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Abstract

Progress in biomechanical modelling of human soft tissue is the basis for the development of new clinical applications capable
of improving the diagnosis and treatment of some diseases (e.g. cancer), as well as the surgical planning and guidance of some
interventions. The finite element method (FEM) is one of the most popular techniques used to predict the deformation of the
human soft tissue due to its high accuracy. However, FEM has an associated high computational cost, which makes it difficult its
integration in real-time computer-aided surgery systems. An alternative for simulating the mechanical behaviour of human organs
in real time comes from the use of machine learning (ML) techniques, which are much faster than FEM. This paper assesses the
feasibility of ML methods for modelling the biomechanical behaviour of the human liver during the breathing process, which is
crucial for guiding surgeons during interventions where it is critical to track this deformation (e.g. some specific kind of biopsies)
or for the accurate application of radiotherapy dose to liver tumours. For this purpose, different ML regression models were
investigated, including three tree-based methods (decision trees, random forests and extremely randomised trees) and other two
simpler regression techniques (dummy model and linear regression). In order to build and validate the ML models, a labelled data
set was constructed from modelling the deformation of eight ex-vivo human livers using FEM. The best prediction performance
was obtained using extremely randomised trees, with a mean error of 0.07 mm and all the samples with an error under 1 mm. The
achieved results lay the foundation for the future development of some real-time software capable of simulating the human liver
deformation during the breathing process during clinical interventions.
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1. Introduction

The use of computer technology for surgical planning and
also for guiding surgical interventions, commonly referred to
as computer-aided surgery (CAS), has spread rapidly in the last
decades. CAS can be conducted by means of a number of med-5

ical imaging technologies, such as X-ray computed tomogra-
phy (CT), magnetic resonance imaging (MRI), X-ray radiogra-
phy, and medical ultrasound. Such technological progress in
medicine has enabled the introduction of minimally-invasive
surgical techniques, which limit the size of incisions needed10
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compared to traditional open surgeries. Thus, the recovery time
for the patient, as well as the associated pain and risk of acquir-
ing infections, is reduced. On the other hand, the main draw-
backs of these surgical techniques are the limited mobility for
the surgeon and the loss of direct contact with the operation site.15

In particular, CAS systems have allowed to assist surgeons dur-
ing surgical interventions in real time, minimising the problem
of visibility and, therefore, maximising their precision, while
reducing invasion into human bodies. Therefore, in the liter-
ature, different methods have been applied to assist surgeons20

especially for liver segmentation (Göçeri, 2013, 2016).

When performing surgical interventions on internal organs,
such as the liver or the breast, the inclusion of biomechanical
models that simulate their mechanical response during the inter-
vention is becoming increasingly important in CAS. An accu-25

rate biomechanical model of an organ can significantly improve
the performance of the surgical technique, as well as predict the
outcome of the intervention. Therefore, progress in biomechan-
ical modelling of human organs is the basis for the development
of new clinical applications capable of improving the diagnosis30

and treatment of some diseases (e.g. cancer), as well as the
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surgical planning and guidance of some interventions. In this
sense, a considerable research effort has been made in order to
simulate the biomechanical behaviour of the soft tissue (Meier
et al., 2005).35

Many research works have been focused on using spring-
mass methods to simulate the organ deformation in real time
due to their simplicity of implementation and their low com-
putational complexity (Kenedi et al., 1975; Waters, 1992;
Delingette et al., 1994; Duysak et al., 2003). However, spring-40

mass models do not allow to reproduce the existing non-linear
behaviour of the soft tissue and, therefore, they lead to inaccu-
rate modelling of the mechanical response of the organs.

Instead, the finite element method (FEM) can provide a more
physically-realistic and accurate solution by using knowledge45

about the soft tissue or organ (e.g. organ geometry, elastic con-
stants and boundary conditions of the problem). In fact, FEM
is one of the most popular methods used to predict the defor-
mation of the human soft tissue in medical applications (Brock
et al., 2006; Ruiter et al., 2006; Brock et al., 2008).50

FEM is a well-known numerical method for the simulation of
the mechanical behaviour of a continuum body (Zienkiewicz &
Taylor, 1989). In FEM, an approximate discrete representation
of the organ under study can be obtained by dividing the organ
in a high number of elementary building components called fi-55

nite elements, which are interconnected at points called nodes
that define the element size. Finite elements can use physi-
cal properties, such as elastic properties, thus integrating tissue
characteristics into the organ model. The entire set of these
components is called mesh, which is defined through nodes and60

elements. A mesh is usually built from volumetric images (e.g.
CT or MRI) of the organ. The individual equations that govern
the mechanical behaviour of the finite elements under external
loads are assembled into a larger system of equations that mod-
els the entire organ. An approximate solution of these equa-65

tions can be found through computations on the nodes. Since
the number of the equations to solve is proportional to the num-
ber of nodes, the larger the number of nodes, the more accurate
the solution.

Despite its high accuracy, the use of FEM is limited due70

to the high computational cost involved. Hence, FEM has
been typically used to perform off-line simulations of non-
linear/complex behaviours and, therefore, its integration in
CAS systems has been difficult due to real-time requirements
(i.e. the organ models used in CAS must be deformed in the75

same way as the real organs, and at the same time). Several
techniques have been proposed to reduce the computational
time of conventional FEM in clinical applications, such as par-
allel processing algorithms (Székely et al., 2000; Inoue et al.,
2006), the use of graphics processing units (GPU; Courtecuisse80

et al., 2010) or model reduction techniques (Niroomandi et al.,
2008, 2013; González et al., 2016). For example, Székely et al.
(2000) used parallel processing algorithms to speed up FEM
when simulating the deformation of the uterus due to the inter-
action with the surgical instruments. Inoue et al. (2006) em-85

ployed FEM in real time for the development of a liver surgical
simulator by means of the use of parallel processing, coupled
with volume rendering (i.e. using a relatively coarse volumetric

mesh with less than 400 nodes). In other research (Courtecuisse
et al., 2010), a GPU implementation was used to significantly90

improve the computational cost of FEM in the simulation of the
interactions between the medical devices and the liver. With
regard to the use of model reduction techniques, Niroomandi
et al. (2008) applied a new strategy based on proper orthogo-
nal decomposition (POD) techniques to the real-time simula-95

tion of the cornea deformation due to the palpation with the
surgical tool. Later on, Niroomandi et al. (2013) presented a
novel approach based on the use of the so-called proper gen-
eralised decomposition (PGD) techniques (i.e. a generalisation
of POD techniques), which was also applied to the simulation100

of the deformation of the liver due to its interaction with the
scalpel. Although the commented techniques led to good per-
formance, they were computed only for a organ (i.e. unique
geometry and unique elastic constants). Therefore, they could
be applied only to predict deformations of that particular or-105

gan. This was due to the difficulty in introducing the geometry
and the elastic constants as input parameters (i.e. external se-
lectable parameters) into the models based on FEM, since they
were fixed parameters required for the construction of the ex-
plicit biomechanical model of the organ. Nevertheless, some110

successful research works have been recently carried out in this
regard. For instance, González et al. (2016) presented an ap-
proach combining PGD and kernel principal component analy-
sis (kPCA) that was applied to simulate the liver deformation,
in which the shape of the liver was also considered to be an ex-115

ternal selectable parameter by using several livers with differ-
ent geometries when building the algorithm, thus making the
proposed modelling framework more general. In spite of some
promising recent efforts, the development of FEM-based mod-
els that can accurately predict the deformation of soft tissue in120

real time is still a challenge in the field of CAS. In this sense, as
computational capacity is increasing rapidly from year to year,
it is expected that, in the future, FEM-based simulations will
be run in real time and, therefore, they could be used for clini-
cal applications. However, to date, it is not possible to perform125

real-time simulations based on FEM and, consequently, new
techniques that require less computational cost than FEM are
arising.

A possible alternative to FEM-based models for simulating
the mechanical behaviour of human organs in real time could130

come from the use of data-driven modelling. In this modelling
approach, data are used to feed a supervised machine learning
(ML) model in order to find a function of the input variables
(e.g. external load applied to the tissue, biomechanical param-
eters or elastic constants, and the corresponding geometry of135

the soft tissue) that can approximate the known outputs (e.g.
deformation of the soft tissue), with this function being capa-
ble of generating an output for future unseen inputs (Izenman,
2008). Hence, the performance of a ML model depends mainly
on the collected data and the chosen learning algorithm. There-140

fore, the ML model does not require an explicit biomechanical
model of the organ, as happens in FEM, but it performs simu-
lations based only and exclusively on data. Within this frame-
work, FEM can be used to generate data that the ML model
uses to estimate the mapping function (i.e. training samples).145
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Thus, ML models can extract the underlying properties of train-
ing samples, for which the deformations are known, and, then,
predict soft tissue deformation when exerting a new load. The
main advantage of data-driven modelling compared to FEM is
that, although the estimation of the mapping function might be150

very time-consuming, once this training process is done off-
line, ML models are able to provide solutions in real time for
complex biomechanical behaviours of organs.

Most of the research works using data-driven modelling in
this field have been focused on the real-time simulation of hap-155

tic interactions with organs (i.e. soft tissue deformation with
cutting and haptic force feedback), such as the liver (Zhong
et al., 2006; Morooka et al., 2008; Abdelrahman et al., 2011),
the stomach (Deo & De, 2009; De et al., 2011) and the prostate
(Jahya et al., 2013). In particular, the cited studies used an ar-160

tificial neural network (ANN), which exploited FEM-generated
data to predict the deformation of organs. FEM was applied
several times using different load states (i.e. external forces)
on a particular organ (i.e. unique geometry/mesh and unique
elastic constants) and the deformed states were stored. After165

training the ANN with these data, the ANN was able to predict
new deformed states from external loads that were not used dur-
ing training for this particular organ. As a result, the ML mod-
els were able to predict deformation when a force/displacement
was applied to a contact point of a specific organ with a rigid170

tool. It should be particularly emphasised that the commented
research works were able to perform simulations in real time
only for a specific organ, particularly that used for the training
process of the ML model.

The research works using a ML model were mainly oriented175

towards the development of real-time surgical simulators, capa-
ble of predicting the deformation of a human organ due to the
interaction with the surgical instruments, thus giving surgeons
the chance of training surgical techniques. However, as far as
the authors know, no research has been reported to perform ac-180

curate simulations of other organ deformations in real time us-
ing data-driven modelling, such as the liver deformation during
breathing, which can be crucial for diagnosis or treatment of
some diseases. The simulation of the deformation of the hu-
man liver during the breathing process in real time is of vital185

importance for guiding surgeons during interventions where it
is critical to track hepatic lesions suspicious to be a tumour (e.g.
some kind of biopsies) or for tracking liver tumours for the ac-
curate application of the radiotherapy dose. The need to predict
the liver motion during breathing mainly comes from the fact190

that changes in the liver geometry, mainly driven by physio-
logical changes (e.g. respiratory and digestive motions), may
confound the ability to accurately plan a hepatic biopsy when
the tumour is very small. In addition, variations in geometry
can also confuse the capacity to accurately deliver the radiation195

dose and measure the response of the tumour and surrounding
normal tissue to radiotherapy treatment (Brock et al., 2006). In
fact, due to the immense importance of simulating the liver de-
formation during breathing in the medical field, some studies
have attempted to tackle this problem, to a certain extent, but200

using FEM-based models (Brock et al., 2006, 2008) with an as-
sociated high computational cost. Therefore, the inclusion of a

fast and accurate model of the liver deformation during breath-
ing in CAS systems could allow to know the exact location of
internal lesions in the liver at every moment.205

Regarding the accuracy required for models of soft tissue de-
formation, some related research works (Brock et al., 2006;
Ruiter et al., 2006; Brock et al., 2008) achieved displacement
errors of about 3-5 mm in the simulation of the deformation of
human organs, such as the breast and the liver, using accurate210

FEM-generated models. However, the specification of preci-
sion requirements when using medical imaging, for instance, in
cancer diagnosis and treatment or surgical guidance is still an
open question (Brock et al., 2006). For example, Ruiter et al.
(2006) stated that a displacement error within 5 mm could be215

regarded as an acceptable error for these medical systems. On
the other hand, Brock et al. (2008) declared that, in stereotactic
body radiotherapy (SBRT), a systematic geometric error higher
or equal to 3 mm may have clinically-relevant dosimetric con-
sequences, since the delivered radiation dose is really high in220

this kind of radiation therapy.
In this regard, the main goal of the present research work was

to evaluate the feasibility of ML techniques for modelling the
biomechanical behaviour of the human liver during the breath-
ing process. As commented above, most of the previous re-225

search studies related to the modelling of human organ defor-
mation were able to perform simulations only for a particu-
lar organ (i.e. unique geometry and unique elastic constants).
Therefore, other important goal was to present a data-driven
modelling scheme more general than those in other studies, not230

only capable of predicting the soft tissue deformation when
applying a new load, but also for a new liver. For these pur-
poses, instead of using an ANN as ML model, this research
used, among others, several tree-based methods, since they
were proved to outperform ANN models in a thorough compar-235

ative study of ML techniques (Fernández-Delgado et al., 2014).
The rest of this paper is organised as follows. In Section 2,

the FEM-generated data set used to train and evaluate the ML
models is described in detail and, in addition, a brief descrip-
tion of the ML models and details about how to use them in240

the problem of predicting the deformation of the human liver
during breathing are also given. The results achieved in this
research are shown and discussed in Section 3, including the
results obtained from the hyperparameter optimisation for the
different ML models and the results corresponding to the per-245

formance assessment of the models. Section 4 presents the con-
clusions drawn from this research work. Finally, possible lines
for future research are identified in Section 5.

2. Material and methods

2.1. Data collection250

2.1.1. Biomechanical modelling of the liver using FEM
Eight ex-vivo human livers from anonymous donors (dis-

carded for transplantation) were used in this research. Each
liver was placed in a device called artificial human torso (AHT),
which was originally designed and built in order to simulate the255

deformation of the liver caused by human breathing, as further
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described in Martı́nez-Martı́nez (2014). The AHT mainly con-
sisted of the artificial diaphragm, the foam and the liver cavity.
The diaphragm could be moved in the superior-inferior direc-
tion, thus pushing the liver towards the foam, which emulated260

the behaviour of the remaining abdominal organs. All the ma-
terials used for building the AHT were chosen in order to avoid
the generation of artefacts during the image acquisition with the
CT scanner. The AHT size was approximately 180× 400× 600
mm. The AHT was in turn positioned into a 256-slice computer265

tomography (CT) scanner (Brilliance iCT, Philips Healthcare,
Best, The Netherlands), as shown in Figure 1. A single CT
image was acquired from each of the livers, with the artificial
diaphragm of the AHT being always placed at the position cor-
responding to complete exhalation (i.e. the diaphragm did not270

touch the liver at all). The acquired three-dimensional (3D) im-
ages had a size of 512 × 512 × 258 voxels with a voxel size of
0.64 × 0.64 × 1.5 mm. The commercial software Simpleware
(version 6.0; Synopsys, Inc., Mountain View, California, USA)
was used to segment each liver and generate a 3D finite element275

(FE) mesh.

Figure 1: Image acquisition of an ex-vivo human liver with a CT scanner.

The Ogden model was chosen in this work to represent the
biomechanical behaviour of each liver, since it provided bet-
ter results when modelling livers than other models (Hu & De-
sai, 2004; Martı́nez-Martı́nez et al., 2013a). This model is de-
fined through the strain energy potential (W), as shown in Equa-
tion (1):

W =

N∑
i=1

µi

αi
(λ
αi

1 + λ
αi

2 + λ
αi

3 − 3) +
K0

2
(J − 1)2 (1)

where N indicates the order of the model; αi and µi refer to

the elastic material constants; λ1, λ2 and λ3 denote the devia-
toric stretches; K is the Bulk modulus, related to the liver com-
pressibility; and J is the determinant of the elastic deformation280

gradient. The model used in this work was of order N = 2,
thus requiring four elastic material constants: µ1, α1, µ2 and α2.
For each of the eight livers, three different biomechanical be-
haviours were modelled using the combinations of elastic mate-
rial constants shown in Table 1. This strategy allowed to create285

a richer data set from the eight ex-vivo human livers. Therefore,
each liver had a different geometry (i.e. FE mesh) and the same
three biomechanical behaviours (i.e. combinations of elastic
material constants). The elastic constants used in this research
were obtained from three ex-vivo human livers, different from290

those used for obtaining the liver FE meshes, following the pro-
cedure described in Martı́nez-Martı́nez (2014) and their values
were comparable in order of magnitude with those reported for
the human liver in the literature (Lu et al., 2013). The value of
the Bulk modulus (K0) was set to 10 kPa, based on the results295

reported in Hostettler et al. (2010) for the Bulk modulus of the
human liver in vivo.

Table 1: Combinations of elastic material constants used for the Ogden model
to represent the liver tissue biomechanical behaviour.

Combination of elastic
material constants

µ1 (kPa) α1 (-) µ2 (kPa) α2 (-)

Combination 1 66.17 61.17 22.03 98.75
Combination 2 59.34 -50.00 66.91 21.50
Combination 3 11.90 -36.46 57.67 99.70

FEBio (version 1.5), freely available software for non-linear
FE analysis (Maas et al., 2012), was used to recreate the de-
formation that the liver suffers during breathing. Breathing300

process can be divided into two different stages: inhalation
and exhalation. During inhalation, the diaphragm is contracted
and moved in the superior-inferior direction around 15 mm,
this value being approximately in the middle of the range of
the measured diaphragm displacements during breathing cor-305

responding to several patients reported in the study by Balter
et al. (2001). Thus, the volume of the thoracic cavity is enlarged
and the liver is pushed towards the remainder of abdominal or-
gans. The boundary conditions from Martı́nez-Martı́nez et al.
(2013b) were replicated in order to simulate the liver compres-310

sion during inhalation process. Ten different external displace-
ments were applied to each liver in the z-axis direction, from
an initial displacement of 1.5 mm to a final displacement of 15
mm in steps of 1.5 mm, thus obtaining ten deformed states for
each liver. As shown in Figure 2, each external displacement315

was applied to the 10% of top nodes from the surface of each
liver mesh, oriented in the frontal plane (i.e. plane x-z), thus
emulating the movement of the upper surface of the liver dur-
ing inhalation. The 10% of bottom nodes from the surface of
each liver mesh were restricted in all directions, thus attempt-320

ing to imitate the direct contact of the human liver with the rest
of abdominal organs during inhalation process. Each liver de-
formed state was defined through the nodal displacements in the
3D Euclidean space provided by FEBio after the simulation.
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An aspect that should be commented is that the boundary325

conditions used in FEM were chosen just as a simplistic way
to simulate the real boundary conditions during breathing. This
simplification was performed due to the difficulty in measuring
the real loads that the liver undergoes inside the body during
breathing or the real displacements to which some parts of the330

liver are subjected because of the compression produced by the
diaphragm. However, since the main objective of this work
was to prove that accurate ML models could be constructed
using data from FEM-based simulations of the breathing pro-
cess, the simplistic boundary conditions used in this work pro-335

vided enough information to do this. In this sense, once fulfilled
the main goal, a further step in the framework of this research
would be to use more realistic boundary conditions when gen-
erating data with FEM, capable of reproducing more faithfully
the real breathing process. For example, this could be done340

by performing two CT scans of each liver (in complete exha-
lation and in complete inhalation) and then obtaining the real
displacement of the nodes of the liver surface by a registration
algorithm.

10%

80%

10%

External displacement in
the z-axis direction

Figure 2: Example of a FE mesh of a human liver with the boundary conditions
used by the FE analysis software.

2.1.2. Labelled data set345

The main goal of this work was to predict the behaviour
of the human liver under different external displacements that
recreated the liver compression during breathing. This problem
was tackled using ML regression models. The supervised na-
ture of regression models required the use of a set of n labelled350

samples, {xi, yi}i=1,...,n, where xi was the m-dimensional input
vector for the i-th sample with an associated k-dimensional
target output vector yi, which we desired to predict. Partic-
ularly, once the biomechanical behaviour of the human livers
was modelled using FEM, it was constructed a labelled data set355

containing information about the eight human livers. Each or-
gan was described by a mesh of points (or nodes) distributed

throughout the volume of the liver. The geometry (i.e. size and
shape), and consequently the FE mesh, varied from one liver
to another, and three different biomechanical behaviours were360

modelled for each liver. The following variables were available
for each liver node:

• disp: External displacement applied to the liver to which
the node belonged. This variable could take ten different
values, from an initial displacement of 1.5 mm to a final365

displacement of 15 mm in steps of 1.5 mm.

• V: Volume of the liver to which the node belonged.

• x, y, z: Initial coordinates of the node in the 3D space
before applying any displacement.

• µ1, α1, µ2, α2: Elastic material constants characterising the370

biomechanical behaviour of the liver tissue.

• dx, dy, dz: Displacement of the node in the 3D space, ob-
tained using FEM.

The nodes used in the boundary conditions in FEM were not
included in the labelled data set, since these nodes were con-375

sidered as parameters of the FEM model (i.e. they were fixed
beforehand). Each of the eight livers was composed of a slightly
different number of nodes, as shown in Table 2, including the
ten liver deformed states for each of the three biomechanical
behaviours, thus resulting in a labelled data set with a total of380

n = 3, 154, 980 samples. For each sample, m = 9 variables were
used as inputs, including disp, V , x, y, z, α1, α2, µ1 and µ2, and
the remaining k = 3 variables were employed as target outputs
(i.e. labels), including dx, dy and dz (i.e. the displacement of
the corresponding node of the liver mesh).385

Table 2: Number of nodes (samples) for each liver after the removal of the
nodes used in the boundary conditions in FEM from the labelled data set.

Liver Number of nodes

Liver 1 379,800
Liver 2 326,520
Liver 3 318,960
Liver 4 494,310
Liver 5 331,830
Liver 6 390,390
Liver 7 492,480
Liver 8 420,690

2.2. Regression models
In this work, five different regression models were used

to predict the human liver biomechanical behaviour: dummy
model (DM), linear regression (LR), decision tree (DT), ran-
dom forest (RF) and extremely randomised trees (ET). The390

regression models, as well as all the experiments conducted
in this work, were implemented in Python programming lan-
guage (version 2.7) using mainly the scikit-learn module (ver-
sion 0.17; Pedregosa et al., 2011), which integrates a wide range
of ML algorithms. A brief description of the regression models395

is given below.
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2.2.1. Dummy model
A DM always returns the same output value regardless of the

input data. Although this model has not practical usefulness for
making predictions, it is commonly used as a simple baseline400

to be compared with other real regressors. In particular, the
output value of a DM is computed by averaging the labels (i.e.
targets) belonging to the training set. Therefore, the prediction
error associated with this model is coincident with the standard
deviation of the data distribution.405

2.2.2. Linear regression
In a LR model, the output is computed as a linear com-

bination of the input variables, with the relationship between
the inputs being established through the model parameters (i.e.
regression coefficients; Bishop, 2006). The regression coeffi-410

cients are commonly obtained from the training data using the
ordinary least squares approach, which minimises the sum of
the squares of the differences between the target outputs and the
outputs predicted by the linear approximation. Therefore, LR
is also known as ordinary least squares linear regression. This415

model assumes a linear relationship between the input variables
and the output. Obviously, this strong assumption is not al-
ways fulfilled in real problems, which usually deal with more
complex data involving non-linear relationships. However, LR
models are commonly used because of their advantages (e.g.420

simplicity, interpretability and computational cost) compared
with more sophisticated methods.

2.2.3. Decision tree
A DT is an efficient non-parametric method widely used for

classification and regression problems (Breiman et al., 1984). A425

DT model is basically built or grown from the training set ac-
cording to a top-down procedure by computing recursive binary
partitions of the input feature space so that the samples with the
same label are grouped together. At each step of the procedure,
a division rule is specified by choosing the split (i.e. the com-430

bination of an input variable and the corresponding split-point
for that variable) that maximises a homogeneity measure of the
target variable within each of the obtained groups. In regression
problems, a commonly used criterion to choose the best split at
each node of a DT model is to select the split that minimises435

the mean squared error. This recursive process continues until
some stopping rule specified by the user is satisfied. A common
stopping rule is that a tree node can be split if it contains more
than a certain number of samples (nmin). Therefore, the min-
imum number of samples required to split a tree node should440

be adjusted by the user in order to control the size of the DT
model, thus preventing overfitting.

Once a DT is grown, the output for a given unseen sample
is computed in a straightforward way by passing down the tree
through all the nodes at which a decision is made as to which445

direction to proceed based on the value of each input variable.
Finally, a terminal tree node is reached and a predicted output
is given, computed as the mean of training samples in that tree
node in the case of regression problems.

In addition to the fact that a DT model is simple to under-450

stand and interpret, it is a powerful model, thus providing a

suitable compromise between accuracy and interpretability. On
the other hand, one major problem with DT models is that they
can be extremely unstable, since small variations in the training
data can lead to a very different tree model. Other drawback is455

that, if a DT is too complex, the model might not generalise the
data well (i.e. it may suffer from overfitting).

2.2.4. Random forest
A RF regressor is a tree-based ensemble learning method,

which builds several DT models independently and then aver-460

ages their individual predictions to compute a final prediction
(Breiman, 2001). In a RF model, each single tree belonging
to the ensemble is built from samples drawn randomly with re-
placement (i.e. bootstrap sampling) from the training set. Fur-
thermore, when splitting a tree node during the building of a465

tree, the split that is chosen is the best split among a random
subset of the input variables, selected without replacement, in-
stead of picking the best split among all the input variables as
that done in a single DT model.

As a direct consequence of the randomisation of the tree470

growing method combined with ensemble averaging, the vari-
ance of a RF model is reduced compared to that associated
with a single non-random DT. Thus, several advantages are
achieved, such as the improvement of the prediction perfor-
mance, the reduction in the sensitivity to small changes in the475

training data and the control of overfitting, at the expense of
a small increase in the bias, the loss of interpretability and a
higher computational cost.

The main hyperparameters that need to be specified when
building a RF model are the minimum number of samples re-480

quired to split a tree node (nmin), the number of trees in the for-
est (M), and the number of input variables randomly selected to
consider when looking for the best split (K). These parameters
should be optimised, since they have considerable influence on
the prediction performance and the computational complexity.485

2.2.5. Extremely randomised trees
ET is another tree-based ensemble learning method (Geurts

et al., 2006). In ET models, one further step of randomisation
is added when splitting a tree node by randomising the choice
of both input variable and cut-point. As in RF models, ET490

models use a random subset of the input variables, but instead
of searching for the best split-points, for each candidate input
variable, its split-point is chosen fully at random (i.e. indepen-
dently of the target variable), and then the best split among all
the randomly-generated splits is picked. Thus, the variance and495

the computational complexity of a ET model are reduced a lit-
tle more compared to those of a RF model, at the expense of a
slightly greater bias. Another key difference between RF and
ET is that ET models use the entire original training set to build
each tree, instead of using bootstrap sampling, thus trying to500

minimise the bias.
The main hyperparameters to adjust when building an ET

model are exactly the same as those for a RF model, includ-
ing the minimum number of samples to split a node (nmin), the
number of trees in the ensemble (M), and the number of input505

variables randomly selected at each node (K).
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2.3. Experimental setup

In this section, details are given about how the different re-
gression models were used in the problem of predicting the dis-
placement of the nodes of the liver mesh employing the labelled510

data set described in Section 2.1.2.

2.3.1. Single-output modelling
The problem in this work was multi-output, also known in

the literature as multi-target, since it was a supervised learning
problem that aimed to predict three output variables simulta-515

neously, namely, the displacement of each liver mesh node in
the 3D space: dx, dy and dz. In order to tackle the problem, it
was decided to build an independent regression model for each
of the three outputs (i.e. a single-output model) and then to
use these models to predict each output independently, instead520

of building a single regression model capable of predicting the
three outputs simultaneously (i.e. a multi-output model). This
choice was based on the fact that the outputs were weakly cor-
related, with a Pearson correlation coefficient (Pearson, 1895)
close to 0 between each possible pair of output variables (0.038525

for dx-dy, -0.036 for dx-dz and 0.079 for dy-dz). Under these
circumstances, the use of several single-output models was ex-
pected to result in better prediction performance than using a
multi-output regression model, especially in the case of tree-
based learning algorithms (Struyf & Džeroski, 2006; Appice530

& Džeroski, 2007; Ikonomovska et al., 2011), as those used in
this work. In addition, the use of several single-output mod-
els was supported by several preliminary experiments, which
were conducted using both single-output and multi-output re-
gression models. In accordance with our expectations, the re-535

sults (data not shown in this paper) revealed that the prediction
performance obtained by using three single-output models sur-
passed that obtained by only one multi-output model.

2.3.2. Data splitting
Following the common practice when dealing with ML algo-540

rithms, the labelled data set was split into two subsets in order
to obtain a reliable performance evaluation of the regression
models: a training set and a test set. The training set was em-
ployed to build the models (i.e. adjust the model parameters by
learning the data properties) and optimise their hyperparame-545

ters. The test set was used to evaluate the performance of the
models, thus checking their generalisation capability.

Two different approaches were used to split the data. In the
first approach, the training set was composed of the labelled
samples belonging to seven livers, while the test set was com-550

posed of the samples belonging to the remaining liver. The
experiments using this splitting strategy were repeated leaving
one different liver as the test set each time. However, given
that the results were very similar in all cases, this article reports
only one case for the sake of simplicity. In particular, liver 8,555

as named in Table 2, was chosen for testing purposes, thus re-
sulting in a training set with 2,734,290 samples (i.e. about 87%
of the total) and a test set with 420,690 samples (i.e. about
13% of the total). Since the test set contained samples of a new
liver (i.e. a liver different from those used for training), this560

approach would have been the most suitable in the context of
the problem tackled in this work of predicting the displacement
of the nodes of an unknown liver, as would happen in a real
application. However, the weak point of this splitting strategy
was based on the limited number of livers used for the experi-565

ments and the subsequent small range of liver geometries that
were modelled by FEM. For the implementation of the regres-
sion models in a real application, many more livers should be
employed to build the models in order to properly predict the
displacement of a liver within a wider range of geometries and570

biomechanical properties.
In this sense, a second splitting approach was used in order

to maximise the variety of liver geometries in the training set,
which was expected to recreate a more realistic scenario. It
should be commented that it was only possible to maximise the575

range of liver geometries, and not the variety of biomechani-
cal properties as well, since each of the eight livers used in this
work had a different geometry, but the same three biomechani-
cal behaviours. In this second approach, 70% of the total sam-
ples (i.e. 2,208,486 samples), randomly drawn from the com-580

plete labelled data set, were used as the training set, whereas the
remaining 30% of samples (i.e. 946,494 samples) were used as
the test set.

2.3.3. Hyperparameter optimisation
Hyperparameter optimisation was one of the main tasks per-585

formed in this work when developing the regression models.
Hyperparameters are parameters that are not directly learnt
within the models and, therefore, they should be provided by
the user when building the models. The process of hyperpa-
rameter optimisation was only required for the DT, the RF and590

the ET models, since the DM and the LR models are param-
eterless methods. Therefore, the hyperparameter optimisation
procedure was performed for a total of 3×3×2 = 18 regression
models, since the three required single-output models (i.e. one
for each target output) were built using each of the tree-based595

regression methods (i.e. the DT, the RF and the ET techniques),
and both data splitting approaches. In addition, it is important
to comment that the whole optimisation procedure was carried
out using only the training sets.

The main hyperparameters to adjust when constructing the600

RF and the ET models were exactly the same, including the
minimum number of samples to split a tree node (nmin), the
number of trees in the ensemble (M), and the number of input
variables randomly selected at each node (K). In the case of the
DT models, only one hyperparameter needed to be optimised:605

the minimum number of samples to split a tree node (nmin). The
parameter nmin controls the size of the three tree-based models.
Small values of nmin lead to large trees, high variance and low
bias. In consequence, a really small value usually implies that
the model memorises the training set, thus resulting in a poor610

generalisation capability of the model (i.e. overfitting), whereas
a large value could prevent the trees from learning from the data
(i.e. underfitting). Therefore, making a good choice of this pa-
rameter was of critical importance in this work to prevent the
overfitting problem and reduce the computational complexity.615

With respect to the parameter M, it determines the strength of
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the variance reduction associated with the ensemble averaging.
In principle, the larger the value of M, the better the model
from the point of view of prediction performance, but also the
more computationally complex the model. Regarding the pa-620

rameter K, it controls the strength of the randomisation of the
tree growing method. Specifically, the smaller the value of K,
the stronger the randomisation of the trees in the ensemble, the
greater the variance reduction, and the lower the computational
complexity, but also the greater the increase in the bias.625

The optimisation of all the hyperparameters was performed
so that a good compromise between prediction performance
and computational complexity was achieved. The methodology
used to select the optimal hyperparameters for each regression
model was to perform a parameter sweep for each hyperparam-630

eter. More specifically, the sweep of a hyperparameter con-
sisted in building different models by varying the value of that
parameter and then evaluating their corresponding prediction
performance, thus obtaining the evolution of the model perfor-
mance as a function of the parameter value. For the optimisa-635

tion of the parameter nmin for the DT models, the value of nmin

was varied from 2 to 100. In the case of the RF and the ET
models, each regression model required three different parame-
ter sweeps, one for each hyperparameter. When performing the
sweep of a particular hyperparameter of these two models, the640

value of the hyperparameter to optimise was varied over a range
and the remaining two hyperparameters were fixed. In partic-
ular, the values of nmin, M and K were set to 5, 10 and 9 (i.e.
the dimension of the input space), respectively. For optimising
the parameter nmin for the two ensemble models, the value of645

the parameter was varied from 2 to 100, as that done for the
DT models. In the case of the parameter M, the optimisation
of this parameter was performed by varying its value from 2 to
100. For the sweep of the parameter K, the value of this param-
eter was varied over its possible range between 1 and 9 (i.e. the650

dimension of the input space).
In order to evaluate and compare more appropriately the per-

formance of the different hyperparameter settings for each re-
gression model, it was used a cross-validation procedure on
each of the training sets obtained by both data splitting ap-655

proaches. Particularly, the experiments were performed with
five-fold cross-validation (Hastie et al., 2009), which consisted
in splitting the training set randomly into five subsets of equal
size and using four subsets as training data to build the regres-
sion models and the remaining one as test data to evaluate the660

prediction performance of the resulting models. This process
was repeated five times leaving one different subset for evalu-
ation each time. The five different validation results were sub-
sequently averaged to produce a single performance measure,
thus reducing variability due to random partitioning and ob-665

taining a more reliable performance estimation. In this work,
the performance measure used for hyperparameter optimisation
was the root mean squared error (RMSE), as further explained
in Section 2.3.4.

2.3.4. Performance assessment of the regression models670

After building the regression models using the training sets
associated with both data splitting approaches, the test sets were

used to evaluate and compare the performance of the models in
the prediction of the displacement of the liver mesh nodes. The
first step in the performance assessment procedure was to com-675

pute the error associated with the prediction of each individual
Cartesian coordinate corresponding to the displacement of each
liver node i (i.e. the errors associated with the prediction of dx,
dy and dz), defined as the difference between the output esti-
mated by the model ŷi and the actual output yi (i.e. the corre-680

sponding label). In this work, this kind of error related to each
individual displacement coordinate for a particular sample was
referred to as the coordinate error.

Another more suitable metric used to evaluate the model per-
formance in the prediction of each displacement coordinate was
the root mean squared error (RMSE). The RMSE was computed
considering all the samples included in the used test set, thus be-
ing regarded as a global performance measure. Particularly, the
RMSE for each output was computed from all the coordinate
errors associated with that particular output, in Equation (2):

RMSE =

√∑ntest
i=1 (ŷi − yi)2

ntest
(2)

where ntest is the number of samples in the used test set, ŷi is
the output estimated by the model for the i-th sample and yi is685

the actual output for the i-th sample.
In addition to evaluating the performance of the models in

the prediction of each displacement coordinate individually, it
was of major importance to use other performance measures ca-
pable of taking into account the model performance related to
the three displacement coordinates. This type of performance
measure was absolutely required due to the fact that good per-
formance when predicting one or two displacement coordinates
did not ensure good performance in the prediction of the re-
maining coordinates, thus possibly leading to a general pre-
diction failure. In this sense, for each liver mesh node i, the
Euclidean distance between the displacement of the node in the
3D space predicted by each regression model and the actual dis-
placement of the node was calculated, as shown in Equation (3):

d(ŷi, yi) =

√
(d̂xi − dxi)2 + (d̂yi − dyi)2 + (d̂zi − dzi)2 (3)

where ŷi is the predicted displacement vector in the 3D space
for the i-the sample with the Cartesian coordinates (d̂xi, d̂yi, d̂zi)
and yi is the actual displacement vector for the i-th sample with
Cartesian coordinates (dxi, dyi, dzi). An illustrative example of690

the computation of this Euclidean distance in the 3D space is
shown in Figure 3. In this work, this performance measure was
referred to as the Euclidean error.

Furthermore, as an attempt to consider all the samples in the
test set used for assessing the model performance, three differ-695

ent global performance metrics based on the Euclidean errors
were computed: the mean Euclidean error, the percentage of
samples with a Euclidean error lower or equal to 1 mm and the
percentage of samples with a Euclidean error lower or equal to
3 mm. The mean Euclidean error was calculated by averaging700

the Euclidean errors corresponding to all the samples in the test
set. The percentage measures were computed as the number
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of samples with a Euclidean error lower or equal to the corre-
sponding upper limits divided by the total number of samples.
Regarding the upper limits, the choice of the limit of 3 mm was705

based on the precision of the results obtained in other similar
research works related to the modelling of soft tissue deforma-
tion (Brock et al., 2006; Ruiter et al., 2006; Brock et al., 2008),
in which displacement errors of about 3-5 mm were achieved
in the simulation of the deformation of human organs, such as710

the breast and the liver, using accurate FEM-generated models.
Therefore, the limit of 3 mm was used as a reference to check if
this study was comparable with other related works in terms of
accuracy. However, the specification of precision requirements
when using medical imaging, for instance, in cancer diagno-715

sis and treatment or surgical guidance is still an open question
(Brock et al., 2006). For example, Ruiter et al. (2006) stated
that a displacement error within 5 mm could be regarded as an
acceptable error for these medical systems. On the other hand,
Brock et al. (2008) declared that, in stereotactic body radio-720

therapy (SBRT), a systematic geometric error higher or equal
to 3 mm may have clinically-relevant dosimetric consequences,
since the delivered radiation dose is really high in this kind of
radiation therapy. In addition, in order to check a more ambi-
tious upper limit than that of 3 mm, the limit of 1 mm was also725

used for the performance assessment of the regression mod-
els, thus expecting that this work could go beyond the results
achieved in other studies.

Z

Y

X

Figure 3: Displacement error in volume.

A peculiarity of the labelled data set used in this work was
the great number of samples with an almost negligible displace-730

ment (i.e. their associated values of dx, dy and dz were zero or
very close to zero). This situation could possibly lead to a mis-
interpretation of the global performance measures. This could
be explained due to the fact that the samples with output values
close to zero were therefore expected to be predicted with re-735

ally low Euclidean errors, thus likely involving also a low mean
Euclidean error, even though the predictions were completely
wrong (i.e. with a high Euclidean error) for the samples with
a displacement different from zero. Hence, it was necessary
to study the effect of this issue on the model performance as-740

sessment. In particular, the three global performance measures
based on the Euclidean errors mentioned above were also com-
puted for the ten different external displacements applied to the
liver (i.e. input variable disp). The samples with the same value
of disp were used for calculating these performance measures,745

instead of using all the samples in the test set, thus resulting in
a total of ten values computed for each global measure. The
choice of grouping the samples according to the input variable
disp was based on the realistic assumption that the value of the
input variable disp was directly related to the values of dx, dy750

and dz (i.e. the higher the input variable disp was, also the
higher dx, dy and dz). Within this framework, the relative Eu-
clidean error was also computed for each liver mesh node i by
dividing the corresponding Euclidean error (computed accord-
ing to Equation (3)) by the length of the actual displacement755

vector yi in the 3D space (computed as shown in Equation (4)).
This kind of error also allowed to check if a low Euclidean error
did not mean good prediction performance, but it was only due
to the insignificant displacement of that particular liver node.

‖yi‖ =

√
dx2

i + dy2
i + dz2

i (4)

3. Results and discussion760

3.1. Hyperparameter optimisation

In order to select the optimal hyperparameters for the DT, the
RF and the ET models, the sweep of each hyperparameter to
adjust was performed using the training sets obtained by both
data splitting approaches. Figure 4 shows the cross-validated765

RMSE values of the DT models as a function of the hyperpa-
rameter nmin for the displacement coordinates dx, dy and dz us-
ing the 70%/30% data splitting approach. Similarly, Figures 5
and 6 show the cross-validated performance of the RF and the
ET models, respectively, by varying the value of the different770

hyperparameters (nmin, M and K) for the three displacement
coordinates using the 70%/30% data splitting approach. For
both data splitting approaches, the curves representing the evo-
lution of cross-validated RMSE values of the regression mod-
els with the different hyperparameters presented exactly the775

same trends, although the RMSE values were slightly different.
Therefore, for the sake of illustration, figures with the hyperpa-
rameter optimisation results are shown only for the 70%/30%
data splitting approach. In addition, a glance at Figures 4, 5
and 6 shows that the curves exhibited exactly the same tenden-780

cies for the three displacement coordinates, even though there
were differences in the RMSE values.

When observing the sweeps of nmin for the three tree-based
regression models, it can be noticed that the prediction error
had a monotonically increasing trend, as expected from the fact785

that a large value of nmin could prevent the trees from learn-
ing from the data (i.e. underfitting). Furthermore, the fact that
the best performance was obtained using the minimum possi-
ble value of nmin (i.e. nmin = 2) suggested that the data set was
free (or almost free) of output noise, since the noisier the out-790

put, the higher the value of nmin for which the best performance
was obtained, as reported by Geurts et al. (2006). Considering
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Figure 4: Evolution of the RMSE values of the DT models with the minimum
number of samples to split a node (nmin) for the three displacement coordinates
using the 70%/30% data splitting approach.

the sweeps of the hyperparameter M, as expected, it can be ob-
served that the behaviour of the prediction error was a monoton-
ically decreasing function of M for the RF and the ET models.795

In addition, it is noticeable that the prediction error converged
as the number of trees increased. Smaller values of M implied
higher speed of convergence and, therefore, the prediction er-
ror stopped decreasing significantly beyond a critical number
of trees. With regard to the evolution of the RMSE values with800

K for the RF and the ET models, it can be noticed that the pre-
diction error was a monotonically decreasing function and it
converged when increasing the value of K, as happened for the
sweeps of M. However, unlike for the sweeps of M, the slope of
the prediction error curve was not so steep for the smallest val-805

ues of K, but the error decreased more gradually with the value
of K. All the commented trends in the sweeps of the different
hyperparameters were in agreement with those reported in the
research conducted by Geurts et al. (2006), in which the effect
of the different hyperparameters on the prediction performance810

of the ET models was analysed.
From the parameter sweeps, the hyperparameter values were

chosen as a trade-off between prediction performance and com-
putational complexity. In particular, for the DT models, the
value of the hyperparameter nmin was set to 5 for the three dis-815

placement coordinates using both splitting approaches. In the
case of the RT and the ET models, the hyperparameter values
were set to nmin = 5, M = 40 and K = 7 for the three displace-
ment coordinates using both splitting approaches. The choice
of nmin = 5 was based on the fact that, although the predic-820

tion error obtained using nmin = 5 was almost identical to the
minimum possible error, obtained using nmin = 2, the setting
of nmin = 5 presented the additional advantage of reducing the
computational complexity compared to using fully developed
trees (i.e. nmin = 2). Moreover, the value of nmin chosen in this825

work was in accordance with the value proposed in the study by
Geurts et al. (2006), which suggested that the setting of nmin = 5
was a robust parameter choice for regression problems. Re-
garding the choice of the parameter M, M = 40 was selected
as the most suitable because this value was large enough to en-830

sure convergence of the prediction error due to the ensemble

averaging effect. Furthermore, due to the enormous influence
of parameter M on the computational requirements to build the
models, the setting of M was attempted to be as small as pos-
sible in order to prevent the training time from bursting, while835

guaranteeing convergence of the error. Considering the curves
for the sweeps of K, it can be seen that the choice of K = 7 en-
sured the convergence of the prediction error. In addition, the
setting of K chosen in this work presented the additional ben-
efit of requiring less computational requirements compared to840

using the highest possible value of K (i.e. K = 9), as done by
Geurts et al. (2006), since the degree of randomisation of the
trees in the ensemble was weaker when using K = 7. Hence,
the different choice of the parameter K in this work was justi-
fied.845

3.2. Performance assessment of the regression models

3.2.1. Overall results
Once the regression models were built using the optimised

hyperparameters reported in Section 3.1 and the training sets as-
sociated with both data splitting approaches, the test sets were850

employed to validate the models in the prediction of the dis-
placement of liver mesh nodes. Table 3 summarises the per-
formance assessment results for all the regression models using
both data splitting approaches. In particular, the three global
performance metrics based on the Euclidean errors are shown,855

including the mean Euclidean error, the percentage of samples
with a Euclidean error lower or equal to 1 mm and the percent-
age of samples with a Euclidean error lower or equal to 3 mm.
An aspect that should be commented is that Table 3 does not
show the results from evaluating the performance of the mod-860

els in the prediction of each displacement coordinate separately,
such as the RMSE values, but only the performance metrics that
took into account the performance related to the three displace-
ment coordinates as a whole, since the optimisation of this type
of performance measure was the main goal of this work. There-865

fore, the higher the percentages of samples with Euclidean er-
rors under 1 mm and 3 mm and the lower the mean Euclidean
error associated with a particular regression model, the better
the model from the point of view of prediction performance.

When comparing the performance assessment results for the870

different regression models, it can be noticed that the three tree-
based methods (i.e. the DT, the RF and the ET techniques)
clearly outperformed the DM and the LR models for both data
splitting approaches. As expected, the DM models provided
the worst prediction performance, since these models always875

returned the mean value of the labels in the training set and,
therefore, they were simply taken as a reference to be com-
pared with the other regression models. In contrast, the best
results were achieved using the tree-based methods, with the
three models yielding similar prediction performance for each880

data splitting approach. For the LR models, the performance
results were in between those for the DM and the tree-based
methods, this fact confirming that the problem in this work had
non-linear nature.

Furthermore, comparison of the results for both data splitting885

approaches shows that, in general, the use of the 70%/30% data
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Figure 5: Evolution of the RMSE values of the RF models with the different hyperparameters for the three displacement coordinates using the 70%/30% data
splitting approach: (a) the minimum number of samples to split a node (nmin), (b) the number of trees in the ensemble (M) and (c) the number of input variables
randomly selected at each node (K).
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Figure 6: Evolution of the RMSE values of the ET models with the different hyperparameters for the three displacement coordinates using the 70%/30% data
splitting approach: (a) the minimum number of samples to split a node (nmin), (b) the number of trees in the ensemble (M) and (c) the number of input variables
randomly selected at each node (K).

splitting approach resulted in much better performance results
than using the data splitting approach leaving one liver for test.
Even though the DM and the LR models gave similar results
for both data splitting approaches, the 70%/30% data splitting890

approach led to remarkably better prediction performance than
the data splitting approach leaving one liver for test for the three
tree-based methods. In particular, in the case of the three tree-
based models, it can be observed that, while the percentage of
samples with Euclidean errors under 3 mm was notably high895

(above 91%) for both data splitting approaches, the other two
global performance measures were clearly improved when us-
ing the 70%/30% data splitting approach, with the percentage
of samples with Euclidean errors under 1 mm increasing from
about 55-60% to around 100% and the mean Euclidean error900

decreasing from a magnitude order of 1 mm to an order of 0.1
mm. In this sense, it should be particularly emphasised that,
when using the tree-based methods, almost all the samples were
predicted with a Euclidean error lower or equal to 1 mm for the
70%/30% data splitting approach, thus surpassing, to a large905

extent, the displacement errors of about 3-5 mm mentioned in
other similar research studies regarding the modelling of hu-
man organ deformation (Brock et al., 2006; Ruiter et al., 2006;
Brock et al., 2008). Anyway, even though the best results were
obtained for the 70%/30% data splitting, the high percentage of910

samples with Euclidean errors under 3 mm of above 91% and
the mean Euclidean error of the order of 1 mm achieved for the
three tree-based models using the data splitting approach leav-

ing one liver for test could be regarded as perfectly comparable
with the results of about 3-5 mm obtained in the other related915

works. In addition, the results achieved for the tree-based mod-
els using the one liver for test data splitting could be considered
more than acceptable according to the upper precision limit of 3
mm suggested for avoiding clinically-relevant dosimetric con-
sequences in radiotherapy (Brock et al., 2008), and they were920

also well below the accuracy limit of 5 mm required when using
medical imaging on human organs for early cancer diagnosis
(Ruiter et al., 2006).

Due to the limited number of livers used for the experiments,
the improvement in the results when using the 70%/30% data925

splitting approach was broadly in line with expectations, since
the 70%/30% data splitting maximised the variety of liver ge-
ometries in the training set employed to build the models. Nev-
ertheless, if many more livers had been employed to build the
models, the results for both data splitting approaches would930

have been expected to be much closer. In fact, since the data
splitting approach leaving one liver for test was more similar to
what would happen in a real application, a new research work
is currently being planned to be conducted using many more
livers, thus attempting to increase the range of geometries and935

biomechanical properties compared to those used in this work.

Despite the similarity in performance of the three tree-based
models, the best prediction performance results for the data
splitting approach leaving one liver for test were obtained us-
ing the RF regression method, with percentages of samples with940
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Table 3: Performance assessment results for all the regression models using both data splitting approaches, including the three global performance metrics based on
the Euclidean errors. The best results for both data splitting approaches are highlighted in bold.

One liver for test 70%/30%

Regression model Samples with Eu-
clidean errors ≤ 1
mm (%)

Samples with Eu-
clidean errors ≤ 3
mm (%)

Mean Euclidean
error (mm)

Samples with Eu-
clidean errors ≤ 1
mm (%)

Samples with Eu-
clidean errors ≤ 3
mm (%)

Mean Euclidean
error (mm)

DM 2.20 22.87 5.41 2.31 21.23 5.41
LR 15.40 66.67 3.04 10.94 59.62 3.22
DT 57.77 93.20 1.13 99.66 100.00 0.14
RF 60.19 94.31 1.06 99.99 100.00 0.09
ET 55.45 91.67 1.20 100.00 100.00 0.07

Euclidean errors under 1 mm and 3 mm of 60.19% and 94.31%,
respectively, and a mean Euclidean error of 1.06 mm, as can be
extracted from Table 3. Similarly, for the 70%/30% data split-
ting approach, it is noticeable that the lowest mean Euclidean
error (0.07 mm) and the highest percentages of samples with945

Euclidean errors under 1 mm and 3 mm (100.00% for these two
performance measures) were achieved using the ET method.
For the sake of clarity, the mentioned performance assessment
results using the best regression models for both data splitting
approaches are highlighted in bold in the table.950

Even though the evaluation of ML models in terms of com-
putational cost was beyond the scope of this research work, it
is also worth discussing this issue in general terms, without
getting into detail. To this end, once performed the training
process of the ML models off-line, it was measured the com-955

putational time required by the RF regression model to pre-
dict the three displacement coordinates of each liver mesh node
(i.e. dx, dy and dz) for the liver used for test. Specifically,
the experiment consisted in predicting the ten liver deformed
states for the biomechanical behaviour modelled using combi-960

nation 1 of elastic constants (as named in Table 1). In addition,
the computational time necessary to perform exactly the same
simulation with FEM was also measured using the same com-
puter, thus making it possible to generally compare both mod-
elling approaches in terms of their speed and provide a gen-965

eral idea of how much faster ML models were compared with
FEM-generated models. The computer employed in this work
to perform the simulations was based on a 3.4 GHz Intel Core
i7 processor with 8 GB RAM and OS X El Capitan (version
10.11.6).970

The measured computational times were 2.89 s and 51.63 s
for the ML and the FEM models, respectively. Therefore, the
ML model was approximately 18 times faster than the FEM-
based model when performing exactly the same simulation.
These results suggested that the computational cost associated975

to FEM-generated models was much higher than that for ML
models, as expected from previous related research works. Fur-
thermore, an aspect that should also be commented is that the
most important time for a medical application would be the
computational time required to predict only one liver deformed980

state, instead of ten states, thus resulting in a computational
time 10 times lower than that reported in this research of 2.89
s for the ML model. Therefore, the value of around 0.3 s for

the computational time to predict one liver deformed state with
the ML model would be much closer to fulfilling the real-time985

requirements of actual CAS systems used in medicine, which
work at a high refresh rate. In this sense, in the near future, the
performance of the proposed ML-based modelling framework
should be thoroughly evaluated in terms of computational cost
before its integration in commercial CAS systems.990

3.2.2. Results for the best models
This section discusses more thoroughly the performance as-

sessment results obtained using the above-commented regres-
sion models leading to the best prediction performance for both
data splitting approaches. Even though the measures based on995

the Euclidean errors were of more importance in this work, it
is also worth commenting on the results obtained from eval-
uating the model performance in the prediction of each dis-
placement coordinate separately. In this regard, Table 4 shows
the RMSE values for the three displacement coordinates using1000

the best regression models for both data splitting approaches.
As expected, the RMSE values for the 70%/30% data splitting
approach were notably lower than those for the data splitting
approach leaving one liver for test. Furthermore, it can be ob-
served that, for both data splitting approaches, the RMSE values1005

for the displacement coordinates dx and dz were very close to
each other and, in turn, higher than the value for the coordinate
dy. This may be explained due to the fact that the displacement
of the liver mesh nodes in the whole labelled data set was con-
siderably lower in the y-axis direction than in that of the other1010

two axes (in absolute values), with the target output dx rang-
ing from -22.37 mm to 22.92 mm, dy from -9.99 mm to 8.11
mm and dz from -31.64 mm to 9.24 mm. However, despite the
difference in the RMSE values between the coordinates dx and
dz and the coordinate dy, the values were of the same order of1015

magnitude for the three displacement coordinates.

Table 4: RMSE values for the three displacement coordinates using the best
regression models for both data splitting approaches.

Data splitting
approach

dx (mm) dy (mm) dz (mm)

One liver for test 0.93 0.66 0.92
70%/30% 0.07 0.04 0.07
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For further discussion, Figure 7 shows the boxplots of the co-
ordinate errors for the three displacement coordinates using the
best regression models for both data splitting approaches, thus
providing information about the error distribution. An aspect1020

that should be commented is that the outliers are not shown in
the boxplots in Figure 7 and neither in the remaining boxplots
depicted in this work (Figure 8). This is due to the fact that,
even though the number of outliers was almost negligible com-
pared with the enormous amount of samples in the labelled data1025

set, the presence of outliers makes it difficult to see the box-
plots properly, thus complicating the extraction of meaningful
information from the boxplots. Therefore, in general terms, the
removal of outliers from the boxplots does not affect the dis-
cussion, since the boxplots are shown only for commenting on1030

general trends, without getting into detail. In the case of the
70%/30% data splitting approach, it can be noticed that the er-
ror distribution was symmetric for the three displacement co-
ordinates, since the median, represented by the red line in the
middle of the box, was equidistant from the minimum and the1035

maximum error values. In addition, taking into account that the
coordinate error was defined as the difference between the esti-
mated output and the actual output, the fact that the error distri-
bution was balanced around zero for the three coordinates (i.e.
the median had a value of around zero) indicated that the re-1040

gression models did not tend to overestimate nor underestimate
the outputs, since the coordinate error was positive for half of
the samples (i.e. overestimated predictions), whereas the error
was negative for the other half (i.e. underestimated predictions).
Another aspect that can be observed is that the boxplot for the1045

displacement coordinate dy was smaller than those for the other
two coordinates, thus indicating that there was less variation in
the errors for the coordinate dy and, therefore, these errors were
smaller, this being in agreement with the RMSE values shown
in Table 4. For the data splitting approach leaving one liver for1050

test, the corresponding boxplots presented some general simi-
larities to those for the 70%/30% data splitting approach, such
as the fact that, in general terms, the error distribution was ap-
proximately symmetric and balanced around zero for the three
coordinates. However, even though the boxplot for the dis-1055

placement coordinate dx was almost symmetric and the median
had a value of around zero, it is noticeable that the boxplots
for the displacement coordinates dy and dz were mildly skewed
and, in addition, the corresponding medians were not so close
to zero, but slightly above zero. This suggested that the mod-1060

els used to predict these two displacement coordinates tended
to slightly overestimate the outputs, since the coordinate error
was positive for more than half of the samples.

In order to continue the discussion about the performance as-
sessment results, the boxplots of the Euclidean errors using the1065

best regression models for both data splitting approaches are
shown in Figure 8 (outliers not shown). In addition, for conve-
nience when discussing the boxplots, Table 5 shows the three
global performance measures based on the Euclidean errors us-
ing the best models for both data splitting approaches, directly1070

extracted from Table 3. When observing the boxplots in Fig-
ure 8, it is clear that the distribution of the Euclidean errors
was positively skewed for both data splitting approaches, since
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Figure 7: Boxplots of the coordinate errors for the three displacement coor-
dinates using the best regression models for the one liver for test (a) and the
70%/30% (b) data splitting approaches. Outliers are not shown.

the distance from the median to the third quartile was greater
than the distance from the median to the first quartile. As a di-1075

rect consequence of the positive skew of the error distributions,
the mean Euclidean error was expected to be higher than the
median for both data splitting approaches. In fact, as can be
straightforwardly seen from the boxplots, the mean Euclidean
errors of 1.06 mm and 0.07 mm for the one liver for test and the1080

70%/30% data splitting approaches, respectively, were clearly
higher than the corresponding medians, thus indicating that the
Euclidean error associated with most of the samples was lower
than the corresponding mean Euclidean error for both data split-
ting approaches. In addition, another aspect that can be ob-1085

served from the boxplots is that, for the data splitting approach
leaving one liver for test, the Euclidean error was lower than the
upper limit of 3 mm for most of the samples, whereas the error
was lower than the limit of 1 mm for more than half of the sam-
ples, as expected from the computed percentages of samples1090

with Euclidean errors under 1 mm and 3 mm of 60.19% and
94.31%, respectively. Similarly, for the 70%/30% data splitting
approach, it is easy to check that the Euclidean error was lower
than the upper limits of 1 mm and 3 mm for all the samples,
thus agreeing with the computed percentages of samples with1095

errors under 1 mm and 3 mm of 100.00% for both upper limits.
The last step in this discussion about the performance results

for the best models is to check that the samples with a displace-
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Table 5: Performance assessment results using the best regression models for
both data splitting approaches, including the three global performance metrics
based on the Euclidean errors.

Data splitting
approach

Samples with
Euclidean errors
≤ 1 mm (%)

Samples with
Euclidean errors
≤ 3 mm (%)

Mean Euclidean
error (mm)

One liver for test 60.19 94.31 1.06
70%/30% 100.00 100.00 0.07

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Euclidean error (mm)

(a)

0.00 0.05 0.10 0.15 0.20 0.25
Euclidean error (mm)

(b)

Figure 8: Boxplots of the Euclidean errors using the best regression models for
the one liver for test (a) and the 70%/30% (b) data splitting approaches. Outliers
are not shown.

ment (i.e. their associated values of dx, dy and dz) very different
from zero were predicted with low Euclidean errors and, there-1100

fore, the good prediction performance was not only due to the
great number of samples in the labelled data set with an almost
negligible displacement and, consequently, an expected really
low Euclidean error. In this regard, Table 6 shows the perfor-
mance assessment results for the ten different external displace-1105

ments applied to the liver (i.e. input variable disp) using the
best regression models for both data splitting approaches, in-
cluding the three global performance metrics based on the Eu-
clidean errors. In the case of the 70%/30% data splitting ap-
proach, it can be observed that, while the percentages of sam-1110

ples with Euclidean errors under 1 mm and 3 mm remained
constant at 100.00% for the different displacement applied to
the liver, the mean Euclidean error gradually increased as the

value of the input variable disp raised, from 0.01 mm to 0.13
mm. For the data splitting approach leaving one liver for test,1115

the mean Euclidean error increased more steeply with the in-
put variable disp, from 0.19 mm to 1.95 mm. Conversely, the
percentages of samples with Euclidean errors under 1 mm and
3 mm decreased when increasing the value of disp, diminish-
ing from 100.00% to 26.08% and from 100.00% to 80.06%,1120

respectively. The steeper decrease in the percentage of sam-
ples with Euclidean errors under 1 mm was expected, since the
limit of 1 mm was a much stricter constraint than the limit of
3 mm. For both data splitting approaches, it should be high-
lighted that, although the mean Euclidean error increased with1125

the displacement applied to the liver disp, the mean Euclidean
error was quite low even for the maximum value of disp of 15
mm, especially for the 70%/30% data splitting approach, with
values of 1.95 mm and 0.13 mm for the one liver for test and
the 70%/30% data splitting approaches, respectively. There-1130

fore, it can be said that, for both data splitting approaches, the
prediction performance was also good for the samples with a
displacement not very close to zero, assuming that the values of
dx, dy and dz were directly related to the value of disp.

In order to better illustrate and clarify this issue, Figure 91135

shows a particular cut of the liver used for test in the frontal
plane (i.e. plane x-z) when applying an external displacement
of 15 mm, and for the biomechanical behaviour modelled us-
ing combination 1 of elastic material constants (as named in
Table 1). The colourbar in the figure indicates the value of the1140

actual displacement vector length for each sample. In addition,
magenta circles represent those liver nodes with a Euclidean er-
ror lower or equal to 3 mm when predicting the displacement
using the best model for the data splitting approach consisting
in leaving one liver for test; whereas black circles represent the1145

nodes used in the boundary conditions in FEM and, therefore,
not included in the labelled data set. Figure 9 clearly shows that
a significant part of the samples were predicted with Euclidean
errors under 3 mm, thus agreeing with the percentage presented
in Table 5 (i.e. 80.06% of the samples had a Euclidean error1150

under 3 mm for the maximum value of disp of 15 mm).
Within this framework, Figures 10 and 11 show the perfor-

mance results with samples ordered according to the actual dis-
placement vector length using the best regression models for
both data splitting approaches. In particular, the estimated and1155

the actual displacement vector lengths for all the samples, the
Euclidean error for all the samples and the relative Euclidean er-
ror for all the samples are shown, respectively, from top to bot-
tom. It should be commented that, although the samples with
a displacement vector length very close to zero led to relative1160

Euclidean errors very much higher than 100%, Figures 10 and
11 only show up to a relative Euclidean error of 100% for the
sake of clarity. A quick glance at the figures shows that much
better prediction performance was achieved for the 70%/30%
data splitting approach compared to the data splitting approach1165

leaving one liver for test, with the estimated displacement vec-
tor length being much closer to the actual one and, therefore,
the Euclidean error and the relative Euclidean error being much
lower, thus agreeing with all the above-commented results. For
both data splitting approaches, it can be observed that, in fact,1170
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Table 6: Performance assessment results for the different external displacements applied to the liver using the best regression models for both data splitting
approaches, including the three global performance metrics based on the Euclidean errors.

One liver for test 70%/30%

disp (mm) Samples with Eu-
clidean errors ≤ 1
mm (%)

Samples with Eu-
clidean errors ≤ 3
mm (%)

Mean Euclidean
error (mm)

Samples with Eu-
clidean errors ≤ 1
mm (%)

Samples with Eu-
clidean errors ≤ 3
mm (%)

Mean Euclidean
error (mm)

1.5 100.00 100.00 0.19 100.00 100.00 0.01
3.0 96.46 100.00 0.38 100.00 100.00 0.03
4.5 84.60 100.00 0.57 100.00 100.00 0.04
6.0 72.84 99.86 0.76 100.00 100.00 0.06
7.5 61.16 98.74 0.95 100.00 100.00 0.07
9.0 50.56 97.00 1.15 100.00 100.00 0.08
10.5 42.98 93.48 1.35 100.00 100.00 0.09
12.0 36.44 89.17 1.56 100.00 100.00 0.10
13.5 30.78 84.80 1.75 100.00 100.00 0.11
15.0 26.08 80.06 1.95 100.00 100.00 0.13
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Figure 9: Cut of the liver used for test in the frontal plane (i.e. plane x-z)
when applying an external displacement of 15 mm, and for the biomechanical
behaviour modelled using combination 1 of elastic material constants. The
colourbar indicates the value of the actual displacement vector length for each
sample. The liver nodes with a Euclidean error lower or equal to 3 mm are
circled in magenta and the nodes used in the boundary conditions in FEM are
circled in black.

most of the samples with a displacement vector length close
to zero led to relative Euclidean errors very much higher than
100%. In addition, for the data splitting approach leaving one
liver for test, a lot of samples with a displacement vector length
not very close to zero had huge relative Euclidean errors due1175

to the generally much poorer prediction performance achieved
for this data splitting approach. However, it is noticeable that,
despite the huge relative Euclidean errors for samples with a
small displacement, the relative Euclidean error tended to de-
crease with the value of the displacement vector length, this1180

fact being specially significant for the 70%/30% data splitting
approach. In this regard, an aspect that should be highlighted
is that, for the 70%/30% data splitting approach, almost all the
samples with a displacement vector length higher than 1 mm
were predicted with relative Euclidean errors much lower than1185

20%, as can be seen from Figure 11. Therefore, these results
also confirmed that the best regression model for the 70%/30%
data splitting approach led to particularly good prediction per-

formance over a wide range of displacement vector lengths,
with a low relative Euclidean error for all the samples, with1190

the exception of those with a displacement much lower than 1
mm.

4. Conclusions

The potential of ML methods has been proved for modelling
the biomechanical behaviour of the human liver during the1195

breathing process. In particular, this research has proposed a
ML-based modelling framework capable of predicting the liver
deformation (i.e. the displacement of each liver mesh node in
the 3D space: dx, dy and dz) when exerting different exter-
nal displacements that recreated the liver compression during1200

breathing, by means of training the ML models with data pre-
viously collected from the FEM-based simulation of this be-
haviour. Furthermore, unlike other related studies, this mod-
elling scheme was not only able to predict the liver deforma-
tion when applying a new external displacement, but also for a1205

new liver. This was due to the use of several livers during the
training process of the ML models.

Once the different ML regression models were built using the
optimised hyperparameters and the training sets associated with
the two data splitting approaches, the test sets were used to eval-1210

uate the performance of the models in the prediction of the dis-
placement of the liver mesh nodes. The comparison of the per-
formance assessment results revealed that the three tree-based
methods (i.e. the DT, the RF and the ET techniques) clearly
outperformed the DM and the LR models for both data split-1215

ting approaches, thus confirming that the problem in this work
had non-linear nature. In addition, in general, the use of the
70%/30% data splitting approach resulted in much better per-
formance results than using the data splitting approach leaving
one liver for test, since the 70%/30% data splitting maximised1220

the variety of liver geometries in the training set employed to
build the models. In fact, the best prediction performance re-
sults for the data splitting approach leaving one liver for test
were obtained using the RF regression method, with percent-
ages of samples with Euclidean errors under 1 mm and 3 mm1225
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Figure 10: Performance assessment results with samples ordered according to
the actual displacement vector length using the best model for the data splitting
approach leaving one liver for test, including the estimated and the actual dis-
placement vector lengths for all the samples (top), the Euclidean error for all the
samples (middle) and the relative Euclidean error for all the samples (bottom).

Figure 11: Performance assessment results with samples ordered according to
the actual displacement vector length using the best model for the 70%/30%
data splitting approach, including the estimated and the actual displacement
vector lengths for all the samples (top), the Euclidean error for all the samples
(middle) and the relative Euclidean error for all the samples (bottom).
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of 60.19% and 94.31%, respectively, and a mean Euclidean er-
ror of 1.06 mm. In the case of the 70%/30% data splitting ap-
proach, the lowest mean Euclidean error (0.07 mm) and the
highest percentages of samples with Euclidean errors under 1
mm and 3 mm (100.00% for these two performance measures)1230

were achieved using the ET method.
It should be particularly emphasised that all the samples were

predicted with a Euclidean error lower or equal to 1 mm us-
ing the best model for the 70%/30% data splitting approach,
thus surpassing, to a large extent, the precision results of about1235

3-5 mm achieved in other similar research studies regarding
the modelling of human organ deformations. Anyway, even
though the best results were obtained for the 70%/30% data
splitting, the high percentage of samples with Euclidean errors
under 3 mm of 94.31% and the mean Euclidean error of 1.061240

mm achieved using the best model for the data splitting ap-
proach leaving one liver for test could be regarded as perfectly
comparable with the results of about 3-5 mm obtained in the
other related works. In addition, the results achieved using the
best model for the one liver for test data splitting could be con-1245

sidered more than acceptable according to the upper precision
limit of 3 mm suggested for avoiding clinically-relevant dosi-
metric consequences in radiotherapy, and they were also well
below the accuracy limit of 5 mm acceptable when using med-
ical imaging on human organs for early cancer diagnosis.1250

A last remark that is important to comment is that the ML
models were constructed using data from FEM-based simula-
tions of the liver deformation during breathing due to the con-
siderable difficulty in obtaining these data directly from real pa-
tients. Nowadays, it is really difficult to get liver deformation1255

data from real patients mainly because taking unnecessary CT
scans during the breathing process is out of the clinical pro-
tocol, since the scanning process implies a lot of radiation for
the patients and it is time and resource consuming. However,
if acquiring data from tracking the position of some specific1260

points of in-vivo livers was possible, ML models could be con-
structed using only these real data without the need to perform
FEM-based simulations of the breathing process off-line. The
resultant ML models built from real data would predict the liver
deformation during breathing as fast as the ML models con-1265

structed from FEM-generated data. As a direct consequence of
not requiring FEM-based simulations, an explicit biomechan-
ical model of the liver (e.g. the Ogden model used in this
work) would not be necessary to perform predictions about its
behaviour. This is an important issue to highlight, since, to1270

date, an explicit model of the human liver able to characterise
its mechanical behaviour in vivo in a process such as breath-
ing is still a challenge in soft tissue Biomechanics. Therefore,
if, as the Biomechanics community hopes in the near future,
the acquisition of data from the liver of real patients was feasi-1275

ble, the ML models would provide a powerful modelling frame-
work capable of outperforming the conventional FEM in terms
of speed with the additional advantage of not requiring an ex-
plicit biomechanical model of the organ, not even for obtaining
the training data, thus enabling the real-time simulation of the1280

deformation of in-vivo human livers of real patients during the
breathing process.

5. Future research work

Further research on some aspects is still required before
the clinical application of the presented ML-based modelling1285

scheme. In this sense, a natural way to continue the research
presented in this paper would be to use many different livers
during the training process of the ML models in order to prop-
erly predict the displacement of an unknown liver within a wide
range of geometries and biomechanical properties. Thus, the1290

data splitting approach leaving one liver for test, which is more
similar to what would happen in a real application, would be
expected to lead to much better prediction performance com-
pared to that achieved in the present research. In fact, a new
research work is currently being planned to be conducted using1295

many more livers compared to those used in this work. There-
fore, it may be possible to check that the results for the two
data splitting approaches used in the present work are similar
and, in turn, optimal from a clinical point of view when em-
ploying many more livers to construct the ML models, which1300

would be in line with current expectations.
A further step in the framework of this research line would

be to obtain the elastic properties of the livers, as well as the
liver meshes, from CT images of real patients in vivo. In fact,
the researchers in the present work are currently working in1305

this regard in order to estimate the elastic material constants
of soft tissues of each particular patient in vivo by means of im-
age analysis. In addition, the boundary conditions used when
generating the training data with FEM should reproduce more
faithfully the real process of breathing. For instance, this could1310

be done by performing two CT scans of each liver (in complete
exhalation and in complete inhalation) and then obtaining the
real displacement of the nodes of the liver surface by a registra-
tion algorithm.

Once ML models are trained off-line, ML models are ex-1315

pected to be able to perform an accurate simulation of liver
deformation during breathing in real-time, thus tracking the ex-
act location of the liver at every moment, since these models
generally allow a really fast processing. However, the perfor-
mance of the proposed ML-based modelling framework should1320

be thoroughly evaluated in terms of computational cost before
its integration in commercial CAS systems. Thus, it would be
possible to properly check if ML models can fulfil the real-time
requirements of actual CAS systems used in medicine, which
work at a high refresh rate. In this regard, even though it is1325

common knowledge from previous related research works that
the computational cost associated to FEM-generated models is
much higher for simulating complex biomechanical behaviours
than that for ML models, an exhaustive comparison of the re-
sults from both models in terms of their computational time1330

should also be carried out.
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