applications that may be suitable to a Co-Clustering
algorithm.

REFERENCES

[1] S. Har-Peled, P. Indyk, R. Motwani, Approximate nearest neigh-
bor: Towards removing the curse of dimensionality., Theory OF
Computing 8 (1) (2012) 321–350.

[2] F. O. D. Franca, Scalable overlapping co-clustering of word-
document data, in: Machine Learning and Applications (ICMLA),
2012 11th International Conference on, Vol. 1, IEEE, 2012, pp. 464–
467.

[3] I. S. Dhillon, S. Mallela, D. S. Modha, Information-theoretic co-
clustering, in: Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining,
ACM, 2003, pp. 89–98.

[4] L. Labiod, M. Nadif, Co-clustering for binary and categorical data
with maximum modularity., in: ICDM, 2011, pp. 1140–1145.

[5] T. Gao, L. Akoglu, Fast information-theoretic agglomerative co-
clustering, in: H. Wang, M. Sharaf (Eds.), Databases Theory and
Applications, Vol. 8506 of Lecture Notes in Computer Science,
Springer International Publishing, 2014, pp. 147–159.

[6] J. A. Hartigan, Direct clustering of a data matrix, Journal of the
American Statistical Association (JASA) 67 (337) (1972) 123–129.

[7] Y. Cheng, G. M. Church, Biclustering of expression data, in: Proc.
of the 8th Int. Conf. on Intelligent Systems for Molecular Biology,
2000, pp. 93–103.

[8] B. Mirkin, Mathematical Classification and Clustering, Noncon-
vex Optimization and Its Applications, Springer, 1996.

[9] F. de Franga, F. J. Von Zuben, Finding a high coverage set of 5-
biclusters with swarm intelligence, in: Evolutionary Computation
(CEC), 2010 IEEE Congress on, IEEE, 2010, pp. 1–8.

[10] F. O. de França, G. P. Coelho, F. J. Von Zuben, bicaco: An ant
colony inspired biclustering algorithm, in: Ant Colony Optimiza-
tion and Swarm Intelligence, Springer, 2008, pp. 401–402.

[11] S. Mitra, H. Banka, Multi-objective evolutionary biclustering of
gene expression data, Pattern Recognition 39 (2006) 2464–2477.

[12] G. P. Coelho, F. O. de França, F. J. Von Zuben, Multi-objective
biclustering: When non-dominated solutions are not enough,
Journal of Mathematical Modelling and Algorithms.

[13] P. A. D. de Castro, F. O. de França, H. M. Ferreira, G. P. Coelho,
F. J. Von Zuben, Query expansion using an immune-inspired
biclustering algorithm, Natural Computing (2010) 1–24.

[14] P. Symeonidis, A. Nanopoulos, Y. Manolopoulos, Providing justi-
fications in recommender systems, Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on 38 (6) (2008)
1–1272.

[15] P. A. D. de Castro, F. O. de França, H. M. Ferreira, F. J. Von Zuben,
Applying Biclustering to Perform Collaborative Filtering, in: Proc.
of the 7th International Conference on Intelligent Systems Design
and Applications, Rio de Janeiro, Brazil, 2007, pp. 421–426.

[16] F. O. de França, G. P. Coelho, F. J. Von Zuben, Predicting missing
values with biclustering: A coherence-based approach, Pattern
Recognition 46 (5) (2013) 1255–1266.

[17] F. de Franga, F. J. Von Zuben, Extracting additive and multiplica-
tive coherent biclusters with swarm intelligence, in: Evolutionary
Computation (CEC), 2011 IEEE Congress on, IEEE, 2011, pp. 632–
638.

[18] J. Carter, M. N. Wegman, Universal classes of hash functions,
Journal of Computer and System Sciences 18 (2) (1979) 143 – 154.

[19] S. Andrews, In-close2, a high performance formal concept miner,
in: Conceptual Structures for Discovering Knowledge, Springer,
2011, pp. 50–62.

[20] K. Bache, M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

11

[21] Classic3 and classic4 datasets (Oct. 2013).
URL ftp://ftp.cs.cornell.edu/pub/smart

[22] K. Lang, Newsweeder: Learning to filter netnews, in: Proceedings
of the Twelfth International Conference on Machine Learning,
1995, pp. 331–339.

[23] J. L. Herlocker, J. A. Konstan, A. Borchers, J. Riedl, An algorithmic
framework for performing collaborative filtering, in: Proceedings
of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, ACM, 1999,
pp. 230–237.

[24] A. Anandkumar, R. Valluvan, et al., Learning loopy graphical
models with latent variables: Efficient methods and guarantees,
The Annals of Statistics 41 (2) (2013) 401–435.

[25] S. Funk, Netflix update: Try this at home.
[26] D. D. Lewis, Naive (bayes) at forty: The independence assumption

in information retrieval, in: Machine learning: ECML-98, Springer,
1998, pp. 4–15.

PLACE
PHOTO
HERE

Fabrı́cio Olivetti de França received his Dr.E.E.
degree from the University of Campinas (Uni-
camp), Campinas, SP, Brazil, in 2010. His main
research areas are computational intelligence,
ant systems, clustering, co-clustering, dynamic,
combinatorial and multiobjective optimization,
artificial immune systems, collaborative filtering
and recommendation systems.

ftp://ftp.cs.cornell.edu/pub/smart
ftp://ftp.cs.cornell.edu/pub/smart

	1 Introduction
	2 Co-Clustering
	3 Hash-based Linear Co-Clustering
	3.1 Locality Sensitive Hashing
	3.2 Co-Clustering enumeration with Formal Concept Analysis
	3.3 Proposed Algorithm
	3.4 Comparative review

	4 Experiments
	4.1 Data sets and Applications
	4.2 Metrics
	4.3 Results

	5 Conclusion
	References
	Biographies
	Fabrício Olivetti de França

