
Evolutionary composition of QoS-aware web services: a
many-objective perspective

Aurora Ramı́reza, José Antonio Parejob, José Raúl Romeroa,∗, Sergio Segurab,
Antonio Ruiz-Cortésb

aDepartment of Computer Science and Numerical Analysis, University of Córdoba, Campus
de Rabanales, 14071, Córdoba, Spain

bDepartment of Computing Languages and Systems, University of Sevilla, ETSII, Avda. de
la Reina Mercedes, s/n, 41012, Sevilla, Spain

Abstract

Web service based applications often invoke services provided by third-

parties in their workflow. The Quality of Service (QoS) provided by the invoked

supplier can be expressed in terms of the Service Level Agreement specifying the

values contracted for particular aspects like cost or throughput, among others.

In this scenario, intelligent systems can support the engineer to scrutinise the

service market in order to select those candidates that best fit with the expected

composition focusing on different QoS aspects. This search problem, a.k.a.

QoS-aware web service composition, is characterised by the presence of many

diverse QoS properties to be simultaneously optimised from a multi-objective

perspective. Nevertheless, as the number of QoS properties considered during

the design phase increases and a larger number of decision factors come into

play, it becomes more difficult to find the most suitable candidate solutions,

so more sophisticated techniques are required to explore and return diverse,

competitive alternatives. With this aim, this paper explores the suitability of

many-objective evolutionary algorithms for addressing the binding problem of

web services on the basis of a real-world benchmark with 9 QoS properties. A

complete comparative study demonstrates that these techniques, never before

∗Corresponding author. Tel.: +34 957 21 26 60
Email addresses: aramirez@uco.es (Aurora Ramı́rez), japarejo@us.es (José Antonio

Parejo), jrromero@uco.es (José Raúl Romero), sergiosegura@us.es (Sergio Segura),
aruiz@us.es (Antonio Ruiz-Cortés)

Preprint submitted to Expert Systems with Applications October 31, 2016



applied to this problem, can achieve a better trade-off between all the QoS prop-

erties, or even promote specific QoS properties while keeping high values for the

rest. In addition, this search process can be performed within a reasonable

computational cost, enabling its adoption by intelligent and decision-support

systems in the field of service oriented computation.

Keywords: QoS-aware web service composition, many-objective evolutionary

algorithms, multi-objective optimization

1. Introduction

Current service oriented applications need to integrate third-party services,

like authentication or persistent storage, as part of their core features. This

integration clearly benefits code reuse and modularity, though it also introduces

additional concerns. In this sense, the Quality of Service (QoS) experienced by5

end-users will also depend on the QoS provided by these external services. For

example, if the persistence service is unavailable, the performance of the entire

application would probably drop or even the system itself would become useless.

In such a scenario, a careful selection of the services to be integrated is critical

to determine the composition that better achieves an appropriate overall QoS at10

affordable cost. Moreover, the Service Level Agreement (SLA), i.e. the piece of a

service contract where the level of service is determined, could even bring more

alternatives into play, considering that a specific service provider might offer

several QoS configurations for the same service provision. For example, Amazon

Web Services (AWS) establishes up to 8 different deployment plans (instances)15

for their computing services (EC2) (Wada et al., 2012), which combined with

other configurable options like the operating system, the available CPU and

backup settings can lead to 16,991 possible configurations (Garćıa-Galán et al.,

2013). Although highly demanded because of its flexibility, considering a larger

set of configuration alternatives implies increasing the number of QoS properties20

coming into play and, consequently, finding appropriate trade-offs among them

becomes extremely difficult. For instance, notice that an investment in CPU

2



and exclusive dedication would improve response time but increasing the cost.

Therefore, deciding which are the most appropriate services to be included

in an application, or their specific QoS configurations, is a challenging task for25

designers, the automatic support acquiring even more relevance as the number

of decision factors increases. Here, intelligent systems may help to support them

by applying search techniques to the exploration and selection of design alter-

natives. Consequently, analysing how different search methods behave and how

they are influenced by the problem structure, e.g. different number of services30

being orchestrated in different ways, becomes important for these systems to

gain efficiency and effectiveness.

The so-called QoS-aware Web Service Composition (QoSWSC) problem has

been identified as a key research problem in the service oriented computing

(SOC) field (Papazoglou et al., 2007), which is actually NP-hard (Bonatti &35

Festa, 2005; Ardagna & Pernici, 2007). Although this problem was originally

formulated as a single-objective optimisation problem, notice that multiple, of-

ten conflicting QoS properties need to be simultaneously considered to address

this problem (Zeng et al., 2004; Wada et al., 2012). For example, availability,

response time, throughput or invocation cost can be clearly opposed, e.g. im-40

proving the availability of a service probably would imply an increase in cost. In

general, identifying priorities among these attributes is not straightforward, and

designers have to ensure an appropriate trade-off between all of them according

to their interests.

Given the large number of alternatives to be analysed, a computational45

optimisation approach can serve to efficiently find the best orchestration of can-

didate services (Canfora et al., 2005). Both single-objective and multi-objective

evolutionary algorithms (MOEAs) constitute a commonly used alternative in

the literature, where the latter return a set of solutions, each one achieving a

different trade-off between all the objectives (Coello Coello et al., 2007). Actu-50

ally, the use of multi-objective optimisation algorithms has proved to be a more

convenient approach to deal with the QoSWSC problem, as recently discussed

by Wada et al. (2012); Moustafa & Zhang (2013); Suciu et al. (2013); Trummer

3



et al. (2014); Yu et al. (2015). Having a set of alternative solutions to choose

among facilitates better comprehension of the different possible trade-offs be-55

tween the QoS properties involved in the decision-making process. In contrast,

this information would not be available in advance when a single-objective evo-

lutionary approach is applied using a weighted sum.

The application of multi-objective evolutionary approaches to the QoSWSC

problem has been mostly focused on the selection of well-known approaches,60

like NSGA-II (Nondominated Sorting Genetic Algorithm II) or MOGA (Multi-

Objective Genetic Algorithm), and considering up to 5 QoS properties as op-

timisation objectives. Nevertheless, when a large number of objectives need to

be considered, the performance of these classical MOEAs tends to drop off as

the complexity of the resulting optimisation problem increases. This factor has65

led to the appearance of new specific approaches, like many-objective evolu-

tionary algorithms, which have emerged as an effective alternative to efficiently

explore highly dimensional objective spaces (Ishibuchi et al., 2008). Similarly,

many-objective evolutionary algorithms operate in accordance to the precepts

of the multi-objective approach. In fact, for situations where engineers need to70

deal with a large number of decision criteria, as during the design of complex

web service compositions considering multiple QoS properties, many-objective

optimisation provides an excellent support mechanism.

In this paper, the QoSWSC problem is addressed from the emerging many-

objective perspective considering a large number of QoS properties. More75

specifically, our research question can be phrased as follows: Is the applica-

tion of many-objective algorithms appropriate to address in a generalisable way

the QoSWSC problem considering a diversity and large number of QoS proper-

ties? To accurately respond to this question, a comparative study of different

evolutionary algorithms is proposed with the aim of analysing their suitabil-80

ity when 9 diverse QoS properties constrain the problem statement. Notice

that the jointly optimisation of a large number of objectives constitutes a real

challenge to any optimisation approach. It could be expected that these al-

gorithms, primarily conceived to deal with such a complexity, will provide a

4



better performance than that obtained by long-standing MOEAs in terms of85

both the obtained QoS values and the expected balance among then. Finally,

we include an in-depth discussion of the empirical insights obtained from the

most fitting algorithm in terms of a representative subset of properties, such as

runtime and design-time properties. The experimentation with many-objective

approaches provides valuable information about how robust and effective these90

search methods are, which brings the opportunity to incorporate them into intel-

ligent systems aimed at supporting the resolution of more realistic formulations

of the QoSWSC problem.

The rest of the paper is organised as follows. Section 2 introduces the multi-

objective evolutionary optimisation, as well as the bases for the QoSWSC prob-95

lem as an optimisation problem. Section 3 describes the related work and then

Section 4 explains the specific features of the implemented evolutionary ap-

proach, including the definition of the QoS properties considered to evaluate

how objectives are met. A detailed performance analysis of the algorithms is

conducted in Section 5, where findings and outcomes are also discussed. Then,100

the threats to validity concerning the presented study are detailed in Section 6.

Finally, Section 7 outlines some concluding remarks.

2. Background

In this section, the key concepts of multi- and many-objective optimisation

are introduced. Next, the QoS-aware binding of web services is presented as a105

search problem.

2.1. Multi- and many-objective evolutionary algorithms

Multi-objective evolutionary algorithms are population-based metaheuristics

devoted to solve multi-objective optimisation problems (MOPs) (Coello Coello

et al., 2007). Just like evolutionary algorithms (EAs), MOEAs define a set110

of candidate solutions, i.e. the population of individuals, which are modified

through some iterations seeking for the generation of better solutions. Usually,

5



each solution, also called individual, is encoded using a fixed-length numerical

array, i.e. the genotype. Continuing the simile, the phenotype is defined as the

real-world representation of the genotype.115

After the random creation of the initial population, the algorithm starts an

iterative process, as shown in Algorithm 1. In every generation, some individ-

uals are selected to act as parents, and genetic operators, like crossover and

mutation, are applied to create new solutions. On the one hand, the crossover

operator recombines genetic information of two parents, resulting in one or more120

descendants (a.k.a. offspring) that tend to be similar to their parents. There-

fore, this operator is expected to promote convergence in the search process.

On the other hand, the mutation phase produces some alterations on a given

offspring, e.g. changing one value in the genotype, with the aim of introducing

diversity in the population. The generation ends with the selection of the set125

of individuals, from both the current population and the offspring pool, that

will take part in the next population. Frequently, this replacement mechanism

tries to promote the survival of the best solutions found so far, ensuring that

diversity is also preserved. The evolutionary process continues until a stopping

criterion, e.g. a maximum number of generations, is reached.130

The main difference between EAs and MOEAs lies on the evaluation of indi-

viduals, which determines “how good” a solution is in solving the optimisation

problem. In EAs, a unique fitness function is defined to measure the quality of

the solutions, so individuals can be directly compared using this fitness value.

Instead of defining a specific set of weights to aggregate several objectives, a135

multi-objective approach treats each objective as an independent function. Not

only the problem of determining the weight to be assigned to each function is re-

moved, but also the limitations offered by the use of aggregation functions (Deb,

2001) are overcome. Among others, the use of such a scalarisation function as-

sumes the linearity of the MOP and non-convexity of the PF. Besides, it is not140

possible to assure that there would be a one-to-one correspondence between the

solution optimising the weighted sum and a supposedly non-dominated solution.

Given that MOPs are characterised by the presence of 2 or more objectives,

6



Algorithm 1 Pseudocode of an evolutionary algorithm

Require: maxGenerations, populationSize

1: population← createPopulation(populationSize)

2: evaluate(population)

3: generation← 0

4: while generation <= maxGenerations do

5: parents← selection(population)

6: offspring ← crossover(parents)

7: offspring ← mutation(offspring)

8: evaluate(offspring)

9: population← replacement(population ∪ offspring)

10: generation+ +

11: end while

each evaluated solution contains a set of objective values. As for their com-

parison, the Pareto dominance concept is frequently included as a discerning145

criterion to choose between two solutions, a and b, which is defined as follows:

a is said to dominate b, if and only if a is better or equal than b for all the

objectives, and better for at least one objective than b. If this condition is not

satisfied, individuals are referred as equivalent or non-dominated. Thus, the

purpose of any MOEA is to find the set of non-dominated solutions, i.e. the150

Pareto set, establishing different trade-offs among all the objectives. Mapping

these solutions onto the objective space allows getting the Pareto front (PF).

Some of the most well-known proposals in the field, like SPEA2 (Strength

Pareto Evolutionary Algorithm 2) (Zitzler et al., 2001) and NSGA-II (Deb et al.,

2002), are strongly based on the Pareto dominance principle to guide the search155

towards the PF. On the one hand, SPEA2 assigns a strength value to each

individual, i, considering both the number of solutions it dominates and the

solutions dominating i. On the other hand, NSGA-II ranks the population

by fronts, where each front comprises those equivalent solutions that dominate

solutions allocated in the following fronts. Regarding diversity preservation,160

7



SPEA2 uses the k-nearest neighbour method to estimate the density at any

point of the objective space, whereas NSGA-II proposes a crowding distance to

discard between solutions belonging to the same front. Additionally, SPEA2 also

defines an archive of solutions with a fixed size, where non-dominated solutions

are kept.165

Certainly, SPEA2 and NSGA-II have shown a good performance in a variety

of problem domains when 2 or 3 objectives are considered. However, real-world

applications might require the definition of a greater number of objectives, which

has lead to a growing interest in solving the so-called many-objective optimi-

sation problems. Although the actual difference between multi- and many-170

objective problems has not been clearly stated in the literature (Purshouse &

Fleming, 2007), most authors agree today with the idea that many-objective

problems require the presence of at least 4 objectives (von Lücken et al., 2014;

Deb & Jain, 2014). With the increasing complexity of MOPs, concepts like the

Pareto dominance and distances, which characterise the aforementioned algo-175

rithms, lose the efficiency required to properly guide the search (Khare et al.,

2003; Praditwong & Yao, 2007), motivating the appearance of more sophisti-

cated techniques. In this sense, advances within the field of many-objective

optimisation are mainly focused on the adaptation of the dominance principle,

the inclusion of specific diversity preservation mechanisms and the use of quality180

indicators as key features to control the evolution (Wagner et al., 2007).

For instance, MOEA/D (Multiobjective Evolutionary Algorithm based on

Decomposition) (Zhang & Li, 2007) proposes a decomposition approach creating

a number of subproblems to be simultaneously optimised. Each subproblem

associates a different weight to each objective and, as a result, multiple search185

directions are explored during the search.

Modifying the classical Pareto dominance also serves to improve the perfor-

mance of MOEAs, since the percentage of non-dominated solutions in a popu-

lation rapidly grows when the number of objectives increases (Ishibuchi et al.,

2008). ε-MOEA (Deb et al., 2003) defines a special type of dominance, called190

ε-dominance, which can be applied on an objective space divided in hypercubes

8



or grids. Thus, solutions are compared considering the hypercubes they belong

to, instead of its objective values. Moreover, the evolution process tries to gen-

erate an unique solution for each hypercube in favour of diversity, saving them

in an archive. Similarly, GrEA (Grid-based Evolutionary Algorithm) (Yang195

et al., 2013) also proposes a landscape partition, though the grids are dynami-

cally created in each generation. The sorting approach defined by NSGA-II is

considered, as well as some diversity metrics based on the grids.

Another kind of algorithms are the so-called indicator-based approaches. An

indicator allows summarising the quality of the overall PF in a real value (Coello Coello200

et al., 2007), so it can be used to guide the search process. This idea is explored

by IBEA (Indicator-based Evolutionary Algorithm) (Zitzler & Künzli, 2004),

which proposes a generic multi-objective evolutionary algorithm where the se-

lected indicator is used in both the selection and the replacement stages. An-

other interesting approach is HypE (Hypervolume Estimation Algorithm) (Bader205

& Zitzler, 2011), in which the hypervolume (HV ) indicator is estimated using

Monte Carlo simulations. HV is one of the most frequently used measures to

evaluate PFs, serving to calculate the hyper-area covered by the Pareto front.

Another relevant indicator is spacing (S), which computes the diversity of the

solutions composing the Pareto set.210

Finally, NSGA-III (Deb & Jain, 2014) is a reference-point-based method

that modifies the behaviour of NSGA-II regarding its diversity preservation

technique. Instead of computing the crowding distance, this algorithm defines a

set of well-distributed points that are used to promote the individuals that are

close to these points at the replacement step.215

2.2. QoS-aware binding of composite web services as an optimisation problem

The QoSWSC problem can be defined as the search for the best subset of

candidate services to accomplish a composite service within a specific work-

flow. More precisely, the set of services requiring binding (henceforth named

tasks) is identified. For each task ti, the set of service providers available220

Si = {si,1, . . . , si,m} (named candidate services) is determined. This set can

9



Figure 1: Goods ordering composite service, adopted from (Parejo et al., 2014)

be obtained by searching in a service registry, or by analysing the set of QoS

configurations available in the SLA of the service. Thus, even when a single

provider is available, multiple candidate services could be evaluated (one for

each alternative QoS configuration provided by the SLA).225

To illustrate this conceptual framework, Fig. 1 shows a goods ordering service

using the Business Process Modelling Notation (BPMN). The example presents

a business process composed of 7 tasks (t1, . . . , t7) with alternative providers

including the payment process, the stock management, the delivery and the

request of survey questions on the user satisfaction. Note that some of these230

tasks need to be developed following a specific sequence (e.g. t1 and t2), whilst

others require more complex building blocks. For example, if a product is not

available, the application reports about the delay, waiting for some time before

repeating t3 and t4, i.e. a loop will be executed. It is worth noting that the

same provider must be chosen for the tasks t3 and t4, since the reservation in235

t4 refers to the stock of the specific provider queried in t3. This constraint

is denoted in the diagram using the elevation event of BPMN linked to both

tasks (an arrow up inscribed in a circle). Next, t5 and t6, which belong to two

different branches, can be performed in parallel. Finally, the completion of a

user satisfaction survey is requested in task t7.240

10



Table 1: Service providers, candidate services and QoS values for the Goods ordering com-

posite service

Task and services

Actor Bank Provider Delivery Dig. sign. Surveying

Provider A B C D E F G H I J

Task t1 t2 t1 t2 t3 t4 t3 t4 t5 t5 t6 t6 t7 t7

Candidate service s1,A s2,A s1,B s2,B s3,C s4,C s3,D s4,D s5,E s5,F s6,G s6,H s7,I s7,J

QoS properties

Cost (in cents) 1.00 2.00 1.50 5.00 1.00 2.00 1.00 5.00 1.00 2.00 1.00 2.00 1.50 5.00

Exec. time (in seconds) 0.20 0.20 0.10 0.15 0.20 0.20 0.40 0.25 0.20 0.20 0.20 0.20 0.10 0.15

Once the structure of the composition and its tasks have been defined, a

mechanism to choose among candidate services has to be specified. Here, the

goal is to find the binding of services (χ) that maximises the global QoS (χ∗)

according to the consumers’ preferences. The set of QoS properties that need

to be satisfied, such as the execution time, availability or cost, among others,245

is denoted by Q. For each QoS property q ∈ Q, a global QoS level, Qq, can

be reached from the individual QoS values stipulated by the agreement of each

candidate service appearing in χ. Table 1 details the candidate services for the

example of Fig. 1 and its QoS values in terms of cost and execution time. For

instance, invoking the payment service t2 of the provider A, s2,A, costs 0.02$. In250

this case, notice that the global cost Qcost of a composite web service containing

a loop inside will depend on the number of iterations performed.

In order to obtain the set of Qq values of a specific binding of services, the

QoS values of each si,j in χ are aggregated using a utility function, Uq, where

the specific expression to calculate such a function clearly depends on the nature255

of q. Thus, utility functions express user preferences, i.e. the obtained values

allow users to decide if a given solution fulfils their expectations or satisfies the

existing constraints for a given QoS property. For instance, a total cost of 0.2$

could be fair for some users, but excessive for others.

Each utility function Uq also needs to consider the sort of blocks taking part260

in the composition workflow. The existence of conditional branches entails the

possibility that only the services allocated in one branch will be executed, being

11



a different scenario than the invocation of a sequence of them. In this sense,

Utime for a sequence can be established as the sum of the execution time of

all the services that compound that sequence, whilst for a branch the overall265

value can be defined as the maximum execution time of any path in this branch.

However, Ucost for a branch is computed as the sum of the cost of tasks in each

branch.

Furthermore, specific runtime conditions for loops and alternative branches

also influence the calculation of every Qq. On the one hand, the presence of270

a loop implies that one service could be invoked many times. On the other

hand, not all the services in a conditional structure will be executed in every

invocation. In such cases, the total cost will be affected by the choice among

alternatives and the number of iterations in the loop, respectively. Since these

parameters are unknown in advance, an estimation of the expected behaviour is275

usually adopted in the literature when defining the problem statement (Canfora

et al., 2008). For the goods ordering service example, the average number of

iterations per loop could be estimated to include the expected number of query-

ing (t3) and reservation (t4) of products in stock. Similarly, the probability of

executing each branch of the workflow should be considered. For example, a use280

of credit card in 80 per cent of payments could be assumed, whilst t3 and t4 are

executed twice on average before bringing the order to completion. In total, the

estimated global cost for a binding χ = (A,B,D,D, F,H, J) can be computed as

QCost(χ) = Cost of switch(χ)+Cost of Loop(χ)+Cost of fork(χ)+Cost7(χ) =

0.8∗(0.01+0.02)+2∗(0.01+0.05)+(0.02+0.02)+0.05 = 0.23$. Since those values285

are estimations, the actual global QoS values provided can differ significantly in

some invocations.

The final assignment of services into tasks is often obtained after a complex

decision-making process, being its aim to find the solutions χ∗ that maximise the

utility of the global QoS values provided by the application. In the motivating290

example, where only two providers are available for each task, 128 (i.e. 27)

different bindings are possible.

12



3. Related Work

The QoSWSC problem was introduced as a single-objective optimisation

problem in (Zeng et al., 2004), where integer programming was applied to its295

resolution. Since then, several non-evolutionary approaches have been used to

address this problem. An improved discrete immune optimisation algorithm

based on particle swarm optimisation (IDIPSO) has been proposed in (Zhao

et al., 2012), whereas in (Parejo et al., 2014) the authors used GRASP with

path relinking to provide appropriate solution to the problems that required a300

response in short execution time. Those approaches are compiled in (Strunk,

2010; Jula et al., 2014). The first genetic approach was proposed by (Canfora

et al., 2005), also considering a single-objective problem statement.

More recently, the optimisation problem has been addressed from a multi-

objective perspective, applying either metaheuristics or other kind of approaches.305

In (Li & Yan-xiang, 2010) the multi-objective chaos ant colony optimisation al-

gorithm is proposed, showing that it can outperform MOGA under specific

conditions when dealing with 3 objectives (i.e. cost, time, and reliability). Pre-

cisely, MOGA is the basis of the evolutionary framework presented in (Wada

et al., 2012), which also considers 3 QoS properties (i.e. throughput, latency and310

cost) to guide the search for Pareto optimal solutions. Reinforcement learning

was the selected technique in (Moustafa & Zhang, 2013) to jointly optimise

availability, response time and cost, where the experimentation was carried out

over a synthetic dataset with only 4 tasks. Particle swarm optimisation (PSO)

was also adopted in (Yin et al., 2014) to optimise 3 objectives. In this case,315

sequence and parallel structures constituted the only available building blocks

to define the workflow of the composition.

Metaheuristics approaches like EAs, scatter search and PSO were compared

to exact methods in (Trummer et al., 2014) in order to optimise up to 5 objec-

tives (i.e. response time, availability, throughput, successability, and reliability),320

extracted from the QWS Dataset (Al-Masri & Mahmoud, 2008). This dataset

was also used in (Zhang, 2014) considering all the available QoS properties. In

13



this case, the optimisation problem was solved using PSO, though the experi-

mental study was only performed in terms of the execution time.

Variants of NSGA-II were proposed in (de Campos et al., 2010) to deal with325

5 different objectives, where preference relations were included with the aim of

improving the performance of the original algorithm. Finally, MOEA/D was

the algorithm selected by (Suciu et al., 2013) to solve a 3-objective variant of

the QoSWSC problem. An adaptation of this algorithm using two differen-

tial evolution approaches was compared against NSGA-II and GD3 algorithms,330

also considering different configurations of the number of tasks and candidate

services.

A first recent approach using an evolutionary algorithm specifically conceived

to deal with many objectives in order to solve the QoSWSC problem is (Yu

et al., 2015). In such a paper an adaptation of NSGA-III, named F-MGOP, is335

proposed. Nevertheless, this work is strictly focused on data-intensive services,

and F-MGOP is only compared against SPEA2 and NSGA-II in the empirical

validation. In this case, the number of objective functions is limited up to 4 run-

time properties (latency, execution cost, availability and accuracy), not usually

constituting a real challenge to many-objective algorithms. On the other hand,340

the study here presented performs a wider and extensive empirical compari-

son considering diverse algorithms from the different families of many-objective

evolutionary approaches and QoS properties of different nature. Furthermore,

the conducted analysis (see Section 5) serves to generalise to any service com-

position the conclusions stated in (Yu et al., 2015) regarding the suitability of345

many-objective algorithms for optimizing the QoS of data-intensive composi-

tions.

4. Optimisation model

In this section, the common elements of the evolutionary approach are pre-

sented, including the encoding of solutions, the genetic operators and the se-350

lection and replacement strategies. Evaluation is performed by calculating the

14



t1 X Xt2
t3 t4

t5
t6

s1,1s1,2
s1,3 s1,4
s1,5

s2,2

s2,1
s2,3

s3,3 s3,4

s3,1s3,2 s4,1
s4,2

s5,1
s5,2

s6,1 s6,2
s6,3

s5,4

s5,3
s5,5

s5,6

(a) Phenotype

t1 t2 t3 t5t4 t6

2 3 1 2 6 1

(b) Genotype

Figure 2: Phenotype and genotype of a candidate individual

objective functions as explained later.

4.1. The evolutionary approach

The genotype/phenotype mapping used in this work follows the approach

proposed by (Canfora et al., 2005), and extensively used in the literature (Wada355

et al., 2012; Parejo et al., 2014). Here, each solution is encoded as an integer ar-

ray, where each position in the genotype represents a task and its corresponding

value, the selected service that will provide it. Consequently, the length of the

genotype is equal to the number of tasks appearing in the workflow. Fig. 2 shows

the correspondence between the phenotype and the genotype of each individual.360

Initialisation. The initialisation of the population is a random procedure, i.e. for

each task, a web service (highlighted in bold typeface) is randomly chosen from

its list of candidate services.

Operators. The adopted genetic operators are those proposed by (Canfora et al.,

2005). The two points crossover establishes two cut-points in the genotype of365

the parents, so each descendant is created by recombining one part of one parent

and two parts of the other parent. The generated individuals represent two new

compositions where the service assigned to each task is inherited from one of its

two parents. An example of this procedure is depicted in Fig. 3a. With regard to

the mutation procedure, the one locus mutator is performed after the crossover370

15



2 3 1 2 6 1 5 2 4 2 1 3

2 2 4 2 6 1 5 3 1 2 1 3

parent 1 parent 2

offspring 1 offspring 2

(a) Crossover

2 2 4 2 1 1

2 2 4 2 6 1

individual

mutant

(b) Mutator

Figure 3: Genetic operators

by choosing a random gen from the genotype of an offspring in order to change

its value. As a result, a new binding is generated for the task associated to this

position, as shown in Fig. 3b.

Selection and replacement. Notice that both strategies are defined by each evo-

lutionary algorithm, since they are not domain-specific. Table 2 summarises the375

characteristics of these procedures for all the algorithms described in Section 2.1.

The update mechanism of the external archive is also detailed when required. In

this sense, two special considerations have been made regarding MOEA/D and

ε-MOEA, since both algorithms do not define a maximum size for the archive of

solutions. Looking for the fairest scenario, both algorithms have been adapted380

in order to return as many non-dominated solutions as the other algorithms can

manage at each generation, i.e. the population size. Thus, MOEA/D will be ex-

ecuted without considering the archive, as recommended by its authors (Zhang

& Li, 2007), and the non-dominated solutions will be extracted from the final

population. In the case of ε-MOEA, if the number of non-dominated solutions385

is greater than the population size, the archive of solutions will be truncated

by a post-processing step using the method proposed by SPEA2. Nevertheless,

the final number of solutions would slightly vary from one algorithm to another

due to their different ability to explore the search space.

16



Table 2: Selection and replacement strategies defined by each evolutionary algorithm

Algorithm Selection Replacement Archive update

SPEA2

comparison of fitness

values, combining a

strength value and

density information

offspring replace the

current population

updated with

non-dominated solutions

at each generation

NSGA-II

tournament selection

based on the ranking

position (front) and the

crowding distance

progressively stores

individuals by fronts,

crowding distance takes a

decision on the last front

-

MOEA/D

for each individual, two

random neighbours

generate an offspring

each offspring is

compared against its

neighbours

not used

ε-MOEA

an individual within the

population is recombined

with another one

belonging to the archive

the new individual

replaces one or more

members of the

population according to

the Pareto dominance

the ε-dominance and the

already filled hypercubes

determine whether the

new individual is included

or not

GrEA

tournament selection

based on dominance and

grid measures

progressively stores

individuals by fronts, grid

measures takes a decision

on the last front

-

IBEA

tournament selection

based on the indicator

(fitness value)

removes individuals with

worst fitness value
-

HypE

tournament selection

based on the HV

estimation

progressively stores

individuals by fronts,

minimum loss of HV is

considered in the last

front

-

NSGA-III random selection

progressively stores

individuals by fronts,

reference points takes a

decision on the last front

-

17



4.2. Objective functions390

In the QoSWSC problem, the objective functions are those quality attributes

that have to be optimised in order to achieve the best possible global quality of

the composite web service. The 9 QoS properties of candidate services defined

in the QWS Dataset (Al-Masri & Mahmoud, 2008) have been considered in this

work:395

• Response time (T). The required time to send a request and receive the

response from the service, expressed in milliseconds.

• Availability (A). The ratio (percentage) of successful invocations.

• Reliability (R). A measure of the amount of error messages generated

during the service execution, i.e. the ratio of error messages to the total400

messages.

• Throughput (G). The number of invocations to the service per second.

• Latency (L). The time required to respond to a request, expressed in

milliseconds.

• Successability (U). The ratio (percentage) of requests that were correctly405

replied.

• Compliance (C). The ratio (percentage) of conformance with the WSDL

(Web Services Description Language) specification proposed by the World

Wide Web Consortium.

• Best practices (B). The ratio (percentage) of accomplishment of the WS-I410

Basic Profile, which establishes a set of requirements to promote interop-

erability.

• Documentation (D). The ratio (percentage) of description tags of the

WSDL used in the service documentation, e.g. service name, operation

name, etc.415

18



As mentioned in Section 2.2, each candidate service provides its own QoS

values, which should be combined in order to obtain the overall QoS value for

each property in the composite service. Notice that each specific property covers

a different quality aspect of a service. For instance, some properties like C, B

or D may be more related to the design and development process, which may420

affect the correctness, error handling and maintainability of the system; others

like T and L are strongly influenced by the service provider and the network

infrastructure, similarly to R, A, G and U , which may depend on the runtime

conditions and other external factors or operating errors. In most cases, a

combination of different factors will determine the choice of the QoS properties425

to be globally considered.

In order to conduct the evaluation of the quality objectives, an utility func-

tion is applied for each QoS property q considering the type of building blocks

in the given workflow (see Table 3). For instance, the response time (T ) of a

sequence of service invocations can be obtained as the sum of the individual T430

values of these services, whilst a loop containing that sequence should also take

into account the expected number of iterations, k. Pi stands for the probability

of executing the branch i.

It is worth mentioning that the last four functions, i.e. U , C, B and D,

have been specifically designed for this work as a secondary contribution, whilst435

the rest were adopted from the literature (Zeng et al., 2004; Ardagna & Pernici,

2007; Canfora et al., 2005; Wang et al., 2007; Strunk, 2010). With the exception

of T and L, all the properties have to be maximised. Furthermore, for the sake

of simplicity, the former have been properly inverted in a preprocessing step,

and their aggregation functions have been adapted accordingly.440

19



Table 3: Utility functions

QoS property Sequence Loop Branch Fork

Response time (T )
∑m

i=1 T (ai) k ·
∑n

i=1 T (ai)
∑m

i=1 Pi · T (sbi ) minp
i=1 T (sfi )

Availability (A)
∏m

i=1A(ai) (
∏n

i=1A(ai))
k

∑m
i=1 Pi ·A(sbi )

∏p
i=1A(sfi )

Reliability (R)
∏m

i=1R(ai) (
∏n

i=1R(ai))
k

∑m
i=1 Pi ·R(sbi ) minp

i=1R(sfi )

Throughput (G) minm
i=1G(ai) minm

i=1G(ai)/k
∑m

i=1 Pi ·G(sbi ) minp
i=1G(sfi )

Latency (L)
∑m

i=1 L(ai) k ·
∑n

i=1 L(ai)
∑m

i=1 Pi · L(sbi ) minp
i=1 L(sfi )

Successability (U)
∏m

i=1 U(ai) (
∏n

i=1 U(ai))
k

∑m
i=1 Pi · U(sbi )

∑p
i=1 Ui · U(sfi )

Compliance (C) (
∑m

i=1 C(ai))/n (
∑m

i=1 C(ai))/n
∑m

i=1 Pi · C(sbi ) (
∑m

i=1 C(ai))/n

Best practices (B) (
∑m

i=1B(ai))/n (
∑m

i=1B(ai))/n
∑m

i=1 Pi ·B(sbi ) (
∑m

i=1B(ai))/n

Documentation (D) (
∑m

i=1D(ai))/n (
∑m

i=1D(ai))/n (
∑m

i=1D(sbi ))/n (
∑p

i=1D(sfi ))/n

5. Experimentation

In this section, the proposed experimental framework1 is detailed. Firstly,

the design of the experimentation is motivated by explaining how the obtained

results have been validated. Next, the experimentation set-up and algorithm

parametrisation are described. The analysis of the results is provided not only445

from the evolutionary perspective, but also on the degree to which each evolu-

tionary algorithm fits the optimisation of the QoS properties under study. In

addition, a more thorough analysis of the approach, including its advantages

and limitations, is finally discussed at the end of this section.

5.1. Experimentation rationale450

The research methodology applied in this work is an empirical study based

on a sequence of controlled experiments, as the standard methodology in opti-

misation approaches. This methodology enables the isolation and control of the

factors that might influence the performance of the algorithms and the quality of

the resulting service compositions, thus providing a fair comparison framework.455

The experimentation has been formulated according to the intrinsic character-

istics of the optimisation problem under consideration: (a) the number of tasks

1Additional material regarding the problem instances, experimentation results and statisti-

cal tests is available for reproducibility from http://www.uco.es/grupos/kdis/sbse/RPRSR15

20

http://www.uco.es/grupos/kdis/sbse/RPRSR15


and the number of candidate services per task mostly determine the size of

search space; (b) the specific QoS values of each candidate are required to com-

pute the global QoS value; and (c) the composition structure of the workflow460

(i.e. nested loops, parallel flows, alternative branches, etc.) determines which

utility functions are computed.

Bearing these factors in mind, combining all the different configurations

and complexities would imply an extremely large number of executions, lead-

ing to an unaffordable combinatorial explosion. Therefore, two representative465

experiments have been conducted in order to ensure meaningful results and

conclusions:

Experiment #1 It considers web service compositions having a maximum

of 10, 20, 30, 40, or 50 tasks, where each task contains a different set

comprised of 1 to 11 candidate services, according to the parametrisation470

given in Table 4. Their composition is randomly chosen, where a total of

15 problem instances have been generated, i.e. 3 instances per each max-

imum number of tasks, each one associated to a different set of candidate

services but sharing the workflow. Thus, this experiment is based on a

wide spectrum of problem sizes.475

Experiment #2 In order to validate the conclusions drawn from Experiment

#1, Experiment #2 should serve to prove that the fixed structure, i.e. the

workflow, does not have a marked influence on the outcomes. Therefore,

15 different structures of composition were generated for 3 representative

instances, i.e. 10, 30 and 50 tasks, leading to a total of 45 problem in-480

stances. If the relative performance of the algorithms does not change in

terms of an statistical significant difference, then it could be inferred that

the conclusions are valid under the conditions of Experiment #1. All the

problem instances used in these experiments were generated by the in-

stance generator proposed in (Parejo et al., 2014), whose parameters are485

shown in Table 4.

All the experiments are conducted using the dataset proposed by (Al-Masri

21



Table 4: Problem instances generation parameters

Composition structure parameters

Max. number of tasks 10, 20, 30, 40, 50

Prob. control flows 0.20

Prob. loops 0.45

Prob. branches 0.45

Prob. flows 0.10

Max. nesting levels 5.00

Runtime flow parameters

Iterations per loop Gaussian distribution (µ = 5.00, σ = 1.50)

Number of branches 2.00

Candidate service parameters

Candidates per task Gaussian distribution (µ = 5.00, σ = 2.00)

Candidates for each task Randomly chosen from the dataset

& Mahmoud, 2008), which provides the specific QoS values for each candidate

service. This dataset has been extensively used in the QoS-aware services com-

puting area (Strunk, 2010) and, particularly, in the recent literature about the490

QoSWSC problem. It is comprised of QoS values obtained after monitoring

2,507 real world and publicly available web services, which contributes to make

more realistic experiments within the field.

The results of both experiments have been analysed similarly. Each algo-

rithm has been executed 30 times for each problem instance considering different495

random seeds. Then, the hypervolume and spacing indicators have been com-

puted over the returned Pareto fronts, taking average values, to compare the

quality of the set of solutions returned by each evolutionary algorithm (see Sec-

tion 2.1). Both indicators vary in the range [0,1] and should be maximised.

Since the hypervolume requires all the objective values to fall into the range500

[0,1], a post-processing step has to be performed in order to normalise the

objective values of all the solutions returned. Next, three non-parametric sta-

tistical tests (Derrac et al., 2011; Arcuri & Briand, 2011) have been executed

to assess the differences in the performance of the algorithms in terms of the

aforementioned indicators. Firstly, the Friedman test for multiple comparison505

is carried out, where the null hypothesis, H0, establishes that all the algorithms

22



perform equally well. This test provides a ranking of algorithms, and a critical

value to decide whether H0 can be rejected at a certain level of significance

(1 − α). However, this test can only report the existence of significant differ-

ences, so a post-procedure has to be applied in order to reveal the sort of these510

differences. This is the case of the Holm test, where the best algorithm found

by the Friedman test is compared against the rest of algorithms.

Additionally, the Cliff’s Delta test has been executed to perform pairwise

comparisons using an effect-size measurement (Arcuri & Briand, 2011). This

method allows classifying the difference between pairs of algorithms as negligi-515

ble, small, medium or large on the basis of specific thresholds (Romano et al.,

2006).

5.2. Experimental set-up

The optimisation approach as well as the proposed experiments have been

coded in Java. The evolutionary algorithms have been implemented using the520

JCLEC framework (Ventura et al., 2007; Ramı́rez et al., 2015). The experiments

were run on a HPC cluster of 8 compute nodes with Rocks cluster 6.1 x64 Linux

distribution. Each node comprises two Intel Xeon E5645 CPUs with 6 cores at

2.4 GHz and 24 GB DDR memory.

Table 5 shows the parametrisation of the different evolutionary implemen-525

tations. Notice that some part of the configuration is common to all the al-

gorithms. Both the population size and the maximum number of evaluations

have been fixed after some preliminary experimentation. Crossover and mu-

tation probabilities have been configured in accordance to the values proposed

by (Canfora et al., 2005). The rest of parameters have been set following each530

author’s recommendation.

As for the specific set-up of the algorithms, it should be noted that IBEA

applies the ε-indicator to guide the search, since the exact computation of hy-

pervolume would be prohibitive. The Tchebycheff approach has been selected

as the evaluation mechanism applied by MOEA/D, which allows the presence535

of objective functions with different scales as happens in this optimisation prob-

23



Table 5: Parameter set-up

Common parameters

Population Size 165

Max. evaluations 33,000

Crossover probability 0.70

Mutation probability 0.10

SPEA2

Parents selector Binary tournament

Archive size 165

k-th neighbour 12

MOEA/D

Neighbourhood size (τ) 10

Max. replacements (Nr) 4

No. weight vectors 165 (H=3)

GrEA

Divisions (div) 10

IBEA

Scaling factor (k) 0.05

HypE

Sampling points (M ) 10,000

NSGA-III

No. reference points (boundary layer) 165 (p=3)

No. reference points (inside layer) 66 (p=2)

lem. Moreover, ε-MOEA has been modified to internally set the lengths of the

hypercubes since they depend on the specific problem instance being solved.

Given a workflow composition, the minimum and maximum values that a so-

lution could reach for each QoS property are estimated and used to define 10540

hypercubes with equal length, i.e. the same number of hypercubes established

for GrEA.

5.3. Experiment #1

In this section, the results provided by Experiment #1 are shown and dis-

cussed. A comparative study is first presented in terms of the evolutionary545

performance. Secondly, relevant aspects of the search process regarding the

trade-offs reached between QoS properties are discussed. Finally, algorithms

24



are also compared in terms of their execution time.

5.3.1. Results and statistical analysis

After the execution of all the algorithms, the Friedman test determines the550

ranking position obtained by each algorithm regarding the HV , as shown in the

third column of Table 6, where ε-MOEA is reported to achieve the best ranking.

In addition, this test reports a statistics, z, at the specified significance level (α =

0.01) in order to determine whether H0 can be rejected. If the obtained value,

which follows a F-Distribution, is greater than a critical threshold, then there555

exist significant differences among the algorithms. In this case, that condition

is satisfied given that the critical value, 2.8272, is lower than the respective

statistics, z = 63.1879. In order to reveal the sort of those differences, the Holm

post-procedure is executed, being its outcomes shown in the fourth column of

Table 6. In this case, the test has indicated that the control algorithm (ε-560

MOEA) is better than those algorithms having an α/i value lower than 0.025.

Consequently, only HypE and NSGA-II perform equally well than ε-MOEA,

i.e. all of them maintain a good trade-off between convergence and divergence

along the search process and, as a result, these algorithms return an equivalent

set of high-quality solutions.565

Table 6: Statistical comparison of hypervolume in Experiment #1

i Algorithm Ranking (Friedman) α/i (Holm)

7 NSGA-III 8.0000 0.0071

6 SPEA2 6.1333 0.0083

5 GrEA 6.0000 0.0100

4 MOEA/D 4.8000 0.0125

3 IBEA 4.2667 0.0167

2 NSGA-II 3.4000 0.0250

1 HypE 2.0000 0.0500

0 ε-MOEA 1.4000

Next, as explained in Section 5, the Cliff’s Delta test allows analysing the

relative performance of pairs of algorithms. Table 7 compiles the results for

25



all the possible pairwise comparisons, each cell showing the estimated differ-

ence in terms of HV and indicating whether such a value can be considered

as negligible (n), small (s), medium (m) or large (l) at the significance level570

α = 0.01. For instance, looking at the fourth row, it can be observed that, even

when the previous statistical tests do not reveal a significant difference among

ε-MOEA, NSGA-II and HypE, the difference between ε-MOEA and NSGA-II

(0.46) has been classified as medium. On the other hand, the difference be-

tween ε-MOEA and HypE (0.21) is rather small. In addition, differences among575

SPEA2, MOEA/D and GrEA are reported as nearly negligible.

Table 7: Results of the Cliff’s Delta test for hypervolume (n=negligible, s=small, m=medium,

l=large) (α = 0.01)

Algorithm SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

SPEA2 - -0.50 (l) -0.19 (s) -0.79 (l) -0.05 (n) -0.37 (m) -0.69 (l) 0.96 (l)

NSGA-II 0.50 (l) - 0.23 (s) -0.46 (m) 0.48 (l) 0.16 (s) -0.28 (s) 0.98 (l)

MOEA/D 0.19 (s) -0.23 (s) - -0.55 (l) 0.13 (n) -0.13 (n) -0.48 (l) 0.96 (l)

ε-MOEA 0.79 (l) 0.46 (m) 0.55 (l) - 0.69 (l) 0.58 (l) 0.21 (s) 0.92 (l)

GrEA 0.05 (n) -0.48 (l) -0.13 (n) -0.69 (l) - -0.29 (s) -0.60 (l) 0.96 (l)

IBEA 0.37 (m) -0.16 (s) 0.13 (n) -0.58 (l) 0.29 (s) - -0.44 (m) 0.95 (l)

HypE 0.69 (l) 0.28 (s) 0.48 (l) -0.21 (s) 0.60 (l) 0.44 (m) - 0.93 (l)

NSGA-III -0.96 (l) -0.98 (l) -0.96 (l) -0.99 (l) -0.96 (l) 0.95 (l) -0.99 (l) -

Table 8: Statistical comparison of spacing in Experiment #1

i Algorithm Ranking (Friedman) α/i (Holm)

7 IBEA 8.0000 0.0071

6 HypE 6.5333 0.0083

5 GrEA 6.4000 0.0100

4 NSGA-III 4.7333 0.0125

3 ε-MOEA 4.0000 0.0167

2 SPEA2 2.7333 0.0250

1 MOEA/D 2.6000 0.0500

0 NSGA-II 1.0000

Focusing on the spacing indicator, Table 8 shows the results of Friedman

and Holm tests. The resulting z value is 202.1765, so strong differences on the

26



performance of the algorithms might be expected (2.8272 << z). Again, the

Holm test determines that the control algorithm performs better than those580

algorithms having an α/i value lower than 0.025. NSGA-II is shown to be able

to generate a greater variety of solutions than that provided by most of the

many-objective algorithms, even though it has not significant differences with

SPEA2 and MOEA/D.

Table 9 compiles the obtained differences among the 8 algorithms in terms of585

S after performing the Cliff’s Delta test. As can be observed, SPEA2, NSGA-II,

MOEA/D and ε-MOEA clearly outperform the rest of algorithms, since most

of the differences are classified as large.

Table 9: Results of the Cliff’s Delta test for spacing (n=negligible, s=small, m=medium,

l=large) (α = 0.01)

Algorithm SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

SPEA2 - -0.88 (l) -0.07 (n) 0.41 (m) 0.93 (l) 0.93 (l) 0.93 (l) 0.71 (l)

NSGA-II 0.88 (l) - 0.93 (l) 0.96 (m) 0.93 (l) 0.93 (l) 0.93 (l) 0.93 (l)

MOEA/D -0.07 (n) -0.93 (l) - 0.54 (l) 0.93 (l) 0.93 (l) 0.93 (l) 0.80 (l)

ε-MOEA -0.41 (m) -0.96 (l) -0.54 (l) - 0.96 (l) 0.93 (l) 0.98 (l) 0.27 (s)

GrEA -1.00 (l) -1.00 (l) -1.00 (l) -0.96 (l) - 0.95 (l) 0.02 (n) -1.00 (l)

IBEA -1.00 (l) -1.00 (l) -1.00 (l) -1.00 (l) -0.95 (l) - -0.93 (l) -1.00 (l)

HypE -1.00 (l) -1.00 (l) -1.00 (l) -98 (l) -0.02 (n) 0.93 (l) - -0.99 (l)

NSGA-III -0.71 (l) -1.00 (l) -0.80 (l) -0.27 (s) 0.93 (l) 0.93 (l) -0.93 (l) -

From the obtained results, it is worth noticing that SPEA2 and NSGA-II

behave similarly with respect to S, since they reach the first positions in the590

ranking. However, NSGA-II clearly outperforms SPEA2 in terms of HV . In this

sense, NSGA-II has shown good scalability when a high number of objectives

is considered, only being overtaken by some specific many-objective approaches

like ε-MOEA and HypE.

Regarding the many-objective evolutionary algorithms, the decomposition595

approach proposed by MOEA/D, which is aimed at maintaining diversity during

the search, allows obtaining good S values. However, it has also a negative

impact on the level of optimisation reached by the solutions, as shown in Table 6.

27



Table 10: Experiment #1: Best algorithms for each QoS property (expressed as percentages)

QoS Property SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

Response time (T ) 0.00 0.00 0.00 0.00 6.67 53.33 40.00 0.00

Availability (A) 0.00 6.67 0.00 13.33 0.00 40.00 40.00 0.00

Reliability (R) 0.00 0.00 0.00 13.33 0.00 6.67 80.00 0.00

Throughput (G) 0.00 0.00 0.00 13.33 0.00 6.67 80.00 0.00

Latency (L) 0.00 0.00 0.00 0.00 0.00 33.33 66.67 0.00

Successability (U) 0.00 0.00 0.00 6.67 0.00 40.00 53.33 0.00

Compliance (C) 0.00 0.00 0.00 6.67 13.33 26.67 53.33 0.00

Best practices (B) 13.33 0.00 6.67 40.00 0.00 20.00 20.00 0.00

Documentation (D) 0.00 0.00 0.00 33.33 6.67 40.00 20.00 0.00

The same behaviour is observed when GrEA and NSGA-III are executed, both

of them having problems to properly converge to the PF. Just the opposite600

situation comes about with IBEA or HypE, since both algorithms return better

results for the HV than for S. As a general matter, the joint optimisation of

both indicators is a complicated task, and only ε-MOEA and NSGA-II have

achieved good ranking positions in both cases.

5.3.2. Evolutionary influence on QoS properties605

This section discusses the existing relation between algorithms and QoS

properties. Table 10 provides the big picture of how good each algorithm is

for a QoS property. This has been performed by calculating the average values

of each property within the PF and, next, counting the number of times that

each algorithm achieves the highest value for each property. All the problem610

instances were considered. Such values are expressed as percentages, the best

value for each QoS property being shown in bold typeface. As can be observed,

some specific many-objective approaches like ε-MOEA, IBEA and HypE reach

the best percentages. Moreover, ε-MOEA and HypE have the ability to gen-

erate high quality solutions for some specific QoS properties without demoting615

the trade-off among all of them (see Table 6). Notice that the best set of al-

ternative solutions are provided by HypE and ε-MOEA algorithms, what can

become a relevant factor when software engineers have not a clear preference on

28



SPEA2 NSGA-II MOEA/D eMOEA GrEA IBEA HypE NSGA-III

(a) Response time (T )

SPEA2 NSGA-II MOEA/D eMOEA GrEA IBEA HypE NSGA-III

(b) Availability (A)

SPEA2 NSGA-II MOEA/D eMOEA GrEA IBEA HypE NSGA-III

(c) Reliability (R)

(d) Throughput (G) (e) Latency (L)

SPEA2 NSGA-II MOEA/D eMOEA GrEA IBEA HypE NSGA-III

(f) Successability (U)

(g) Compliance (C)

SPEA2 NSGA-II MOEA/D eMOEA GrEA IBEA HypE NSGA-III

(h) Best practices (B)

SPEA2 NSGA-II MOEA/D eMOEA GrEA IBEA HypE NSGA-III

(i) Documentation (D)

Figure 4: Box plots of the distribution of QoS values in the Pareto front found by each

algorithm

the properties to be optimised.

29



The separation of QoS properties in runtime (G, A, L, U , R, and T ) and620

design-time (C, B, or D) can provide further insights. For the first case, Ta-

ble 10 shows that HypE provides the best average values, since it achieves the

best average values for 5 out of the 6 runtime properties. Regarding design-

time properties, this algorithm also provides the best average values for the

standards compliance (C) property, even when for the three properties IBEA625

has reached the best trade-off. Consequently, if runtime properties are promoted

against design-time properties, HypE seems to be the most appropriate choice.

Similarly, this algorithm provides the best global trade-off.

Figure 4 shows how the QoS values returned by each algorithm are dis-

tributed. For the sake of clarity, all the QoS properties are normalised, and630

have to be maximised. Notice that differences among algorithms become more

distinct. Firstly, ε-MOEA, IBEA and HypE obtain not only similar distribu-

tions for design-properties, but also a good balance among the rest of attributes.

Secondly, NSGA-II provides a wide range of QoS values for all the properties,

even when the specific values are lower than those obtained by the aforemen-635

tioned approaches. In addition, it can be observed that some QoS properties

are easier to optimise than others. For instance, latency (L) is highly optimised

by most of the algorithms, values greater than 0.8 being frequently achieved.

On the contrary, differences between the algorithms are more noticeable for

availability (A) and reliability (R).640

5.3.3. Analysis of computational cost

As the number of QoS properties increases and the use of more sophisti-

cated algorithms becomes more necessary, it is important to confirm that the

execution time is suitable to perform the decision-making process. Even though

this approach is framed within the design phase, where requirements related to645

execution time can be met more flexibly, an excessive computational cost could

still limit the general adoption of many-objective evolutionary algorithms. Fig. 5

shows the average execution time for all the problem instances used in this ex-

periment, depicting the scalability of the algorithms with respect to the number

30



10 20 30 40 50
Number of tasks 

0

1

2

3

4

5

6

7

15
20
25
30
35
40

Ex
ec

ut
io

n 
tim

e 
(s

)

HypE

IBEA

GrEA

NSGA-II

NSGA-III

SPEA2

MOEA/D

10 20 30 40 50
Number of tasks 

(SPEA2, HyPE)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Ex
ec

ut
io

n 
tim

e 
(s

)
Figure 5: Average execution time relative to the number of tasks

of tasks. Error bars represent the standard deviation. As can be seen, most of650

the algorithms require just a few seconds to compute the overall Pareto front, a

soft linear increase being observed as the number of tasks grows. Only SPEA2

and, especially, HypE require several minutes to find all the solutions comprising

the Pareto front. The software engineer should consider whether such time level

is manageable for the project conditions. In addition, it should be noted that655

obtaining high quality solutions is independent of the execution time required

by each specific algorithm. For instance, NSGA-II and ε-MOEA are reported

as efficient algorithms while they provide the best set of solutions according to

the experiment conducted in Section 5.3.1.

5.4. Experiment #2660

This experiment serves to analyse the influence of the composition structure

on the evolutionary performance or on the optimisation of the QoS properties.

Experimentation is performed similarly to Experiment #1.

Table 11 shows the comparison of algorithms in terms of the hypervolume

indicator, and reveals the outcomes of the Friedman test considering all the665

problem instances generated for Experiment #2. As can be observed, the rank-

ing positions for the algorithms are the same that those obtained in Experiment

31



#1, except for IBEA. In this case, z is equal to 220.9533, whereas the critical

value is 2.6977. Consequently, since 2.6977 < z, it can be concluded that there

exist significant differences between the algorithms, and the threshold given by670

the Holm test, 0.05, indicates that ε-MOEA is statistically better than the rest

of algorithms, except for HypE.

Table 11: Statistical comparison of hypervolume in Experiment #2

i Algorithm Ranking (Friedman) α/i (Holm)

7 NSGA-III 8.0000 0.0071

6 SPEA2 6.4222 0.0083

5 GrEA 5.7778 0.0100

4 IBEA 4.6667 0.0125

3 MOEA/D 4.6444 0.0167

2 NSGA-II 2.9556 0.0250

1 HypE 1.9556 0.0500

0 ε-MOEA 1.5778

Table 12: Statistical comparison of spacing in Experiment #2

i Algorithm Ranking (Friedman) α/i (Holm)

7 IBEA 8.0000 0.0071

6 HypE 6.6222 0.0083

5 GrEA 6.3333 0.0100

4 NSGA-III 4.3333 0.0125

3 ε-MOEA 3.9778 0.0167

2 SPEA2 4.3463 0.0250

1 MOEA/D 2.4889 0.0500

0 NSGA-II 1.0000

The statistical tests have been computed for the spacing indicator as well

(see Table 12). In this case, z is equal to 453.6330, whereas the critical value

remains the same. Again, significant differences are revealed after executing675

the Holm test, which rejects all the hypothesis when comparing the control

algorithm, NSGA-II, against the rest of evolutionary approaches.

As previously performed in Experiment #1, Table 13 shows the existing rela-

tion between optimisation algorithms and QoS properties. Notice that ε-MOEA

32



Table 13: Experiment #2: Best algorithms for each QoS property (expressed as percentages)

QoS Property SPEA2 NSGA-II MOEA/D ε-MOEA GrEA IBEA HypE NSGA-III

Response time (T ) 0.00 0.00 0.00 0.00 4.44 46.67 48.89 0.00

Availability (A) 2.22 2.22 0.00 13.33 0.00 24.44 57.78 0.00

Reliability (R) 0.00 0.00 2.22 6.67 0.00 15.56 75.56 0.00

Throughput (G) 0.00 0.00 0.00 4.44 2.22 13.33 80.00 0.00

Latency (L) 0.00 0.00 0.00 0.00 2.22 33.33 64.44 0.00

Successability (U) 2.22 2.22 0.00 13.33 0.00 17.78 64.44 0.00

Compliance (C) 0.00 0.00 0.00 2.22 8.89 57.78 31.11 0.00

Best practices (B) 6.67 2.22 0.00 44.44 8.89 17.78 20.00 0.00

Documentation (D) 4.44 0.00 0.00 40.00 6.67 20.00 28.89 0.00

generates the best solutions in terms of documentation (D) and best practices680

(B), whereas IBEA seems to promote solutions with good values of standards

compliance (C). Again, HypE is mostly focused on the search of solutions that

satisfy the 6 runtime properties.

As can be observed, the obtained results remain rather similar to those dis-

cussed above. IBEA is likely to be the only exception to this statement, as in685

Experiment #1 had reach the best position to deal with design-time properties.

More specifically, in this case IBEA performs worse regarding availability (A)

and documentation (D) and, even when it behaves much better in terms of stan-

dards compliance (C), it is outperformed by ε-MOEA and HypE globally for

the design-time properties. Between the latter approaches, ε-MOEA tends to690

demote the standards compliance (C), whereas HypE reaches a better balance

among all the QoS properties. Nevertheless, notice that the three algorithms

behave very similarly for the three design-time properties according to the dis-

tribution of QoS values (see Fig. 4), which implies that any minor change in the

selected problem instances could modify their ranking positions.695

With regard to the composite structure, it does not affect the relative per-

formance of algorithms from an evolutionary perspective, as can be observed

from the results. In global terms, the ranking positions remain the same, and

the observed strengths and weaknesses of each evolutionary approach to explore

33



the search space are due to other characteristics of the QoSWSC problem, i.e.700

its highly combinatorial nature and the number of objectives. The observed

differences between both experiments can be explained by the fact that Exper-

iment #2 considers a greater number of problem instances, and the addition of

new workflow structures. This might influence the returned QoS values and,

consequently, the results of the indicators.705

5.5. Discussion of results

Understanding the advantages and limitations of the experimental findings

can give awareness of the applicability of the proposed approach. Regarding its

advantages, the comparative study has provided novel evidences of the perfor-

mance of six many-objective algorithms to solve the QoSWSC problem, com-710

paring them with two classical multi-objective algorithms. In this sense, results

have shown that differences on the evolutionary performance of the algorithms

are mostly due to the number of objectives and, consequently, their behaviour is

shown to be significantly robust in all cases. On the one hand, many-objective

approaches like ε-MOEA and HypE have proven to be more effective search715

methods than multi-objective algorithms in terms of the obtained QoS values.

More specifically, experimental results show that ε-MOEA provides the best

values for the QoS properties being optimised, whereas HypE reaches a better

trade-off between the values of the target QoS properties. Even so, they tend

to obtain less variety of web service compositions.720

An in-depth analysis of the solutions returned by each algorithm points out

that some algorithms, such as HypE and IBEA, are able to generate solutions

with highly optimised values for some specific QoS properties of runtime (reli-

ability and throughput) and design-time (documentation), respectively. At the

same time, they maintain a good balance among the rest of properties. Hence,725

many-objective approaches become especially well-suited in those cases in which

these properties are of particular interest to the engineer. To the best of our

knowledge, this kind of study had never been conducted before in the context of

the QoSWSC problem. If properly used, this information can be also exploited

34



by the intelligent system aimed at providing the engineer with valuable heuris-730

tics for the selection of the most appropriate algorithm for each QoS property.

This proposal has some limitations, too. For instance, some of the algo-

rithms are only suitable to solve the problem at design-time due to their high

computational complexity. Nevertheless, notice that their execution time is still

affordable at this stage of the development. Even some of the many-objective735

algorithms applied here, like IBEA, NSGA-III and MOEA/D, are faster than

multi-objective approaches like SPEA2. Furthermore, a low execution time does

not necessarily conflict with the generation of high quality solutions, as demon-

strated by ε-MOEA. From the point of view of the decision-making process,

the engineer could consider as a drawback the need of selecting a specific solu-740

tion from the final Pareto front. This is usual when dealing with Pareto-based

approaches, which could be configured or adapted to return a smaller set of

solutions to choose from.

6. Threats to validity

As any research methodology, the experimental study proposed here presents745

limitations that should be clearly pointed out. These are described next in

terms of internal and external validity threats, including the decisions taken to

mitigate their impact.

Internal validity. This refers to whether there is sufficient evidence to support

the conclusions and the sources of bias that could compromise those conclusions.750

In order to minimise the impact of external factors in the obtained results, all

the algorithms were executed 30 times per problem instance (market of can-

didate services and structure of the composition) to compute averages. More-

over, statistical tests were performed to ensure the significance of the differences

identified between the results obtained by the compared proposals. Finally, the755

experiments have been executed in a remote cluster of computers, so a stable

experimentation platform was provided.

35



External validity. This is concerned with how the experiments capture the re-

search objectives and the extent to which the drawn conclusions can be gener-

alised. This can be mainly divided into limitations of the approach and gen-760

eralisability of the conclusions. Regarding the limitations, experiments did not

reveal significant differences for all the pairwise comparisons between algorithms.

Nonetheless, the obtained results have provided solid insights when comparing

the general behaviour of multi-objective evolutionary algorithms, mostly focused

on maintaining diversity, and many-objective approaches, which tend to work765

better in terms of hypervolume.

Regarding the generalisability of conclusions, the parameters and the size of the

analysed problem instances were chosen considering the most common values

used in the literature (Strunk, 2010). Additionally, Experiment #2 was per-

formed to ensure the generalisability of the results independently of the specific770

composition structure used in the problem instances (workflow layout). In this

case, up to 45 different problem instances were randomly generated in order

to compare the performance of the proposals with disparate composition struc-

tures. Since the rankings of the algorithms mostly remain unaltered with respect

to Experiment #1, and differences are statistically significant in all cases, it can775

be concluded that results are generalisable for the composition structures hav-

ing the applied parameters. Finally, our experimental study does not take into

account neither global QoS constraints nor interdependence constraints. Al-

though most of the selected algorithms can be adapted to deal with constrained

problems, conclusions regarding their performance cannot be extrapolated from780

the current study.

7. Concluding Remarks

This paper presents a comparative study on the suitability and performance

of different multi- and many-objective algorithms to deal with the QoS Web

Service Composition problem, which has been identified as a key issue in the785

field of SOC. This problem has been already addressed from a multi-objective

36



perspective in the near past, when only a small number of properties was under

study, e.g. cost or availability. Having a few properties leads to an objective

space where multi-objective evolutionary algorithms work well. However, in

real-world environments these approaches have shown their unsuitability as the790

number of objectives increases, e.g. considering at the same time both runtime

and design attributes. Even so, the trade-off among all of them has to be still

preserved, and the choice of candidate services becomes a harder task demanding

more sophisticated optimisation techniques.

A comparative study of 2 multi-objective and 6 many-objective evolution-795

ary algorithms has been proposed to address a 9-objective (QoS properties)

QoSWSC problem, taking into consideration those aspects that the engineer

might find in a real environment. This is the first generalisable and extensive

application of specific many-objective evolutionary algorithms to solve this op-

timisation problem, where factors like the number of tasks or the composition800

structure influence its complexity. Therefore, experiments have also considered

a wide range of problem instances using real QoS values.

Experimental results confirm that many-objective algorithms are a suitable

option to face QoSWSC problems considering a large number of objectives at

design time. Among the implications that can be derived from the conducted805

analysis, it is worth mentioning the ability of many-objective algorithms like

ε-MOEA, HypE and IBEA to optimise specific QoS properties. Additionally,

the experimental study has shown that the proposed approach is not specifically

influenced by the way how the problem is formulated in terms of its structure

composition and tasks.810

As many-objective optimisation has turned out to be an interesting paradigm

to move one step forward in the automatic composition of web services, future

research is planned to explore even more complex formulations of the QoSWSC

problem. As a next step, adding constraints like service dependencies or the

satisfaction of thresholds for certain QoS properties will allow analysing their815

influence on the search process. In this application domain, it is of partic-

ular relevance to study how constraint-handling techniques can be effectively

37



integrated into many-objective evolutionary approaches. Similarly, combining

many-objective algorithms with prioritisation techniques would allow focusing

the search on those QoS properties of highest interest to the engineer.820

In addition, authors plan to explore the possibility of combining the ap-

proaches proposed in this paper, aimed at addressing the QoSWSC problem at

design time, with other techniques more appropriate to enable the optimisation

process at runtime (Parejo et al., 2014). With such a combined approach, the

entire life-cycle of the service compositions could be covered, including design-825

time service selection, optimisation at deployment-time, and run-time reconfig-

uration. Another important step forward is the application of this approach to

a real case study using popular services like Amazon EC2 and PayPal. Finally,

we consider relevant for the expert system to let the engineer get involved by

the search algorithm using human-in-the-loop models, so that it could explore830

the search space guided by the experts decisions.

Acknowledgements

Work supported by the Spanish Ministry of Science and Technology and

the Andalusian R&I&D, projects P12-TIC-1867, TIN2012-32273, TIC-5906,

and FEDER funds. This research was also supported by Spanish Ministry835

of Economy and Competitiveness, projects TIN2014-55252-P and TIN2015-

71841-REDT, and the Spanish Ministry of Education under the FPU program

(FPU13/01466).

References

Al-Masri, E., & Mahmoud, Q. H. (2008). Investigating web services on the world840

wide web. In Proceedings of the 17th International Conference on World Wide

Web WWW ’08 (pp. 795–804). New York, NY, USA: ACM. URL: http:

//dx.doi.org/10.1145/1367497.1367605. doi:10.1145/1367497.1367605.

Arcuri, A., & Briand, L. (2011). A practical guide for using statistical tests to

assess randomized algorithms in software engineering. In Proceedings of the845

38

http://dx.doi.org/10.1145/1367497.1367605
http://dx.doi.org/10.1145/1367497.1367605
http://dx.doi.org/10.1145/1367497.1367605
http://dx.doi.org/10.1145/1367497.1367605


33rd International Conference on Software Engineering ICSE ’11 (pp. 1–10).

New York, NY, USA: ACM. URL: http://dx.doi.org/10.1145/1985793.

1985795. doi:10.1145/1985793.1985795.

Ardagna, D., & Pernici, B. (2007). Adaptive service composition in flex-

ible processes. IEEE Transactions on Software Engineering , 33 , 369–850

384. URL: http://dx.doi.org/10.1109/TSE.2007.1011. doi:10.1109/TSE.

2007.1011.

Bader, J., & Zitzler, E. (2011). HypE: An algorithm for fast hypervolume-based

many-objective optimization. Evolutionary Computation, 19 , 45–76. URL:

http://dx.doi.org/10.1162/EVCO_a_00009. doi:10.1162/EVCO_a_00009.855

Bonatti, P. A., & Festa, P. (2005). On optimal service selection. In Proceedings

of the 14th International Conference on World Wide Web WWW ’05 (pp.

530–538). New York, NY, USA: ACM. URL: http://dx.doi.org/10.1145/

1060745.1060823. doi:10.1145/1060745.1060823.

de Campos, A., Pozo, A., Vergilio, S., & Savegnago, T. (2010). Many-objective860

evolutionary algorithms in the composition of web services. In Proceedings

of the 11th Brazilian Symposium on Neural Networks SBRN’10 (pp. 152–

157). IEEE. URL: http://dx.doi.org/10.1109/SBRN.2010.34. doi:10.

1109/SBRN.2010.34.

Canfora, G., Penta, M. D., Esposito, R., & Villani, M. L. (2005). An approach865

for QoS-aware service composition based on genetic algorithms. In Proceed-

ings of the 7th Annual Conference on Genetic and Evolutionary Computation

GECCO ’05 (pp. 1069–1075). New York, NY, USA: ACM. URL: http:

//dx.doi.org/10.1145/1068009.1068189. doi:10.1145/1068009.1068189.

Canfora, G., Penta, M. D., Esposito, R., & Villani, M. L. (2008). A framework870

for QoS-aware binding and re-binding of composite web services. Journal of

Systems and Software, 81 , 1754–1769. URL: http://dx.doi.org/10.1016/

j.jss.2007.12.792. doi:10.1016/j.jss.2007.12.792.

39

http://dx.doi.org/10.1145/1985793.1985795
http://dx.doi.org/10.1145/1985793.1985795
http://dx.doi.org/10.1145/1985793.1985795
http://dx.doi.org/10.1145/1985793.1985795
http://dx.doi.org/10.1109/TSE.2007.1011
http://dx.doi.org/10.1109/TSE.2007.1011
http://dx.doi.org/10.1109/TSE.2007.1011
http://dx.doi.org/10.1109/TSE.2007.1011
http://dx.doi.org/10.1162/EVCO_a_00009
http://dx.doi.org/10.1162/EVCO_a_00009
http://dx.doi.org/10.1145/1060745.1060823
http://dx.doi.org/10.1145/1060745.1060823
http://dx.doi.org/10.1145/1060745.1060823
http://dx.doi.org/10.1145/1060745.1060823
http://dx.doi.org/10.1109/SBRN.2010.34
http://dx.doi.org/10.1109/SBRN.2010.34
http://dx.doi.org/10.1109/SBRN.2010.34
http://dx.doi.org/10.1109/SBRN.2010.34
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1016/j.jss.2007.12.792
http://dx.doi.org/10.1016/j.jss.2007.12.792
http://dx.doi.org/10.1016/j.jss.2007.12.792
http://dx.doi.org/10.1016/j.jss.2007.12.792


Coello Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolu-

tionary algorithms for solving multi-objective problems. (2nd ed.). Secaucus,875

NJ, USA: Springer-Verlag New York, Inc. URL: http://dx.doi.org/10.

1007/978-0-387-36797-2. doi:10.1007/978-0-387-36797-2.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms.

New York, NY, USA: John Wiley & Sons, Inc.

Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization al-880

gorithm using reference-point-based nondominated sorting approach, part i:

solving problems with box constraints. IEEE Transactions on Evolutionary

Computation, 18 , 577–601. URL: http://dx.doi.org/10.1109/TEVC.2013.

2281535. doi:10.1109/TEVC.2013.2281535.

Deb, K., Mohan, M., & Mishra, S. (2003). Towards a quick computation of885

well-spread pareto-optimal solutions. In C. s. Fonseca, P. J. Fleming, E. Zit-

zler, L. Thiele, & K. Deb (Eds.), Evolutionary Multi-Criterion Optimization

(pp. 222–236). Springer Berlin Heidelberg volume 2632 of Lecture Notes in

Computer Science. URL: http://dx.doi.org/10.1007/3-540-36970-8_16.

doi:10.1007/3-540-36970-8_16.890

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolution-

ary Computation, 6 , 182–197. URL: http://dx.doi.org/10.1109/4235.

996017. doi:10.1109/4235.996017.

Derrac, J., Garćıa, S., Molina, D., & Herrera, F. (2011). A practical tutorial895

on the use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms. Swarm and Evolutionary

Computation, 1 , 3–18. URL: http://dx.doi.org/10.1016/j.swevo.2011.

02.002. doi:10.1016/j.swevo.2011.02.002.

Garćıa-Galán, J., Rana, O., Trinidad, P., & Cortés, A. R. (2013). Migrat-900

ing to the cloud - a software product line based analysis. In Proceedings

40

http://dx.doi.org/10.1007/978-0-387-36797-2
http://dx.doi.org/10.1007/978-0-387-36797-2
http://dx.doi.org/10.1007/978-0-387-36797-2
http://dx.doi.org/10.1007/978-0-387-36797-2
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1007/3-540-36970-8_16
http://dx.doi.org/10.1007/3-540-36970-8_16
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2011.02.002


of the 3rd International Conference on Cloud Computing and Services Sci-

ence CLOSER 2013 (pp. 416–426). URL: http://dx.doi.org/10.5220/

0004357104160426. doi:10.5220/0004357104160426.

Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary many-905

objective optimization: a short review. In Proceedings of the IEEE Congress

on Evolutionary Computation CEC 2008 (pp. 2419–2426). URL: http://dx.

doi.org/10.1109/CEC.2008.4631121. doi:10.1109/CEC.2008.4631121.

Jula, A., Sundararajan, E., & Othman, Z. (2014). Cloud computing service com-

position: a systematic literature review. Expert Systems with Applications,910

41 , 3809–3824. URL: http://dx.doi.org/10.1016/j.eswa.2013.12.017.

doi:10.1016/j.eswa.2013.12.017.

Khare, V., Yao, X., & Deb, K. (2003). Performance scaling of multi-objective

evolutionary algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, L. Thiele,

& K. Deb (Eds.), Proceedings of the 2nd International Conference on Evo-915

lutionary Multi-criterion Optimization (pp. 376–390). Berlin, Heidelberg:

Springer volume 2632 of Lecture Notes in Computer Science. URL: http:

//dx.doi.org/10.1007/3-540-36970-8_27. doi:10.1007/3-540-36970-8_

27.

Li, W., & Yan-xiang, H. (2010). A web service composition algorithm based on920

global QoS optimizing with MOCACO. In C.-H. Hsu, L. T. Yang, J. H. Park,

& S.-S. Yeo (Eds.), Algorithms and architectures for parallel processing (pp.

218–224). Springer Berlin Heidelberg volume 6082 of Lecture Notes in Com-

puter Science. URL: http://dx.doi.org/10.1007/978-3-642-13136-3_

22. doi:10.1007/978-3-642-13136-3_22.925

von Lücken, C., Barán, B., & Brizuela, C. (2014). A survey on multi-objective

evolutionary algorithms for many-objective problems. Computational Op-

timization and Applications, 58 , 707–756. URL: http://dx.doi.org/10.

1007/s10589-014-9644-1. doi:10.1007/s10589-014-9644-1.

41

http://dx.doi.org/10.5220/0004357104160426
http://dx.doi.org/10.5220/0004357104160426
http://dx.doi.org/10.5220/0004357104160426
http://dx.doi.org/10.5220/0004357104160426
http://dx.doi.org/10.1109/CEC.2008.4631121
http://dx.doi.org/10.1109/CEC.2008.4631121
http://dx.doi.org/10.1109/CEC.2008.4631121
http://dx.doi.org/10.1109/CEC.2008.4631121
http://dx.doi.org/10.1016/j.eswa.2013.12.017
http://dx.doi.org/10.1016/j.eswa.2013.12.017
http://dx.doi.org/10.1007/3-540-36970-8_27
http://dx.doi.org/10.1007/3-540-36970-8_27
http://dx.doi.org/10.1007/3-540-36970-8_27
http://dx.doi.org/10.1007/3-540-36970-8_27
http://dx.doi.org/10.1007/3-540-36970-8_27
http://dx.doi.org/10.1007/3-540-36970-8_27
http://dx.doi.org/10.1007/978-3-642-13136-3_22
http://dx.doi.org/10.1007/978-3-642-13136-3_22
http://dx.doi.org/10.1007/978-3-642-13136-3_22
http://dx.doi.org/10.1007/978-3-642-13136-3_22
http://dx.doi.org/10.1007/s10589-014-9644-1
http://dx.doi.org/10.1007/s10589-014-9644-1
http://dx.doi.org/10.1007/s10589-014-9644-1
http://dx.doi.org/10.1007/s10589-014-9644-1


Moustafa, A., & Zhang, M. (2013). Multi-objective service composition using930

reinforcement learning. In S. Basu, C. Pautasso, L. Zhang, & X. Fu (Eds.),

Service-Oriented Computing (pp. 298–312). Springer Berlin Heidelberg vol-

ume 8274 of Lecture Notes in Computer Science. URL: http://dx.doi.org/

10.1007/978-3-642-45005-1_21. doi:10.1007/978-3-642-45005-1_21.

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-935

oriented computing: state of the art and research challenges. IEEE Computer ,

40 , 38–45. URL: http://dx.doi.org/10.1109/MC.2007.400. doi:10.1109/

MC.2007.400.

Parejo, J. A., Segura, S., Fernández, P., & Ruiz-Cortés, A. (2014). QoS-aware

web services composition using GRASP with Path Relinking. Expert Sys-940

tems with Applications, 41 , 4211–4223. URL: http://dx.doi.org/10.1016/

j.eswa.2013.12.036. doi:10.1016/j.eswa.2013.12.036.

Praditwong, K., & Yao, X. (2007). How well do multi-objective evolutionary

algorithms scale to large problems. In Proceedings of the IEEE Congress on

Evolutionary Computation CEC 2007 (pp. 3959–3966). IEEE. URL: http://945

dx.doi.org/10.1109/CEC.2007.4424987. doi:10.1109/CEC.2007.4424987.

Purshouse, R., & Fleming, P. (2007). On the evolutionary optimization of

many conflicting objectives. IEEE Transactions on Evolutionary Computa-

tion, 11 , 770–784. URL: http://dx.doi.org/10.1109/TEVC.2007.910138.

doi:10.1109/TEVC.2007.910138.950

Ramı́rez, A., Romero, J. R., & Ventura, S. (2015). An extensible JCLEC-based

solution for the implementation of multi-objective evolutionary algorithms. In

Proceedings of the Companion Publication of the 2015 Annual Conference on

Genetic and Evolutionary Computation GECCO Companion ’15 (pp. 1085–

1092). New York, NY, USA: ACM. URL: http://dx.doi.org/10.1145/955

2739482.2768461. doi:10.1145/2739482.2768461.

Romano, J., Kromrey, J. D., Coraggio, J., & Showronek, J. (2006). Appropriate

statistics for ordinal level data: Should we really be using t-test and cohen’s

42

http://dx.doi.org/10.1007/978-3-642-45005-1_21
http://dx.doi.org/10.1007/978-3-642-45005-1_21
http://dx.doi.org/10.1007/978-3-642-45005-1_21
http://dx.doi.org/10.1007/978-3-642-45005-1_21
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1016/j.eswa.2013.12.036
http://dx.doi.org/10.1016/j.eswa.2013.12.036
http://dx.doi.org/10.1016/j.eswa.2013.12.036
http://dx.doi.org/10.1016/j.eswa.2013.12.036
http://dx.doi.org/10.1109/CEC.2007.4424987
http://dx.doi.org/10.1109/CEC.2007.4424987
http://dx.doi.org/10.1109/CEC.2007.4424987
http://dx.doi.org/10.1109/CEC.2007.4424987
http://dx.doi.org/10.1109/TEVC.2007.910138
http://dx.doi.org/10.1109/TEVC.2007.910138
http://dx.doi.org/10.1145/2739482.2768461
http://dx.doi.org/10.1145/2739482.2768461
http://dx.doi.org/10.1145/2739482.2768461
http://dx.doi.org/10.1145/2739482.2768461


d for evaluating group differences on the NSSE and other surveys? In Annual

Meeting of the Florida Association of Institutional Research (pp. 1–33).960

Strunk, A. (2010). QoS-aware service composition: a survey. In Proceedings

of the 2010 IEEE 8th European Conference on Web Services ECOWS (pp.

67–74). IEEE. URL: http://dx.doi.org/10.1109/ECOWS.2010.16. doi:10.

1109/ECOWS.2010.16.

Suciu, M., Pallez, D., Cremene, M., & Dumitrescu, D. (2013). Adaptive965

MOEA/D for QoS-based web service composition. In M. Middendorf, &

C. Blum (Eds.), Evolutionary Computation in Combinatorial Optimization

(pp. 73–84). Springer Berlin Heidelberg volume 7832 of Lecture Notes in Com-

puter Science. URL: http://dx.doi.org/10.1007/978-3-642-37198-1_7.

doi:10.1007/978-3-642-37198-1_7.970

Trummer, I., Faltings, B., & Binder, W. (2014). Multi-objective quality-driven

service selection - a fully polynomial time approximation scheme. IEEE Trans-

actions on Software Engineering , 40 , 167–191. URL: http://dx.doi.org/

10.1109/TSE.2013.61. doi:10.1109/TSE.2013.61.

Ventura, S., Romero, C., Zafra, A., Delgado, J. A., & Hervás, C. (2007).975

JCLEC: a Java framework for evolutionary computation. Soft Comput-

ing , 12 , 381–392. URL: http://dx.doi.org/10.1007/s00500-007-0172-0.

doi:10.1007/s00500-007-0172-0.

Wada, H., Suzuki, J., Yamano, Y., & Oba, K. (2012). E3: a multiobjective

optimization framework for SLA-aware service composition. IEEE Trans-980

actions on Services Computing , 5 , 358–372. URL: http://dx.doi.org/10.

1109/TSC.2011.6. doi:10.1109/TSC.2011.6.

Wagner, T., Beume, N., & Naujoks, B. (2007). Pareto-, aggregation-, and

indicator-based methods in many-objective optimization. In S. Obayashi,

K. Deb, C. Poloni, T. Hiroyasu, & T. Murata (Eds.), Evolutionary Multi-985

Criterion Optimization (pp. 742–756). Springer Berlin Heidelberg volume

43

http://dx.doi.org/10.1109/ECOWS.2010.16
http://dx.doi.org/10.1109/ECOWS.2010.16
http://dx.doi.org/10.1109/ECOWS.2010.16
http://dx.doi.org/10.1109/ECOWS.2010.16
http://dx.doi.org/10.1007/978-3-642-37198-1_7
http://dx.doi.org/10.1007/978-3-642-37198-1_7
http://dx.doi.org/10.1109/TSE.2013.61
http://dx.doi.org/10.1109/TSE.2013.61
http://dx.doi.org/10.1109/TSE.2013.61
http://dx.doi.org/10.1109/TSE.2013.61
http://dx.doi.org/10.1007/s00500-007-0172-0
http://dx.doi.org/10.1007/s00500-007-0172-0
http://dx.doi.org/10.1109/TSC.2011.6
http://dx.doi.org/10.1109/TSC.2011.6
http://dx.doi.org/10.1109/TSC.2011.6
http://dx.doi.org/10.1109/TSC.2011.6


4403 of Lecture Notes in Computer Science. URL: http://dx.doi.org/10.

1007/978-3-540-70928-2_56. doi:10.1007/978-3-540-70928-2_56.

Wang, H., Tong, P., & Thompson, P. (2007). QoS-based web services selection.

In Proceedings of the IEEE International Conference on e-Business Engineer-990

ing ICEBE 2007 (pp. 631–637). URL: http://dx.doi.org/10.1109/ICEBE.

2007.109. doi:10.1109/ICEBE.2007.109.

Yang, S., Li, M., Liu, X., & Zheng, J. (2013). A grid-based evolutionary algo-

rithm for many-objective optimization. IEEE Transactions on Evolutionary

Computation, 17 , 721–736. URL: http://dx.doi.org/10.1109/TEVC.2012.995

2227145. doi:10.1109/TEVC.2012.2227145.

Yin, H., Zhang, C., Zhang, B., Guo, Y., & Liu, T. (2014). A hybrid mul-

tiobjective discrete particle swarm optimization algorithm for a SLA-aware

service composition problem. Mathematical Problems in Engineering , 2014 ,

1–14. URL: http://dx.doi.org/10.1155/2014/252934. doi:10.1155/2014/1000

252934.

Yu, Y., Ma, H., & Zhang, M. (2015). F-MOGP: a novel many-objective evo-

lutionary approach to QoS-aware data intensive web service composition. In

Proceedings of the 2015 IEEE Congress on Evolutionary Computation CEC

(pp. 2843–2850). IEEE. URL: http://dx.doi.org/10.1109/CEC.2015.1005

7257242. doi:10.1109/CEC.2015.7257242.

Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnam, J., & Chang, H.

(2004). QoS-aware middleware for web services composition. IEEE Transac-

tions on Software Engineering , 30 , 311–327. URL: http://dx.doi.org/10.

1109/TSE.2004.11. doi:10.1109/TSE.2004.11.1010

Zhang, Q., & Li, H. (2007). MOEA/D: a multiobjective evolutionary algo-

rithm based on decomposition. IEEE Transactions on Evolutionary Computa-

tion, 11 , 712–731. URL: http://dx.doi.org/10.1109/TEVC.2007.892759.

doi:10.1109/TEVC.2007.892759.

44

http://dx.doi.org/10.1007/978-3-540-70928-2_56
http://dx.doi.org/10.1007/978-3-540-70928-2_56
http://dx.doi.org/10.1007/978-3-540-70928-2_56
http://dx.doi.org/10.1007/978-3-540-70928-2_56
http://dx.doi.org/10.1109/ICEBE.2007.109
http://dx.doi.org/10.1109/ICEBE.2007.109
http://dx.doi.org/10.1109/ICEBE.2007.109
http://dx.doi.org/10.1109/ICEBE.2007.109
http://dx.doi.org/10.1109/TEVC.2012.2227145
http://dx.doi.org/10.1109/TEVC.2012.2227145
http://dx.doi.org/10.1109/TEVC.2012.2227145
http://dx.doi.org/10.1109/TEVC.2012.2227145
http://dx.doi.org/10.1155/2014/252934
http://dx.doi.org/10.1155/2014/252934
http://dx.doi.org/10.1155/2014/252934
http://dx.doi.org/10.1155/2014/252934
http://dx.doi.org/10.1109/CEC.2015.7257242
http://dx.doi.org/10.1109/CEC.2015.7257242
http://dx.doi.org/10.1109/CEC.2015.7257242
http://dx.doi.org/10.1109/CEC.2015.7257242
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TEVC.2007.892759


Zhang, T. (2014). QoS-aware web service selection based on particle swarm1015

optimization. Journal of Networks, 9 , 565–570. URL: http://dx.doi.org/

10.4304/jnw.9.3.565-570. doi:10.4304/jnw.9.3.565-570.

Zhao, X., Song, B., Huang, P., Wen, Z., Weng, J., & Fan, Y. (2012). An

improved discrete immune optimization algorithm based on PSO for QoS-

driven web service composition. Applied Soft Computing , 12 , 2208–2216.1020

URL: http://dx.doi.org/10.1016/j.asoc.2012.03.040. doi:10.1016/j.

asoc.2012.03.040.

Zitzler, E., & Künzli, S. (2004). Indicator-based selection in multiobjective

search. In X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. Merelo-

Guervós, J. A. Bullinaria, J. E. Rowe, P. Tin̆o, A. Kabán, & H.-P. Schwefel1025

(Eds.), Parallel Problem Solving from Nature - PPSN VIII (pp. 832–842).

Springer Berlin Heidelberg volume 3242 of Lecture Notes in Computer Sci-

ence. URL: http://dx.doi.org/10.1007/978-3-540-30217-9_84. doi:10.

1007/978-3-540-30217-9_84.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: improving the strength1030

pareto evolutionary algorithm. In Proceedings of the Conference on Evolu-

tionary Methods for Design, Optimisation and Control with Applications to

Industrial Problems (pp. 95–100).

45

http://dx.doi.org/10.4304/jnw.9.3.565-570
http://dx.doi.org/10.4304/jnw.9.3.565-570
http://dx.doi.org/10.4304/jnw.9.3.565-570
http://dx.doi.org/10.4304/jnw.9.3.565-570
http://dx.doi.org/10.1016/j.asoc.2012.03.040
http://dx.doi.org/10.1016/j.asoc.2012.03.040
http://dx.doi.org/10.1016/j.asoc.2012.03.040
http://dx.doi.org/10.1016/j.asoc.2012.03.040
http://dx.doi.org/10.1007/978-3-540-30217-9_84
http://dx.doi.org/10.1007/978-3-540-30217-9_84
http://dx.doi.org/10.1007/978-3-540-30217-9_84
http://dx.doi.org/10.1007/978-3-540-30217-9_84

	Introduction
	Background
	Multi- and many-objective evolutionary algorithms
	QoS-aware binding of composite web services as an optimisation problem

	Related Work
	Optimisation model
	The evolutionary approach
	Objective functions

	Experimentation
	Experimentation rationale
	Experimental set-up
	Experiment #1
	Results and statistical analysis
	Evolutionary influence on QoS properties
	Analysis of computational cost

	Experiment #2
	Discussion of results

	Threats to validity
	Concluding Remarks

