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Abstract.  

 

Recent work has been devoted to study the use of multiobjective evolutionary algorithms (MOEAs) in stock 

portfolio optimization, within a common mean-variance framework. This article proposes the use of a more 

appropriate framework, mean-semivariance framework, which takes into account only adverse return 

variations instead of overall variations. It also proposes the use and comparison of established Technical 

Analysis (TA) indicators in pursuing better outcomes within the risk-return relation. Results show there is 

some difference in the performance of the two selected MOEAs – Non-dominated Sorting Genetic Algorithm 

II (NSGA II) and Strength Pareto Evolutionary Algorithm 2 (SPEA 2) – within portfolio optimization. In 

addition, when used with four TA based strategies – Relative Strength Index (RSI), Moving Average 

Convergence/Divergence (MACD), Contrarian Bollinger Bands (CBB) and Bollinger Bands (BB), the two 

selected MOEAs achieve solutions with interesting in-sample and out-of-sample outcomes for the BB 

strategy. 
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1 Introduction 

 

 In recent years, some metaheuristic-based research has been devoted to the study of Finance (Ni & 

Wang, 2013). One specific area of interest is portfolio selection, where different types of metaheuristics have 

been employed in the optimization process (Metaxiotis & Liagkouras, 2012), both under single objective and 

multiobjective perspectives. The latter perspective gathered popularity in this particular area, since portfolios 

focus on two major objectives: return and risk. 

 Some of the metaheuristics most often applied to portfolio optimization are evolutionary algorithms 

(EA), both in single objective (Talebi, Molaei, & Sheikh, 2010) and in multiobjective frameworks (Mishra, 

Panda, & Majhi, 2014). These latter studies use multiobjective algorithms to search for solutions as near as 

possible to the efficient frontier (Pareto front), enhancing results in each iteration by selecting solutions 

progressively closer to the true Pareto front. The Pareto front is the set of non-dominated solutions of a 

multiobjective optimization problem, where it is not possible to improve the value of one objective function 

without simultaneously deteriorating the value of another objective function. However, for simplicity reasons, 

when we mention the non-dominated solution set, we are referring to the best set of solutions at any given 

iteration of the multiobjective evolutionary algorithm (MOEA). 

 The present article intends to present and analyse the results of two different MOEAs – the Non-

dominated Sorting Genetic Algorithm - NSGA II (Deb, Pratap, Agarwal, & Meyarivan, 2002) and the Strength 

Pareto Evolutionary Algorithm - SPEA 2 (Zitzler, Laumanns, & Thiele, 2001) in the selection of assets (stocks), 

where the decision to be long in the market or out-of-the-market is determined by the signal generated through 

the use of a technical analysis (TA) indicator (Fu, Chung, & Chung, 2013). We will use four different TA 

trading strategies and develop a comparative analysis. The selected trading strategies are the following: Moving 

Average Convergence / Divergence (MACD), Relative Strength Index (RSI), Bollinger Bands (BB) and 

Contrarian Bollinger Bands (CBB). 

 The main contribution of this work is twofold – first, to compare the performance of two up-to-date 

MOEAs (NSGA II and SPEA 2) in a mean-semivariance portfolio optimization framework, both in-sample and 

out-of-sample; second, to assess how the use of trading strategies based on TA indicators may (or may not) lead 

to improve portfolio performance. We have also conducted a stratified market analysis, studying the behaviour 

of the optimization process in markets with different degrees of liquidity and efficiency, and assessing how 

these factors may influence performance. 

 This paper is structured as follows. After this brief introduction, Section 2 describes the multiobjective 

portfolio optimization problem as well as the rationale for using semi-variance as a measure of risk. Section 3 

presents the two aforementioned MOEAs used in this work. Section 4 introduces the adopted TA trading 

strategies. The employed methodology is described in section 5. Empirical results are reported and discussed 

in Section 6. In Section 7 the major conclusions of this study are presented. 
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2 Mean-Semivariance Portfolio Optimization 

Portfolio optimization aims at choosing the proportions of different stocks (or other market assets) to 

integrate a portfolio with the purpose of maximizing overall expected return and minimizing overall risk. In 

financial markets, there is a trade-off between return and risk. In general, the better we get in terms of return 

(greater return), the worse-off we will be regarding risk (larger risk). Different combinations of assets weights 

(proportions of the amount allocated to each asset with reference to the available financial amount) provide 

different outputs regarding expected return and risk. The aim of the optimization task is to reach the set of 

combinations where, for any given level of risk, it is impossible to increase expected return, or, for any given 

level of expected return, it is impossible to decrease the level of risk. This set of combinations constitutes the 

Pareto front of the bi-objective optimization problem.  

Traditionally, portfolio optimization problems use variance (or standard deviation) as a measure of risk. 

Although commonly accepted, this measure is not the most appropriate for assessing risk, since it considers 

equally adverse deviations (below average) as well as favourable ones (above average). However, as Markowitz 

admitted, an investor is only concerned with adverse variations. In this context, Markowitz proposed an 

alternative measure of risk, the “Semivariance” (Markowitz, 1991), which considers only adverse deviations. 

Semivariance is mathematically defined as 

 

𝑆 = 𝐸(min(0, 𝑅𝑃 − 𝐶)2) (1) 

 

where 𝐸(⋅) is the expected value, 𝑅𝑃 is the portfolio return and C is a benchmark. The difficulty with the 

computation of semivariance resides on the endogenous nature of the portfolio semicovariance matrix, which 

depends on the weights given to each asset, i.e., a change in weights affects the periods in which the portfolio 

underperforms the benchmark “C”. Markowitz proposed a problem reformulation (Markowitz, 1993) including 

additional variables in order to use the Critical Line Algorithm (CLA) as in the classical case of Mean-Variance 

portfolio optimization. Still, the complexity of the method stands as an inconvenience to this alternative. 

(Estrada, 2008) presented a simpler way to deal with the endogeneity problem: the author proposed a heuristic 

approach to obtain a symmetric and exogenous semicovariance matrix, which can be used to approximate 

portfolio semivariance. Estrada argued that this heuristic yields a portfolio semivariance that is both highly 

correlated and very close to the actual value it intends to approximate. The method of Estrada allows 

simplification and reduces the computational effort required for the calculations. However, we must point out 

that this is still an approximation, introducing inaccuracies to the solutions. 

When using MOEAs, the difficulty of computing the semivariance is overcome by nature, since the 

computation is made by iterations and, in each iteration, the weights of the portfolio(s) are known a priori 

because they are generated by the algorithm. Knowing the weights, we may compute the portfolio average 

return (used as the benchmark) and consequently determine in which periods the portfolio underperforms the 

benchmark. Therefore, in this respect, MOEAs seem to be adequate tools for portfolio optimization under a 

mean-semivariance framework.  
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 The multiobjective portfolio optimization problem that we consider can be formulated as follows:  

max  𝐸(𝑅𝑃) =  ∑ 𝑤𝑖𝐸(𝑅𝑖)

𝑛

𝑖=1

= ∑ ∑ 𝑤𝑖

𝑅𝑖𝑡

𝑇

𝑛

𝑖=1

𝑇

𝑡=1

  (2) 

 

min 𝑆(𝑅𝑃) = ∑ ∑ 𝑤𝑖𝑤𝑗𝑆𝑃𝐶

𝑛

𝑗=1

𝑛

𝑖=1

 (3) 

 

Subject to: 

∑ 𝑤𝑖

𝑛

𝑖=1

= 1 (4) 

𝑆𝑃𝐶 = 𝐸(min(0, 𝑅𝑃 − 𝐶)2) =
1

𝑇
∑[min (0, 𝑅𝑃𝑡 − 𝐶)]2

𝑇

𝑡=1

 (5) 

 

where 𝑃 stands for portfolio, 𝑤𝑖  is the weight of asset 𝑖 in the portfolio, 𝑅𝑃 is the portfolio overall return, 𝑅𝑖𝑡 is 

the return of asset i in period t, 𝑛 is the number of assets, 𝑆 is the semivariance (as defined by Markowitz) and 

𝑇 is the number of periods considered in the analysis. In this work, the benchmark is 𝐶 = 𝐸(𝑅𝑃). 

  

3 Multiobjective Evolutionary Algorithms Applied to Portfolio Optimization 

 

 Over the last fifteen years, we have observed a substantial development of multiobjective evolutionary 

algorithms – (Metaxiotis & Liagkouras, 2012), (Deb, 2001), (Coello, Lamont, & Veldhuizen, 2007) –  and some 

of these algorithms have reached a high level of acceptance as efficient means to obtain good solutions for 

complex problems within a reasonable amount of time. To the most popular, attempts to enhance their 

performance succeeded and, consequently, new versions of the algorithms emerged. That is the case of the 

NSGA II and the SPEA 2 algorithms.  

 NSGA II was first presented in (Deb et al., 2002) and it emerged as an improvement to the original 

NSGA. Several studies have emphasized the good performance of this algorithm when compared with other 

MOEAs. NSGA II has been found particularly effective by adding a few adjustments (adopting a «predator-

prey approach») when dealing with 2 or 3 objectives (Deb, Sundar, Rao N., & Chaudhuri, 2006). New 

improvements to this algorithm have been introduced in (D’Souza, Sekaran, & Kandasamy, 2010), leading to 

the reduction of its running time and complexity, and therefore making it more attractive for solving practical 

problems. Another variation of the original NSGA (Michalak, 2016) includes the use of an external population 

in the optimization process. This variation led to better results, although it was only tested in some benchmark 

problems associated with specific functions (ZDT-1, ZDT-2, ZDT-3, ZDT-4 and ZDT-6). SPEA 2 (Zitzler et 

al., 2001) results from an improvement of the first SPEA. In this new algorithm the fitness assignment strategy 
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is fine-tuned, considering for each individual solution how many solutions it dominates and is dominated by. 

SPEA 2 incorporates a nearest neighbour density estimation technique that enhances the optimization process. 

 Both NSGA II and SPEA 2 have been considered as two of the best currently available MOEAs and 

they are often used in comparative studies within multiobjective problems, e.g. (Mishra, Panda, Meher, & 

Majhi, 2010), (Anagnostopoulos & Mamanis, 2011), (Lwin, Qu, & Kendall, 2014). One particular area in which 

these algorithms have been successfully applied is stock portfolio optimization. Considering two objective 

functions, risk and return, the problem of portfolio optimization possesses the very characteristics MOEAs are 

tailored for, especially when taking into consideration some more realistic assumptions, like cardinality 

(maximum number of admissible stocks in the portfolio), round-lot constraints (stocks/assets often  trade in  

standard units, called the lots, composed by a predetermined number of shares, usually but not necessarily 100; 

see (Skolpadungket, Dahal, & Harnpornchai, 2007), or the incorporation of trading costs. Such constraints make 

the use of the CLA very difficult or impracticable. In this kind of problems, both SPEA 2 and NSGA II have 

been references in the literature, and they usually present consistently better results than alternative techniques 

– (Duran, Cotta, & Fernández, 2009), (Mishra, Panda, Meher, & Sahu, 2009), (Metaxiotis & Liagkouras, 2012). 

We will use these algorithms implemented in Matlab Release 2016a. 

  

4 Technical Analysis 

 

TA consists in using price data and occasionally trading volume (number of transactions occurred during 

a trading session) to anticipate and predict future price movements and exploit them financially by trading 

according to such expected movements. If an investor uses some TA-based rule translated into a signal (buy, 

sell, stay or get out of the market) and applies it to his trading strategy, he may profit from market movements 

by using TA. For instance, if the signal generated by the trading rule associated with a TA indicator indicates 

that the market is prone to a price climb, the investor will buy now expecting to sell later at a higher price. 

Therefore, if TA rules are effective, the investor will collect above normal profits, on average, during a long 

period of time. In our work we have considered the Buy & Hold (B&H) strategy as the reference for normal 

profits. 

The use of TA in trading has been viewed with scepticism from the Academic world regarding the 

attainment of above normal returns. Several studies present strong evidence in favour of TA, either based on 

indicator analysis, such as (Brock, Lakonishok, & LeBaron, 1992) and (Pinto, Neves, & Horta, 2015), or based 

on chart analysis, like (Lo, Mamaysky, & Wang, 2000). However, other studies, such as (Allen & Karjalainen, 

1999) and (Neely, 2003), acknowledge little value in TA-based strategies; this is particularly so when some 

more realistic assumptions - like the existence of transaction costs - are considered (Macedo, Godinho, & Alves, 

2016). In this context, it is important to gather further empirical evidence for or against the validity of TA as an 

effective tool to exploit market inefficiencies, namely in stock markets. We decided to test the optimization 

algorithms under four common TA strategies: Moving Average Convergence/Divergence (MACD), Relative 
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Strength Index (RSI), Bollinger Bands (BB) and Contrarian Bollinger Bands (CBB) and compare them with a 

simple B&H scenario. 

 

 The Moving Average Convergence/Divergence (MACD) is an indicator created and originally 

published by (Appel, 1999). This indicator is a combination of price exponential moving averages (EMA), 

which generates buying and selling signals through a comparison with a signalling function. In the original 

configuration, the author used time periods of (n; m; t) = (12; 26; 9), corresponding to the fast price, slow price 

and MACD signal line EMA’s period lengths, respectively. 

 Fast EMA = exponential moving average of the closing price (n=12) 

 Slow EMA = exponential moving average of the closing price (m=26) 

 MACD = Fast EMA - Slow EMA 

 Signal line = exponential moving average of the MACD (t=9) 

We will now explain how the EMA can be computed. 

First, a constant k is calculated as: 

𝑘 =
2

(𝑤𝑠 + 1)
 

 

(6) 

where ws is the length of the moving window of the exponential moving average (the window size). 

Then, each EMA observation is computed by using the value of the previous one, according to: 

 

𝐸𝑀𝐴𝑡(𝑤𝑠) = [𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐸𝑀𝐴𝑡−1(𝑤𝑠)] ∙ 𝑘 + 𝐸𝑀𝐴𝑡−1(𝑤𝑠)   (7) 

 

where 𝐶𝑙𝑜𝑠𝑒𝑡is the closing price in period t.   

The initial EMA is determined as a simple moving average. As an example, see table 1. 

 

 

Table 1. Computation of a hypothetical EMA of window size 4. 

 

We may see that in day 4 the 𝐸𝑀𝐴4(4) equals a simple average of the Closing Price of days 1, 2, 3 and 4. For 

the calculation of 𝐸𝑀𝐴5(4),  k will be equal to 2/(4+1) = 0.4 or 40%, and  

𝐸𝑀𝐴5(4) = [𝐶𝑙𝑜𝑠𝑒5 − 𝐸𝑀𝐴4(4)] ∙ 𝑘 + 𝐸𝑀𝐴4(4) = [18 − 16.75] ∙ 0.4 + 16.75 = 17.25 

Day Close Price EMA(4)

1 15

2 16

3 17

4 19 16.75          

5 18 17.25          

6 13 15.55          

7 14 14.93          

8 11 13.36          

9 12 12.81          

10 15 13.69          

11 16 14.61          

12 18 15.97          



7 

 

In the following day, EMA will be 

𝐸𝑀𝐴6(4) = [𝐶𝑙𝑜𝑠𝑒6 − 𝐸𝑀𝐴5(4)] ∙ 𝑘 + 𝐸𝑀𝐴5(4) = [13 − 17.25] ∙ 0.4 + 17.25 = 15.55 

and so forth. 

The common technical strategy associated with this indicator states that we should have a long1 position when 

the MACD value rises above the Signal line and be short2 in the market when the opposite situation occurs. In 

our case, since we are considering stocks, we will be long if MACD>Signal and be out of the market if 

MACD≤Signal. We will not assume short positions.   

 

The Relative Strength Index (RSI) is a momentum oscillator conceived to measure relative 

overbought/oversold market conditions. (Wilder, 1978) presents the structure and the rationale of the index: 

𝑅𝑆𝐼𝑡 = 1 −
1

1 + 𝑅𝑆𝑡

 (8) 

where  

𝑅𝑆𝑡 =
∑ 𝑈𝑡−𝑖+1

𝑛
𝑖=1

𝑛

∑ 𝐷𝑡−𝑖+1
𝑛
𝑖=1

𝑛
⁄  (9) 

and 

 

∑ 𝑈𝑡−𝑖+1
𝑛
𝑖=1 = sum of price gains (in absolute value) in the n days previous to t; 

∑ 𝐷𝑡−𝑖+1
𝑛
𝑖=1 = sum of price losses (in absolute value) in the n days previous to t. 

(Wilder, 1978) used n=14. 

In a situation where the sum of the gains equals the sum of losses the RSI will be 0.5 or 50%, which 

represents a temporary equilibrium in market conditions (the power of bulls and bears will be offset). On one 

extreme, if there is a rising streak in market prices and the sum of 𝐷𝑡  assumes zero value, 𝑅𝑆𝑡 will tend to 

infinity and 𝑅𝑆𝐼𝑡  to 100%. This means the market is completely overbought and is prone for a reversal. On the 

other hand, in a continuously falling market, the sum of 𝑈𝑡, and consequently 𝑅𝑆𝑡, will tend to zero, generating 

𝑅𝑆𝐼𝑡= 0%. In this situation, the market is extremely oversold and is likely to go up. Empirical evidence in 

several major markets, over the years since this index was proposed, suggests the existence of a general 30%-

70% band where the indicator moves most of the time. These figures have been traditionally accepted as 

oversold and overbought marks. Usually, the investor will be long on an asset whenever its RSI level has hit 

the oversold threshold and is on an upward trend, indicating price is on the rise. The investor will discard that 

asset when the RSI level has hit the overbought mark and is moving downwards. However, the indicator is 

prone to different interpretations, so other market agents may use it in a different way, such as being long when 

the RSI is on the rise and over 30% and being short when decreasing and below the 70% mark.  In our specific 

case, and since we are dealing with stock portfolios, preventing the usage of short positions, the following rule 

of trading will be adopted: we will be long in the market if RSI>30% and the price is on an upward move (price 

in the present day is larger than price in the previous day), and we will be out of the market otherwise. 

                                                           
1 A long position is a net buying position in the market. 
2 A short position is a net selling position. 
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Bollinger Bands (BB) are a volatility indicator developed and popularized by John Bollinger (Bollinger, 

2001). They are represented by the bands generated from a 20-day price moving average plus and minus 2 

standard deviations of price changes over the same 20-day period:  

𝑀𝐴𝑡 =
∑ 𝑃𝑡−𝑖+1

20
𝑖=1

20
 (10) 

 

𝑈𝐵𝑡 = 𝑀𝐴𝑡 + 2𝜎𝑡 (11) 

𝐿𝐵𝑡 = 𝑀𝐴𝑡 − 2𝜎𝑡 (12) 

where 𝑀𝐴𝑡 is the simple moving average, 𝑈𝐵𝑡  represents the upper band and 𝐿𝐵𝑡  the lower of the BB, all with 

reference to day t, and 𝜎𝑡 is the standard deviation of price changes for the period of day t and its previous 19 

days. 

This indicator can be used in different ways. In this work, we will adopt two different trading strategies 

associated with Bollinger Bands: conventional (BB) and contrarian (CBB) Bollinger Bands trading strategies. 

In the conventional case, a long position will be taken in day t if price is simultaneously above LB and below 

MA (to avoid false triggering) at day t-1. If these conditions are not met, we will be out of the market. In the 

CBB case, we will assume a long position in moment t if price is below UB at moment t-1. These are commonly 

adopted trading strategies in the industry, but other valid strategies could be used. For a more detailed study of 

these indicators, see for instance (Kirkpatrick & Dahlquist, 2011) or (Kaufman, 2013). 

 

5 Data and methodology 

This section presents the methodology applied to the development of the study. There is a general 

perception that financial markets behave differently according to the degree of development. Usually, a 

developed and liquid market is associated with greater levels of efficiency and lack of trading opportunities.  

Conversely, a less developed and less liquid market is considered to be more prone to exploitable trading 

opportunities, because agents are not so active checking market inefficiencies. In this work we considered it 

important to compare trading performance according to the level of perceived efficiency. We have aggregated 

stocks of countries with economic similarities, according to similar market dimension and perceived efficiency 

and liquidity, from the least efficient and liquid to the most efficient and liquid, to form 4 different markets: 

market Tier 1 – stocks of countries in development (Argentina, Brazil and South Africa), market Tier 2 – stocks 

of peripheral developed countries (Greece, Portugal and Belgium), market Tier 3 – stocks of fully developed 

countries (UK, Australia and The Netherlands), and finally, stocks of the US market. With these aggregations, 

we will try to grasp conclusions on the existence of any differences in the different markets with respect to 

exploitable trading opportunities. 

We used daily adjusted closing price data (in EUR) of stocks from Argentina (15), Brazil (17), South 

Africa (13), Greece (15), Portugal (15), Belgium (15), UK (15), Australia (15), The Netherlands (15) and the 

US (49), aggregated in 4 different markets. Stock prices span a period of almost 16 years (15 ¾ years, from 
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2000-01-03 to 2015-10-01) for all stocks, which are presented in the annex to this article (Tables A1 to A4). 

Stock price data was extracted from Thompson-Reuters Datastream (now Eikon). Corporations were selected 

by order of appearance in Datastream queries and according to the required condition of data availability (with 

data from year 2000 on). The complete price matrices have dimension T*n, where T is the total number of price 

observations and n the number of assets, equal to 4109*49 for the US market and 4109*45 for all other market 

aggregations (Tiers 1, 2 and 3). In order to evaluate the return of the assets and consequently the portfolios, we 

adopted the model of continuous compound rates, formulated in (13): 

 

𝑃𝑖𝑡 = 𝑃𝑖(𝑡−1) ∙ 𝑒𝑥𝑝𝑅𝑖𝑡 (13) 

 

where 

𝑃𝑖𝑡  is the price of asset i at day t; 

𝑅𝑖𝑡 is the rate of return of asset i at day t. 

 

The rate of return at day t, for any asset i, is determined by (14): 

 

𝑅𝑖𝑡 = ln (𝑃𝑖𝑡) − ln(𝑃𝑖(𝑡−1)) (14) 

  

That is, as we are dealing with daily price observations, the continuously compounded daily rate of return of an 

asset is equal to the difference between the natural logarithm of its close price at one day and the natural 

logarithm of its close price of the previous day. Applying expression (14) to the matrix of prices we obtain a 

matrix of daily returns, from 2000-01-04 to 2015-10-01 (dimension (T-1)*n). To each matrix of daily returns, 

a column of 4108 observations is added, with a daily return of 0.0000766551, corresponding to an annual risk 

free rate of return of 0.02 for the Cash asset. Therefore, the full return matrices have dimension 4108*50 for 

the US market and 4108*46 for all the other aggregate markets (Tiers 1, 2 and 3), and represent the B&H 

scenario. 

 The matrices under CBB, BB, MACD and RSI strategies are obtained by applying the rules mentioned 

in section 4. These rules produce four new matrices for each market, one for each of the four TA trading 

strategies, where each element assumes value 1 or 0 depending on the outcome of the respective rules (“1” for 

a long position; “0” for out of the market). These new binary matrices have the same dimension of the previous 

B&H return matrix. Subsequently, we proceed to an element-wise multiplication of the binary matrix with the 

original B&H matrix, creating CBB, BB, MACD and RSI return matrices, with daily returns (identical to the 

B&H return) for the assets (except Cash) when the rule implies being long in the market and zero returns for 

the days when the trading signal implies being out of the market. 

These 20 return matrices (B&H, CBB, BB, MACD and RSI strategies times the 4 considered markets – 

US market and market  aggregations designated by Tier 1, Tier 2 and Tier 3) all include trading costs, i.e., daily 

returns are deducted of their respective trading costs. Nowadays, with the advent of internet based trading apps 
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and brokerage firms’ fierce competition, trading costs may assume infinitesimal percentages3. For the purpose 

of this work, we consider a percentage trading cost over trading amounts of 0.05% per round-turn. A round-

turn is a complete cycle of buying and selling an asset, so that for every round-turn there are two trades (one 

buy and one sell). Each of the return matrices is then split into 2 different matrices, one for in-sample data (first 

10 years, 2000-01-04 to 2009-12-31) and another for out-of-sample data (last 5 ¾ years, from 2010-01-02 to 

2015-10-01). 

 

In the optimization process using NSGA II and SPEA 2, the genes that form a single chromosome 

represent the asset weights in the portfolio. A chromosome is therefore a vector ( 𝑤1 , 𝑤2, … , 𝑤𝑛), with 𝑤𝑖 ∈ ℝ,

𝑤𝑖 ≥ 0 , 𝑖 = 1, 2, … , 𝑛, and  ∑ 𝑤𝑖
𝑛
𝑖=1 = 1; n=46 in Markets Tier 1 to 3 and n=50 in the US market. Each 

chromosome represents a solution (portfolio). The sum of all weights 𝑤𝑖 , 𝑖 = 1, … , 𝑛  is normalized to 1 after 

crossover and mutation and before fitness evaluation, i.e. 𝑤𝑖 = 𝑤𝑖
′/𝑊, = 1, … , 𝑛, 𝑊 = ∑ 𝑤𝑖

′𝑛
𝑖=1 , where 𝑤𝑖

′ 

represents the weight of the ith asset after the algorithm operations and 𝑤𝑖  is the normalized weight. 

When combining the weights determined by the algorithm with the trading signal generated by TA 

indicators, some assets may become inactive, i.e., out of the market. When an asset is inactive, its daily return 

is null in the return matrix, making its weight void. For instance, suppose a portfolio is composed by 5 different 

assets, each with an equal weight of 20%. At some moment, due to the application of TA rules, one of the assets 

is out of the portfolio. The 4 remaining stocks have the same equal relevance in that portfolio, i.e., their 

proportion is 20% in an aggregate of 80%, which means that each active asset represents 25%=20/80 of the 

invested capital. For every iteration, the weight values (genes) in each portfolio (chromosome) represent the 

relative importance of their assets. When all assets are active in the portfolio, such as in the case of the B&H 

strategy, the weights represent the percentage of each asset in the portfolio. Whenever any asset is out of the 

market, as a result of the applied TA strategy, its weight should be divided by the sum of the weights of all 

active assets in order to interpret the real importance of each active asset. 

We have considered the following parameterizations for the algorithms NSGA II and SPEA 2: 

 

▪ Initial population: 𝑛𝑝𝑜𝑝 = 100 chromosomes; 

▪ Maximum number of elements in the archive of non-dominated solutions: 𝑛𝑎𝑟𝑐ℎ =

100 chromosomes; this archive is the outcome of the algorithm (the optimized solutions) 

▪ Maximum number of iterations: 𝑛𝑖𝑡𝑒𝑟 = 300 

▪ Crossover probability: 𝑝𝑐 = 0.9 

▪ Mutation probability: 𝑝𝑚 = 0.02 

  

 The experiment setting follows the steps below. 

 

1. For all markets (Tier 1, 2, 3 and US) and strategies (B&H, CBB, BB, MACD and RSI), do: 

                                                           
3 See for instance Robinhood Brokerage Services, a company created by two Stanford University graduates that offers zero 

commissions for the use of their online app https://www.robinhood.com/. 

https://www.robinhood.com/
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a. Optimize populations of 100 randomly generated solutions by applying the multiobjective 

algorithm (NSGA II / SPEA 2) to in-sample (IS) data; perform 25 independent runs, each run 

producing a population of at most 100 non-dominated  solutions (portfolios); 

b. Compute the hypervolume (HV) measure (Zitzler & Thiele, 1999) for the populations of non-

dominated solutions and select the population with median HV value among the 25 

independent runs; 

c. Use the weights of the solutions in the selected population and apply them to out-of-sample 

(OOS) data in order to generate the respective OOS population of solutions; 

2. Compare the optimized populations (one per market) for the 5 strategies, for both the IS and the OOS 

data. 

 

 The result of the optimization process using each MOEA in the IS data is a sample of 25 sets (frontiers) 

of at most 100 optimized solutions per each combination market-strategy. In order to compare frontiers it would 

be unpractical to use all samples, especially when using graphical representations. Therefore, we decided to use 

a criterion to select a representative frontier in each combination. The criterion adopted is to rank the 25 frontiers 

according to their hypervolume (HV) values (Zitzler & Thiele, 1999) and  then selecting the frontier with the 

median HV value as representative of the MOEA optimization outcome. HV measures the volume of the 

multidimensional region that is dominated by the set of non-dominated solutions that is being assessed. This 

quality indicator can assess both convergence and diversity of the non-dominated solutions, and larger values 

of HV indicate better approximation sets. The code of (Fonseca, Paquete, & López-Ibáñez, 2006) was used in 

this study to compute the HV values. 

 

6 Experimental Results and Discussion 

 The main goals of the empirical work are to assess: 

1) which of the algorithms presents a better performance both in and out-of-sample (IS vs. OOS); 

2) what is the impact of the chosen TA strategies on the non-dominated frontiers; 

 Figures 1 and 5 present the IS and OOS outcomes (risk-return frontiers of non-dominated portfolios 

with median HV value), respectively, for all five strategies and for each market, resulting from the application 

of the NSGA II algorithm. Figures 2 and 6 show the IS and OOS outcomes resulting from the SPEA 2 algorithm. 

In-sample frontiers result from the optimization process itself; out-of-sample results depict in-sample solutions 

applied to out-of-sample data.  

Regarding the in-sample results obtained with NSGA II (Figure 1), the US market is the one generating 

the most similar non-dominated frontiers among all strategies, and they are very close to the B&H median 

frontier, suggesting a great level of efficiency in this market. The strategy using BB trading rules presents the 

best IS median non-dominated frontiers for the markets Tier 2 and 3. Conversely, CBB is the strategy that 
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produces the median frontiers closest to the B&H scenario, suggesting little advantage in using its associated 

trading strategy.  

 

 

 

Figure 1 – NSGA II frontiers of non-dominated solutions, in-sample, under 5 strategies (B&H, CBB, BB, MACD and RSI), with costs, 

regarding all 4 aggregate markets (Tiers 1, 2, 3 and US). 

 

The market presenting better BB IS results is the Tier 3, which in theory would be the 2nd most efficient 

market (following the US stock market). This is interesting since it would be expected that the less efficient the 

market, the more likely it would be to present exploitable trading opportunities and, therefore, the better the 

non-dominated frontiers that would result from the optimization process with IS data. This might suggest 

trading opportunities may not arise in less efficient markets as it was supposed to, and/or market liquidity plays 

an important role in materialising profit opportunities. Tier 3 also shows how the use of some trading strategies 

(MACD and RSI) may hurt the overall output, presenting results that are even worse than the B&H scenario. 
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However, we must stress that IS results may be the result of some overfitting, so we must be careful in not 

giving too much importance to the conclusions regarding the IS performance of the strategies. 

 

 

 

 

Figure 2 – SPEA 2 frontiers of non-dominated solutions, in-sample, under 5 strategies (B&H, CBB, BB, MACD and RSI), with costs, 

regarding all 4 aggregate markets (Tiers 1, 2, 3 and US). 

 

The IS results of SPEA 2 (Figure 2) show a different spectre: the solutions are much more concentrated 

within a small semi-variance interval, which prevents the possibility of deducing sustained conclusions. Still, 

we may see BB presents the best median front in markets Tier 2 and 3. The limited extension of the non-

dominated sets does not allow much further comparison within each market. 
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Figure 3 – Performance comparison between NSGA II and SPEA 2 algorithms for the five TA strategies (B&H, CBB, BB, MACD and 

RSI) in each market, within the four stock markets (Tiers 1, 2, 3 and US). 

 

The very limited extension of the IS fronts obtained by SPEA 2 is reinforced in Figure 3, which 

presents a comparison of NSGA II and SPEA 2 performances in IS data. Notice that the scales of semi-variance 

have been reduced with respect to Figure 1 in order to allow legibility of SPEA 2 fronts; otherwise, it would be 

almost impossible to see their shapes. The dashed lines represent the NSGA II frontiers for each strategy; the 

continuous lines stand for the SPEA 2 frontiers. We can observe that in markets Tier 1 to 3 the non-dominated 

frontiers obtained by both algorithms are very close to each other, but NSGA II consistently outperforms SPEA 

2, for all strategies.  

The main conclusions obtained with this comparison (NSGA II outperforming SPEA 2 and SPEA 2 

frontiers presenting a lesser extent than those of the NSGA II) are similar to the conclusions reached by (Mishra 

et al., 2009), (Diosan, 2005) or (Lwin, Qu, & Zheng, 2013) in portfolio optimization problems. In order to have 
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a better perception of this fact, we have further analysed the evolution of the population throughout generations 

using NSGA II and SPEA 2 in a run for the conventional Bollinger Bands (BB) strategy in the US market (the 

case that has shown the greatest divergence in terms of front length). Populations in iterations 10, 50, 100, 200 

and 300 of the optimization process are presented in Figure 4, so a notion of the population evolution may be 

inferred. It can be observed that SPEA 2 population starts with a relatively dispersed population but, as it 

approaches the later iterations, it tends to maintain the front extension or to narrow it slightly, concentrating the 

population in the middle of the Pareto front. On the other hand, NSGA II stimulates diversity in the population 

at the same time it approaches the Pareto front.  

A possible reason for this discrepancy between the two algorithms may be the way diversity is 

promoted in the selection procedure of each algorithm. NSGA II uses a crowding distance, which measures the 

distance of each individual to its nearest neighbours on the objective function space. A non-dominated solution 

with a smaller value of the crowding distance is more crowded by other solutions and it will be less preferred 

to integrate next population than another non-dominated solution with higher crowding distance. SPEA 2 uses 

a density estimation technique. Density information is incorporated in the fitness function to discriminate 

between individuals having identical raw fitness. The way the density information is calculated and considered 

in the selection procedure is different from the crowding distance technique of NSGA II. The latter algorithm 

emphasizes the boundary solutions of the non-dominated set, finding solutions closer to the outlying edges of 

the Pareto front. This fact may lead NSGA II to provide a broader range of solutions. 

This difference in behaviour is not fully replicated in all combinations market / trading strategy. It 

seems that some markets and/or strategies are more prone to induce this divergence in the performance of the 

algorithms, leading us to conclude that data also plays an active relevant role in this matter. 

 

 

Figure 4 – Comparison of the evolution of NSGA II and SPEA 2 populations throughout iterations for the BB strategy in US market. 

 

 Regarding OOS (Figures 5 and 6), overall results obtained by the BB strategy are very interesting. 

Considering the application of NSGA II a, the BB strategy emerges as the most consistent and giving better 
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OOS results among all the TA strategies that were considered. This conclusion confirms the IS results, which 

in turn suggests the good IS results were not exclusively due to potential overfitting. MACD also reveals some 

interesting results in OOS data, performing better than B&H in most markets. The RSI indicator shows better 

performances in less developed markets. The CBB strategy shows mixed results, with better performances in 

the US market and Tier 3, and staying close to B&H in less developed markets (Tiers 1 and 2). 

 

 

 

Figure 5 – NSGA II out-of-sample frontiers corresponding to the in-sample non-dominated solutions, under 5 strategies (B&H, CBB, BB, 

MACD and RSI), with costs, regarding all 4 aggregate markets (Tiers 1, 2, 3 and US). 
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Figure 6 – SPEA 2 out-of-sample frontiers corresponding to the in-sample non-dominated solutions, under 5 strategies (B&H, CBB, BB, 

MACD and RSI), with costs, regarding all 4 aggregate markets (Tiers 1, 2, 3 and US). 

 

 Similarly to the IS behaviour, OOS results are very limited for solutions generated by SPEA 2. The 

analysis of SPEA 2 OOS results (figure 6) shows that the BB trading strategy produces the best outcome among 

all strategies, supporting this trading strategy as the best one within the studied TA techniques. In addition, the 

results of SPEA 2 suggest that the RSI strategy performs OOS better than B&H in all markets. The MACD may 

be considered the strategy with the less interesting results of all, particularly in markets Tier 2 and 3.  

 

7 Conclusion 

 The present work compares the performance of two established multiobjective evolutionary 

algorithms, NSGA II and SPEA 2, combined with TA trading strategies for mean-semivariance portfolio 



18 

 

optimization. Five different strategies were used – Buy & Hold, Contrarian Bollinger Bands, conventional 

Bollinger Bands, MACD and RSI, all of them incorporating trading costs, for  four different markets and two 

different periods: in-sample, 2000-01-03 to 2009-12-31, and out-of-sample, 2010-01-03 to 2015-10-01. The 

purpose was twofold: to assess which of the algorithms performed better and to know if the chosen TA 

indicators influenced the results.  

Overall results show that there is quite a difference between the results obtained with NSGA II and 

with SPEA 2. The former algorithm produces much wider IS non-dominated frontiers, which have similar 

shapes. On the other hand, the latter algorithm presents IS non-dominated frontiers with different shapes and 

positions and the solutions are more concentrated presenting low diversity. NSGA II systematically outperforms 

SPEA 2, in an in-sample comparison. Results also show how the use of TA indicators with associated trading 

strategies may influence the frontiers of non-dominated portfolios. In most markets, conventional Bollinger 

Bands presents better out-of-sample results, deeming it as the most profitable TA trading tool and the strategy 

of election among all studied. The results presented in this article may stimulate further research in the area of 

portfolio optimization, both using MOEAs and other TA indicators. 
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Table A1 – List of Market Tier 1 stocks used in the portfolio optimization problem. 

 

 

 

 

 

Table A2 – List of Market Tier 2 stocks used in the portfolio optimization problem. 

 

 

 

 

 

Argentina Brazil South Africa

AGROMETAL AMAZONIA ON ADVTECH

BANCO SANTANDER RIO ''B'' AMPLA ENERGIA E SERVICOS ON AFRICAN OXYGEN

CAPEX ATOM PARTICIPACOES ANGLOGOLD ASHANTI

CAPUTO B MERC BRASIL PN ARCELORMITTAL SA.

CARLOS CASADO ''B'' BANCO DO NORD ON CAXTON & CTP PB&PRT.

CELULOSA BANCO ESTADO ESP. SANTO BANEST ON DATATEC

COLORIN BIC MONARK ON FIRSTRAND

ENDESA COSTANERA BNCO ALFA INVEST PN GOLD FIELDS

GOFFRE BOMBRIL PN HARMONY GOLD MNG.

IRSA CEMEPE INVEST PN MMI HOLDINGS

MORIXE HERMANOS CIA TECIDOS SANTANENSE PN NEDBANK GROUP

NUEVO BANCO SUQUIA ''B'' CNCO.ALFA DE ADMO. SR.F PN RMB

SNIAFA COMR.FINCA. INMB. ''A'' CONST AD LIN PN TSOGO SUN

SOCIEDAD COMERCIAL DEL PLATA CORREA RIBEIRO PN

TRANSPORTADORA DE GAS DEL SUR DHB INDUSTRIA E COMERCIO ON

OI PN

REDE ENERGIA ON

Market Tier 1

Greece Portugal Belgium

AEGEK CIMENTOS DE PORTL.SGPS BEFIMMO

AEOLIAN INVESTMENT FUND CIPAN LIMITED DATA COFINIMMO

ALTEC HOLDINGS COMPTA COLRUYT

ATHENA COPAM LIMITED DATA DEXIA

ATTICA HOLDINGS EDP ENERGIAS DE PORTUGAL FLUXYS BELGIUM ''D''

ATTI-KAT ESTORIL SOL ''B'' IMMOBEL

AXON HOLDINGS FENALU LIMITED DATA PICANOL

BANK OF GREECE IMMOBL.CON.GRAO-PARA RETAIL ESTATES

EDRASIS PSALLIDAS LISGRAFICA SABCA

EKTER LITHO FORMAS PORTUGUESA LIMITED DATASIPEF

ELTRAK PROPERTY OREY ANTUNES SOLVAC

ELVIEMEK LAND DEVELOPMENT LOGIST.PK.SOCIETY AGUAS DA CURIA LIMITED DATA SPADEL

EMPORIKOS DESMOS SONAE SGPS TESSENDERLO

FLEXOPACK SONAGI LIMITED DATA UMICORE

FLR MLS C SARANTOPOULOS TOYOTA CAETANO VAN DE VELDE

Market Tier 2
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Table A3 – List of Market Tier 3 stocks used in the portfolio optimization problem. 

 

 

 

 

 

Table A4 – List of U.S. Market stocks used in the portfolio optimization problem. 

 

 

 

UK Australia Netherlands

AVIVA AGL ENERGY AFC AJAX

BRITISH AMERICAN TOBACCO ALUMINA AND INTL.PUBLISHERS

BRITISH LAND AUST.FNDTN.INV.COMPANY ARCADIS

BT GROUP COCA-COLA AMATIL ASML HOLDING

IMPERIAL BRANDS DEXUS PROPERTY GROUP BATENBURG TECHNIEK

KINGFISHER FORTESCUE METALS GP. BINCKBANK

LLOYDS BANKING GROUP GPT GROUP BRILL

PEARSON JAMES HARDIE INDS.CDI. EUROCOMMERCIAL

PRUDENTIAL NEWCREST MINING HEINEKEN

RECKITT BENCKISER GROUP OIL SEARCH HEINEKEN HLDG.

ROLLS-ROYCE HOLDINGS QBE INSURANCE GROUP RELX

SSE SANTOS ROYAL DUTCH SHELL A

TESCO STOCKLAND STERN GROEP

VODAFONE GROUP TRANSURBAN GROUP USG PEOPLE

WPP WESTFIELD WOLTERS KLUWER

Market Tier 3

ADOBE SYSTEMS CONOCOPHILLIPS MERCK & COMPANY

AMAZON.COM COSTCO WHOLESALE MICROSOFT

AMERICAN EXPRESS DOW CHEMICAL MORGAN STANLEY

AMGEN DUKE ENERGY ORACLE

APPLE EXXON MOBIL PEPSICO

AT&T FEDEX PFIZER

BANK OF AMERICA FORD MOTOR PROCTER & GAMBLE

BANK OF NEW YORK MELLON GENERAL ELECTRIC REGENERON PHARMS.

BIOGEN GOLDMAN SACHS GP. STARBUCKS

BLACKROCK HEWLETT-PACKARD TARGET

BOEING HOME DEPOT TEXAS INSTRUMENTS

CATERPILLAR INTEL TIME WARNER

CHEVRON INTERNATIONAL BUS.MCHS. UNION PACIFIC

CISCO SYSTEMS JOHNSON & JOHNSON WAL MART STORES

CITIGROUP JP MORGAN CHASE & CO. WALT DISNEY

COCA COLA LOCKHEED MARTIN

COLGATE-PALM. MCDONALDS

US Market


