
A Case Study of Spanish Text Transformations for Twitter

Sentiment Analysis

Eric S. Tellez1,3 Sabino Miranda-Jiménez1,3 Mario Graff1,3

Daniela Moctezuma1,2 Oscar S. Siodia2 Elio A. Villaseñor1

1INFOTEC Centro de Investigación e Innovación en Tecnoloǵıas de la Información
y Comunicación, Circuito Tecnopolo Sur No 112, Fracc. Tecnopolo Pocitos II,

Aguascalientes 20313, México
2CentroGEO Centro de Investigación en Ciencias de Información Geoespacial,

Circuito Tecnopolo Norte No. 117, Col. Tecnopolo Pocitos II, C.P.,
Aguascalientes, Ags 20313 México

3CONACyT Consejo Nacional de Ciencia y Tecnoloǵıa, Dirección de Cátedras,
Insurgentes Sur 1582, Crédito Constructor, Ciudad de México 03940 México

This work is published in Expert Systems with Applications
https://doi.org/10.1016/j.eswa.2017.03.071

Abstract

Sentiment analysis is a text mining task that determines the polarity of a given text, i.e.,
its positiveness or negativeness. Recently, it has received a lot of attention given the interest in
opinion mining in micro-blogging platforms. These new forms of textual expressions present
new challenges to analyze text given the use of slang, orthographic and grammatical errors,
among others. Along with these challenges, a practical sentiment classifier should be able to
handle efficiently large workloads.

The aim of this research is to identify which text transformations (lemmatization, stem-
ming, entity removal, among others), tokenizers (e.g., words n-grams), and tokens weighting
schemes impact the most the accuracy of a classifier (Support Vector Machine) trained on
two Spanish corpus. The methodology used is to exhaustively analyze all the combinations
of the text transformations and their respective parameters to find out which characteristics
the best performing classifiers have in common. Furthermore, among the different text trans-
formations studied, we introduce a novel approach based on the combination of word based
n-grams and character based q-grams. The results show that this novel combination of words
and characters produces a classifier that outperforms the traditional word based combination
by 11.17% and 5.62% on the INEGI and TASS’15 dataset, respectively.

1 Introduction

In recent years, the production of textual documents in social media has increased exponentially;
for instance, up to April 2016, Twitter has 320 million active users, and Facebook has 1,590 million
users.1 In social media, people share comments about many disparate topics, i.e., events, persons,
and organizations, among others. These facts have had the result of seeing social media as a gold
mine of human opinions, and consequently, there is an increased interest in doing research and
business activities around opinion mining and sentiment analysis fields.

Automatic sentiment analysis of texts is one of the most important tasks in text mining, where
the goal is to determine whether a particular document has either a positive, negative or neutral

1http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/

1

ar
X

iv
:2

10
6.

02
00

9v
1

 [
cs

.C
L

]
 3

 J
un

 2
02

1

https://doi.org/10.1016/j.eswa.2017.03.071

opinion2. Determining whether a text document has a positive or negative opinion is becoming
an essential tool for both public and private companies, [Liu, 2015, Peng et al., 2008]. Given that
it is a useful tool to know what people think about anything; so, it represents a major support for
decision-making processes (for any level of government, marketing, etc.) [Pang and Lee, 2008].

Sentiment analysis has been traditionally tackled as a classification task where two major
problems need to be faced. Firstly, one needs to transform the text into a suitable representation,
this is known as text modeling. Secondly, one needs to decide which classification algorithm to
use; one of the most widely used is Support Vector Machines (SVM). This contribution focus on
the former problem, i.e., we are interested in improving the classification by finding a suitable text
representation.

Specifically, the contribution of this research is twofold. Firstly, we parametrize our text trans-
formations with different techniques such as: lemmatization, stemming, and entity removal, just to
mention a few (Table 3 contains all the transformations explored). This parametrization is used to
exhaustively evaluate the entire configurations space to know those transformations that produce
the best SVM classifier on two sentiment analysis corpus written in Spanish. Counterintuitively,
we found that the complexity of techniques used in the pre-processing step is not correlated with
the final performance of the classifier, e.g., a classifier using lemmatization, which is one of the
pre-processing techniques having the greatest complexity, might not be one of the systems having
the highest performance.

Secondly, we propose a novel approach based on the combination of word based n-grams and
character based q-grams. This novel combination of words and characters produces a classifier
that outperforms the traditional word based combination by 11.17% and 5.62% on the INEGI
and TASS’15 dataset, respectively. Hereafter, we will use n-words to refer to word n-grams, and
q-grams to character q-grams just to make a clear distinction between these techniques.

This manuscript is organized as follows. Section 1 introduces the paper and the problem being
tackled. Section 2 deals with literature review. The text transformations are described in Section
3, meanwhile the parameters settings and definition of the problem are presented on Section 4.
Section 5 describes our experimental results. Finally, Section 6 and Section 7 present the discussion
and conclusions of our results along with possible directions for future work.

2 Related Work

The sentiment analysis task has been widely studying due to the interest to know the people’s
opinions and feelings about something, particularly in social media. This task is commonly tackled
in two different ways. The first one involves the use of static resources that summarize the sense or
semantic of the task; these knowledge databases contain mostly affective lexicons. These lexicons
are created by experts, in psychology or by automated processes, that perform the selection of
features (words) along with a corpus of labeled text as done in [Ghiassi et al., 2013]. Consequently,
the task is solved by trying to detect how the affective features are used in a text, and how these
features can be used to predict the polarity of a given text.

The alternative approach states the task as a text classification problem. This includes several
distinguished parts like the pre-processing step, the selection of the vectorization and weighting
schemes, and also the classifier algorithm. So, the problem consists of selecting the correct tech-
niques in each step to create the sentiment classifier. Under this approach, the idea is to process
the text in a way that the classifier can take advantage of the features to solve the problem. Our
contribution focus in this later approach; we describe the best way to pre-process, tokenize, and
vectorize the text, based on a fixed set of text-transformation functions. For simplicity, we fix
our classifier to be Support Vector Machines (SVM). SVM is a classifier that excels in high di-
mensional datasets as is the case of text classification, [Joachims, 1998]. This section reviews the
related literature.

2Albeit, there are other variations considering intermediate levels for sentiments, e.g. more positive or less
positive

2

There are several works in the sentiment analysis literature which use several representa-
tions; such as dictionaries [Alam et al., 2016], [Khan et al., 2016]; text content and social re-
lations between users [Wu et al., 2016]; relationships between meanings of a word in a cor-
pus [Razavi et al., 2014]; co-occurrence patterns of words [Saif et al., 2016], among others.

Focusing on the n-grams technique, a method that considers the local context of the word
sequence and the semantic of the whole sentence is proposed in [Cui et al., 2015]. The local
context is generated via the “bag-of-n-words” method, and the sentence’s sentiment is determined
based on the individual contribution of each word. The word embedding is learned from a large
monolingual corpus through a deep neural network, and the n-words features are obtained from
the word embedding in combination with a sliding window procedure.

A hybrid approach that uses n-gram analysis for feature extraction together with a dynamic
artificial neural network for sentiment analysis is proposed in [Ghiassi et al., 2013]. Here, a dataset
over 10, 000, 000 of tweets, related to Justin Bieber topic, was used. As a result, a Twitter-specific
lexicon with a reduced feature set was obtained.

The work presented in [Han et al., 2013] proposes an approach for sentiment analysis which
combines an SVM classifier and a wide range of features like bag-of-word (1-words, 2-words) and
part-of-speech (POS) features, etc., as well as votes derived from character n-words language
models to achieve the final result. The authors concluded that lexical features (1-words, 2-words)
produce the better contributions.

In [Tripathy et al., 2016] different classifiers and representations were applied to determine the
sentiment in movie reviews, taken from internet blogs. The classifiers tested were Naive Bayes,
maximum entropy, stochastic gradient descent, and SVM. These algorithms use n-words, for n
in {1, 2, 3} and all the combinations. Here, the results show that the value of n increases the
classification accuracy decreases, i.e., using 1-words and 2-words the result achieved is better than
using 3-words, 4-words, and 5-words.

Regarding the use of q-grams; in [Aisopos et al., 2011] a method that captures textual patterns
is introduced. This method creates a graph, whose nodes correspond to q-grams of a document
and their edges denoted the average distance between them. A comparative analysis on data from
Twitter is performed between three representation models: term vector model, q-grams, and q-
grams graphs. The authors found that vector models are faster, but q-grams (especially 4-grams)
perform better in terms of classification quality.

With the purpose to attend sentiment analysis in Spanish tweets, a number of works has been
presented in the literature, e.g. several sizes of n-grams and some polarity lexicons combined
with a Support Vector Machine (SVM) was used in [Almeida, 2015]. Another approach which
uses polarity lexicons with a number of features related to n-words, part-of-speech tag, hashtags,
emoticon and lexicon resources is described in [Araque et al., 2015].

Features related to lexicons and syntactic structures are commonly used, for ex-
ample, [Alvarez-López et al., 2015], [Cámara et al., 2015], [de la Vega and Vea-Murgúıa, 2015],
[Borda and Saladich, 2015],[Deas et al., 2015]. In the other hand, features related to word
vectorization, e.g. Word2Vec and Doc2Vec, are also used in several works, such as
[Dı́az-Galiano and Montejo-Ráez, 2015, Valverde et al., 2015].

Following with the Spanish language, in the most recent TASS (Taller de Análisis de Sentimien-
tos ’16) competition, was presented some works still using polarity dictionaries and vectorization
approach; such is the case of [Casasola Murillo and Maŕın Raventós, 2016], where an adaptation
of Turney dictionary [Turney, 2002] over 5 millions of Spanish tweets was generated. Further-
more, [Casasola Murillo and Maŕın Raventós, 2016] in the step of vectorization uses n-grams and
skip-grams in combination with this polarity dictionary. [Quirós et al., 2016] proposes the use of
word embedding with SVM classifier. Despite the explosion of words using word embeddings, the
classical word vectorization is still in use, citemontejo2016participacion.

A new approach is using ensembles or a combination of several techniques and classifiers,
e.g. the work presented in [Cerón-Guzmán and de Cali, 2016] proposes an ensemble built on the
combination of systems with the lowest correlation between them. [y Ferran Pla, 2016] presents
another ensemble method where the Tweetmotif’s tokenizer, [O’Connor et al., 2010], is used in
conjunction with Freeling [Padró and Stanilovsky, 2012]. These tools create a vector space that is

3

Figure 1: Generic treatment of input text to obtain the input vectors for the classifier.

the input for an SVM classifier.
It can be seen that one of the objectives of the related work is to optimize the number of

n-words or q-grams (almost tackled as independent approaches), to increase performance; clearly,
there is not a consensus. This lack of agreement motivates us to perform an extensive experimental
analysis of the effect of the parameters (including n and q values), and so, we determined the best
parameters on the Twitter databases employed.

3 Text Representation

Natural Language Processing (NLP) is a broad and complex area of knowledge having many
ways to represent an input text [Giannakopoulos et al., 2012, Sammut and Webb, 2011]. In this
research, we select the widely used vector representation of a text given its simplicity and powerful
representation. Figure 1 depicts the procedure used to transform a text input into a vector. There
are three main blocks: the first one transforms the text into another text representation, then the
text is tokenized, and, finally, the vector is calculated using a weighting scheme. The resulting
vectors are the input of the classifier.

In the following subsections, we described the text transformation techniques used which have
a counterpart in many languages, the proper implementation of them rely heavily on the targeted
language, in our case study the Spanish language. The interested reader looking for solutions in a
particular language is encouraged to follow the relevant linguistic literature for its objective lan-
guage, in addition to the general literature in NLP [Jurafsky and Martin, 2009, Bird et al., 2009,
Sammut and Webb, 2011].

3.1 Text Transformation Pipeline

One of the contributions of this manuscript is to measure the effects that each different text
transformation has on the performance of a classifier. This subsection describes the text trans-
formations explored whereas the particular parameters of these transformations can be seen in
Table 3.

3.1.1 TFIDF (tfidf)

In the vector representation, each word, in the collection, is associated with a coordi-
nate in a high dimensional space. The numeric value of each coordinate is sometimes
called the weight of the word. Here, tf× idf (Term Frequency-Inverse Document Frequency)
[Baeza-Yates and Ribeiro-Neto, 2011] is used as bootstrapping weighting procedure. More pre-
cisely, let D = {D1, D2, . . . , DN} be the set of all documents in the corpus, and f iw be the
frequency of the word w in document Di. tfiw is defined as the normalized frequency of w in Di

tfiw =
f iw

maxu∈Di{f iu}
.

In some way, tf describes the importance of w, locally in Di. On the other hand, idf gives a global
measure of the importance of w;

idfw = log
N

|{Di | f iw > 0}|
.

4

The final product, tf× idf, tries to find a balance between the local and the global importance
of a term. It is common to use variants of tf and idf instead of the original ones, depending in
the application domain [Sammut and Webb, 2011]. Let vi be the vector of Di, a weighted matrix
TFIDF of the collection D is created by concatenating all individual vectors, in some consistent
order. Using this representation, a number of machine learning methods can be applied; however,
the plain transformation of text to TFIDF poses some problems. On one hand, all documents will
contain common terms having a small semantic content such as articles and determiners, among
others. These terms are known as stopwords. The bad effects of stopwords are controlled by TFIDF,
but most of them can be directly removed since they are fixed for a given language. On the other
hand, after removing stopwords, TFIDF will produce a very high dimensional vector space, O(N)
in Twitter, since new terms are commonly introduced (e.g. misspellings, URLs, hashtags). This
will rapidly yield to the Curse of Dimensionality, which makes hard to learn from examples since
any two random vectors will be orthogonal with high probability. From a more practical point of
view, a high dimensional representation will also impose huge memory requirements, at the point
of being impossible to train a typical implementation of a machine learning algorithm (not being
designed to use sparse vectors).

3.1.2 Stopwords (del-sw)

In many languages, like Spanish, there is a set of extremely common words such as determiners or
conjunctions (the or and) which help to build sentences but do not carry any meaning themselves.
These words are known as Stopwords, and they are removed from the text before any attempt to
classify them. A stop list is built using the most frequent terms from a huge document collection.
We used the Spanish stop list included in NLTK Python package [Bird et al., 2009].

3.1.3 Spelling

Twitter messages are full of slang, misspelling, typographical and grammatical errors among oth-
ers; however, in this study, we focus only on the following transformations:

Punctuation (del-punc). This parameter considers the use of symbols such as question mark,
period, exclamation point, commas, among other spelling marks.

Diacritic (del-diac). The Spanish language is full of diacritic symbols, and its wrong usage
is one of the main sources of orthographic errors in informal texts. Thus, this parameter
considers the use or absence of diacritical marks.

Symbol reduction (del-d1, del-d2). Usually, twitter messages use repeated characters to em-
phasize parts of the word to attract user’s attention. This aspect makes the vocabulary
explodes. Thus, we applied two strategies to deal with these phenomena: the first one re-
places the repeated symbols by one occurrence of the symbol, and the second one replaces
the repeated symbols by two occurrences to keep the word emphasize at the minimal level.

Case sensitive (lc). This parameter considers letters to be normalized in lowercase or to keep
the original text. The aim is to cut the words that are the same in uppercase and lowercase.

3.1.4 Stemming (stem)

Stemming is a heuristic process in Information Retrieval field that chops off the end of words
and often includes the removal of derivational affixes. This technique uses the morphology of the
language coded in a set of rules; to find out word stems and reduce the vocabulary collapsing
derivationally related words. In our study, we use the Snowball Stemmer for the Spanish language
implemented in NLTK package [Bird et al., 2009].

5

3.1.5 Lemmatization (lem)

Lemmatization process is a complex task from Natural Language Processing that determines the
lemma of a group of word forms, i.e., the dictionary form of a word. For example, the words went
and goes are the verb conjugations of the verb go; and these words are grouped under the same
lemma go. To apply this process, we use Freeling tool [Padró and Stanilovsky, 2012] as Spanish
lemmatizer. All texts are prepared by the Error correction process before applying lemmatization
to obtain the best results of part-of-speech identification.

Error correction Freeling is a tool for text analysis, but the assumption is that text is well-
written. However, language used in Twitter is very informal, with slang, misspellings, new words,
creative spelling, URLs, specific abbreviations, hashtags (which are especial words for tagging
in Twitter messages), and emoticons (which are short strings and symbols that express different
emotions). These problems are treated to prepare and standardize tweets for the lemmatization
stage to get the best results. All words in each tweet are checked to be a valid Spanish word or
are reduced according to the rules for Spanish word formation.

In general, words or tokens with invalid duplicated vowels or consonants are reduced to valid
or standard Spanish words, e.g., (ruiiidoooo → ruido (noise); jajajaaa → jaja; jijijji → jaja). We
used an approach based on Spanish dictionary, a statistical model for common double letters,
and heuristic rules for common interjections. In general, the duplicated vowels or consonants are
removed from the target word; the resulting word is looked up in a Spanish dictionary (approxi-
mately 550,000 entries) to be validated, it is included in Freeling. For words that are not in the
dictionary are reduced at least with valid rules for Spanish word formation. Also, colloquial words
and abbreviations are transformed using a regular expression based on a dictionary of those sort
of words, figure 2 illustrates some rules. The text on the left side of the arrow is replaced by the
text of the right side. Twitter tags such as user names, hashtags (topics), URLs, and emoticons
are handled as special tags in our representation to keep the structure of the sentence.

tqm → te quiero mucho (I love you so much),
compu → computadora (computer).

Figure 2: Expansion of colloquial words and abbreviations.

In Figure 3, we can see the lemmatized text after applying Freeling. As we mentioned, the text
is prepared with the Error correction step (see Figure 3(a)) then Freeling is applied to normalize
words. Figure 3(b) shows Freeling’s output where each token has the original word followed by
the slash symbol and its lexical information. The lexical information can be read as follows; for
instance, token orgulloso/AQ0MS0 (proud) stands for adjective as part of speech (AQ), masculine
gender (M), and singular number (S); the token querer/VMIP1S0 (to want) stands for lemmatized
main verb as part of speech (VM), indicative mood (I), present time (P), singular form of the first
person (1S); positive tag/NTE0000 stands for noun tag as part of speech, and so on.

Lexical information is used to identify entities, stopwords, content words among others, it
depends on the settings of the other parameters. The words are filtered based on heuristic rules
that take into account the lexical information shown in Fig. 3(b). Finally, lexical information is
removed in order to get the lemmatized text depicted on Figure 3(c).

3.1.6 Negation (neg)

Spanish negation markers might change the polarity of the message. Thus, we attached the
negation clue to the nearest word, similar to the approaches used in [Sidorov et al., 2013]. A
set of rules was designed for common Spanish negation structures that involve negation markers,
namely, no (not), nunca, jamás (never), and sin (without). The rules are processed in order, and,
when one of them matches, the remaining rules are discarded. We have two sorts of rules; it
depends on the input text. If the text is not parsed by Freeling, a few rules (regular expressions)
are applied to negate the nearest word to the negation marker using only the information on the

6

Original text:

@username èl siempre estará contigo, muy orgulloso de tiiiii y del graaaaannn ser humano que eres :)
... Tqm!!! Buen jueves.

(@username he will always be with you, so proud of you and great human being that you are :) ... ILY!!!!
good Thursday.)

After Error Correction step:

user tag él siempre estará contigo muy orgulloso de ti y del gran ser humano que eres positivo tag te
quiero mucho Buen jueves

(user tag he will always be with you, so proud of you and great human being that you are positive tag I
love you good Thursday.)

(a) Error correction step

user tag/NT00000 él/PP3MS000 siempre/RG estar/VAIF3S0 contigo/PP2CSO00
muy/RG orgulloso/AQ0MS0 de/SPS00 ti/PP2CSO00 y/CC de/SPS00 el/DA0MS0
gran/AQ0CS0 ser/NCMS000 humano/AQ0MS0 que/PR0CN000 ser/VSIP2S0
positive tag/NTE0000 te/PP2CS000 querer/VMIP1S0 mucho/DI0MS0 bueno/AQ0MS0 jueves/NCMN000

(b) The output of a Spanish sentence parsed with Freeling

@username él siempre estar contigo muy orgulloso de ti y de el gran ser humano que ser positive tag te querer
mucho bueno jueves
(@username he always be with you, so proud of you and the great human being that you be positive I love you
good thursday.)

(c) After removing lexical information

Figure 3: A step-by-step lemmatization of a tweet.

— Pattern 1: el coche no es ni bonito ni espacioso (the car is neither nice nor spacious)
(no/RN)\s+(ser/VS\w+)\s+ni/CC\s+(\w+/AQ\w+)\s+ni/CC\s+(\w+/AQ\w+) → \2 no \3 y/CC no \4

— Pattern 2: no es (de) madera (X is not made of wood)
(no/RN)\s+(ser/VS\w+)\s+(\w+/S\w+\s+)?(\w+/N[̂TP]\w+) → \2 \3 no \4

Figure 4: An example of negation rules

text, e.g., avoiding pronouns and articles. The second approach uses a set of fine-grained rules to
take advantage of the lexical information, approximately 50 rules were designed considering the
negation markers. The negation marker is attached to the closest word to the marker.

In the box below, Pattern 1 and Pattern 2 are examples of negation rules (regular expressions).
A rule consists of two parts: the left side of the arrow represents the text to be matched, and
the right side of the arrow is the structure to be replaced. All rules are based on a linguistic
motivation taking into account lexical information. The set of negation rules are available3.

For example, in the sentence El coche no es ni bonito ni espacioso (The car is neither nice
nor spacious), the negation marker no is attached to its two adjectives no bonito (not nice) and
no espacioso (not spacious), as it is showed in Pattern 1, the negation marker is attached to group
3 (\3) and group 4 (\4) that stand for adjective position because of the coordinating conjunction
ni. The number of group is identified by parenthesis in the rule from left to right. Negation
markers are attached to content words (nouns, verbs, adjectives, and some adverbs), e.g., ‘no
seguir’ (do not follow) is replaced by ‘no seguir’, ‘no es bueno’ (it is not good) is replaced by ‘es
no bueno’, ‘sin comida’ (without food) is replaced by ‘no comida’. Figure 4 exemplifies a pair of
these negation rules.

3.1.7 Emoticon (emo)

In the case of emotions, we classify more than 500 popular emoticons, including text emoticons, and
the whole set of emoticons (close to 1600) defined by [Unicode, 2016] into three classes: positive,

3http://ws.ingeotec.mx/~sadit/

7

http://ws.ingeotec.mx/~sadit/

:) :D :P → positive
:(:-(:’(→ negative
:-| U U -.- → neutral

emoticon without polarity → unicode-text

Table 1: An excerpt of the mapping table from Emoticons to its polarity words.

negative or neutral, which are replaced by a polarity word or definition associated to the emoticon
according to the Unicode standard. The emoticons considered as positive are replaced by the word
positive, negative emoticons are replaced by the word negative, neutral emotions are replaced by
the word neutral. Emoticons that do not have a polarity, or are ambiguous, are replaced by the
associated Unicode text. Table 1 shows an excerpt of the dictionary that maps emoticons to their
corresponding polarity class.

3.1.8 Entity (del-ent)

We consider entities to be proper names, hashtags, urls or nicknames. However, nicknames (see
usr parameter, Table 3) is a particular feature in Twitter messages; thus, user names is another
parameter to see the effect on the classification system. User names, urls and numbers (see url,
num) parameters, Table 3) could be grouped under an especial generic name. Entities such as
user names and hashtags are identified directly by its corresponding especial symbol @ and #,
and proper names are identified using Freeling, the lexical information used to identify a proper
name is “NP0000”.

3.1.9 Word-based n-grams (n-words)

N-words are widely used in many NLP tasks, and they have also been used in sen-
timent analysis by [Sidorov et al., 2013, Cui et al., 2015]. N-words are word sequences.
To compute the n-words, the text is tokenized and n-word are calculated from to-
kens. NLTK Tokenizer is used to identified word tokens. For example, let T =
"the lights and shadows of your future", its 1-words (unigrams) are each word alone, and
its 2-words (bigrams) set are the sequences of two words, the set (WT

2), and so on. For example, let
WT

2 = {the lights, lights and, and shadows, shadows of, of your, your future}, then, given
a text of m words, we obtain a set with at most m− n+ 1 elements. Generally, n-words are used
up to 2 or 3-words because it is uncommon to find good matches of word sequences greater than
three or four words [Jurafsky and Martin, 2009].

3.1.10 Character-based q-grams (q-grams)

In addition to the traditionally n-words representation, we represent the resulting text as q-grams.
A q-grams is an agnostic language transformation that consists in representing a document by all
its substring of length q. For example, let T = abra cadabra, its 3-grams set are

QT3 = {abr, bra, ra , a c, ca, aca, cad, ada, dab},

so, given text of size m characters, we obtain a set with at most m − q + 1 elements. Notice
that this transformation handle white-spaces as part of the text. Since there will be q-grams
connecting words, in some sense, applying q-grams to the entire text can capture part of the
syntactic information in the sentence. The rationale of q-grams is to tackle misspelled sentences
from the approximate pattern matching perspective [Navarro and Raffinot, 2002], where it is used
for efficient searching of text with some degree of error.

A more elaborated example shows why the q-gram transformation is more robust to variations
of the text. Let T = I like vanilla and T ′ = I lik3 vanila, clearly, both texts are different
and a plain algorithm will simply associate a low similarity between both texts. However, after

8

original text:
pésiiiimo auto :(@autoX fallan frenos y sistema de entretenimiento; no lo compren
after text transformation:
pesim aut :(user fal fren y sistem de entreten ; lo no compr
computed 1-word:
{pesim, aut, :(, user, fal, fren, y, sistem, de, entreten, ;, lo, no compr }

(a) An example of configuration for INEGI benchmark for word n-grams

original text:
pésiiiimo auto :(@autoX fallan frenos y sistema de entretenimiento; no lo compren
after text transformation:
pesiiiimo auto negativo user fallan frenos y sistema de entretenimiento ; lo no compren
computed 4-grams:
{ pes, pesi, esii, siii, iiii, iiim, iimo, imo , mo a, o au, aut, auto, uto , to , o n, ne, neg, nega, egat, gati, ativ,
tivo, ivo , vo , o u, us, use, user, ser , er f, r fa, fal, fall, alla, llan, lan , an f, n fr, fre, fren, reno, enos, nos ,
os y, s y , y s, y si, sis, sist, iste, stem, tema, ema , ma d, a de, de , de e, e en, ent, entr, ntre, tret, rete, eten,
teni, enim, nimi, imie, mien, ient, ento, nto , to ;, o ; , ; l, ; lo, lo , lo n, o no, no , no c, o co, com, comp, ompr,
mpre, pren, ren }

(b) An example of configuration for INEGI benchmark for q-grams (i.e., 4−grams)

Figure 5: Examples of text representation.

extracting its 3-grams, the resulting objects are more similar:
QT3 = {I l, li, lik, ike, ke , e v, va, van, ani, nil, ill, lla}
QT

′

3 = {I l, li, lik, ik3, k3 , 3 v, va, van, ani, nil, ila}
Just to fix ideas, let these two sets to be compared using the Jaccard’s coefficient as similarity,

i.e.
|QT3 ∩QT

′

3 |
|QT3 ∪QT

′
3 |

= 0.448.

These sets are more similar than the ones resulting from the original text split as words

|{I, like, vanilla} ∩ {I, lik3, vanila}|
|{I, like, vanilla} ∪ {I, lik3, vanila}|

= 0.2

The assumption is that a machine learning algorithm knowing how to classify T will do a better
job classifying T ′ using q-grams than a plain representation. This fact is used to create a robust
method against misspelled words and other deliberated modifications to the text.

3.2 Examples of Text Transformation Stage

In order to illustrate the text transformation pipeline, we show the examples in Figure 5(a) and
Figure 5(b). In Figure 5(a) we can see the resulting text representation for a configuration for
words on INEGI bechmark, i.e., the parameters used to transform the original text into the new
representation are stemming (stem), reduced repeated symbols up to one symbol (del-d1), the
removal of diacritic (del-diac), and coarsening users (usr), and negations (neg). The final text
representation is based on 1-words.

The other example, Figure 5(b), is a configuration for character 4-gram representation on the
same benchmark using the following parameters: the removal of diacritic (del-diac), coarsening
emoticons (emo), coarsening users (usr), changing words into lowercase (lc), negations (neg), and
TFIDF is used to weight the tokens, it has no text representation. The final representation is based
on character 4-grams, and the underscore symbol is used as space character to separate words and
it is part of the token in which it appears.

4 Benchmarks and Parameter Settings

At this point, we are in the position to analyze the performance of described text representa-
tions on sentiment analysis benchmarks. In particular, we test our representations in the task of

9

Table 2: Datasets details from each competition tested in this work

benchmark classes
name part positive neutral negative none total

INEGI train 2,908 986 1,110 409 5,413
test 26,911 8,868 9,571 3,361 48,711

54,124
TASS’15 train 2,884 670 2,182 1,482 7,218

test 22,233 1,305 15,844 21,416 60,798
68016

determining the global polarity —four polarity levels: positive, neutral, negative, and none (no
sentiment)— of each tweet in two benchmarks.

Table 2 describes our benchmarks. The INEGI benchmark consists on tweets geo-referenced
to Mexico; the data was collected and labeled between 2014 and 2015 by the Mexican Institute of
Statistics and Geography (INEGI). The INEGI’s tweets come from the general population without
any filtering beyond its geographic location. INEGI benchmark has a total of 54,124 tweets (in
the Spanish language). The tagging process of INEGI dataset was conducted through a web
application (called pioanalisis4, it was designed by the personnel of the Institute). Each tweet
was displayed and human tagged it as positive, neutral, negative or none. After this procedure,
every tweet was tagged by several humans, the label with major consensus was assigned as a final
tagged. We discard tweets being on tie.

On the other hand, our second benchmark is the one used in TASS’15 workshop (Taller de
Análisis de Sentimientos en la SEPLN) [Román et al., 2015]. Here, the whole corpus contains over
68, 000 tweets, written in Spanish, related to well-known personalities and celebrities of several
topics such as politics, economy, communication, mass media, and culture. These tweets were
acquired between November 2011 and March 2012. The whole corpus was split into a training
set (about 10%) and test set (remaining 90%). Each tweet was tagged with its global polarity
(positive, negative or neutral) or no polarity at all (four classes in total). The tagging process was
done in a semi-automatically way where a baseline machine learning algorithm classifies them,
and then all the tagged tweets are manually checked by human experts; for more details of this
database construction see [Román et al., 2015].

We partitioned INEGI in 10% for training and 90% for testing, following the setup of TASS’15;
this large test-set pursues the generality of the method. Hereafter, we name the test set as the
gold-standard, and we interchange both names as synonyms. The accuracy is the major score
in both benchmarks, again because TASS’15 uses this score as its measure. We also report the
macro-F1 score to help to understand the performance on heavily unbalanced datasets, see 2.

In general, both benchmarks are full of errors, and these errors vary from simple mistakes to
deliberate modification of words and syntactic rules. However, it is worth to mention that INEGI
is a collection of an open domain, and moreover, it comes from the general public; then we can see
the frequency of misspellings and grammatical errors as a major difference between INEGI and
TASS’15.

Figure 6 shows the size of the vocabulary as the number of words in the collection increases.
The Heaps’ law, [Baeza-Yates and Ribeiro-Neto, 2011], states that the growth of the vocabulary
follows O(nα) for 0 < α < 1, for a document of size n. The figure illustrates the growth rate of our
both benchmarks, along with a well-written set of documents, i.e., classic Books of the Spanish
literature from the Gutenberg project [Gutenberg, 2016]. The Books collections curve is below
than any of our collections; its growth factor is clearly smaller. The precise values of α for each
collection are αTASS’15 = 0.718, αINEGI = 0.756, and αBooks = 0.607, these values were determined

4http://cienciadedatos.inegi.org.mx/pioanalisis/#/login

10

0.0 0.2 0.4 0.6 0.8 1.0
n 1e6

0.0

0.2

0.4

0.6

0.8

1.0

v
o
c.

 s
iz

e

1e5

Books

TASS15

INEGI

0 1 2 3 4 5
n 1e8

0

1

2

3

4

5

6

v
o
c.

 s
iz

e

1e6

INEGI 42M

Figure 6: On the left, the growth of the vocabulary in our benchmarks and a collection of books
from the Gutenberg project. On the right, the vocabulary growth in 42 million tweets.

with a regression over the formulae.5 There is a significant difference between the three collections,
and it corresponds to the high amount of errors in TASS’15, and, the higher one in INEGI.

4.1 Parameters of the text transformations

As described in Section 3 the different text transformation methods explored in this research.
Table 3 complements this description by listing the different values these transformations have.
From the table, it can be observed that most parameters are either the use or absence of the
particular transformation with the exceptions n-words and q-grams.

Based on the different values of the parameters, we can count the number of different text
transformation which is 7×215 = 229, 369 configurations (the constant 7 corresponds to the number
of tokenizers). Evaluating all these setups, for each benchmark, is computationally expensive.
Also, we perform the same exhaustive in the test set to compare the achieved result and the
best possible under our approach. Along with these experiments, we also evaluate a number of
experiments to prove and compare a series of improvements. In the end, we evaluated close to
one million configurations. For instance, using an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
workstation, we need ∼12 minutes in average for a single configuration, running on a single core.
Therefore, it needs roughly 24 years of computing time. Nonetheless, we used a small cluster to
compute all configurations in some weeks. Notice that the time of determining the part-of-the-
speech, needed by parameters stem and lem, is not reported since it was executed only once for
all texts and loaded from a cache whenever is needed. The lemmatization step needs close to 56
minutes to transform the INEGI dataset in the same hardware.

5 Experimental Analysis

This section is devoted to describe and analyze the performance of the configuration space, provide
the sufficient experimental evidence to prove that q-gram tokenizers are better than n-words, at
least under the sentiment analysis domain in Spanish. Furthermore, we also provide the experi-
mental analysis for the combination of tokenizers, which improves the whole performance without
moving too far from our text classifier structure.

We use both training and test datasets in our experiments. The performance on the training
set is computed using 5-fold cross validation, and the performance on test set is computed directly
on the gold-standard. As previously described, training and test are disjoint sets, see Table 2
for details of our benchmarks. As mentioned, the classifier was fixed to be SVM; we use the

5The tweets were slightly normalized removing all URLs and standardizing all characters to lowercase.

11

Table 3: Parameter list and a brief description of their functionality

weighting schemes / removing common words
name values description
tfidf yes, no After the text is represented as a bag of words, it determines if the

vectors are weighted using the TFIDF scheme. If it is no then the
term frequency in the text is used as weight.

del-sw yes, no Determines if the stopwords are removed. It is related to TFIDF in
the sense that a proper weighting scheme assigns a low weight for
common words.

morphological reductions
name values description

lem yes, no Determines if words sharing a common root are replaced by its root.
stem yes, no Determines if words are stemmed.

transformations based on removing or replacing substrings
name values description

del-punc yes, no The punctuation symbols are removed if del-punc is yes, they are left
untouched otherwise.

del-ent yes, no Determines if entities are removed in order to generalize the content
of the text.

del-d1 yes, no If it is enabled then the sequences of repeated symbols are replaced
by a single occurrence of the symbol.

del-d2 yes, no If it is enabled then the repeated sequences of two symbols are re-
placed by a single occurrence of the sequence.

del-diac yes, no Determines if diacritic symbols, e.g., accent symbols, should be re-
moved from the text.

coarsening transformations
name values description
emo yes, no Emoticons are replaced by its expressed emotion if it is enabled.
num yes, no Determines if numeric words are replaced by a common identifier.
url yes, no Determines if URLs are left untouched or replaced by a unique url

identifier.
usr yes, no Determines if users mentions are replaced by a unique user identifier.
lc yes, no Letters are normalized to be lowercase if it is enabled

handling negation words
name values description

neg yes, no Determines if negation operators in the text are normalized and di-
rectly connected with the modified object.

tokenizing the transformation
name values description

n-words {1, 2} Determines the number of words used to describe a token.
q-grams {3, 4, 5, 6, 7} Determines the length in characters of the q-grams (q).

12

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
0

100

200

300

400

500

600

INEGI @ train 5-folds; n-words - accuracy histogram
n-words no TFIDF
n-words TFIDF

(a) Performance for n-words in training subset

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
0

500

1000

1500

2000

2500
INEGI @ train 5-folds; q-grams - accuracy histogram

q-grams no TFIDF
q-grams TFIDF

(b) Performance for q-grams in training subset

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
0

100

200

300

400

500

INEGI @ gold; n-words - accuracy histogram
n-words no TFIDF
n-words TFIDF

(c) Performance for n-words in gold standard

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
0

500

1000

1500

2000

INEGI @ gold; q-grams - accuracy histogram
q-grams no TFIDF
q-grams TFIDF

(d) Performance for q-grams in gold standard

Figure 7: Accuracy’s histogram, by tokenizer’s class, for the INEGI benchmark. The performance
on the training set was computed with 5-folds. We select to divide each figure to show the effect
of TFIDF, which it is essencial for q-grams’s performance.

implementation from the Scikit-learn project [Pedregosa et al., 2011] using a linear kernel. We
use the default parameters of the library; no additional tuning was performed in this sense.

5.1 A Performance Comparison of n-words and q-grams

Figure 7 shows the histogram of accuracies for our configuration-space in both training and test
partitions. Figures 7(a) and 7(c) show the performance of configurations with n-words as tokenizer
(unigrams and bigrams), for training and test datasets respectively. It is possible to see that the
form is preserved, and also that TFIDF configurations can perform slightly better than those using
only the term frequency. However, the accuracy range being shared by both kinds of configurations
is large.

In contrast, Figure 7(b) shows the performance of configurations with q-grams as tokenizers.
Here, the improvement of the TFIDF class is more significant than those configurations not using
TFIDF; also, the performance achieved by the q-grams with TFIDF is consistently better than the
performance of the all n-word configurations in our space. This is also valid for the test dataset,
see Figure 7(d).

Figure 8 shows the performance of INEGI on configurations using q-grams as tokenizers. On
the left, Figures 8(a) and 8(c) show the performance of configurations without TFIDF. In train, the
best performance is close to 0.57, and less than 0.58 in the test set. The best performing tokenizer
is 7-grams. When TFIDF is allowed, Tables 8(b) and 8(d), the best performances are achieved, in
both training and test, close to 0.61 in the training set and higher in the gold-standard. The best

13

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
0

100

200

300

400

500

600
INEGI @ train 5-folds; q-grams indiv. no TFIDF - accuracy histogram

char. 3-gram no TFIDF
char. 4-gram no TFIDF
char. 5-gram no TFIDF
char. 6-gram no TFIDF
char. 7-gram no TFIDF

(a) Performance without TFIDF on training subset

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
0

100

200

300

400

500

INEGI @ train 5-folds; q-grams indiv. TFIDF - accuracy histogram
char. 3-gram TFIDF
char. 4-gram TFIDF
char. 5-gram TFIDF
char. 6-gram TFIDF
char. 7-gram TFIDF

(b) Performance with TFIDF on training subset

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
0

100

200

300

400

500

INEGI @ gold; q-grams indiv. no TFIDF - accuracy histogram
char. 3-gram no TFIDF
char. 4-gram no TFIDF
char. 5-gram no TFIDF
char. 6-gram no TFIDF
char. 7-gram no TFIDF

(c) Performance without TFIDF on the gold-standard

0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
0

100

200

300

400

500

INEGI @ gold; q-grams indiv. TFIDF - accuracy histogram
char. 3-gram TFIDF
char. 4-gram TFIDF
char. 5-gram TFIDF
char. 6-gram TFIDF
char. 7-gram TFIDF

(d) Performance with TFIDF in the gold standard

Figure 8: Accuracy’s histogram for q-gram configurations in the INEGI benchmark. As before,
the performance on the training set was computed with 5-folds.

configurations are those with 5-grams and 6-grams. The 5-grams is consistently better, it achieves
accuracy values of 0.6065 and 0.6148 for training and test sets, respectively.

5.1.1 Performance on the TASS’15 benchmark

The performance on TASS’15 is similar to that found in the INEGI benchmark; however, TASS’15
shows a higher sparsity of the accuracy along the range on n-words, ranging from 0.35 to close
than 0.61. In the training set, the best performances are achieved using TFIDF.

The best configurations are those using q-grams, as depicted in Figure 9(b) and 9(d), where
accuracy values achieve close to 0.63 in both training and test sets. In contrast to INEGI and
the training set of TASS’15, the best performing q-gram tokenizer has no TFIDF, however the
configurations with TFIDF are tightly concentrated which means that is more easy to pick a good
configuration under a random selection, or by the insight of an expert.

Figure 10 shows a finer analysis of the performance of q-grams tokenizers in TASS’15. We
can observe that 5-grams appear as the best in the training set and in the gold-standard with
TFIDF, but the best performing configuration uses 6-grams tokenizers and no TFIDF; please note
that TFIDF has the best accuracy on the training set, so we have not way to know this behaviour
without testing all possible configurations in the gold-standard. Also, the difference between the
best TFIDF and the best no-TFIDF configurations is of around 0.005; that is quite small to discard
the current bias that suggest to use TFIDF configurations.

14

0.35 0.40 0.45 0.50 0.55 0.60
0

200

400

600

800

1000

TASS @ train 5-folds; n-words - accuracy histogram
n-words no TFIDF
n-words TFIDF

(a) Performance for n-words in training subset

0.35 0.40 0.45 0.50 0.55 0.60
0

250

500

750

1000

1250

1500

1750

TASS @ train 5-folds; q-grams - accuracy histogram
q-grams no TFIDF
q-grams TFIDF

(b) Performance for q-grams in training subset

0.35 0.40 0.45 0.50 0.55 0.60
0

200

400

600

800

1000

1200

TASS @ gold; n-words - accuracy histogram
n-words no TFIDF
n-words TFIDF

(c) Performance for n-words in gold standard

0.35 0.40 0.45 0.50 0.55 0.60
0

250

500

750

1000

1250

1500

1750

2000
TASS @ gold; q-grams - accuracy histogram
q-grams no TFIDF
q-grams TFIDF

(d) Performance for q-grams in gold standard

Figure 9: Accuracy’s histogram, by tokenizer’s class, for the TASS benchmark. The performance
on the training set was computed with 5-folds. We select to divide each figure to show the effect
of TFIDF, which it is essencial for q-grams’s performance.

5.2 Top-k Analysis

This section focus on the structural analysis of the best k configurations (based on the accuracy
score) of our previous results. We call this technique top-k analysis, and it describes the configura-
tions with the empirical probability of a parameter to be enabled among the best k configurations.
The score values are defined as the minimum among the set. The main idea is to discover patterns
on the composition of best performing configurations. As we double k at each row, then k and 2k
share k configurations which produces a smoothly convergence to 0.5 for each probability. At the
best of our knowledge, this kind of analysis has never been used in the literature.

All tables in this subsection are induced by the accuracy score (i.e., best k as measured with
accuracy). Also, we display the macro-F1 score as a secondary measure of performance that can
help to describe the behaviour of unbalanced multi-class datasets. We omit to show the tokenizer
probabilities in favor of Figures 8 and 10; please remind that almost all top configurations use
q-grams.

Table 4 shows the composition of INEGI’s best configurations in both training and test sets. As
previously shown, almost all best setups enable TFIDF, and properly handle emoticons and users.
The parameters del-sw, lem, del-d1, del-d2, num, and url, are almost deactivated in both training
and test sets. The rest of the parameters (stem, del-diac, del-ent, and neg) do not remain between
training and test sets. However, the later set of parameters are disabled in the gold-standard best
configurations, excepting for neg. Such fact supports the idea that faster configurations also can
produce excellent performances. Please notice that lemmatization (lem) and stemming (stem) are

15

0.35 0.40 0.45 0.50 0.55 0.60
0

100

200

300

400

500

TASS @ train 5-folds; q-grams indiv. no TFIDF - accuracy histogram
char. 3-gram no TFIDF
char. 4-gram no TFIDF
char. 5-gram no TFIDF
char. 6-gram no TFIDF
char. 7-gram no TFIDF

(a) Performance without TFIDF in training subset

0.35 0.40 0.45 0.50 0.55 0.60
0

100

200

300

400

500

600
TASS @ train 5-folds; q-grams indiv. TFIDF - accuracy histogram

char. 3-gram TFIDF
char. 4-gram TFIDF
char. 5-gram TFIDF
char. 6-gram TFIDF
char. 7-gram TFIDF

(b) Performance with TFIDF in training subset

0.35 0.40 0.45 0.50 0.55 0.60
0

100

200

300

400

500

600

700

TASS @ gold; q-grams indiv. no TFIDF - accuracy histogram
char. 3-gram no TFIDF
char. 4-gram no TFIDF
char. 5-gram no TFIDF
char. 6-gram no TFIDF
char. 7-gram no TFIDF

(c) Performance without TFIDF in the gold standard

0.35 0.40 0.45 0.50 0.55 0.60
0

100

200

300

400

500

TASS @ gold; q-grams indiv. TFIDF - accuracy histogram
char. 3-gram TFIDF
char. 4-gram TFIDF
char. 5-gram TFIDF
char. 6-gram TFIDF
char. 7-gram TFIDF

(d) Performance with TFIDF in the gold standard

Figure 10: Accuracy’s histogram for q-gram configurations in the TASS benchmark. As before,
the performance on the training set was computed with 5-folds.

Table 4: Analysis of the k best configurations for the INEGI benchmark in both training and test
datasets.

k accuracy macro-F1 tfidf del-sw lem stem del-d1 del-d2 del-punc del-diac del-ent emo num url usr lc neg
1 0.6065 0.4524 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00
2 0.6065 0.4524 1.00 0.00 0.00 1.00 0.00 0.00 0.50 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.50
4 0.6065 0.4524 1.00 0.00 0.00 1.00 0.00 0.00 0.50 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.50
8 0.6059 0.4511 1.00 0.00 0.00 1.00 0.00 0.00 0.50 0.00 1.00 1.00 0.50 0.00 1.00 0.00 0.50
16 0.6058 0.4568 1.00 0.19 0.00 1.00 0.19 0.00 0.44 0.13 0.81 1.00 0.38 0.19 1.00 0.19 0.5625
32 0.6052 0.4507 1.00 0.31 0.00 0.69 0.25 0.00 0.47 0.19 0.56 1.00 0.31 0.38 1.00 0.44 0.5312
64 0.6047 0.4516 1.00 0.22 0.00 0.78 0.44 0.00 0.50 0.33 0.66 1.00 0.38 0.19 1.00 0.53 0.5156
128 0.6037 0.4643 1.00 0.20 0.00 0.77 0.45 0.03 0.50 0.31 0.53 1.00 0.42 0.28 1.00 0.58 0.4922
256 0.6024 0.4489 1.00 0.14 0.00 0.77 0.36 0.09 0.50 0.40 0.51 1.00 0.44 0.43 1.00 0.62 0.5078
512 0.6008 0.4315 1.00 0.17 0.00 0.73 0.42 0.17 0.50 0.43 0.41 1.00 0.41 0.48 0.99 0.62 0.5098

a) Performance on the training dataset (5-folds)

k accuracy macro-F1 tfidf del-sw lem stem del-d1 del-d2 del-punc del-diac del-ent emo num url usr lc neg
1 0.6148 0.4442 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00
2 0.6148 0.4442 1.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00
4 0.6136 0.4405 1.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 0.00 1.00 0.50 0.00 1.00 1.00 1.00
8 0.6135 0.4545 1.00 0.00 0.00 0.25 0.00 0.00 0.62 0.75 0.00 1.00 0.50 0.00 1.00 1.00 0.88
16 0.6134 0.4546 1.00 0.00 0.00 0.38 0.00 0.00 0.50 0.88 0.00 1.00 0.62 0.38 1.00 1.00 0.81
32 0.6130 0.4528 1.00 0.00 0.00 0.50 0.06 0.00 0.50 0.94 0.00 1.00 0.44 0.44 1.00 1.00 0.62
64 0.6119 0.4403 1.00 0.12 0.00 0.44 0.19 0.00 0.50 0.72 0.00 1.00 0.44 0.41 1.00 1.00 0.62
128 0.6112 0.4547 1.00 0.30 0.00 0.48 0.27 0.00 0.50 0.61 0.00 1.00 0.50 0.52 1.00 0.98 0.61
256 0.6099 0.4379 1.00 0.35 0.00 0.46 0.37 0.00 0.50 0.50 0.05 1.00 0.46 0.48 1.00 0.92 0.53
512 0.6083 0.4479 1.00 0.27 0.00 0.52 0.27 0.05 0.50 0.51 0.13 1.00 0.45 0.48 1.00 0.75 0.55

b) Performance on the gold-standard dataset

16

also disabled, which are the linguistic operations with higher computational costs in our pipeline
of text transformations.

Table 5: Analysis of the k best configurations (top-k) for the TASS’15 benchmark in both training
and test datasets.

k accuracy macro-F1 tfidf del-sw lem stem del-d1 del-d2 del-punc del-diac del-ent emo num url usr lc neg
1 0.6286 0.4951 1.00 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
2 0.6286 0.4951 1.00 1.00 0.00 0.00 1.00 0.00 0.50 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
4 0.6281 0.4947 1.00 0.75 0.00 0.00 0.75 0.00 0.50 1.00 0.00 0.50 0.75 1.00 1.00 0.75 1.00
8 0.6279 0.4895 1.00 0.50 0.00 0.00 0.50 0.00 0.50 1.00 0.00 0.50 0.50 1.00 1.00 0.50 1.00
16 0.6270 0.4864 1.00 0.38 0.00 0.00 0.38 0.06 0.44 0.88 0.00 0.50 0.50 0.88 1.00 0.50 1.00
32 0.6265 0.4884 1.00 0.25 0.00 0.00 0.34 0.06 0.47 0.69 0.00 0.38 0.59 0.62 1.00 0.62 1.00
64 0.6258 0.4852 1.00 0.20 0.00 0.00 0.42 0.22 0.50 0.62 0.00 0.48 0.56 0.48 0.94 0.61 0.88
128 0.6254 0.4862 1.00 0.20 0.00 0.00 0.46 0.27 0.48 0.67 0.00 0.56 0.59 0.38 0.81 0.68 0.77
256 0.6247 0.4846 1.00 0.21 0.00 0.12 0.38 0.32 0.50 0.66 0.02 0.47 0.60 0.42 0.77 0.73 0.69
512 0.6240 0.4848 1.00 0.14 0.00 0.24 0.38 0.36 0.50 0.65 0.02 0.47 0.61 0.42 0.77 0.67 0.63

a) Performance in the training dataset (5-folds)

k accuracy macro-F1 tfidf del-sw lem stem del-d1 del-d2 del-punc del-diac del-ent emo num url usr lc neg
1 0.6330 0.5101 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
2 0.6330 0.5101 0.00 1.00 0.00 0.00 1.00 0.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
4 0.6326 0.5099 0.00 1.00 0.00 0.00 1.00 0.00 0.50 0.00 0.00 0.50 0.00 1.00 1.00 1.00 1.00
8 0.6317 0.5104 0.00 1.00 0.00 0.00 1.00 0.00 0.50 0.00 0.00 0.25 0.00 0.50 1.00 1.00 0.75
16 0.6315 0.5082 0.00 1.00 0.00 0.00 1.00 0.00 0.50 0.38 0.00 0.38 0.00 0.38 1.00 1.00 0.88
32 0.6315 0.5069 0.00 0.69 0.00 0.12 0.78 0.16 0.47 0.38 0.00 0.56 0.00 0.62 0.69 1.00 0.81
64 0.6311 0.5071 0.00 0.62 0.00 0.12 0.83 0.19 0.48 0.39 0.00 0.66 0.12 0.56 0.62 1.00 0.81
128 0.6302 0.5061 0.00 0.56 0.00 0.25 0.80 0.25 0.48 0.43 0.00 0.72 0.22 0.62 0.56 1.00 0.77
256 0.6296 0.5054 0.00 0.38 0.00 0.27 0.69 0.34 0.50 0.47 0.00 0.73 0.23 0.62 0.38 0.94 0.65
512 0.6286 0.5048 0.06 0.39 0.00 0.34 0.68 0.42 0.50 0.46 0.02 0.75 0.38 0.57 0.36 0.80 0.66

b) Performance in the gold-standard dataset

Table 5 shows the top-k analysis for TASS’15. Again, TFIDF is a common ingredient of the
majority of the better configurations in the training set; however, the best ones deactivate this
parameter to use only the frequency of the term; reflected in a minimum improvement. The
transformations that remain active in both training and set are del-sw, del-d1, url, usr, lc, and
neg. The deactivated ones in both sets are lem, stem, del-d2, and del-ent, and emo. The rest of
the parameters that change between training and test sets are tfidf, del-diac, and num. Note that
as k grows, del-punc and emo, are close to be random choices. It is counterintuitive to see the
emo parameter outside the top-k items, the same happens for the del-ent parameter. The emo
parameter is used to map emoticons and emojis to sentiments, and del-ent is an heuristic designed
to generalize the sentiment expression in the text (see Table 3). This behaviour remember us that,
in the end, everything depends on the particular distribution of the dataset. In general, it is clear
that there is no a rule-of-thumb to compute the best configuration. Therefore, a probabilistic
approach, as it is the output of top-k analysis, is useful to reduce the cost of the exploration of
the configuration space.

5.3 Improving the Performance with Combination of Tokenizers

In previous experiments, we performed an exhaustive evaluation of the configuration space; then,
to improve over our results we need to modify the configuration space. Instead of adding more
complex text transformations, we decide to use more than one tokenizer per configuration. More
detailed, there exists 127 possible combinations of tokenizers, that is, the powerset of

{2-words, 1-words, 3-grams, 4-grams, 5-grams, 6-grams, 7-grams},

minus the empty set. For this experiment, we only applied the expansion of tokenizers to the
best configurations found in the previous experiments, since performing an exhaustive analysis
of the new configuration space becomes unfeasible. The hypothesis is that the previous best
configurations will be also compose some of the best configurations in the new space, this is a fair
assumption that never get worst under an exhaustive analysis.

Figure 11(a) shows the performance of 4064 configurations that correspond to all combinations
of tokenizers over the top-32 configurations on the training set, see Table 4. The performance in

17

0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66
0

50

100

150

200

250

INEGI combinations - accuracy histogram
train
gold

(a) INEGI

0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66
0

50

100

150

200

250

300

350

TASS combinations - accuracy histogram
train
gold

(b) TASS’15

Figure 11: Accuracy’s histogram for combination of tokenizers.

Table 6: Analysis of the top-k combinations of tokenizers for both INEGI and TASS’15 bench-
marks. We consider both n-words and q-grams.

INEGI
k accuracy macro-F1 n=2 n=1 q=3 q=4 q=5 q=6 q=7
1 0.6553 0.5287 1.00 1.00 1.00 1.00 0.00 0.00 1.00
2 0.6550 0.5270 1.00 1.00 1.00 0.50 0.00 0.00 1.00
4 0.6549 0.5281 0.50 1.00 1.00 0.75 0.00 0.00 1.00
8 0.6542 0.5268 0.63 1.00 1.00 0.62 0.00 0.00 1.00
16 0.6538 0.5263 0.75 0.94 1.00 0.75 0.00 0.00 1.00
32 0.6527 0.5241 0.66 0.84 1.00 0.59 0.00 0.06 0.88
64 0.6519 0.5235 0.56 0.77 1.00 0.52 0.09 0.06 0.84
128 0.6510 0.5258 0.65 0.61 0.99 0.55 0.18 0.25 0.78
256 0.6502 0.5205 0.61 0.64 0.97 0.58 0.22 0.31 0.79
512 0.6492 0.5172 0.62 0.66 0.96 0.55 0.30 0.40 0.74

TASS 15
k accuracy macro-F1 n=2 n=1 q=3 q=4 q=5 q=6 q=7
1 0.6391 0.4997 0.00 1.00 1.00 1.00 0.00 1.00 0.00
2 0.6391 0.4995 0.00 1.00 1.00 1.00 0.00 1.00 0.00
4 0.6391 0.4997 0.00 1.00 1.00 1.00 0.00 1.00 0.00
8 0.6383 0.5020 0.00 1.00 1.00 0.75 0.50 0.75 0.00
16 0.6380 0.4966 0.25 1.00 1.00 0.75 0.38 0.63 0.13
32 0.6373 0.4972 0.18 1.00 1.00 0.63 0.50 0.69 0.19
64 0.6363 0.4940 0.30 1.00 0.94 0.75 0.55 0.58 0.17
128 0.6356 0.4937 0.32 0.97 0.94 0.77 0.53 0.66 0.26
256 0.6347 0.4927 0.39 0.96 0.88 0.81 0.56 0.66 0.35
512 0.6338 0.4954 0.42 0.92 0.86 0.73 0.57 0.56 0.39

both training and test sets is pretty similar, and significantly better than that achieved with a
single tokenizer (Table 4). In Table 6 and Figure 11 we can see a significant improvement with
respective to single tokenizers. The top-k analysis for the test set is listed in Table 6. In this table
we focus on describe the composition of the tokenizers, instead of the text transformations. The
analysis shows that 1-words, 2-words, 3-grams, 4-grams, and 7-grams are commonly present on
the best configurations.

We found that TASS’15 also improves its performance under the combination of tokenizers, as
Figure 11(b) illustrates. In this case, the performance in the gold standard does not surpasses the
performance on the training set, as is the case of INEGI, but it is pretty close. Table 6 shows the
composition of the configurations, here we can observe that best performances use 1-words, and
3-grams, 4-grams and 6-grams. It is interesting to note that 2-words are not used for the top-8
configurations, in contrast to the best configurations for INEGI.

As mentioned, any datasets will need to adjust the configuration and search for the best
combination in the training set, and then, apply to their particular gold-standard. This is a costly
procedure, but it is possible to reduce the search space to a sample lead by the probability models
of the top-k analysis. The presented top-k analysis are particularly useful for sentiment analysis
in Spanish, other languages may present different models but they are beyond the scope of this
manuscript.

It is worth to mention that the best performance is high dependent of the particular dataset;
however, based on Tables 4 and 5, it is interesting to note that simpler configurations are among
the best performing ones when q-grams are used as tokenizers. This allows to create a model that
reduces the computational cost and even improves the performance of the top-1 of both, INEGI
and TASS’15, datasets with a single tokenizer. We create a configuration created by activate
tfidf, emo, num, usr, and lc; and deactivate del-sw, lem, stem, del-d1, del-d2, del-punc, del-diac,
del-ent, and neg. All the activated parameters are relatively simple to implement, even without

18

Table 7: Top-k analysis of a configuration handcrafted to reduce the computational cost.

INEGI
k accuracy macro-F1 n=2 n=1 q=3 q=4 q=5 q=6 q=7
1 0.6546 0.5279 1.00 1.00 1.00 1.00 0.00 0.00 1.00
2 0.6538 0.5268 1.00 1.00 1.00 0.50 0.00 0.00 1.00
4 0.6525 0.5266 0.50 1.00 1.00 0.50 0.00 0.00 1.00
8 0.6519 0.5257 0.63 0.75 1.00 0.50 0.25 0.00 1.00
16 0.6513 0.5237 0.69 0.75 0.94 0.56 0.25 0.31 0.88
32 0.6503 0.5270 0.59 0.66 0.94 0.56 0.31 0.41 0.75
64 0.6478 0.5225 0.55 0.61 0.78 0.61 0.47 0.59 0.67
96 0.6435 0.5250 0.55 0.55 0.61 0.60 0.54 0.54 0.57
120 0.6412 0.5128 0.54 0.54 0.55 0.54 0.55 0.54 0.55
127 0.5736 0.3946 0.50 0.50 0.50 0.50 0.50 0.50 0.50

TASS 15
k accuracy macro-F1 n=2 n=1 q=3 q=4 q=5 q=6 q=7
1 0.6364 0.4971 0.00 1.00 1.00 1.00 0.00 1.00 0.00
2 0.6357 0.4943 0.00 1.00 1.00 1.00 0.50 0.50 0.50
4 0.6350 0.4920 0.00 1.00 1.00 0.75 0.25 0.50 0.50
8 0.6343 0.4948 0.25 1.00 1.00 0.75 0.50 0.63 0.25
16 0.6336 0.4943 0.38 0.94 0.94 0.69 0.63 0.63 0.25
32 0.6319 0.4890 0.44 0.84 0.81 0.78 0.59 0.53 0.44
64 0.6296 0.4842 0.47 0.69 0.73 0.70 0.59 0.55 0.47
96 0.6252 0.4895 0.49 0.58 0.60 0.63 0.57 0.53 0.50
120 0.6207 0.4748 0.50 0.54 0.55 0.56 0.56 0.54 0.51
127 0.5471 0.4154 0.50 0.50 0.50 0.50 0.50 0.50 0.50

external libraries. Note that leaving out stemming and lemmatization dramatically reduces many
times evaluation time.

Table 7 shows the performance on the test set. The best configuration based on single tokenizer
is 0.6148 and 0.6330 for INEGI and TASS’15, respectively; the best performance for combination
of tokenizers is 0.6553 and 0.6391, in the same order. For our handcrafted configuration we reach
an accuracy of 0.6546 for INEGI, and 0.6364 for TASS’15. This is very competitive if we take
into account that the model selection is reduced to evaluate 127 configurations, and also, each
evaluation is pretty fast among other alternatives.

The performances of this simple configurations are pretty close to the best possible ones with
our scheme, that is, the gold-standard performance shown in Tables 4 and 5 while it can be easily
implemented and optimized.

5.4 Performance Comparison on the TASS’15 Challenge

In the end, a sentiment classifier is a tool that helps to discover the opinion of a crowd of people, the
effectiveness is crucial. So, there exists many researchers interested in the field, and for instance,
TASS’15 ([Román et al., 2015]) is a forum that gathers many practitioners and researchers for the
Spanish version of the problem. As described in §2, the problem is commonly tackled with the use
of affective dictionaries, distant supervision methods to increase the knowledge database, word-
embedding techniques, complex linguistic tools like lemmatizers, deep learning based classifiers,
among other sophisticated techniques. Beyond the use of the SVM, there is no complex procedure
that limits the adoption of our approach only to expert users.

However, the question is, how good our approach is as compared with both the state-of-the-
art and the state-of-the-technique? We use the TASS’15 benchmark to answer this question.
Section 2 reviews several of the best papers in the workshop. Figure 12 shows the official scores
of TASS’15 participants, the best scores achieve 0.72 and the worst ones are below 0.43. The
gross of the participants are between 0.59 and 0.61; there lies the best sentiment classifier based
on n-words (0.6051). The best configuration that uses q-grams, as a single tokenizer, surpasses
that range, i.e., 0.6330. The classifiers based on the combination of tokenizers produce a slightly
better performances, and our configuration handcrafted for speed is not too distant from these
performances, as figure shows.

The magnitude of the improvement is tightly linked to the dataset; for instance, as compared
with the best n-words sentiment classifier, the performance of INEGI is improved in 11.17% after
applying the combination of tokenizers. In the case of TASS’15, the improvement is of 5.62%,
smaller but significant in any case. It is important to take into account this effect in the design of
new sentiment classifiers.

6 Discussion

In this study, we covered many traditional techniques used to prepare text representations for
sentiment analysis. The majority of them are too simple to be aware of their complexities. How-
ever, it is important to know its contribution to the solution of the task being tackled, as we

19

rank
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

a
cc

u
ra

cy

TASS'15 scores

top-1 (words) single tokenizer

top-1 (5-grams) single tokenizer

top-1 comb. of tokenizers

top-1 handcrafted

Figure 12: Comparison of our sentiment classifiers with the final scores of TASS’15.

showed, sometimes applying some technique is counterproductive. Therefore, the transformation
pipeline should be carefully prepared. Other techniques, like lemmatization and stemming, are
too complex to be implemented each time they are needed; therefore, a mature implementation
should be used. However, as our experimental results support, for the sentiment analysis task in
Spanish, there is no need to use these complex linguistic techniques if our approach, based on the
combination of tokenizers, is used.

More detailed, a lemmatizer is tightly linked to the language being processed, we use Freeling
by [Padró and Stanilovsky, 2012] for Spanish, and it is designed to work on mostly well-written
text. The stemming procedure is another sophisticated tool, in our case, we used the Snowball for
Spanish, available in NLTK package by [Bird et al., 2009]. Since it is based mostly on the removal
of suffixes, then it is more robust to errors than a lemmatizer. Both techniques are computationally
expensive, and both are not used by best-performing configurations; therefore, they should not be
applied when the text is full of errors. This is the case of Twitter, the source of our data.

From the perspective of practitioners, the simpler approach is to find the best tokenizer’s
combination as applied to a set of simple setups; this gives us 127 combinations if our
{2-word, 1-word, 3-gram, 4-gram, 5-gram, 6-gram, 7-gram} set is used. Supported by the pat-
terns found in our top-k analysis, the combinations should have at least three tokenizers, and
1-words and 3-grams can always be selected. So, if the complexity of the model selection is an
issue, only

(
5
3

)
+
(

5
4

)
+
(

5
5

)
= 16 combinations are needed.

7 Conclusions

We were able to improve the performance of our sentiment classifiers significantly. Our approach is
simple; given a good initial configuration, we can enhance its performance using a set of tokenizers
that include both n-words and q-grams. We exhaustively prove the superiority of q-grams over
n-words, at least for our case of study (sentiment analysis in the Spanish language). At first

20

glance, large q-grams (q = 5, 6, or 7) are quasi-words; however, the q-grams are sliding windows
over the entire text, meaning that many times they cover the connection between two words or
even three words. In relatively large words, the suffixes and prefixes are captured, when q is small,
affixes and word’s root are also captured. Nonetheless, this process creates many noisy substrings,
and that is the reason behind our best configurations almost always use TFIDF, which weights the
tokens to reduce this effect. It is necessary to produce a better process to filter out tokens that
not contribute beyond creating larger vectors.

However, a näıve implementation of the multiple tokenizers will multiply the necessary memory,
i.e., actually it increases the memory needs by a factor of q for q-grams. This can be a problem
on very large collections. Further research is needed to solve this issue.

The initial configuration can be a little tricky. In this study, we provide several top-k analysis;
the tables produced can be seen as probabilistic models to create good performing classifiers. These
models should be valid at least for Spanish. In practice, this means that we need to evaluate the
performance of a few dozens of configurations to select the best performing one among them. In
a modern multicore computing architecture, this means a relatively fast procedure.

Finally, we conjectured that our approach would generalizes to different languages because
it works using a few language-specific techniques. However, this claim should be supported by
experimental evidence. Also, we provide a list of simple rules to find a sentiment classifier based
on our findings; nonetheless, the best setup is dependent of the dataset, the classes, and many
others task-dependent properties. In this paper, our approach consists in performing an exhaustive
evaluation of the parameter’s space and then expand the search using a combination of tokenizers.
We will require a faster algorithm to find good setups on large configuration’s spaces that work on
different languages. Finally, we want to make evident that we used SVM as classifier because of
its popularity in the community, this paper mainly focuses on the treatment of the text regardless,
so the proper selection and tuning of the classifier is left as future work.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and sug-
gestions to improve the quality of this manuscript. We want to thank the Instituto Nacional de
Estad́ıstica y Geograf́ıa (INEGI) of México for granting access to the labeled-benchmark of INEGI
and its dataset of geolocated tweets, especially to to Gerardo Leyva, Juan Muñoz, Alfredo Bustos,
Silvia Fraustro, and Abel Coronado. We also would like to thank Julio Villena-Roman for kindly
give us access to the gold-standards of TASS’15.

References

References

[Aisopos et al., 2011] Aisopos, F., Papadakis, G., and Varvarigou, T. (2011). Sentiment analysis of
social media content using n-gram graphs. In Proceedings of the 3rd ACM SIGMM International
Workshop on Social Media, WSM ’11, pages 9–14, New York, NY, USA. ACM.

[Alam et al., 2016] Alam, M. H., Ryu, W.-J., and Lee, S. (2016). Joint multi-grain topic sentiment:
Modeling semantic aspects for online reviews. Information Sciences, 339:206–223.

[Almeida, 2015] Almeida, A. (2015). Deustotech internet at tass 2015: Sentiment analysis and
polarity classification in spanish tweets. Comité organizador, page 23.

[Alvarez-López et al., 2015] Alvarez-López, T., Juncal-Mart́ınez, J., Gavilanes, M. F., Costa-
Montenegro, E., González-Castano, F. J., Cerezo-Costas, H., and Celix-Salgado, D. (2015).
Gti-gradiant at tass 2015: A hybrid approach for sentiment analysis in twitter. In TASS SE-
PLN, pages 35–40.

21

[Araque et al., 2015] Araque, O., Corcuera, I., Román, C., Iglesias, C. A., and Sánchez-Rada,
J. F. (2015). Aspect based sentiment analysis of spanish tweets. In TASS SEPLN, pages 29–34.

[Baeza-Yates and Ribeiro-Neto, 2011] Baeza-Yates, R. A. and Ribeiro-Neto, B. A. (2011). Modern
Information Retrieval. Addison-Wesley, 2nd edition.

[Bird et al., 2009] Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with
Python. O’Reilly Media.

[Borda and Saladich, 2015] Borda, I. M. and Saladich, J. C. (2015). Bittenpotato: Tweet senti-
ment analysis by combining multiple classifiers. Comite organizador, pages 71–72.

[Cámara et al., 2015] Cámara, E. M., Cumbreras, M. Á. G., Mart́ın-Valdivia, M. T., and López,
L. A. U. (2015). Sinai-emma: Vectores de palabras para el análisis de opiniones en twitter. In
TASS SEPLN, pages 41–46.

[Casasola Murillo and Maŕın Raventós, 2016] Casasola Murillo, E. and Maŕın Raventós, G.
(2016). Evaluación de modelos de representación de texto con vectores de dimensión reducida
para análisis de sentimiento. In Proceedings of TASS 2016: Workshop on Sentiment Analysis
at SEPLN, volume 1702, pages 23–28. CEUR Workshop Proceedings.

[Cerón-Guzmán and de Cali, 2016] Cerón-Guzmán, J. A. and de Cali, S. (2016). Jacerong at
tass 2016: An ensemble classifier for sentiment analysis of spanish tweets at global level. In
Proceedings of TASS 2016: Workshop on Sentiment Analysis at SEPLN, page 35.

[Cui et al., 2015] Cui, Z., Shi, X., and Chen, Y. (2015). Sentiment analysis via integrating dis-
tributed representations of variable-length word sequence. Neurocomputing.

[de la Vega and Vea-Murgúıa, 2015] de la Vega, M. and Vea-Murgúıa, J. (2015). Ensemble algo-
rithm with syntactical tree features to improve the opinion analysis. Comité organizador, pages
53–54.

[Deas et al., 2015] Deas, M. S., Biran, O., McKeown, K., and Rosenthal, S. (2015). Spanish twitter
messages polarized through the lens of an english system. In TASS SEPLN, CEUR Workshop
Proceedings, pages 81–86.

[Dı́az-Galiano and Montejo-Ráez, 2015] Dı́az-Galiano, M. and Montejo-Ráez, A. (2015). Partic-
ipación de sinai dw2vec en tass 2015. In Proceedings of the Sentiment Analysis Workshop at
SEPLN (TASS2015), pages 59–64.

[Ghiassi et al., 2013] Ghiassi, M., Skinner, J., and Zimbra, D. (2013). Twitter brand sentiment
analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert
Systems with Applications, 40(16):6266 – 6282.

[Giannakopoulos et al., 2012] Giannakopoulos, G., Mavridi, P., Paliouras, G., Papadakis, G., and
Tserpes, K. (2012). Representation models for text classification: A comparative analysis over
three web document types. In Proceedings of the 2Nd International Conference on Web Intel-
ligence, Mining and Semantics, WIMS ’12, pages 13:1–13:12, New York, NY, USA. ACM.

[Gutenberg, 2016] Gutenberg (2016). Gutenberg project. In https://www.gutenberg.org/.

[Han et al., 2013] Han, Q., Guo, J., and Schuetze, H. (2013). Codex: Combining an SVM classifier
and character n-gram language models for sentiment analysis on twitter text. In Proceedings
of the 7th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2013, At-
lanta, Georgia, USA, pages 520–524.

[Joachims, 1998] Joachims, T. (1998). Text categorization with support vector machines: Learning
with many relevant features. In European conference on machine learning, pages 137–142.
Springer.

22

[Jurafsky and Martin, 2009] Jurafsky, D. and Martin, J. H. (2009). Speech and Language Process-
ing (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Khan et al., 2016] Khan, F. H., Qamar, U., and Bashir, S. (2016). Sentimi: Introducing point-
wise mutual information with sentiwordnet to improve sentiment polarity detection. Applied
Soft Computing, 39:140–153.

[Liu, 2015] Liu, B. (2015). Sentiment Analysis: Mining Opinions, Sentiments, and Emotions.
Cambridge University Press. ISBN: 1-107-01789-0. 381 pages.

[Navarro and Raffinot, 2002] Navarro, G. and Raffinot, M. (2002). Flexible Pattern Matching in
Strings – Practical on-line search algorithms for texts and biological sequences. Cambridge
University Press. ISBN 0-521-81307-7. 280 pages.

[O’Connor et al., 2010] O’Connor, B., Krieger, M., and Ahn, D. (2010). Tweetmotif: Exploratory
search and topic summarization for twitter. In ICWSM, pages 384–385.

[Padró and Stanilovsky, 2012] Padró, L. and Stanilovsky, E. (2012). Freeling 3.0: Towards wider
multilinguality. In LREC2012.

[Padró and Stanilovsky, 2012] Padró, L. and Stanilovsky, E. (2012). Freeling 3.0: Towards wider
multilinguality. In Proceedings of the Language Resources and Evaluation Conference (LREC
2012), Istanbul, Turkey. ELRA.

[Pang and Lee, 2008] Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. Foun-
dations and Trends in Information Retrieval, 2(1-2):1–135.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830.

[Peng et al., 2008] Peng, T., Zuo, W., and He, F. (2008). Svm based adaptive learning method for
text classification from positive and unlabeled documents. Knowledge and Information Systems,
16(3):281–301.

[Quirós et al., 2016] Quirós, A., Segura-Bedmar, I., and Martınez, P. (2016). Labda at the 2016
tass challenge task: using word embeddings for the sentiment analysis task. In Proceedings of
TASS 2016: Workshop on Sentiment Analysis at SEPLN, page 29.

[Razavi et al., 2014] Razavi, A. H., Matwin, S., Koninck, J. D., and Amini, R. R. (2014). Dream
sentiment analysis using second order soft co-occurrences (SOSCO) and time course represen-
tations. J. Intell. Inf. Syst., 42(3):393–413.

[Román et al., 2015] Román, J. V., Morera, J. G., Ángel Garćıa Cumbreras, M., Cámara, E. M.,
Valdivia, M. T. M., and López, L. A. U. (2015). Overview of tass 2015. CEUR Workshop
Proceedings, 1397:13–21.

[Saif et al., 2016] Saif, H., He, Y., Fernandez, M., and Alani, H. (2016). Contextual semantics for
sentiment analysis of twitter. Information Processing & Management, 52(1):5–19. Emotion and
Sentiment in Social and Expressive Media.

[Sammut and Webb, 2011] Sammut, C. and Webb, G. I. (2011). Encyclopedia of Machine Learn-
ing. Springer Publishing Company, Incorporated, 1st edition.

[Sidorov et al., 2013] Sidorov, G., Miranda-Jiménez, S., Viveros-Jiménez, F., Gelbukh, A., Castro-
Sánchez, N., Velásquez, F., Dı́az-Rangel, I., Suárez-Guerra, S., Treviño, A., and Gordon, J.
(2013). Empirical study of machine learning based approach for opinion mining in tweets. In
Proceedings of the 11th Mexican International Conference on Advances in Artificial Intelligence
- Volume Part I, MICAI’12, pages 1–14, Berlin, Heidelberg. Springer-Verlag.

23

[Tripathy et al., 2016] Tripathy, A., Agrawal, A., and Rath, S. K. (2016). Classification of senti-
ment reviews using n-gram machine learning approach. Expert Syst. Appl., 57:117–126.

[Turney, 2002] Turney, P. D. (2002). Thumbs up or thumbs down?: Semantic orientation ap-
plied to unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 417–424, Stroudsburg, PA, USA.
Association for Computational Linguistics.

[Unicode, 2016] Unicode (2016). Unicode emoji chart.

[Valverde et al., 2015] Valverde, J., Tejada, J., and Cuadros, E. (2015). Comparing supervised
learning methods for classifying spanish tweets. In TASS SEPLN, CEUR Workshop Proceedings,
volume 1397, pages 87–92.

[Wu et al., 2016] Wu, F., Huang, Y., and Song, Y. (2016). Structured microblog sentiment clas-
sification via social context regularization. Neurocomputing, 175:599–609.

[y Ferran Pla, 2016] y Ferran Pla, L.-F. H. (2016). Elirf-upv en tass 2016: Análisis de sentimientos
en twitter. In Proceedings of TASS 2016: Workshop on Sentiment Analysis at SEPLN, pages
47–51.

24

	1 Introduction
	2 Related Work
	3 Text Representation
	3.1 Text Transformation Pipeline
	3.1.1 TFIDF (tfidf)
	3.1.2 Stopwords (del-sw)
	3.1.3 Spelling
	3.1.4 Stemming (stem)
	3.1.5 Lemmatization (lem)
	3.1.6 Negation (neg)
	3.1.7 Emoticon (emo)
	3.1.8 Entity (del-ent)
	3.1.9 Word-based n-grams (n-words)
	3.1.10 Character-based q-grams (q-grams)

	3.2 Examples of Text Transformation Stage

	4 Benchmarks and Parameter Settings
	4.1 Parameters of the text transformations

	5 Experimental Analysis
	5.1 A Performance Comparison of n-words and q-grams
	5.1.1 Performance on the TASS'15 benchmark

	5.2 Top-k Analysis
	5.3 Improving the Performance with Combination of Tokenizers
	5.4 Performance Comparison on the TASS'15 Challenge

	6 Discussion
	7 Conclusions

