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Abstract

Process mining is a family of techniques that aim at analyzing business pro-
cess execution data recorded in event logs. Conformance checking is a branch
of this discipline embracing approaches for verifying whether the behavior of a
process, as recorded in a log, is in line with some expected behaviors provided
in the form of a process model. The majority of these approaches require the
input process model to be procedural (e.g., a Petri net). However, in turbulent
environments, characterized by high variability, the process behavior is less sta-
ble and predictable. In these environments, procedural process models are less
suitable to describe a business process. Declarative specifications, working in an
open world assumption, allow the modeler to express several possible execution
paths as a compact set of constraints. Any process execution that does not con-
tradict these constraints is allowed. One of the open challenges in the context
of conformance checking with declarative models is the capability of supporting
multi-perspective specifications. In this paper, we close this gap by providing a
framework for conformance checking based on MP-Declare, a multi-perspective
version of the declarative process modeling language Declare. The approach has
been implemented in the process mining tool ProM and has been experimented
in three real life case studies.

Keywords: Process Mining, Conformance Checking, Linear Temporal Logic,
Business Constraints, Declare

1. Introduction

The need to develop information systems able to fully support business pro-
cesses of companies, and organizations in general, is becoming more and more
urgent because of the fast pace of change in markets. Such dynamic markets
impose frequent modifications and updates to business processes, leading to a
constant decrease, in terms of temporal span, to the life-cycle of a business
process definition. In this context, one very important functionality that any
process-aware information system should be able to support is conformance
checking, i.e., the ability to verify whether the actual flow of work is conformant
with the intended business process model. This is especially true in the case
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of very complex processes, where the adoption of an imperative formalism to
represent it, such as Petri Nets [I] or BPM Notation [2], may lead to so much
intricate workflows (so called “spaghetti”-like workflows) to become basically
impossible to even properly visualize the process for human inspection.

Early works in conformance checking (e.g., [3, 4} [5]) mainly focused on the
control-flow perspective in the context of imperative models, i.e., on the func-
tional dependencies among performed activities/tasks in the process, while ab-
stracting from time constraints, data dependencies, and resource assignments.
These works were mainly based on replaying the log on the model to compute,
according to the proposed approach, the fraction of events or traces in the log
that can be replayed by the model. An evolution of these approaches is given
by align-based approaches, where the conformance checking is performed by
aligning both the modeled behavior and the behavior observed in the log (e.g.
[6]). Only recently, approaches able to deal with multiple perspectives have
been developed [7, §], as well as approaches that aim at being computationally
efficient via a problem decomposition strategy [9) 10, 1T, [12].

In the case in which the process in consideration is complex, however, it
is much better to use a declarative formalism, such as Declare [I3| 14} [I5], to
represent a set of constraints that must be satisfied throughout the process
execution. In this way, the “spaghetti”’-like workflows are avoided, and the
obtained model is flexible enough to allow all behaviors that do not violate the
defined constraints. Conformance checking approaches based on the control-flow
perspective have been defined for declarative models as well (e.g. [16, 17, [18]).
More recently the additional data perspective has been considered in [19] 20],
even if in these works the data perspective is not fully integrated with the control
flow perspective. Efficient and fully integrated multi-perspective conformance
checking proposals for declarative models, however, are still missing.

In this paper, we aim at closing this gap by proposing a multi-perspective
approach based on Declare where it is possible to define multi-perspective con-
straints jointly considering data, temporal, and control flow perspectives. In
order to allow that, we formally define Multi-Perspective Declare (MP-Declare),
an augmented version of Declare where, thanks to the use of Metric First-Order
Linear Temporal Logic, it is possible to define activation, correlation, and time
conditions to build constraints over traces.

A nice feature of MP-Declare is that, by construction, it allows the user to
efficiently perform conformance checking over event logs. In fact, we show that it
is possible to define a conformance checking algorithmic framework operating on
constraint templates, that is linear in the number of traces, constraints, and in
the number of events of each trace. Conformance checking for a specific template
is then obtained via definition of template-dependent procedures within the
framework, whose time complexity depends on the actual template. Overall,
however, the time complexity is upper bounded in the worst case by a quadratic
function.

We assess the validity of the proposed approach both on artificial and real
event logs. Controlled artificial data, involving logs containing up to 5 million
events, are used to prove the scalability of the proposed approach, while real



event logs generated by three real business processes are used to demonstrate
the expressivity and flexibility of constraints defined via MP-Declare.

2. Related Work

The scientific literature reports several works in the field of conformance
checking [21I]. Typically, the term conformance checking refers to the compar-
ison of observed behaviors — as recorded in an event log — with respect to a
process model. In the past, most of the conformance checking techniques were
based on procedural models. State of the art examples of these approaches are
reported in [7, 22] 111 [12].

In recent years, an increasing number of researchers are focusing on the con-
formance checking with respect to declarative models. For example, in [16],
an approach for compliance checking with respect to reactive business rules is
proposed. Rules, expressed using Condec [23], are mapped to Abductive Logic
Programming, and Prolog is used to perform the validation. The approach
has been extended in [I7], by mapping constraints to LTL, and evaluating them
using automata. The entire work has been contextualized into the service chore-
ography scenario.

Runtime monitoring for compliance checking has been studied also based
on MFOTL, as reported in [24] 25]. In these cases, the focus is on security
policy monitoring. On the one side the authors try to enforce security policies,
on the other they perform monitoring. In order to enforce security policies, it
is necessary to distinguish between controllable and observable activities and,
under specific circumstances, terminate the systems in order to prevent policy
violations. Concerning the monitoring, authors identified fragments of the used
logic, to describe security policies insensitive with respect to the ordering of
actions with equal timestamps. The authors assume to perform monitoring in
a distributed systems, which have synchronized clocks with limited precision.

Another application domain that researchers used to assess the applicabil-
ity of conformance checking techniques is the medical domain. In particular,
Grando et al. [26] 27] used Declare to model medical guidelines and to provide
semantic (i.e., ontology-based) conformance checking measures. However, in
this analysis neither data nor time perspectives are taken into account.

In [I8], the authors report an approach that can be used to evaluate the
conformance of a log with respect to a Declare model. In particular, their
algorithms compute, for each trace, whether a Declare constraint is violated
or fulfilled. Using these statistics the approach allows the user to evaluate the
“healthiness” of the log. The approach is based on the conversion of Declare
constraints into automata and, using a so-called “activation tree”, it is able to
identify violations and fulfillments. The approach described in this work does
not take into account the data and time perspective, but only the control-flow
is analyzed.

The work described in [28] 29] consists in converting a Declare model into
an automaton and perform conformance checking of a log with respect to the



generated automaton. The conformance checking approach is based on the
concept of “alignment” and as a result of the analysis each trace is converted
into the most similar trace that the model accepts.

In a recent work, reported in [20], the data perspective for conformance
checking with Declare is expressed in terms of conditions on global variables
disconnected from the specific Declare constraints expressing the control flow.
This work does not take the temporal perspective into account. In contrast, we
provide a formal semantics in which the data perspective, the temporal perspec-
tive and the control flow are connected with each others.

3. Preliminaries

In this section, we present the fundamental concepts required to understand
the rest of the paper.

8.1. Process Mining and XES

The basic idea behind process mining is to discover, monitor and improve
processes by extracting knowledge from data that is available in today’s systems
[5]. The starting point for process mining is an event log. XES (eXtensible Event
Stream) [30, B1] has been developed as the standard for storing, exchanging and
analyzing event logs.

Each event in a log refers to an activity (i.e., a well-defined step in some
process) and is related to a particular case (i.e., a process instance). The events
belonging to a case are ordered with respect to their execution times. Hence, a
case (i.e., a trace) can be viewed as a sequence of events. Event logs may store
additional information about events such as the resource (i.e., person or device)
executing or initiating the activity, the timestamp of the event, or data elements
recorded with the event. In XES, data elements can be event attributes, i.e.,
data produced by the activities of a business process and case attributes, namely
data that are associated to a whole process instance. In this paper, we assume
that all attributes are globally visible and can be accessed/manipulated by all
activity instances executed inside the case.

8.2. Metric First Order Temporal Logic

In this paper, we use Metric First Order Temporal Logic (MFOTL) first
introduced in [32]. MFOTL extends propositional metric temporal logic [33]
to merge the expressivity of first-order logic together with the MTL temporal
modalities. We deal with a fragment of MFOTL where all traces are finite.

In the following, we call “structure” a triple D = (A, 0,¢). A is the domain
of the structure, i.e., an arbitrary set. o is the signature of the structure, i.e., a
triple 0 = (C, R, a), where C' is a set of constant symbols, R is a set of relational
symbols, and a is a function that specify the arity of each relational symbol. ¢
is the interpretation function of the structure that assigns a meaning to all the
symbols in o over the domain A.



Definition 1 (Timed temporal structure). A timed temporal structure over the
signature o = (C, R, a) is a pair (D, ) where D is a finite sequence of structures
D = (Dy,...,Dyp) and 7 = (711,...,Ts) 18 a finite sequence of timestamps with
Ti € ]NE| D is assumed to have constant domains, i.e., A; = A;11, for all
1 <i < n. Each constant symbol in C has an interpretation that does not vary
over the time. The sequence of timestamps T is monotonically increasing, i.e.,
Ti < Tig1, foralll <i<mn.

We indicate with I = [a,b) an interval, where a € IN and b € NU {co}, and
with V' a set of variables. To express MFOTL formulas, we use the syntax:

Definition 2 (MFOTL Syntax). Formulas of MFOTL over a signature o =
(C,R,a) are given by the grammar

pu=ty =ty |1ty ta@) | 20| 1A P2 | T2 | X0 | 91Urd2 | Y1 | $1S1¢2

where ¢, p1, 09 EMFOTL, I = [a,b) is an interval, r is an element of R, x
ranges over V, and ty,ts,... belong to VUC.

A valuation is a mapping v : V. — A. With abuse of notation, if ¢ is a
constant symbol in C, we say that v(c) = c. For a valuation v, a variable x € V|
and d € A, v[z/d] is the valuation that maps z to d and leaves unaltered the
valuation of the other variables.

Definition 3 (MFOTL Semantics). Given (D,T) a timed temporal structure
over the signature o = (C,R,a) with D = (D1,...,Dy,), 7 = (T1,...,Tn), ¢
a formula over S, v a valuation, and 1 < i < n, we define (D,7,v,i) E ¢ as
follows:

(D, mu,0) Bttt 4ff o(t)=v(t)
(D,T,’U, Z) = T(tla v 7ta(7')) Zﬁ (U( ) ( a(’r)))) € L(T)
(Da’ravai)’:(_'qbl) ’Lﬁ ( » T, Z)%le
(D, 71,v,1) E ¢p1 A do iff (DTUZ)|=¢1 and (D, T,v,1) E ¢g
(D,7,v,1) EJz.p1 iff (D,7,v[z/d],i) E ¢1, for some d € A
(D,7v,0)EYrdr iff i>1,7—71i—1 €1, and (D, 7,v,i— 1) E ¢
(D,71,v,0) EXrdr iff i<n,mip1— 7 €1 and (D, 71,v,i4+ 1) F ¢
(D,1,v,1) F 918192 iff for some j <i, 7 — 1 €1,
(D,7,v,7) F ¢2 and (D, T,v,k) E ¢
forallk e [j+1,i+1)
(D,1,0,9) E 01 Ur¢o  iff for some j>i,17, — 1 €1,
(D, 7,v,5) F ¢2 and (D, T,v,k) E ¢
for all k € [5,9)

We add syntactic sugar for the normal connectives, such as true = dz.x ~

r, g1V g2 = 2(=¢1 A ), Vo = -3wmg o1 — 2 = (—¢1) V @2 and

INote that every timestamp available in a XES log can be translated into an integer.



Table 1: Semantics for some Declare templates.

Template LTL semantics Activation
responded existence G(A— (OBVFB)) A
response G(A—-FB) A
alternate response G(A - X(-AUB)) A
chain response G(A — XB) A
precedence G(B — 04) B
alternate precedence G(B — Y(—BSA)) B
chain precedence G(B—-YA) B
not responded existence G(A — =(OBV FB)) A
not response G(A — —FB) A
not precedence G(B — —04) B
not chain response G(A —» -XDB) A
not chain precedence G(B — -YA) B

d1 < P2 = (P1 — d2) A (P2 — ¢1). We also add temporal syntactic sugar,
Fr¢ = trueU ¢ (timed future operator), Gy = —(F;(—)) (timed globally op-
erator), Oy = trueSry (timed once operator) and Hyy = —(O;(—)) (timed
historically operator). The non-metric variants of the temporal operators are
obtained by specifying I = [0, 00).

3.8. Declare

Declare is a declarative process modeling language originally introduced by
Pesic and van der Aalst in [I3] 14}, [15]. Instead of explicitly specifying the flow of
the interactions among process activities, Declare describes a set of constraints
that must be satisfied throughout the process execution. The possible orderings
of activities are implicitly specified by constraints and anything that does not
violate them is possible during execution. In comparison with procedural ap-
proaches that produce “closed” models, i.e., all that is not explicitly specified
is forbidden, Declare models are “open” and tend to offer more possibilities for
the execution. In this way, Declare enjoys flexibility and is very suitable for
highly dynamic processes characterized by high complexity and variability due
to the turbulence and the changeability of their execution environments.

A Declare model consists of a set of constraints applied to activities. Con-
straints, in turn, are based on templates. Templates are patterns that define
parameterized classes of properties, and constraints are their concrete instan-
tiations (we indicate template parameters with capital letters and concrete ac-
tivities in their instantiations with lower case letters). They have a graphical
representation understandable to the user and their semantics can be formalized
using different logics [34], the main one being LTL over finite traces, making
them verifiable and executable. Each constraint inherits the graphical repre-
sentation and semantics from its template. Table [1| summarizes some Declare



templates (the reader can refer to [I3] for a full description of the language).

The responded existence template specifies that if A occurs, then B should
also occur (either before or after A). The response template specifies that when
A occurs, then B should eventually occur after A. The precedence template
indicates that B should occur only if A has occurred before. Templates alter-
nate response and alternate precedence strengthen the response and precedence
templates respectively by specifying that activities must alternate without rep-
etitions in between. Even stronger ordering relations are specified by templates
chain response and chain precedence. These templates require that the occur-
rences of A and B are next to each other. Declare also includes some negative
constraints to explicitly forbid the execution of activities. The not responded ex-
istence template indicates that if A occurs in a process instance, B cannot occur
in the same instance. According to the not response template any occurrence
of A cannot be eventually followed by B, whereas the not precedence template
requires that any occurrence of B is not preceded by A. Finally, according to
the not chain response and not chain precedence, A and B cannot occur one
immediately after the other.

The major benefit of using templates is that analysts do not have to be
aware of the underlying logic-based formalization to understand the models.
They work with the graphical representation of templates, while the underly-
ing formulas remain hidden. Declare is very suitable for specifying compliance
models that are used to check if the behavior of a system complies with desired
regulations. The compliance model defines the constraints related to a single
process instance, and the overall expectation is that all instances comply with
the model. Consider, for example, the response constraint G(a — Fb). This
constraint indicates that if a occurs, b must eventually follow. Therefore, this
constraint is satisfied for traces such as t1 = (a,a,b,c), to = (b,b,c,d), and
ts = {a,b,c,b), but not for t4 = (a,b,a,c) because, in this case, the second
instance of a is not followed by a b. Note that, in to, the considered response
constraint is satisfied in a trivial way because a never occurs. In this case, we
say that the constraint is vacuously satisfied [35]. In [I8], the authors introduce
the notion of behavioral vacuity detection according to which a constraint is
non-vacuously satisfied in a trace when it is activated in that trace. An activa-
tion of a constraint in a trace is an event whose occurrence imposes, because
of that constraint, some obligations on other events (targets) in the same trace.
For example, a is an activation for the response constraint G(a — Fb) and b
is a target, because the execution of a forces b to be executed, eventually. In
Table |1 for each template the corresponding activation is specified.

An activation of a constraint can be a fulfillment or a violation for that con-
straint. When a trace is perfectly compliant with respect to a constraint, every
activation of the constraint in the trace leads to a fulfillment. Consider, again,
the response constraint G(a — Fb). In trace t1, the constraint is activated and
fulfilled twice, whereas, in trace t3, the same constraint is activated and fulfilled
only once. On the other hand, when a trace is not compliant with respect to a
constraint, an activation of the constraint in the trace can lead to a fulfillment
but also to a violation (at least one activation leads to a violation). In trace ty,
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Figure 1: Fulfillment and violation scenarios for the response constraint between
activities A and B. (a) reports a typical fulfillment scenario. In (b), the violation
is due to the violation of the correlation condition ¢.. In (c), the violation is
due to the violation of the time condition ..

for example, the response constraint G(a — Fb) is activated twice, but the first
activation leads to a fulfillment (eventually b occurs) and the second activation
leads to a violation (b does not occur subsequently). An algorithm to discrimi-
nate between fulfillments and violations for a constraint in a trace is presented
in [18]. Table [If reports the activations for the main Declare templates.

In [I8], the authors define two metrics to measure the conformance of an
event log with respect to a constraint in terms of violations and fulfillments,
called wiolation ratio and fulfillment ratio of the constraint in the log. These
metrics are valued 0 if the log contains no activations of the considered con-
straint. Otherwise, they are evaluated as the percentage of violations and ful-
fillments of the constraint over the total number of activations.

Tools implementing process mining approaches based on Declare are pre-
sented in [36]. The tools are implemented as plug-ins of the process mining
framework ProM.

4. MFOTL Semantics for Multi-Perspective Business Constraints

In this section, we introduce a multi-perspective version of Declare (MP-
Declare). The version is similar to the ones in [37, B8], but we enrich it by
allowing both time and data perspective. To do this, we use Metric First-
Order Linear Temporal Logic (MFOTL). While many reasoning tasks are clearly
undecidable for MFOTL, this logic is appropriate to unambiguously describe the
semantics of the MP-Declare constraints we can use for conformance checking
in our proposed algorithms.
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Figure 2: Fulfillment and violation scenarios for the alternate response con-
straint between activities A and B. (a) reports a typical fulfillment scenario. In
(b), the violation is due to the violation of the correlation condition ¢.. In (c),
the violation is due to the violation of the time condition .. The activation
in (d) is a fulfillment because the second occurrence of A does not satisfy the
activation condition. In contrast, (e) reports a violation since, in this case, the
second occurrence of A satisfies the activation condition.

To define the new semantics for Declare, we have to contextualize the defi-
nitions given in Section [3:2] in XES. Consider, for example, that the execution
of an activity pay is recorded in an event log and, after the execution of pay at
timestamp 7;, the attributes originator, amount, and z have values John, 100,
and July. In this case, the valuation of (activityName, originator, amount, z)
is (pay, John, 100, July) in 7;. Considering that in XES, by definition, the ac-
tivity name is a special attribute always available, if (pay, John, 100, July) is
the valuation of (activity Name, originator,amount, z), we say that, when pay
occurs, two special relations are valid event(pay) and ppay(John, 100, July).
In the following, we identify event(pay) with the event itself pay and we call
(John, 100, July), the payload of pay.

The semantics for MP-Declare is shown in Table 2l Note that all the tem-
plates here considered have two parameters, an activation and a target (see also
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Figure 3: Fulfillment and violation scenarios for the chain response template
between activities A and B. (a) reports a typical fulfillment scenario. Note
that, in this case, the two events are contiguous. In (b), the violation is due to
the violation of the correlation condition ¢¢. In (c), the violation is due to the
violation of the time condition ..

Table . As an example, we consider the response constraint “activity pay is
always eventually followed by activity get discount” having pay as activation
and get discount as target. The timed semantics of Declare, introduced in [37],
is extended by requiring two additional conditions on data, i.e., the activation
condition p, and the correlation condition ¢.. The activation condition is a
relation (over the variables corresponding to the global attributes in the event
log) that must be valid when the activation occurs. If the activation condition
does not hold the constraint is not activated. In the case of the response tem-
plate the activation condition has the form p4(z) Ar,(z), meaning that when A
occurs with payload x, the relation 7, over z must hold. For example, we can
say that whenever pay occurs and client type is gold then eventually get discount
must follow. In case pay occurs but client type is not gold the constraint is not
activated. The correlation condition is a relation that must be valid when the
target occurs. It has the form pp(y) A r.(x,y), where r. is a relation involving,
again, variables corresponding to the (global) attributes in the event log but, in
this case, relating the valuation of the attributes corresponding to the payload
of A and the valuation of the attributes corresponding to the payload of B.
In our example, we can say that whenever pay occurs and client type is gold
then eventually get discount must follow and the due amount corresponding to
activity get discount must be lower than the one corresponding to activity pay.
In the following, with abuse of notation we specify the interval characterizing
the time perspective of a MP-Declare constraint (I = [a,b)) with ¢..
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Table 2: Semantics for MP-Declare constraints.

Template

MFOTL Semantics

responded existence

G(Ve.((AApa(w)) = (01(B A Jy.pe(w,y)) VF1(B A Jy.pc(e,9)))))

response
alternate response
chain response

G(Vz.((A A @a(z)) = F1(B A Jy.o.(z,9))))
G(Vz.((AA@a(z)) = X((A A @a(2))Ur(B A Jy.0c(z,9)))))
G(Vz.((AA @a(x)) = X1 (B A Ty.pc(z,y)))

precedence
alternate precedence
chain precedence

G(Vz.((B A pa(z)) = O1(A A Jy.pc(z,y)))
G(Vz.((B A wa(z)) = Y(=(B A @a(2))S1(AAJy.pc(z,9))))
G(Va.((B A wa(z)) = YI(AA 3y, y)))

not responded existence
not response

not precedence

not chain response

not chain precedence

G(Ve-(A A pa(2)) = ~(O1(B A y-po(a y)
GVz.((AN pa(z)) = =F1(B A Jy.pclz,y)
G(Va-((B A pu(2)) — =01 (A A Fy-pe(, )
G(Vz.((AA pa(z)) = X1 (B AJy.pc(z,y)
G(Vz.((B A pa(z)) = =Y 1(AA3y.pc(z,y)

VF(BAJy.pc(z,9)))))

Graphical representations of three MP-Declare templates are reported in
Figures I} ] and 3] In particular, these figures report the semantics for re-
sponse, alternate response and chain response constraints. Each figure shows
possible scenarios of violations and fulfillments for the corresponding constraint.
A scenario is described reporting events as rounded circles. Each circle is as-
sociated to an activity (A, B, or C') and a data condition (either an activation
condition ¢, or a correlation condition ¢.). The time condition ¢, is reported
above the horizontal curly bracket. Crossed data or time conditions indicate
violated conditions. Red circles indicate events that are violations, green circles
indicate fulfillments.

The response constraint in Figure [I] indicates that, if A occurs at time 74
with ¢, holding true, B must occur at some point 75 € [T4 + a,74 + b) with
¢. holding true. The alternate response constraint in Figure [2] specifies that,
if A occurs at time 74 with ¢, holding true, B must occur at some point
TB € [Ta + a,7a + b) with @, holding true. A is not allowed in the interval
[Ta, 78] if @, is true. Any event different from A is allowed and, also, A is
allowed if ¢, is false. The chain response constraint in Figure [3|indicates that,
if A occurs at time 74 with ¢, holding true, B must occur next at some point
T € [Ta + a,74 + b) with ¢, holding true.

5. Conformance Checking Algorithms

As stated in the previous section, with MP-Declare, it is possible to ex-
press Declare constraints taking into account also the temporal and the data
perspectives. As an example, it is possible to express constraints like:

e activity A must occur between 10 and 11 hours before activity B;

o if activity A writes a variable x with value <1000, then B must occur after
two days.

11



Therefore, using this language, it is possible to define multi-perspective compli-
ance models that can be used for several purposes like, for example, for repre-
senting Service Level Agreements (SLAs). In this context, it would be useful to
provide the user with techniques to detect whether cases are actually fulfilling
the required set of constraints or not. In this section, we present algorithms to
check the conformance of an event log with respect to a MP-Declare model.

The proposed approach for the conformance checking of MP-Declare con-
straints is based on several procedures. The main component is described in
the CheckLogConformance procedure, reported in Algorithm [} This algorithm
requires as input a log and a MP-Declare model (i.e., a set of MP-Declare con-
straints). Then, it iterates through all traces and, for each constraint, it com-
putes the violations and the fulfillments by calling the CheckTraceConformance
procedure. CheckTraceConformance, described in Algorithm [2] takes as input a
trace and a constraint and generates the set of violating and fulfilling events for
that specific constraint in that specific trace. The basic idea of this procedure is
to iterate through all the events of the trace and, for each of them, call specific
template-dependent operations (lines 5-11).

Algorithm 1: CheckLogConformance

Input: Log: an event log
Model: a model
Output: A set of violating and fulfilling traces/constraints

1 Let fulfill and viol be maps that, given a trace and a constraint, return
the set of fulfilling and violating events

2 foreach trace € Log do

3 foreach constr € Model do

4 viol, fulfill < CheckTraceConformance(trace, constr)
// Algorithm

5 viol [trace][constr] < viol

6 Sulfill [trace][constr] « fulfill

7 end

8 end

9 return viol, fulfill

The described algorithms might be seen as a general “framework” that can
be used for conformance checking with respect to different templates. Each
template that needs to be verified must properly define the following required
operations:

e opening: this procedure is called once per trace, before starting the anal-
ysis of the first event of the trace;

e fulfillments: this procedure is called for each event of the trace and is
supposed to return the set of fulfillments that have been observed so far;
modifications to the set of activations are allowed as well;
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Algorithm 2: CheckTraceConformance

Input: trace: a trace
c = (templ, A, T, 0o, pc, pr): a constraint
Output: Set of violating and fulfilling events

1 pending < ()
fulfillments < ()
violations < ()

w N

/* All the following calls are allowed to make side effects

on the provided parameters x/
4 templ.opening() /* Opening template operations */
5 foreach e € trace do
6 templ. fulfillment(e, trace, pending, fulfillments, T, ©o, e, r)
7 templ.violation(e, trace, pending, violations, T, vc, pr)
8 templ.activation(e, A, pending, v, )
9 end
10 templ.closing(pending, fulfillments, violations) /* Closing template

operations */

11 return violation, fulfillments

e violations: this procedure is called for each event of the trace and is sup-
posed to return the set of violations that have been observed so far; mod-
ifications to the set of activations are allowed as well;

e activation: this procedure is called for each event of the trace and is
supposed to update the set of activations that have been observed so far
(i.e., whether the current event is a new activation or not);

e closing: this procedure is called once per trace, after all the events have
been analyzed.

In this paper, we illustrate the procedures for three templates, i.e., response,
alternate response, and chain response. We consider these three specifications
sufficiently representative in order to provide a clear idea of the capabilities
of our frameworkﬂ In each procedure, given the set of all possible activities
A, we define a constraint as a tuple: ¢ = (template, A, T, pqa, Pc, pr), wWhere
template indicates which template the constraint is referring to, template €
{existence, absence, choice, responded ezistence, ...}; A C A is the nonempty
set of activations; T C A is the nonempty set of targets; ¢, and ¢, indicate,
respectively, the activation and the correlation condition; and ¢, represents the
time condition. We also use the functions verify(pq, A), verify(ee, A, B), and
verify(p-, A, B). The first function evaluates ¢, with respect to the attributes

2 All the procedures for conformance checking based on MP-Declare have been implemented
and are publicly available (see Section @
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reported in A. The second function evaluates ¢, with respect to the attributes
defined in A and B. The third function compares the timestamps attached to A
and B in order to see whether ¢, is satisfied or not. As already mentioned, each
event recorded in an event log brings a payload of attributes. In the description
of the algorithms, we use the 7,(e) operator to get the value of an attribute
a of an event e. For example, we use Tactivity(€) to select the activity name
associated to e.

The first template we consider is response and the corresponding procedures
are reported in Table [3] The opening procedure does nothing. The fulfillment
procedure checks whether the input event refers to a target. If this is the
case, then all pending activations that can be correlated to this target (in case
the time and the correlation conditions are satisfied) become fulfillments. The
activation procedure checks whether the input event refers to an activation of
the constraint and the activation condition ¢, is satisfied (in this case the event
has to be added to the set of pending activations). Violations are identified in
the closing procedure (the violation procedure is not used in this case). Here,
all pending activations that do not have a corresponding target when the entire
trace has been processed become violations.

Response

template.opening()
1 do nothing

template. fulfillment(e, trace, pending, fulfillments, T, ¢a, pc, ©r)

1 if Wactivity(e) S T then
2 foreach act € pending do

3 if verify(pe, act, e) and verify(¢-, act, e) then
4 pending < pending \ {act}

5 fulfillments + fulfillments U {act}

6 end

7 end

8 end

template.violation(e, trace, pending, violations, T', ¢, p+)

1 do nothing /* Actual violations are not identified here */

template. activation(e, A, pending, pq)
1 if Tactiviy(e) € A and verify(pa, e) then
2 ‘ pending < pending U {e}
3 end

template. closing(pending, fulfillments, violations)
1 foreach act € pending do
2 pending < pending \ {act}
3 violations <— violations U { act}
4 end

Table 3: Procedure speciﬁca{'&)ns for the response constraint.



The procedures for the alternate response template are reported in Table
In particular, opening defines a new data structure (possibleTargets) that will
be used by the other procedures. The fulfillment procedure starts by checking
whether the input event refers to an activation and the activation condition is
satisfied. If this is the case, the procedure checks whether there is exactly one
pending activation and at least one possible target. If this is the case, if for at
least one possible target the time and the correlation conditions are satisfied, the
pending activation becomes a fulfillment (fulfillment, lines @-8) If the activity
referring to the input event is a target, the event is added to the set of possible
targets (fulfillment, line [14)). The wiolation procedure also starts by checking
whether the input event refers to an activation and the activation condition
is satisfied. If this is the case, the procedure checks whether there is exactly
one pending activation. If this is the case, the pending activation becomes a
violation (the pending activation cannot be a fulfillment because, in this case,
the invocation of the fulfillment procedure moves it from the pending set to the
fulfillment set). The activation procedure checks whether the input event refers
to an activation and the activation condition is satisfied. In this case, the set
of possible targets is reset to the empty value and the event is returned to be
added to the set of pending activations. The closing procedure verifies that if
there is a pending activation, this activation can be correlated at least to one
possible target. If this is the case (if the time and the correlation conditions are
satisfied), then the activation becomes a fulfillment (closing, line [7)), otherwise
it is marked as a violation (closing, line .

Alternate Response

template.opening()

1 define possibleTargets < () as a data structure available throughout the entire
CheckTraceConformance algorithm

template. fulfillment(e, trace, pending, fulfillments, T, ¢a, @c, ©r)

-

if Tactivity(€) € A and verify(pa, e) then

2 if |possibleTargets| > 1 and |pending| = 1 then

3 act < element € pending // There is only one element
4 foreach p € possibleTargets do

5 if verify(pe, act,p) and verify(y-, act,p) then

6 fulfillments < fulfillments U {act}

7 pending < pending \ {act}

8 break // It is possible to exit the loop
9 end

10 end

11 end

12 end

13 if e € T then

14 ‘ possibleTargets < possible Targets U {e}

15 end
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Alternate Response (continued from previous page)

template.violation(e, trace, pending, violations, T', ¢, p+)

1 if Toctiviy(e) € A and verify(pa, e) then

2 if |pending| = 1 then

3 act < element € pending // There is only one element
4 pending < pending \ {act}

5 violations <— violations U { act}

6 end

7 end

template.activation(e, A, pending, ©q)
1 if Tactivity(€) € A and verify(pa, e) then
2 possibleTargets < ()
3 pending <— pendingU {e}
4 end

template. closing(pending, fulfillments, violations)

1 if |pending] = 1 then
2 targetFound < false
3 act < element € pending // There is only one element
4 foreach p € possibleTargets do
5 if wverify(pe, act,p) and verify(o-, act, p) then
6 targetFound < true
7 fulfillments « fulfillments U {act}
8 end
9 end
10 if not targetFound then
11 ‘ violations < violations U {act}
12 end
13 end

Table 4: Procedure specifications for the alternate response constraint.

The procedures for the chain response template are reported in Table
As for the response template, opening does nothing. The fulfillment and the
violation procedures verify whether there is exactly one element in the set of
pending activations. In this case, they check whether the input event refers to a
target and the time and correlation conditions are fulfilled. If this is the case, the
pending activation becomes a fulfillment, otherwise it is marked as a violation.
The activation procedure checks whether the input event refers to an activation
and the activation condition is satisfied (in this case the event has to be added
to the set of pending activations). The closing procedure checks whether there
is still a pending activation when the entire trace has been processed. In this
case, the pending activation becomes a violation.
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Chain Response

template.opening()
1 do nothing

template. fulfillment(e, trace, pending, fulfillments, T, Ya, pc, Pr)
1 if |pending] = 1 then
2 act < element € pending // There is only one element
if Tactivity(€) € T and verify(ee, act, e) and verify(p-, act,e) then
pending < pending \ {act}
fulfillments < fulfillments U {act}
end

B =R B N

end

template.violation(e, trace, pending, violations, T', ¢, p+)

1 if |pending] = 1 then
2 act < element € pending // There is only one element

3 if Tactivity(€) € T or not verify(¢e, act,e) or not verify(p, act, e) then
4 pending < pending \ {act}

5 violations <— violations U {act}

6 end

7 end

template. activation(e, A, pending, pq)
1 if Tocuviy(€) € A and verify(pa, e) then
2 ‘ pending < pendingU {e}
3 end

template. closing(pending, fulfillments, violations)
1 foreach act € pending do
2 pending < pending \ {act}
3 violations <— violations U { act}
4 end

Table 5: Procedure specifications for the chain response constraint.

The algorithms for the other templates specified in Table[2]can be very easily
derived from the ones described in this section. In particular, the algorithms for
the precedence, the alternate precedence and the chain precedence are the same
as the ones described for response, alternate response and chain response re-
spectively. The only difference is that, for the precedence templates, the traces
in the input log have to be parsed from the end to the beginning. Similarly,
the algorithms for checking the negative templates are the same as the ones
described for the corresponding negative templates. In this case, every fulfill-
ment for a positive template becomes a violation for the corresponding negative
template and vice versa.
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From the computational complexity point of view, it is worthwhile noting
that the complexity of Algorithm [I] and Algorithm [2]is linear in the number of
traces, constraints, and in the number of events of each trace. The complexity
of the template-dependent procedures, instead, depends on the actual template.
Specifically, with respect to the procedures of each constraint reported in this
paper, we have the following complexities:

e Response: opening, violation, and activation are constant; fulfillment and
closing have linear complexity on the number of pending activations for
the current trace (which is at most the number of events on the trace);

e Alternate Response: opening, violation, and activation are constant; ful-
fillment and closing are linear on the number of possible targets (which is
at most the number of events on the trace);

e Chain Response: opening, fulfillment, violation , activation are constant;
closing is linear on the number of pending activations for the current trace
(which is at most the number of events on the trace).

6. Implementation and Benchmarks

This section provides some details on the implementation of the approach
and a benchmark analysis on different scenarios.

6.1. Implementation Details

The entire approach has been implemented as a plug-in of the process mining
toolkit ProME| In particular, the plug-in receives as input an event log and a
model and evaluates the conformance of the log with respect to the model. It is
interesting to note that, in the current implementation, the processing of each
trace is independent from all the others. Also, the analysis of a constraint in the
reference model is independent from all the others. For this reason, it is possible
to parallelize and distribute the analysis over different computational nodes and
drastically improve the performances. The results of the tests reported in this
paper, however, do not benefit from such a possibility and our tests sequentially
evaluate each constraint on each trace.

The conformance checking results are presented using a ProM plug-in called
“Analysis Result Visualizer”. This visualizer is composed of three main win-
dows. The first window consists of a summary of the statistics computed for
each constraints (e.g., number of activations, number of violations and number
of fulfillments) on the entire log. This window is shown in Figure

The second window (shown in Figure provides a more detailed view.
This window is divided into three columns. The leftmost column contains a list
of all the cases with information on case id, number of activations in the case,
and number of fulfillments and violations. The central column contains the list

3The software can be downloaded from |http://www.promtools.org/proms.
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Figure 4: Overall details window with the result summary.

of constraints in the reference model. When a case and a constraint are selected,
in the list in the rightmost column of the window, a representation of the case
appears. In this representation, each event is drawn as a rectangle. Green-
painted rectangles represent fulfillments, red-painted boxes represent violations.
It is possible to move the mouse cursor over each rectangle to see the complete
set of attributes belonging to the event.

The third window (shown in Figure also lists all cases. Here, each event
of a case is represented as a small box that can be gray, green (in case the event
is a fulfillment), or red (in case the event is a violation). This visualization is also
called “birdview” since it provides a high-level overview of the constraints and
allows the user to quickly identify possible issues. When the mouse is moved over
an event, a pop-up showing the corresponding activity name appears. In both
the second and the third window, it is possible to sort cases based on different
parameters (name of the case, number of activations, number of violations, and
number of fulfillments), or interactively search for cases with a specific case id.

6.2. Benchmarks

In order to gain some insights on the computational feasibility of our imple-
mentation, we run several tests in different possible scenarios. In particular, we
tested our implementation against logs with different sizes and different trace
lengths. We generated traces with 10, 20, 30, 40, and 50 events and, for each of
these lengths, we generated logs with 25000, 50 000, 75000, and 100 000 traces.
Therefore, in total, we used 20 logs. The number of events contained in each
log is reported in Table [6] In addition, we designed 10 Declare models. In
particular, we prepared two models with 10 constraints, one only containing
constraints on the control-flow (without conditions on data and time), and an-
other one including real multi-perspective constraints (with conditions on time
and data). We followed the same procedure to create models with 20, 30, 40,
and 50 constraints.
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ProM UlTopia
Prol 6

Declare Analysis [log: none, model: hand made model]

Constraints

This activity is fullfilment!

Event Attributes
org:group = General Lab Clinical Chemistry.
8

urce = General Lab Clinical Chemistry.

Iifecycle:transition = complete.
concept:name = assumption laboratory

Trace Attributes
SpecialismCode = 7
DiagnosisTreatmentCombinationid = 207517
Age =71
concept:name = 00000063

de = 101

01-26T00:14:24+01:00
End date:1 = 2006-01-25T23:45:36+01:00
maligniteit ovarium or tuba
12

Start date:4 = 2007-01-03T00:
description = instance with id 00000063
Start date:3 = 2007-01.25T00:14:24+01:00

Prol 6

Declare Analysis [log: none, model: hand made model]

D

00000800

00000734

00000063

00000653

(b) Birdview-like window showing an overview of fulfillments and violations for some cases.

Figure 5: Windows used to inspect the conformance checking results by focusing
on single cases.

Number of log traces
25000 50 000 75000 100000

10 250000 500000 750000 1000000

o
w & 20 500000 1000000 1500000 2000000
£E 30 750000 1500000 2250000 3000000
F% § 40 | 1000000 2000000 3000000 4000000
%

50 | 1250000 2500000 3750000 5000000

Table 6: Number of events for each log.
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We checked each log against each model, and we repeated the procedure five
times, in order to get the average execution times for each configuration. To
provide more accurate results, the times reported here are measured without
considering the time needed to generate the graphical visualization (we perform
the tests on a custom command-line version of ProM). All tests have been
performed using two machines (part of a cluster) randomly, with the following
hardware configurations: (i) 4 x Eight-Core Intel(R) Xeon(R) CPU E5-4640 0
@ 2.40GHz; (i) 2 x Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz.

Figure [6] provides a graphical representation of the average execution times
for the analysis of all models and logs. In particular, the graph on top reports
the execution times using models with control-flow based constraints. The graph
at the bottom reports the execution times using real multi-perspective models
(with conditions on time and data). In Figure[7|and in Figure 8] we also report
the average execution times (and standard deviations) required to analyze all
models and logs but we provide different views on the data. In particular, in
Figure[7] the execution times are grouped based on the number of traces in the
logs. The graph on the left-hand side reports the execution times using models
with control-flow based constraints, the one on the right-hand side reports the
execution times using multi-perspective constraints. In Figure [§] the execution
times are grouped based on the number of events in each trace.

As the statistics clearly show, the time required to perform the analysis
directly depends both on the number of events in each trace, and on the actual
size of the log. However, the execution times evaluated using models with
control-flow based constraints seem to be more influenced by the number of
events in each traces. We believe that this is due to the additional costs needed
for starting up the data validation engine in case of multi-perspective models. In
particular, it is necessary to restart such engine for each trace and the additional
time required is so high that it becomes impossible to see the differences in
terms of performances for traces of different lengths. In general, it is worthwhile
noting that the most expensive configuration (a model with 50 multi-perspective
constraints, and a log with 100000 traces and 5000000 events) requires, on
average, 255 369 milliseconds, i.e., about 4.2 minutes. This proves the scalability
of our approach.

7. Case Studies

This section provides three case studies on real datasets. The first one is
based on an event log provided by an academic hospital, the second one is a
case study provided by a financial institution and the third one is based on a
dataset provided by a bank.

7.1. A Large Academic Hospital

We have conducted a case study by using the BPI challenge 2011 event log
[39]. This log pertains to a healthcare process and, in particular, contains the
executions of a process related to the treatment of patients diagnosed with can-
cer in a large Dutch academic hospital. The whole event log contains 1143 cases
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Figure 6: Execution times in milliseconds required to process logs with different
number of traces of different lengths. The plot on top refers to models with
control-flow constraints. The plot at the bottom refers to models with control-
flow, data and time constraints.

Table 7: Reference constraints used to analyze the log from the BPI challenge
2011.
Id | Constraint | 1st param. 2nd param. Actiw{a‘tiorA Corr?I?\tion Time. .
condition condition condition
1 Precedence ca-125 using outpatient A.Diagnosis == - 0,15,d
meia follow-up ‘maligniteit
consultation ovarium or tuba’
2 Precedence | First telephone - A.org:group == -
outpatient consultation T.org:group
consultation

22



100000

80000

60000

40000

Average processing time (ms)

20000

10 constr. 20 constr. 30 constr. 40 constr. 50 constr.
Different model sizes

Logs w/ 25000 traces N
Logs w/ 50000 traces

Logs w/ 75000 traces NN
Logs w/ 100000 traces

300000 ; ; ; ; ;

250000

200000

150000

100000

Average processing time (ms)

50000

0

10 constr. 20 constr. 30 constr. 40 constr. 50 constr.
Different model (also with data and time constraints) sizes

Logs w/ 25000 traces NN
Logs w/ 50000 traces HEEEN

Logs w/ 75000 traces HEEE
Logs w/ 100000 traces 1

Figure 7: Execution times in milliseconds grouped based on the number of traces
in the logs. The plot on the left hand side refers to models with control-flow
constraints. The plot on the right hand side refers to models with control-flow,

data and time constraints.
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Table 8: Conformance checking results using the log from the BPI challenge

2011.

Id ‘ Act.no. Viol.no. Fulfill.no. ‘ Avg.act.sparsity Avg.viol.ratio Avg.fulfill.ratio
1 343 242 101 0.9844 0.7055 0.2945
2 1286 546 740 0.9677 0.4246 0.5754

Table 9: Execution times using the log from the BPI challenge 2011.

Id | Avg.execution time (milliseconds)

1
2

1759
1828
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This activity is a violation! .

Event Attributes

org group = Obstetrics & Gynascology clinic
SpecialismCode = 7

Section = Section 2

Producer code = SGAL

Activity code = 411100

Number of executions =1

org:resource = Obstetrics & Gynaecology clinic
lifecycle:transition = complete

time:timestamp = 2005-11-24701:00:00+02:00
concept:name = outpatient follow-up consuttation

Trace Attributes

Start date:1 = 2005-01-29T00:14:24+01:00
SpecialismCode = 7
DiagnosisTreatmertCombinationiD = 261394
End date:1 = 2006-01-28T23:45:36+01:00
Age =31

End date;2 = 2007-01-28T23:45:38+01:00
Diagrosis = malignitsit ovarium or tuba
description = instance with id 00000294
Start date:3 = 2007-01-29700:14:24+01:00
Start date:2 = 2006-01-29T00:14:24+01:00
DiagnosisCode = M16

concept name = 00000294

TreatmentCode = 101

Figure 9: Example of violations for constraint 1.

and 150291 events distributed across 623 event classes (i.e., each event refers
to one of 623 different possible activities). Each case describes the treatment
of a different patient. The event log contains domain specific attributes that
are both case attributes and event attributes in addition to the standard XES
attributes. For example, Age, Diagnosis, and Treatment code are case at-
tributes and Activity code, Number of executions, Specialism code, and
Group are event attributes. As mentioned in Section [3.1} in our analysis all the
attributes are considered visible for all the activities and we suppose that an
activity overwrites the old values of all the event attributes attached to it.

To investigate the behavior of the process as recorded in the log, we have
used the constraints shown in Table [l The idea behind constraint 1 is that
the tumor marker “ca-125” is used in the follow-up of patients diagnosed with
ovarian cancer as an indicator of the evolution of the tumor. For this reason,
we would expect that, if the diagnosis for a patient is “maligniteit ovarium?”,
the follow-up consultation is preceded by the analysis of this tumor marker. In
addition, we require a time condition indicating that this analysis should not
come too early with respect to the follow-up. As shown in Table[§] constraint 1
has 343 activations. This means that there are 343 occurrences of outpatient
follow-up consultation associated with a Diagnosis equal to maligniteit
ovarium or tuba. As shown in Table [8] around 70% of these activations are
violations. One of the reasons why there are so many violations in the log
for this constraint is that there can be several follow-ups in a case and some

24



of them are not correlated with the “ca-125” test but with other tests. In
Figure [9] it is possible to see some violations for constraint 1. For example,
the selected event outpatient follow-up consultation is an activation for
the constraint since, in its payload, the value for Diagnosis is maligniteit
ovarium or tuba. However, this activation is probably connected with the
computed tomography abdomen and/or the ultrasound test done immediately
before.

The idea behind constraint 2 is that the first consultation for a patient in the
hospital cannot be a telephone consultation. We also add a correlation condition
to understand if every telephone consultation is preceded by a first consultation
in the same department. There is no activation condition for this constraint.
This means that every time telephone consultation occurs, the constraint is
activated. The constraint has 1286 activations. Around 42% of these activations
are violations. Some of these violations are due to the occurrence of telephone
consultations preceded by a first consultation in a different department. In
addition, it is also worth to highlight that the log we are using for this case
study is an excerpt derived from a larger log and it contains several cases that
are truncated both at the beginning and at the end. This can be also the reason
of violations for this constraint.

In Table 0] we show the execution times needed for checking the constraints
in this case studyE| For each of them, the execution time is lower that 2
seconds. This confirms that the scalability of our tool.

7.2. A Dutch Financial Institution

The second case study we discuss is based on the application of the proposed
approach to the event log provided for the BPI challenge 2012 and taken from a
Dutch financial institute [40]. The event log pertains to an application process
for personal loans or overdrafts. It contains 262 200 events distributed across 36
event classes and includes 13 087 cases. The amount requested by the customer
is indicated in the case attribute AMOUNT_REQ. In addition, the log contains the
standard XES attributes for events.

For this case study, we have used the constraints shown in Table[I0} Some of
these constraints involve some specific transactional states (a.k.a. event types)
of an activity. For example, the parameters specified for constraint 7-10 are
W_Valideren aanvraag-SCHEDULE and W_Valideren aanvraag-START. When
an event type is not specified, like in the case of constraint 3-6, the event type
considered by default is “complete”.

With constraint 3, we want to understand how many submitted applications
are eventually accepted. As shown in Table there are 13 087 submissions of
which only 5113 are eventually accepted (around 39%). Using constraint 4, we

4The execution times in all the tables of this section are averaged over 5 runs.

5All the experiments described in this section have been performed on a machine with an
Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz (limiting the execution to just one core), 8
GB of RAM and the Oracle Java virtual machine installed on a GNU/Linux Ubuntu operating
system.
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can understand that the majority of these accepted applications (around 79%)
are accepted in less than 24 hours from the submission. Using constraints 5
and 6, we can understand how the requested amount affects the application. In

Table 10: Reference constraints used to analyze the log from the BPI challenge

2012.
Id | Constraint | 1st param. 2nd param. ACt“,/a,t on COI‘I‘?}l.atIOIl Tlme. .
condition condition condition
3 | Response | A_SUBMITTED A_ACCEPTED | - - | -
4 | Response | A_SUBMITTED A_ACCEPTED | - - | 0,24,n
5 Response A_SUBMITTED A_ACCEPTED A.AMOUNT REQ - -
>= 10000
6 Response A_SUBMITTED A_ACCEPTED A.AMOUNT REQ - -
< 10000
7 Response W_Valideren W_Valideren - - -
aanvraag-SCHEDULE aanvraag-START
8 Response W_Valideren W_Valideren - A.org:resource | -
aanvraag-SCHEDULE aanvraag-START =
T.org:resource
9 Response W_Valideren W_Valideren - A.org:resource| 0,7,d
aanvraag-SCHEDULE aanvraag-START =
T.org:resource
10 | Response W_Valideren W_Valideren - A.org:resource | 0,24,h
aanvraag-SCHEDULE aanvraag-START |=
T.org:resource
11 | Response W_Valideren W_Valideren - - -
aanvraag-START aanvraag-COMPLETE
12 | Response W_Valideren W_Valideren - A.org:resource | -
aanvraag-START aanvraag-COMPLETE ==
T.org:resource
13 | Response W_Valideren W_Valideren - A.org:resource | 0,1,h
aanvraag-START aanvraag-COMPLETE ==
T.org:resource
14 | Response W_Valideren W_Valideren - A.org:resource | 0,15,m
aanvraag-START aanvraag-COMPLETE ==
T.org:resource

Table 11: Conformance checking results using

the log from the BPI challenge

2012.
Id ‘ Act.no. Viol.no. Fulfill.no. ‘ Avg.act.sparsity Avg.viol.ratio Avg.fulfill.ratio
3 13087 7974 5113 0.8596 0.6093 0.3907
4 13087 9036 4051 0.8596 0.6905 0.3095
5 6847 3601 3246 0.9585 0.5259 0.4741
6 6240 4373 1867 0.9211 0.7008 0.2992
7 5023 51 4972 0.9909 0.0102 0.9898
8 5023 236 4787 0.9909 0.047 0.953
9 5023 263 4760 0.9909 0.0524 0.9476
10 5023 2897 2126 0.9909 0.5767 0.4233
11 7891 2 7889 0.9863 0.0003 0.9997
12 7891 6 7885 0.9863 0.0008 0.9992
13 7891 228 7663 0.9863 0.0289 0.9711
14 7891 3355 4536 0.9863 0.4252 0.5748
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particular, when the requested amount is lower than 10000 the acceptance rate
is almost 30%. The acceptance rate is higher if the requested amount is greater
or equal to 10000 (almost half of the applications is accepted in this case).
With constraints 7-14, we analyze the validation of the applications. With
constraint 7, we can see that almost 99% of the scheduled validations are even-
tually started. In 95% of the cases, the resource that schedules the validation is
not the same resource that starts this activity (see constraint 8). In addition,
in around 94% of the cases, a scheduled validation is started within 7 days from
the scheduling (constraint 9) and in almost half of the cases the validation is
started only 24 hours after the scheduling. Constraint 11 indicates that almost
100% of the validations that have been started are also completed, and almost
in all the cases the resource that starts the validation is the same resource that

Table 12: Execution times using the log from the BPI challenge 2012.

Id | Avg.execution time (milliseconds)

3 2772
4 3220
5 3261
6 3205
7 3196
8 3100
9 3212
10 3146
11 2176
12 3210
13 3241
14 3258

This activity is fulfiliment [ ]

Event Attributes
orgresource = 11169
timetimestamp = 2011-12-08T1647.08.411+02:.00
ecyclestransiion = START - Event Attributes
concept name = W_Valideren aanvraag = org resource = 11169

time:timestamp = 2011-12.08T16:45:01.406+02:00
Trace Attributes lifecycle transition = COMPLETE
AMOUNT_REQ = 15000 y conceptnarme =W_Valderen aanvraag
conceptname = 183175 B
REG_DATE = 2011-11-08T17:47.05 81 5+02.00 Trace Attributes

AMOUNT_REQ = 15000

conceptnams = 163175

REG_DATE = 2011-11-08T17:47:05.815+02:00

(a) Example of fulfillment W.Valideren (b) A correlated target W_Valideren
aanvraag-START at position 35. aanvraag-COMPLETE at position 36 executed
by the same resource.

Figure 10: Example of fulfillment for constraint 13.
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Example

(a) Example

This activityis a violation! ®

Event Attributes
ergresource = 11169

timetimestamp = 2011-12.08T15:45:37 280+02:00
Ifecycletranstion = START

concept name = W_Valideren asnvraag

Trace Attributes.
AMOUNT_REQ = 15000
concept name = 183175
REG_DATE = 2011-11-08T17:47:05.815+02.00

violation =~ W_Valideren (b)
aanvraag-START at position 37.

This activiy is ulffliment! °

Event Attributes
ergresource = 10881

timetimestamp = 2011-12-08T20:57:43 552+02:00
Ifecyclztransii

concept name = W_Valideren asnvraag

Trace Attributes.
AMOUNT_REQ = 15000
concept name = 183175
REG_DATE = 2011-11-08T17:47:05.815+02.00

Example of fulfillment for
aanvraag-START
aanvraag-COMPLETE within the required time interval.

at  position

of violation for
aanvraag-COMPLETE occurs outside the required time interval (too late).

same resource.

Event Attributes
orgresource = 11163

time:timestamp = 2011-12-08T18:53:23.904+02:00
lifecycleransition = COMPLETE

conceptname = W_Valideren aanvraag

Trace Attributes.
AMOUNT_REG = 15000
conceptname = 183175
REG_DATE = 2011-11.08T17:47.05.815+02:00

target W_Valideren
aanvraag-COMPLETE occurs more than

13; W_Valideren

Event Attributes
orgresource = 10861

time:timestamp = 2011-12-08T21/00:43 685+02:00
lifecycle:ransition = COMPLETE

conceptname = W_Valideren aanvraag

Trace Attributes.
AMOUNT_REG = 15000
conceptname = 183175
REG_DATE = 2011-11.08T17:47.05.815+02:00

of fulfillment W._Valideren (b) Corresponding target executed by the
aanvraag-START at position 39.

13; W_Valideren
by  W_Valideren



Table 13: Reference constraints used to analyze the log from the BPI challenge
2014.

Id | Constraint 1st param. 2nd param. ACtl\_’a_twn Corr.el.atlon Tlme: .
condition condition condition
15 ‘ Not response ‘ Open Reopen ‘ - - ‘ -
16 | Not response | Open Reopen - A.org:resource -
1=
T.org:resource
17 ‘ Response ‘ Open Closed ‘ - - ‘ -
18 ‘ Response ‘ Open Closed ‘ - - ‘ 0,12,h
19 | Response Open Closed A.KMnumber == - 0,12,h
’KM0000611°
20 | Response Open Closed A.KMnumber == - 0,12,h
’KM0002043°

Table 14: Conformance checking results using the log from the BPI challenge
2014.

Id | Act.no. Viol.no. Fulfillno. | Avg.act.sparsity Avg.viol.ratio Avg.fulfill.ratio

15 46 607 2121 44486 0.8468 0.0455 0.9545
16 46607 510 46097 0.8468 0.0109 0.9891
17 46607 449 46158 0.8468 0.0096 0.9904
18 46607 24392 22215 0.8468 0.5234 0.4766
19 446 386 60 0.9993 0.8655 0.1345
20 773 48 725 0.9969 0.0621 0.9379

completes this activity (see constraint 12). In 97% of the cases, the validation
is done in at most 1 hour (constraint 13), and in more than half of the cases it
is completed in less than 15 minutes (constraint 14).

In Figure [10[ and we show two fulfillments for constraint 13 (the activa-
tions with the correlated targets). [12|shows a violation for the same constraint.
In Table [[2] we show the execution times needed for checking the constraints
in this case study. Also in this case, like in the first case study here presented,
the execution time is low (between 2 and 3 seconds on average).

7.3. Rabobank

The case study we illustrate in this section has been provided for the BPI
challenge 2014 by Rabobank Netherlands Group ICT [4I]. The log we use
pertains to the management of calls or mails from customers to the Service
Desk concerning disruptions of ICT-services. The log contains 46616 cases,

Table 15: Execution times using the log from the BPI challenge 2014.

Id ‘ Avg.execution time (milliseconds)

15 4294
16 5093
17 5240
18 5055
19 4861
20 5398
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This activity is a violation! Open

Event Attributes

KMnumber = KMOOO1104
IncidentActivity_Mumber = 00144017368
Interaction 1D = #M/8

orgresource = TEAMOO18

time:timestamp = 2013-02-18T11:59:55+02:00
lifecycledtransition = complete

conceptname = Open

Trace Attributes

concept name = IMD000053 4 m

Event Atiributes
KMnumber = KMOODO1104
IncicentActivity_Mumber = 001 ABD99621
Interaction ID = #N/B

fi orgresource = TEAMOO1S
6 timertimestamp = 2013-12-04714:58:23+02:00
lifecycle:transition = complete
conceptname = Reopen

Trace Attributes
conceptname = IMOO00053

(a) Example of violation Open at position 1. (b) A forbidden event Reopen occurs after
Open.

Figure 13: Example of violation for constraint 16; Open is followed by an event
Reopen associated to a different resource.

466 737 events referring to 39 different event classes. There are 242 origina-
tors and domain specific event attributes like KM number, Interaction ID and
IncidentActivity Number. For this case study, we have used the constraints
shown in Table [13]

As shown in Table constraint 15 has 46 607 activations and 44486 ful-
fillments. This allows us to understand that in around 95% of open calls are
not reopened afterwards. This percentage is even higher if we require that an
open call cannot be eventually reopened by the same resource (see constraint
16). Indeed, this is true in almost 99% of the cases.

Around 99% of the open calls are eventually closed (see constraint 17).
Around half of them are closed within 12 hours (constraint 18). The “KM
number” in this case study identifies the characteristics of a call to understand
how urgent the corresponding problem is. The checks on rules 19 and 20 show
that the calls corresponding to the number KM0002043 are, in general, more
urgent than the ones corresponding to the number KMO000611. Indeed, over
446 calls corresponding to the KM number KM0000611 only 60 are closed within
12 hours. On the other hand, over 773 calls corresponding to the KM number
KM0002043, 725 are closed within 12 hours.

Figure [I3]shows a violation for constraint 16. The selected event Open is fol-
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lowed by a forbidden event Reopen (associated to a different resource). Table
shows that the execution times for this case study range from 4 to 5 seconds.

8. Conclusion and Future Work

In this work, we propose a framework for checking the conformance of event
logs with respect to MP-Declare models. MP-Declare is an extension of the
declarative process modeling language Declare that allows the modeler to spec-
ify constraints over the data associated to the control-flow and over the “time
dimension” of a business process. We describe and discuss in detail how the
proposed framework can be used to define algorithms for conformance checking
based on MP-Declare. Our proposal has been implemented in the process min-
ing tool ProM. The implemented software covers the entire set of MP-Declare
templates. In addition, the conformance checker can also be used with standard
Declare. A wide experimentation has been carried out using both real-life and
synthetic logs. These case studies prove the applicability of our implementation
in realistic settings. Although it is extremely important to recognize deviances
a-posteriori, in some particular contexts, it would be also useful to detect vio-
lations on-the-fly as they occur. To this aim, in the near future we are planning
to make the proposed framework suitable to be used in online settings.
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