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                                                                    a b s t r a c t 

Clustering in energy markets is a top topic with high significance on expert and intelligent systems. The 
main impact of is paper is the proposal of a new clustering framework for the automatic classification 
of electricity customers’ loads. An automatic selection of the clustering classification algorithm is also 
highlighted. Finally, new customers can be assigned to a predefined set of clusters in the classification

phase. The computation time of the proposed framework is less than that of previous classification tech- 

niques, which enables the processing of a complete electric company sample in a matter of minutes on 
a personal computer. The high accuracy of the predicted classification results verifies the performance of 
the clustering technique. This classification phase is of significant assistance in interpreting the results, 
and the simplicity of the clustering phase is sufficient to demonstrate the quality of the complete mining 
framework.
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1. Introduction

New technologies derived from the paradigm of Smart Grids

( Tuballa & Abundo, 2016 ) have increased the control and moni-

toring of electricity consumption by customers, distribution com-

panies, and retailers. This new scenario has led to an exponential

growth in the available information concerning the grid and con-

sumption. Thus, these technologies have led to the emergence of

new services, and the increased efficiency and reliability of elec-

tricity supplies. To facilitate interaction with other systems, these

new services must be able to analyse huge amounts of infor-

mation in a short time ( Fang et al., 2016 ). To achieve this goal,

analysis methods and modelling designs must be constructed us-

ing big data platforms ( Diamantoulakis, Kapinas, & Karagianni-

dis, 2015 ) such as Apache Hadoop ( Hafen, Gibson, van Dam, &

Critchlow, 2014 ) or Spark ( Shyam, Kumar, Poornachandran, & So-

man, 2015 ). In the current regulation model of the electricity sec-

tor, one of the main targets is to improve the performance of dis-

tribution, thus increasing the level of knowledge about demand.

The most common way to evaluate energy efficiency is to eval-

uate the behaviour of the customers’ load curve, including pos-

sible displacements in peak hours ( Ferreira, de Oliveira Fontes,
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avalcante, & Marambio, 2015 ). Accurate knowledge of customers’

onsumption patterns represents a worthwhile asset for electric-

ty providers in competitive electricity markets. Various approaches

an be used to group customers that exhibit similar electricity

onsumption behaviour into customer classes ( Chicco et al., 2004;

u & Wunsch, 2005 ). Dynamic clustering can be applied ( Benítez,

uijano, Díez, & Delgado, 2014; Lee, Kim, & Kim, 2011 ), with the

ocus on large-scale customers ( Tsekouras, Hatziargyriou, & Dia-

ynas, 2007; Zhang, Zhang, Lu, Feng, & Yang, 2012 ). The main

dea is to identify customers hourly load profiles (HLPs) ( Chicco,

012; Grigoras & Scarlatache, 2014 ) and develop a rule set for

he automatic classification of new consumers ( Halkidi & Vazir-

iannis, 2008; Ramos, Duarte, Duarte, & Vale, 2015 ). Several cus-

omer parameters, i.e. economic size, economic activity, and en-

rgy consumption, are typically used in current models ( Dzobo,

lvehag, Gaunt, & Herman, 2014 ). In the market scenario, electric-

ty providers have been given new degrees of freedom in defining

ariff structures and rates under regulatory-imposed revenue caps

 Granell, Axon, & Wallom, 2015 ). This requires a suitable grouping

f the electricity customers into customer classes ( Figueiredo, Ro-

rigues, Vale, & Gouveia, 2005 ). Other applications of load classifi-

ation including the identification and correction of erroneous data

nd load forecasting ( le Zhou, lin Yang, & Shen, 2013 ). Statistical

echniques such as k-means ( López et al., 2011 ), fuzzy techniques

 Azadeh, Saberi, & Seraj, 2010 ), and frequency-domain load pat-

ern data ( Carpaneto, Chicco, Napoli, & Scutariu, 2006 ) have been
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Fig. 1. Clustering and classification mining framework.
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sed. Although different clustering methods are used for load clas-

ification ( Rasanen, Voukantsis, Niska, Karatzas, & Kolehmainen,

010 ), the key requirements are some load data measuring and

ollection platform for automated meter reading (AMR), comput-

ng software such as MATLAB, SPSS, or R, and high-performance

omputers. The present study was conducted using the R

oftware. 

. Mining framework for load classification

Load classification includes a pre-clustering phase to distin-

uish between different categories of customers. This first cate-

orization of customer loads considers economic reasons. During

he pre-clustering phase, the main feature is the contracted tariff,

hich usually determines the expected load profile. Other fields

f interest are the seasonal variation in electricity consumption

nd the individual consumer categories: households, agriculture,

ndustry, private services, and public services. For example, agricul-

ure consumption is not as systematic as for the other categories,

nd is heavily dependent on meteorological variables such as tem-

erature, cloud cover, and daylight hours. Consumption on work-

ays and non-workdays differs between months and different cat-

gories, except in certain industries where the monthly profiles are

ssumed to be identical. Unfortunately, individual consumer cate-

ories are not always specified in the electric company database,

hich means that this useful information is not available for clus-

ering purposes. After the pre-clustering phase, a data reduction

rocess will be performed. The sampling rate of smart meters en-

bles 24–96 consumption data per day, i.e. a sample every hour or

very 15 min. This represents a significant computation time for

illions of customers, each one described with a 96-dimensional

ector per day. This huge quantity of data necessitates the use of

ata reduction and characterization techniques. Furthermore, sig-

ificant information will be preserved during the reduction pro-

ess. The algorithm could be run on a big data system, such as

hose based on Apache Hadoop or Spark libraries. The use of these

nfrastructures increases the efficiency and reliability of the algo-

ithm in large-scale databases, which decreases the computation

ime. Different techniques for this purpose include principal com-

onent analysis ( Chicco, Napoli, & Piglione, 2006 ), harmonic anal-

sis ( Carpaneto, Chicco, Napoli, & Scutariu, 2006 ), and the wavelet

epresentation ( Mallat, 1989 ). López et al. (2011) proposed the

aily mean power values, calculated during time-of-use pricing

usually two daily periods, named peak and valley hours). This pa-

er presents a new data characterization that reduces the compu-

ation time with respect to the techniques mentioned above. The

re-clustering phase reduces the information on each customer to

 vector composed of a few features. This vector is used as the

nput to the clustering process. This clustering phase includes sev-

ral tasks: the selection of the clustering algorithm and the opti-

um number of clusters. Validation techniques ( Halkidi, Batistakis,

 Vazirgiannis, 2001 ) can be applied during this step to ensure the

uality of the clustering results. The correctness of clustering algo-

ithm results is verified using appropriate criteria and techniques.

ince clustering algorithms define clusters that are not known a

riori, irrespective of the clustering method, the final partitioning

f data generally requires some kind of evaluation. Thus, the main

utput of the clustering phase is the classification of a sample of

ustomers into clusters. In many cases, the experts in the applica-

ion area have to integrate the clustering results with other experi-

ental evidence and analysis in order to draw appropriate conclu-

ions. In other words, electric company experts would validate and

nterpret the pragmatic usefulness of the clustering. The final step

s the classification phase. Classification assigns new customers to

 predefined set of categories or clusters. The clustering phase pro-

uces initial categories in which the values in a dataset are classi-
ed during the classification process. The classification phase is of

reat assistance in interpreting the results, as we show in the fol-

owing sections. The simplicity of the clustering phase convinces

n electric company expert of the quality of the complete mining

ramework ( Fig. 1 ). 

. Pre-clustering and feature selection phases

During this phase, a sample of similar customers is selected

ased on their consumption and other economic criteria. The indi-

idual consumer categories are often incorrectly specified in com-

any databases. Most customers appear as households, despite

aving a high contracted power. Thus, we selected a sample of

ustomers with a certain contracted power (tariff 3.0A), a time-

rame that ensures non-seasonal variations (three months), and a

ommon climate location. These customers are located in nine ad-

acent villages around Seville in Andalucia, Spain. The differences

etween the customer environments were minimized to guaran-

ee the homogeneity of the subsequent clustering. The sample con-

ained a total of 218 customers. The 3.0A tariff is a time-to-use tar-

ff for low-voltage customers (below 1 kV). There are three defined

eriods for pricing: peak (18–22 h), valley (0–8 h), and flat (8–18 h

nd 22–24 h). According to information from Spain National Com-

ission of Energy (CNE), such customers represent approximately

% of all electricity consumers in Spain. Feature selection and data

eduction are necessary tasks. Twenty-four hourly data points per

ustomer per day would be unmanageable in terms of computation

ime. Hence, researchers often use the mean daily power or the

ean power during each pricing period (mean peak hours power,

ean valley hours power, mean flat hours power) ( López et al.,

011 ). Additionally, a number of studies distinguish between dif-

erent months and working or non-working days ( Chicco, 2012 ).

here are two practical problems in the use of these features, one

egarding the use of the mean power and another related to the

se of the pricing periods. With respect to calculations based on

he pricing periods, customers often vary their load profiles over

he same period. Company experts prefer to divide the daytime

nto several periods based on the true electricity use. These pe-

iods are highly dependent on the economic activity and climate

ocation of the consumer. Sample tests have shown that the fol-



Fig. 2. LOESS curve in customer with tariff 3.0A. (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.)
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lowings three time periods are appropriate: 8–15 h; 16–21 h; and

22–7 h. This division considers the opening and closing times of

commercial customers and the typical work day of households. Ob-

servations of a complete set of customer load curves support this

decision. 

With respect to the calculation of the consumption mean over

several time periods, mean values mask the evolution of hourly

consumption. Company experts prefer others features that allow

the evolution of the load curve to be determined. We have used

the number of hours of high/low consumption in the three time

periods described below, as well as the count of the number of

customer consumption peaks and valleys during the same time pe-

riods. Company experts can understand such features, which are

also useful for clustering purposes. This set of features is fully ex-

plained in Appendix A . To distinguish peaks and valleys, a LOESS

(LOcal regrESSion smoothing) curve was used. LOESS curves com-

bine multiple regression models in a k-nearest-neighbour-based

meta-model. A smoothing parameter ( α) controls the flexibility of

the LOESS regression function. Large values of α produce smoother

functions in response to fluctuations in the data. Smaller values of

α cause the regression function to follow the data more closely.

However, too small a value of α is not desirable, because the re-

gression function will eventually start to capture the random errors

in the data. Useful values of the smoothing parameter typically lie

in the range 0.25–0.5 for most LOESS applications. In the present

study, a value of α = 0 . 2 has been used. The features explained in

Appendix A use these curves to identify consumption peaks and

valleys and for other calculations. 

Fig. 2 shows the LOESS curve for a customer on working and

non-working days. Company experts could observe the consump-

tion evolution and determine that, on working days (green curve),

the customer has low consumption from 0–8 h, a maximum con-

sumption at approximately 14 h, a minimum at 17 h, and a new

peak at 21 h. Sundays (orange curve) exhibit low consumption in

the afternoons. 

The features for this customer are NMP = 2; NAP = 1; NNP = 0;

NMiV = 1; NHcNh = 0; NLcHh = 6; NHcMh = 5; NLcMh = 0; and

NLcAh = 0. 
. The clustering algorithm and the optimum number of

lusters

There are a wide variety of clustering algorithms available in

ata mining software ( Brock, Pihur, Datta, & Datta, 2008 ), such

s connectivity-based clustering (hierarchical clustering), centroid-

ased clustering, distribution-based clustering, and density-based

lustering. The proposed framework tests a complete set of clus-

ering algorithms with different numbers of clusters and different

alidation measures, and selects the most suitable solution. A brief

escription of each clustering method is given below. 

Hierarchical clustering is an agglomerative and hierarchical

clustering algorithm that yields a dendrogram that can be

cut at a chosen height to produce the desired number of

clusters. Each observation is initially placed in its own clus-

ter, and the clusters are successively joined together in order

of their closeness, as determined by a dissimilarity matrix. 

K-means is an iterative method that minimizes the within-class

sum of squares for a given number of clusters. Clustering is

strongly dependent of the initial guess for the cluster cen-

tres. Each observation is placed in the cluster to which it is

closest, and the centres are updated until they remain sta-

tionary.

Diana is a hierarchical algorithm that starts with all observa-

tions in a single cluster and successively divides the obser-

vations until there are a series of clusters containing only a

single observation. This algorithm uses a hierarchical divisive

clustering approach. 

PAM is similar to k-means, but admits the use of other dissim-

ilarity metrics besides the Euclidean distance. 

Clara is a sampling-based algorithm that implements PAM on a

number of sub-datasets, which is useful when the number

of observations is relatively large. 

Fanny is a fuzzy-clustering algorithm in which each observation

can have a partial membership in each cluster. Each obser-

vation is assigned to the cluster for which it has the highest

membership value. 



Fig. 3. Internal validation: connectivity.

Table 1

Optimal scores in validation tests.

Score Method Clusters

Connectivity 2.8611 PAM 2

Dunn 0.3121 Diana 9

Silhouette 0.6217 SOM 3
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SOM is a neural network unsupervised learning technique that

allows maps and visualizes high-dimensional data in two di-

mensions. 

Model-based clustering is a distribution-based technique in

which a mixture of Gaussian distributions is fitted to the

data. Each mixture is a cluster, and the group membership

is estimated using a maximum likelihood algorithm. 

SOTA is an unsupervised algorithm with a divisive tree struc-

ture. 

The validation measures take only the dataset and the clus-

ering partition as input, and use intrinsic information within the

ata to assess the quality of the clustering. We select measures

hat reflect the compactness, connectedness, and separation of the

luster partitions (internal validation indices). Connectedness is a

ocal concept of clustering based on the idea that neighbouring

ata items should share the same cluster, and is here measured

y the connectivity index ( Handl, Knowles, & Kell, 2005 ). Com-

actness assesses the cluster homogeneity, usually by looking at

he intra-cluster variance, whereas separation quantifies the de-

ree of separation between clusters (usually by measuring the dis-

ance between cluster centroids). Because compactness and sepa-

ation demonstrate opposing trends (compactness increases with

he number of clusters but separation decreases), popular methods

ombine the two measures into a single score. The Dunn index

 Dunn, 1974 ) and silhouette width ( Rousseeuw, 1987 ) are exam-

les of nonlinear combinations of the compactness and separation.

everal tests were completed using the R software. The clustering

lgorithms and validation measures (with 2–9 clusters) generated

he optimal scores presented in Table 1 . Three different solutions

ere obtained using the three validation indexes. This is a typi-

al result: different methods produce different numbers of clusters

elected by different validation indexes. 

These results should be examined carefully. With respect to

he connectivity index (where smaller numbers are better), Fig. 3
hows the complete test results. Low cluster numbers (2–5 clus-

ers) give a positive outcome. Diana and the hierarchical algo-

ithms performed well with 2–9 clusters, whereas the PAM algo-

ithm attained a local minimum with two clusters. 

Higher values of the Dunn index are better. This index indicates

ood performance with four clusters, particularly with the hierar-

hical and Diana algorithms ( Fig. 4 ). K-means with four clusters

lso performed well. The Diana algorithm gives the best selection

ith seven clusters. 

Similarly, higher values of the silhouette index are better. This

ndex suggests that most algorithms achieved optimal performance

ith three clusters, although SOM and model-based clustering did

ot perform well in this test ( Fig. 5 ). 

In summary, the three validity indexes indicate that the hier-

rchical algorithm achieves good performance with a low number

f clusters. Company experts consider that this data sample can be

orrectly represented by a low number of clusters. Based on the

xpertsreports, the nine clusters that the Diana algorithm selected

or the Dunn index were excessive for this selection. 

. Cluster validation by company experts and classification

Hierarchical clustering consistently performs well for most of

he validation measures. Here, we extract the results from hierar-

hical clustering, plot the resulting dendrogram, and view the ob-

ervations that are grouped together at various levels of the topol-

gy. As suggested by the company experts, two clusters is not a

esirable result, as only night and day will be differentiated. Thus,

hree clusters were formed. The dendrogram is plotted in Fig. 6 ,

nd the mean number of features per cluster is listed in Table 2 .

urther inspection of the results was conducted by a subject mat-

er expert. 

Finally, the plots of the mean LOESS curves per group allow

s to understand the cluster significance. Experimental outcomes

hown insightful implications of customers’ behaviour. Thus, the

rst cluster (Cluster 1, 28 customers) corresponds to night-time

onsumption customer. Therefore may involve that most of this

nergy consumption is used for lighting, and as such there is no

ssential difference between working and non-working days, as

hown in Fig. 7 . 

The second and third clusters (134 customers and 56 customers,

espectively) correspond to daytime consumption groups. They dif-

er in the number of morning consumption peaks and the number



Fig. 4. Internal validation: Dunn index.

Fig. 5. Internal validation: Silouette index.

Table 2

Mean features per cluster & group, 3 clusters.

Group NMoP NNP NAP NMiV NNH NLcNh NLcMh NLcAh

1 0.79 1.65 0.59 0.69 7.59 0.14 2.65 0.17

2 1.59 1.16 0.92 0.03 0.75 0.16 0.07 0.02

3 1.70 0.12 0.96 0.48 0.07 7.32 0.28 0.86
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of hours with high consumption. Cluster 3 exhibits low consump-

tion on Sundays, Saturday evenings, and holidays ( Figs. 8 and 9 ).

Thus, company expert suppose that cluster 2 corresponds to a do-

mestic customers, and cluster 3 involves a commercial consump-

tion. 

For the purpose of classification, classification and regression

trees (CARTs) can be used as an alternative to logistic regression.

Recursive partitioning, which builds the model in a forward step-

wise search, is a popular CART method that can be used to com-

pute the probability of being in any hierarchical group. Although

this approach is known to be an efficient heuristic, the results of

recursive tree methods are only locally optimal, as splits are cho-

sen to maximize homogeneity at the next step only. An alterna-
ive means of searching the parameter space of the trees is to use

lobal optimization methods such as evolutionary algorithms. Such

pproaches can be used to reduce the a priori bias. In the proposed

ramework, globally optimal CARTs are implemented, and the re-

ults are shown in Fig. 10 . 

Nodes 5 & 6 include 28 customers, all of whom belong to clus-

er 1. The associated rule is: N LcN H < 5 & (NLcMH ≥ 5 or NLcMH <

 & N cN H ≥ 7) . Node 4 includes 134 customers, all of whom be-

ong to cluster 2. The associated rule is: N LcN H < 5 & NLcMH <

 & N cN H < 7 . Node 7 include 56 customers, all of whom belong

o cluster 3. The associated rule is: NLcNH ≥ 5. As shown, the clas-

ification method employed here correctly classifies the customers

nd clusters. 



Fig. 6. Cluster dendogram, for three clusters.

Fig. 7. Cluster 1. Mean LOESS curve, working and no-working days.



Fig. 8. Cluster 2. Mean LOESS curve, working and no-working days.
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6. Conclusion

Clustering is an unsupervised machine learning technique

widely used to: 

• Understanding market strategies. E.g., Lorentz, Hilmola, Malm-

sten, and Srai (2016) uses clustering to detect small and

medium size enterprises? (SME) manufacturing strategy.
• Improving the efficiency of a service. E.g., clustering techniques

were utilized for improving the efficiency of a hospital’s service

and of the maintenance tasks in a clinical engineering depart-

ment ( Cruz, 2013 ).
• Discovering association in different markets. E.g., in Dias and

Ramos (2014) , the energy time series (crude oil, natural gas and

electricity prices) are clustered into homogeneous groups based

on their state dynamic.
• Customer grouping. In Ho, Ip, Lee, and Mou (2012) , a robust

genetic algorithm (GA) based k-means clustering algorithm is

proposed in attempt to classify existing customers of the enter-

prise into groups with consideration of relevant attributes for

the sake of obtaining desirable grouping results in an efficient

manner.

Differentiate exiting customers with common features into

smaller groups can serve as a piece of useful reference for
ecision-making. The main objective of this paper was to describe

 complete framework for the automatic classification of electric-

ty customers loads. The clustering of electricity load curves is a

opic of significant interest, but several steps described in this pa-

er have not been adequately covered in the literature. Authors

sually select or propose a specific clustering classification algo-

ithm, and compare their results with other solutions ( Tsekouras,

atziargyriou, & Dialynas, 2007; Zhang, Zhang, Lu, Feng, & Yang,

012 ). This is probably the main strength of this paper: the algo-

ithm selection phase that does not assume any a priori solution.

he reason is that the particular solution will depend on the se-

ected sample, because different customer categories have very dif-

erent consumption patterns, and no simple algorithm can identify

he optimum for all mixtures of customers. 

The use of a complete set of validation indexes that reflect the

onnectedness (connectivity index), compactness, and separation

Dunn and silhouette indexes) of the clustering partition is another

nnovative step in the proposed framework. The interpretation of

artial results would be similar to that given by a company expert.

n this sense, local optima of the indexes would be avoided. The

volution of all indexes should be carefully studied and the exper-

ise of electricity companies considered. 

This research method is actually in the test phase. Real data

rom a medium-size electricity company located in the south of



Fig. 9. Cluster 3. Mean LOESS curve, working and no-working days.
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pain have been used. Results are promising, but more practical

est are needed. 

The proposed framework also includes a classification phase

hat allows new customers to be assigned to a predefined clus-

er. This phase is useful for interpreting the results and convinc-

ng company experts of the quality and pragmatism of the mining

ramework. The high accuracy of our results supports the proposed

ramework. The reduction of any a priori bias can be implemented

sing an evolutionary algorithm that provides a global optimiza-

ion method. 

Future endeavours of this work are directed toward the inclu-

ion of this work as a part of a data analysis framework for the

elemetry and management of electricity distribution companies.

n future research, this clustering framework will be applied to

enerate the input to a non-technical losses (NTLs) model in power

ystems analysis. NTLs are caused by actions external to the power

ystem, such as electricity theft, non-payment by customers, or er-

ors in accounting. NTL detection requires supervised data mining

nd learning, and the clustering results described in this paper will

rovide new and interesting information. 

Future endeavours of this work are directed toward the inclu-

ion of this work as a part of a data analysis framework for the
elemetry and management of electricity distribution companies.

n future research, this clustering framework will be applied: 

• To generate the input to a non-technical losses (NTLs) model

in power systems analysis. NTLs are caused by actions external

to the power system, such as electricity theft, non-payment by

customers, or errors in accounting. NTL detection requires su-

pervised data mining and learning, and the clustering results

described in this paper will provide new and interesting infor-

mation.
• To investigate the economical aspects related to the possible

tariff diversification for the various customer classes. Load pro-

files would be used for providing suggestions on possible mar-

ket strategies seen from the point of view of the electricity util-

ity.
• To differentiate exiting electric customers with common fea-

tures into smaller groups. The acquired knowledge will be a

useful reference for decision-making.
• To contribute to the power grid information. The future of

power grids is expected to involve an increasing level of in-

telligence and integration of new information and communica-

tion technologies in every aspect of the electricity system, from



Fig. 10. Classification Tree.
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demand-side devices to wide-scale distributed generation to a

variety of energy markets ( Coll-Mayor, Paget, & Lightner, 2007 ).
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Appendix A. Features for clustering 

After data normalization, in which each registered hourly data

point is divided by the maximum consumption during the sam-

ple period for that customer, we obtain LOESS curves for each cus-
omer. The data features used for the clustering process are as fol-

ows: 

1. Features that count peaks or valleys throughout the specified 

ime frame 

Number of Morning Peaks (NMoP). Count the number of morn-

ng peaks on the customer’s LOESS curve (from 8 to 13 h). Peaks

re defined as points greater than 10% of the minimum normal-

zed consumption registered value ( ≥ 0.1). Number of Afternoon

eaks (NAP). Count the number of afternoon peaks on the cus-

omer’s LOESS curve (from 16 to 21 h). Peaks are defined as points

reater than 10% of the minimum normalized consumption regis-

ered value ( ≥ 0.1). 

Number of Night Peaks (NNP). Count the number of night peaks

n the customer’s LOESS curve (from 22 to 7 h). Peaks are defined

s points greater than 10% of the minimum consumption registered

alue ( ≥ 0.1). Number of Midday Valleys (NMiV). Count the num-

er of midday valleys. This feature detects low consumption during

idday relaxation hours (from 14 to 20 h), usually in commercial

nd industrial customers. Peaks are defined as points lower than

0% of the minimum consumption registered value ( ≤ 0.1). 

2. Features that count high or low consumption hours throughout 

he specified time frame 

Number of High consumption Night hours (NHcNh). Count the

umber of night hours with high consumption (from 24 to 7 h).

igh consumption hours are those for which the customer’s con-

umption is greater than 60% of the maximum registered con-
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umption ( ≥ 0.6). Number of Low consumption Night hours (NL-

Nh). Count the number of night hours with low consumption

from 24 to 7 h). Low consumption hours are those for which the

ustomer’s consumption is lower than 10% of the maximum reg-

stered consumption ( ≤ 0.1). Number of High consumption Morn-

ng hours (NHcMh). Count the number of morning hours with high

onsumption (from 10 to 14 h). High consumption hours are those

or which the customer’s consumption is greater than 60% of the

aximum registered consumption ( ≥ 0.6). Number of Low con-

umption Morning hours (NLcMh). Count the number of morning

ours with low consumption (from 10 to 14 h). Low consumption

ours are those for which the customer’s consumption is lower

han 10% of the maximum registered consumption ( ≤ 0.1). Number

f Low consumption Afternoon hours (NLcAh). Count the number

f afternoon hours with low consumption (from 19 to 21 h). Low

onsumption hours are those for which the customer’s consump-

ion is lower than 10% of the maximum registered consumption ( ≤
.1). 
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