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Abstract

Social robots are intended to coexist and to communicate with humans in a nat-
ural way. This requires these robots to be able to identify people (and objects)
around them to use that information during human-robot dialogs. In this work we
present how electronic beacons can benefit the interactions between humans and
social robots. In particular, Bluetooth 4.0 Low Energy beacons are presented as
the most suitable option, among the up-to-date available technologies. In order to
show the advantages of the system during human-robot interaction, first, we present
the integration of the information provided by these devices in the robot’s dialog
system; and after, a hidden toy hunt game is described as a case study of a scenario
where electronic beacons ease the interaction between humans and a social robot.

Key words: Electronic beacons; Social Robots; Human-Robot Interaction;
Bluetooth Low Energy; User identification; Object identification

1 Introduction

Social robotics is a research field where natural interaction between humans
and robots is essential. In order to achieve this kind of interaction, it is nec-
essary that robots identify the people involved in the interaction. Moreover,
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the identification of the different objects in the environment also improves the
interaction capabilities of the robot while communicating with people. This
ability, people and object identification, would improve the social capabilities
of a robot by, for example, making it more friendly (for example calling people
by their names) or enriching the robot’s communication (for instance being
able to answer questions about nearby objects).

Equally important is their capacity to localize people. In social robotics, the
interaction can be adapted depending on the distance between the robot and
the user. Moreover, personal localization is crucial to adapt the interaction to
the personal spatial zones. In 1966, Hall investigated in proxemics (physical
and psychological distancing from others) and identified four personal spatial
zones that are important during interpersonal relations (Hall, 1966). Later,
Walters et al. studied how these zones during human-robot interaction varied
depending on the human’s personality traits (Walters et al., 2005) and ana-
lyzed the most comfortable distance for HRI. Therefore, distance estimation
is a crucial feature that helps robots to conduct more natural human-robot
interaction (HRI).

In general terms, the technologies used in social robotics for user and object
identification and distance estimation are inspired in the way humans perform
these same processes, that is, through vision or hearing. However, to date,
these technologies are not accurate enough and in many cases they present
some difficulties: for example, if there is not a direct line of sight between the
robot and the object to be recognized, computer vision techniques cannot be
applied; in the case of audio-based techniques, if the user does not talk or if
she is far from the robot, the robot will not be able to locate (or identify) the
person.

In order to overcome these limitations we propose to use Electronic Beacons
(EBs). An EB is a device, normally about the size of a coin, that emits a
specific wireless signal periodically. The emitted signal can be received by
any compatible receiver placed inside the influence area of the advertiser (or
emitter 1 ). The potential of EBs is not in the device itself but in software that
understands and attends the signals emitted by the beacon (Newman, 2014).
Therefore, we do not focus on the development or improvement of a particular
technology, but on the application of EBs to the area of Social Robotics and
how they can be used during HRI.

EBs have been extensively applied to many fields such as advertising (Deordica
& Alexandru, 2014), electronic payment (Jeffus et al., 2015), or leisure activi-
ties (Rontidis et al., 2015; Smith, 2015). In robotics, EBs have been applied to
robot localization (Navarro-Serment, 1999; Cuadra-Troncoso, 2015), or object

1 The terms beacon, emitter, advertiser, and transmitter, are indistinctly used
along this paper because all of them refer to a device that emits a signal periodically.
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localization (Schwarz et al., 2015). However, to the best of our knowledge, its
application in social robotics has not been presented yet. In this paper, we
introduce and justify the use of EBs in social robots for identification and
distance estimation of humans and objects 2 in order to improve the robot’s
communication capabilities. We propose to apply EBs to HRI scenarios and
integrate this technology into a dialog management system to improve the
communication between the robot and people. In this work, we aim at show-
ing the advantages of using the information provided by EBs to identify and
localize people and objects around a social robot while interacting 3 .

The rest of the paper is structured as follows. In Section 2, we describe the
methods traditionally used in robotics to identify and localize objects and
users and comment their inconveniences. Following, in Section 3, we present
the main technologies in which EBs can be based. Here, we analyze different
features and summarize the pros and cons of the technologies (Section 3.1);
besides, in Section 3.2, we justify the selection of Bluetooth 4.0 Low Energy
(BLE) beacons. Then, Section 4.1 describe how to perform a reliable distance
estimation using BLE beacons and a robot. Later, Section 5 illustrates the
benefits of EBs in social robotics using two examples: a robot dialog system
that uses the information provided by EBs (Section 5.1), and a study case
where, by means of EBs, children play an interactive hidden toy hunt game
with a robot (Section 5.2). Finally, the conclusions of this work are commented
in Section 6.

2 Object and user identification in robotics

As mentioned earlier, one important feature of many robots is their ability to
interact with objects in the environment. In a prior step to this interaction,
robots need to identify and localize the objects they are intended to interact
with. Following the same means humans use, researchers have traditionally
used two types of information for these purposes: visual and audio data.

Currently, there are several works focused on the identification and localiza-
tion of users and objects placed around the robot based on computer vision.
Dondrup et al. (Dondrup et al., 2015) used an RGB-D camera and a laser to
detect and track humans in the vicinity of the robot while it performs human-

2 People identification can be considered as a particular case of object identifica-
tion. We make the distinction between objects and people to strengthen the relevant
role of people while interacting with social robots

3 It is important to mention that orientation estimation is out of the
scope of this paper and will not be considered as a requirement along
this paper
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aware navigation. In the RoboEarth project (Di Marco et al., 2012; Moha-
narajah et al., 2015), objects were identified using vision techniques based on
3D cameras and processed in the cloud. In addition, recently Bogun (Bogun
et al., 2015) recognized objects using a 2D camera and applying automatic
learning algorithms based on Deep Learning. Authors obtained a high rate of
success (up to 82%) using the Washington Scenes Dataset. An equivalent sys-
tem using the object recognition system developed by Google obtained 83%
of success in object identification (Kehoe et al., 2013). In general, these vi-
sion techniques require complex algorithms, calibration processes and the use
of expensive cameras. Moreover, the performance is affected by variable light
conditions and require a direct line of sight between the items and the cam-
eras. The main strength of vision-based techniques is that they do not need
any environmental modification.

Recently, Castillo et al. proposed an architecture for robust people detec-
tion through fusion of infrared and visible image sources (Castillo et al.,
2016). Their system performs human detection in the infrared spectra us-
ing a threshold-based approach, and in motion history for the detection in the
visible spectra. Correa et al.presented an approach for people identification
using visual and thermal cameras in domestic environments (Correa et al.,
2011). Combining data from the visual and thermal spectrum, they applied
several algorithms, such as, face detection, skin detection, and human pose
detection. The results showed that the identification accuracy is affected by
the interaction distance, the light conditions, and the user pose (the user must
be facing the robot). Another approach, compared the accuracy of optical flow
and image subtraction techniques for human detection from infrared cameras
mounted on a mobile robot (Fernández-Caballero et al., 2010).

Using auditory data, a robot does not require a direct line of sight to identify a
person but it cannot be used for object identification. Besides, the performance
decreases significantly when the robot is in a noisy environment. The echoes
of the voice signals due to the walls and other objects affect its reliability.
Alonso et al. perceived humans’ utterances and analyzed them using signal
processing algorithms to localize and identify users interacting with a robot
(Alonso-Martin et al., 2014; Alonso-Mart́ın et al., 2012). For the identification
process, a successful rate of about 70% is obtained, considering up to eight
different users speaking at different times. Other project related to human
identification and localization using the audio channel is the HARK project
(Nakadai & Takahashi, 2010). Nakadai et al. claimed that this system was
able to recognize up to three simultaneous speakers with a word correct rate
between 80% and 90%.

Apart from image and audio analysis there are other techniques for object
and human localization and identification that use beacon-like technologies.
Schwarz et al. used EBs to roughly localize static objects around a robot for a
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grasping task, in combination with other sensors (Schwarz et al., 2015). Small
beacons were attached to each object and, at least four receivers were placed
in known positions surrounding the robot. The system took between 10 and
30 seconds to estimate the approximate position of each advertiser with an
error between 20% and 50%. This long processing time makes impossible to
apply it to HRI scenarios. In social robotics, Corrales et al. introduced radio
frequency identification (RFID) technology for object identification (Corrales
et al., 2008); the social robot Maggie was able to identify drugs that had an
RFID tag inside their boxes and inform about the medicine name, its date of
expiration, and when it had to be taken. In this work, the medicine box had
to be in contact with the robot’s head (where the RFID reader was located)
to provide a reliable identification. This was not intuitive for many users and
not very natural in terms of HRI.

The different techniques presented in this section have several drawbacks that
can be overcome using electronic beacons with a proper configuration. EBs are
very robust to variations in the ambient conditions, such as the light condition,
noise, or obstacles that can block the robot’s line-of-sight. Besides, EBs are
very ease to install and can be attached to objects the robot needs to detect.
Actually, many smartphones already include EB technologies and can be used
as a non-intrusive people detection device. In addition, their wide working
range (see Section 3 for more details) eases a natural interaction.

3 Electronic beacons and the underlying technologies

As just mentioned, EBs represent a promising solution to the current limi-
tations of object identification and distance estimation in robotics. EBs are
small, light, electronic devices that emit a signal periodically. The emitter
transmits a signal containing usually a unique identification code and, some
times, other data. A receiver reads the signal emitted by the beacon and
make it available for processing. EBs can be based on different wireless com-
munication technologies (e.g. radio frequency or visible light communication)
underpinning different communication protocols. In this section we analyze
the available technologies and compare them to select the most suitable one
for social robotics.

3.1 Relevant technologies

The current expansion of EBs began with the development of the Bluetooth
4.0 Low Energy (BLE) technology. A BLE beacon has a reduced size (ap-
proximately 2cm ∗ 2cm), its cost is generally low (from $5 to $20), and it
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has a high battery duration (up to 2 years depending on the manufacturer
and the configuration of the beacon). There are different companies that have
developed their own BLE beacon technologies. The most popular one is the
iBeacons developed by Apple Inc. in 2013 (Dilger, 2013). An iBeacon can
be configured to operate in an influence area of 70 meters in any direction.
The iBeacons have been used many times for localization tasks. According to
Newman’s studies in indoor localization, it is possible to obtain an accuracy
of 0.53 m using multiple advertisers (Newman, 2014). In the same line, Cho
et al. claimed that iBeacons only allows us to obtain a faint estimation of the
distance: very close (less than 0.5 meters), close (from 0.5 to 2 meters), and
far (from 2 to 70 meters) (Cho et al., 2015). They obtained an average error of
46.3% in distances between 0.4m and 1.4m. In order to improve the accuracy
in the estimation of the distance, Cho et al. proposed adding an extra adver-
tiser located exactly at 1m from the receiver. Using this additional iBeacon he
reduced the average errors to 4.7% for distances between 0.4 and 1.4m. This
method can only be applied in cases where the receiver has a fixed position in
order to maintain the 1 meter distance with the extra advertiser.

There are other studies focused on iBeacons applied to smartphones, like the
one proposed by Alam et al. (2015). Here Alam et al. claimed that the mea-
surements of the errors are not linear, but they are proportional to the physical
distance between the advertiser and the receiver. The average error within a
1 meter range is negligible, but it increases up to 2 meters in a 10 meter
range (20% of error). The accuracy of BLE beacons was extensively studied
by Faragher & Harle (2014). This study stated that the human body is an
obstacle that produces an attenuation of the BLE signal. Besides, due to its
small bandwidth, the intensity of the BLE signal fluctuates and it is prone
to interferences caused by a Wi-Fi signal. In this line, Silva concluded that
a part of the BLE signal is absorbed by the human body, while conventional
Bluetooth, X-Bee, or Wi-Fi do not seem to affect BLE signal (Silva et al.,
2014).

Other company, Quuppa 4 , has developed its own BLE beacons to localize
and track objects that are moving at high speeds, both indoors and outdoors.
This technology allows, in addition to calculating the distance between an
advertiser and a receiver, to know the exact position of the device within 0.1
meter error. This technology differs from other methods that use BLE in the
position and distance calculation: the method used is not based on the power
of the signal (RSSI), but on the arrival angle of the signal (P & Sichitiu, 2006).
Quuppa uses a device formed by several antennas located at fixed distances
from each other as the receiver.

4 Quuppa website: http://quuppa.com/
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In the recent years, Google Inc. also has developed its own EB system, known
as Eddystone 5 , based on BLE beacons. Its applications are similar to those
of iBeacon and in many cases are compatible. In this same line, the AltBeacon
project 6 presented an open protocol that defines the messages broadcast by
BLE beacons. To date, there are just few applications using this open protocol.

Radio Frequency IDentification (Roberts, 2006) is a technology for auto-
matic identification and data capture. Its main goal is to transmit the identity
of an object (with a unique serial number) through electromagnetic waves. An
RFID system is composed of RFID tags attached to the objects to identify,
and a reader. These beacons refer to active RFID tags which have their own
source of energy to transmit the signal. Notice that passive tags are not con-
sidered as beacons because they do not continually emit periodical signals, but
they use the energy of the signal provided by the antenna of the RFID reader
to emit. RFID beacons have a range of operation between 10 centimeters and
100 meters, depending on the kind of tag and the antenna of the receiver. The
size of the antenna is proportional to the range of operation. Their battery
can last more than a year and their price is about several tens of dollars. This
technology has been used in robotics for indoor localization (Deyle et al., 2010;
Boccadoro et al., 2010; Kulyukin & Gharpure, 2004). In these works, using
low range RFID tags,robots updated is localization in the map when detected
a RFID tag (each RFID tag was associated to a certain place).

Near Field Communication (NFC) (Want, 2011) is a wireless technology
derived from RFID that operates in high frequencies and low distances. The
communication between two NFC devices requires two NFC antennas (one
installed in each device) placed inside their respective action ranges for a
direct communication. NFC is a high speed communication system with a
reduced action range (maximum of 20 cm) that limits its applications. One
of its main applications is people identification for access control where users
need to bring their NFC chip close to the reader device (Ok & Coskun, 2010).
Other widespread application is mobile payment service (Jeffus et al., 2015).

Other technology for EBs is ZigBee, a set of high level protocols for wireless
communication using digital low energy broadcasting (Alliance, 2009). This
technology is focused on applications that demand secure communication with
low data rate and low energy consumption. ZigBee is one of the most efficient
technologies in energy consumption used in wireless communication. ZigBee-
based approaches provide network load balance to extend network lifetime,
efficiency improvements, and data loss avoidance (Ortiz et al., 2013). ZigBee
allows the creation of complex local area networks where multiple devices
are interconnected. Thus, ZigBee is used to cover wide areas (e.g. a whole

5 Eddystone website: https://developers.google.com/beacons/
6 AltBeacon website: http://altbeacon.org/
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house), in contrast to other technologies, such as BLE, that are intended for
small areas (Technologies, 2016). The first time a device is used in a ZigBee
networks, it has to be paired manually.

Ming-Hui et al. used ZigBee to develop an indoor tracking system of people
for smart homes (Jin et al., 2007). In this system, several ZigBee beacons were
placed in known positions and the users carried a ZigBee receiver that, based
on the energy of the signal received from the beacons, determined the position
of the user in the environment. Olivares et al. developed a ZigBee-based system
for data gathering in intelligent buildings, monitoring environmental indoor
conditions, such as temperature and humidity in an office space (Olivares
et al., 2007).

In robotics, ZigBee is highly extended. One of its first applications is the
wireless teleoperation of robots (Min Huasong et al., 2010). Moreover, Wang
and Yu used ZigBee beacons as marks in the environment for robot naviga-
tion tasks (Wang et al., 2010). In the case of Rashid et al.’s work, a host
robot moving in an aquatic environment sends information to a master robot
through ZigBee technology (Rashid et al., 2012). Chia-How et al. developed
a security system where a ZigBee network of sensors detected intruders and
communicated with a robot that moved to the intruder’s location and took
images of them (Chia-How Lin et al., 2008).

EBs can be based on Z-Wave too, a wireless communication protocol de-
signed to provide a reliable, low latency transmission (Alliance, 2015). It was
intended for home automation, interconnecting all devices of an intelligent
house. In ideal conditions, this technology has a maximum operational range
of 40 meters.

Z-Wave technology uses two types of devices: (i) the controllers, that keep
track of the devices connected to the network and are responsible for managing
the network; and (ii) hosts, that are commanded by the controllers and ignore
the network structure. Before a device is used in a Z-Wave network, it has to
be paired manually.

In relation to its applications, Z-Wave technology has also been used in robotics.
In particular, the social robot AISoy uses this technology to control all the
devices in an automatic home network (Garćıa et al., 2011).

In contrast to the previous radio-based technologies, Light Fidelity (Li-
Fi) technology is a wireless communication system that uses visual light.
This is a fast, free of electromagnetic interference, high security technology
(Medina & Navarro, 2015). The communication between the advertiser and the
receiver is performed thanks to ultra fast visible light variations that modulate
a pulse signal. A drawback of this technology is that it requires a direct line-
of-sight between the advertiser and receiver with an action range up to 10
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Table 1
Technical details of the technologies which can be used as electronic beacons. Re-
lease Year : year that the first version of the technology appeared. Freq.: operating
frequency; in case of multiple frequencies are possible, the lowest and the highest
ones are presented. Battery : maximum duration of the battery of the advertiser.
Max.range: maximum theoretical operating distance. Maximum bit rate: maximum
theoretical bit rate. Transmitter price and Receiver price: range of prices for an
emitter and a receiver obtained from several specialized websites.

Technology
Release

Year
Freq.

Battery

duration

Max.

range

Maximum

bit rate

Transmitter

price ($)

[min−max]

Reciever

price ($)

[min−max]

BLE 2010 2.4 Ghz 2 years 70 m 1Mbps 1-20 10-25

Active RFID 1983
100Khz

2.45GHz
5 years 100 m 1Mbps 1-5 100-600

ZigBee 2003 2.4 Ghz 12 years 290 m 250 kbps 5-25 5-25

Li-Fi 2011
430THz

770THz
Unknown 10 m 224 Gbps Unknwon Unknown

ZWave 2005 908.42Mhz 1.5 years 100 m 40kbps 55-65 55-65

meters. Currently, this technology is at the early stages of development and it
is not very extended. However, it has already been used for indoor localization
(Ganick & Ryan, 2012).

3.2 Selecting a technology

Among the characteristics defining the above described technologies, it is im-
portant taking into account the common features that are specifically impor-
tant for the application of EBs in social robotics. First, all of them have to
provide wireless communication. Despite it ought to be obvious, wireless com-
munication is a must since, in daily environments, people come and go at their
will and objects can be moved freely. Second, the energy consumption of the
devices needs to be low in order to foster the acceptance of EBs by people.
Looking into Table 1, we see that the battery duration of all the studied tech-
nologies present devices that last for years (except for Li-Fi which is in an
experimental phase and data is not available). Finally, due to the nature of
EBs, all technologies provide a reliable identification when the beacon is inside
the operation range of the receiver.

Analyzing Table 1 and keeping in mind that our goal is the application of
EBs to social interactions, all technologies, except for Li-Fi, provide a wide
operation range. Even though Li-Fi is robust to electromagnetic interferences
(it uses visible light instead of radio signals to communicate), Li-Fi is the only
one that requires direct line of sight between the emitter and the receiver.
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Table 2
Comparison of the main requirements for the application of EBs in social robots.
Drawbacks are highlighted.

Technology
Operation

range

Degree of

maturity

Pairing

required?

Direct

line of

sight

required?

Cost of the

technical

devices

Prone to

electromagnetic

interferences?

Size

of the

devices

BLE wide high no no low yes small

Active

RFID
wide high no no high yes big

ZigBee wide high yes no low yes small

Li-Fi short low yes yes high no small

Z-Wave wide high yes no low yes small

These limitations represents an important drawback and therefore we consider
that Li-Fi beacons are unsuitable for social robotics.

Technologies that need pairing (in our study ZigBee and Z-Wave) require
manual “registration” of all beacons before they exchange information. This
limits the flexibility and usability of the system and consequently they will be
avoided.

In the last two columns of Table 1 we find the range of prices of emitters
and receivers. As the reader can see, the prices are relatively low particularly
for the emitters. Just in the case of the active RFID receiver the price may
rise up to $600. Moreover, as already stated, in case we desire a considerable
operation range, the size of the RFID antenna increases considerably and it
can represent a problem when it has to be embarked in a robotic platform
with limited space.

In order to summarize all the pros and cons of the described tech-
nologies, and considering the technical details included in Table 1,
Table 2 presents an easy-to-read summary of the most relevant fea-
tures to be considered for the application of EB to social robots. In
light of the foregoing features and considering the requirements of our system,
we believe that BLE is the most suitable technology for object identification
and distance estimation in social robots. Although BLE is a technology that
can be affected by interferences due to many reasons, we believe that we can
deal with interferences if we conduct a thorough calibration considering the
particularities of our system. The following section tackles this crucial aspect
in BLE in order to address its performance in different meaningful situations
for HRI.
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4 Distance estimation using BLE

The literature contains several methods to estimate the distance between an
advertiser and a receiver. These methods differ on the magnitude they mea-
sure:

(1) Arrival time. The distance is calculated based on the time that the emit-
ted signal takes to get from the advertiser to the receiver. Two synchro-
nized clocks are needed.

(2) Arrival angle. Several receivers, placed in known positions, are used to
measure the angle formed with the emitted signal and the distance is
computed by triangulation.

(3) Arrival energy. Based on the energy of the signal detected at the receiver,
the distance can be calculated considering the attenuation of the signal.

The first method, based on the arrival time, was discarded since it requires two
expensive, accurate clocks. The second method, based on the arrival angle, was
also discarded because of the high cost of the array of antennas required in the
receivers. Besides, considering the limited space inside a robotic platform, the
size of this array represents a restriction. Consequently, the third method based
on the attenuation of the energy of the signal has been selected. The reason is
twofold: (i) it is cost-efficient, and (ii) it does not require a special environment
configuration. The main drawback of this method is that the system must be
calibrated previously. It is important to mention that the calibration process
is a mandatory step for distance estimation, but not for object identification.
This means that, when distance estimation is not relevant, object identification
can be conducted without calibration.

Seybold presented an equation to measure the distance to an advertiser based
on the energy of the emitted signal detected by the receiver, Equation 1 (Sey-
bold, 2005). This method depends on the attenuation of the signal which in
turn depends on the BLE devices and the interferences.

d = A ∗ (RSSI/txPower)B + C (1)

d is the distance (in meters), RSSI is the energy of the received signal (dBm),
and txPower is the energy of the received signal when the advertiser is placed
exactly at one meter far from the receiver (dBm). This parameter can be
calculated empirically or supplied by the manufacturer. A, B, and C are the
coefficients that will be obtained after the calibration process. In order to get
these coefficients, we measure the signal energy (RSSI ) keeping the beacon
at multiple predefined distances (e.g. d equal to 1m, 2m, 4m,...). To improve
the accuracy and robustness of the system, it is necessary to obtain multiple
measurements of the received energy from the same distance in order to take
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an average of the RSSI value for that distance. Once we have the averaged
RSSI values for the set of predefined distances, we conduct a linear regression
to define A, B, and C. These coefficients, together with Equation 1 and the
detected signal energy, will be used to determine the distance d between a
BLE beacon and a receiver on real time.

4.1 Calibrating the BLE system for our robotic system

Calibrating is a sensitive process that depends on several parameters, such
as the specific advertiser-receiver or the electromagnetic interferences. Con-
sequently, in order to be able to estimate the distances properly, we need to
calibrate our BLE system for our particular settings.

In this work, we propose that BLE beacons are carried by users or attached
to several items, and the receiver is connected to a social robot. A USB, BLE
receiver dongle was connected to a computer running an Ubuntu OS and lo-
cated inside the robot’s body. Specifically, we used a Plugable Technologies
USB-BT4LE device 7 . The advertisers (BLE beacons) used in this work are
manufactured by DFRobotics 8 . Each beacon has been configured with a spe-
cific identifier and device name. In order to adjust the identifier, the power
of the emission, and the frequency of each advertiser, we used the free ap-
plication LightBeacons for iOS. In particular, the emitting frequency is a key
parameter that impacts directly on the battery life. If the emitting frequency
is high, the advertiser will deplete its battery in a short time. Using this tool,
we set up the emitting frequency of the beacons to 2 signals per second with
which, according to the data sheet, the beacons battery should last around
up 2 years. Figure 1 shows both the receiver and an advertiser. These devices
were selected because of their low price and Ubuntu compatibility. However,
any BLE beacon could be used in our system.

Fig. 1. The BLE advertiser (right), receiver (left), and a power cell CR2450, that is
inside the advertiser (center). The pen is shown to compare the sizes.

7 Guide to select a bluetooth adapter: https://goo.gl/ZMK083
8 https://goo.gl/lJce7J
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In order to get the A, B, and C coefficients for Equation 1, first it was neces-
sary to obtain the txPower parameter. We placed the robot in a predefined
position and located a BLE beacon at 1 meter. Then, we measured the RSSI
value for that configuration. After that, we repeated the process placing the
BLE beacon in fifteen different distances (ranging between 0.25 and 17 me-
ters), acquiring a total of 150 measurements of the arrival energy from each
configuration, and computing the average value for each distance. Once we
had the averaged values for all distances, we performed a nonlin-
ear regression. According to the R2 value, the regression accounted
for 91, 6657% of the variability of distance and the Adjusted R2 value
was 90, 1503%. Seeing that the residual were approximately uniformly
distribute and the R2 and Adjusted R2 values were close to 1.0, we
could confirm that our regression model is a good fit of the data.
The obtained values for our parameters are presented in Table 3.

Table 3
Obtained values of the parameters needed for distance estimation after the calibra-
tion process

Parameter Value

txPower (dBm) −66.52

A −380

B 5.47

C −3.80

4.2 Improving the distance estimation

Once the coefficients and the txPower are obtained, we can estimate the dis-
tance to a beacon. In order to reduce the effect of possible interferences or the
fluctuation of the received signal energy, we read the energy signal of a bea-
con several times to average its value before we calculate its distance d. It is
expected that increasing the number of readings will improve the accuracy of
the estimation. Nevertheless, each reading requires a certain time, therefore,
it would happen that the total time required for a high number of readings
will cause a delay too high. Besides, once we have defined the number of read-
ings, we need to define how to average the arrival energy. In this work, three
possibilities have been considered: the mean value, the median value, and the
mode value.

In order to determine the number of readings and how to average the arrival
energy, we conducted a test where to compute the distance estimation error
using different configurations. The results are summarized in Table 4. We
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placed the beacon at 0.1, 2, 4, 8, 11, and 14 meters away from the robot
and read the signal energy detected. We computed the mean, the median,
and the mode of windows of 3, 5, 9, and 37 readings. As shown in Table 4, 1
reading implies a high error in short distances (0.1, 2 and 4 meters). In general,
making 5, 9, or 11 readings improves the accuracy of the estimations. However,
making those readings will cause a bigger delay in the distance estimation and
consequently in the robot response. Considering the final application (HRI
applications), a high number of readings implies a big latency (considering
that we configured advertisers to emit every 0.5 seconds) that will make the
system impossible to be applied in HRI. The decision about the number of
readings implies a trade-off between the latency of the system and the accuracy
of the measurements.

In view of the study conducted by Shiwa et al. (Shiwa et al., 2009) where au-
thors stated that the response time of communicative robots should be kept
between one and two seconds, we have decided to use a 3-reading window, i.e.
1.5s delay, to estimate the distance to a beacon. A bigger time delay during
HRI may affect the interaction negatively. Therefore, making 3 readings rep-
resents our compromise to get an accurate enough estimation with a suitable
time delay.

In relation to the method to average the arrival energy, according to the results,
the mean value provides the best estimation (except for the beacon at 4 meter).
Concerning the mode, it could happen that several values are repeated the
same number of times and then we do not obtain a unique mode value (this
is the case when we consider 3 readings of a beacon located at 11 meters in
Table 4). We decided to use the mean value.

Notice that, considering a 3-reading window and its mean value, the relative
distance estimation error when the beacon is very close (0.1m) is very high
(110%). This makes sense because at very short distances, a small error implies
a high relative error. Excluding this case, the average relative error for all
distances is 14.88% .The mean raw values and the relative errors for the 3-
reading window configuration have been highlighted in Table 4. This can be
seen as the empirical data of the accuracy of the distance estimation.

According to these results, our method and heuristics outperforms some of
the existing methods in the literature (e.g. (Schwarz et al., 2015)). Although
this technique does not give a highly accurate distance, we believe that it can
be applied to HRI scenarios where the distance estimation of objects and peo-
ple do not need a high accuracy, and can be related to delimited zones. Let us
imagine a robot trying to attract the attention of a person. In this situation
the robot could say something like ”Hi! I want to talk to you but you are too
far so I cannot understand you properly”; however, the interaction with the
robot would be perceived as unnatural if it communicates using sentences as
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Table 4
Distance estimation locating a BLE advertiser at different distances and considering
1, 3, 5, 9, and 37 readings for each configuration. We have estimated the distance
using the mean, the median, and the mode values. Empirical data for the selected
configuration (mean value for 3 readings) has been highlighted.

Real Number of Mean Median Mode

distance readings raw Rel.err. raw Rel.err. raw Rel.err.

0.1m

1 0.94m 840% 0.94m 840% 0.94m 840%

3 0.21m 110% 0.93m 830% 0.93m 830%

5 0.28m 180% 0.93m 830% 0.93m 830%

9 0.10m 0% 0.10m 0% 0.93m 830%

37 0.18m 80% 0.10m 0% 0.93m 830%

2m

1 1.74m 13% 1.74m 13% 1.74m 13%

3 1.89m 5.5% 2.19m 9.5% 2.19m 9.5%

5 1.92m 4% 1.74m 13% 1.74m 13%

9 1.94m 3% 2.19m 9.5% 2.19m 9.5%

37 2.26m 13% 2.19m 9.5% 2.67m 33.5%

4m

1 3.17m 20.75% 3.17m 20.75% 3.17m 20.75%

3 4.69m 17.25% 4.29m 7.25% 3.80m 5%

5 4.29m 7.25% 3.71m 7.25% 3.71m 7.25%

9 4.83m 20.75% 4.89m 22.25% 4.89m 22.25%

37 4.56m 14% 4.29m 7.25% 3.71m 7.25%

8m

1 7.72m 3.50% 7.72m 3.50% 7.72m 3.50%

3 7.20 m 10% 6.95m 13.12% 6.95m 13.12%

5 8.03m 0.37% 8.53m 6.62% 6.95m 13.12%

9 7.98m 0.25% 7.72m 3.5% 6.95m 13.12%

37 7.97m 0.37% 7.72m 3.5% 7.72m 3.5%

11m

1 8.53m 22.45% 8.53m 22.45% 8.53m 22.45%

3 13.68 m 24.36% 13.31m 21% - -

5 11.44m 4% 13.31m 21% 7.72m 29.81%

9 11.46m 4.18% 13.31m 21% 14.43m 31.18%

37 10.62m 3.45% 10.29m 6.45% 7.72m 29.81%

14m

1 12.25m 12.50% 12.25m 12.50% 12.25m 12.50%

3 16.42 m 17.28% 16.84 m 20.28% 16.84 m 20.28%

5 15.60m 11.42% 15.60m 11.42% 15.60m 11.42%

9 16.56m 18.28% 16.84m 20.28% 16.84m 20.28%

37 16.07m 14.78% 15.60m 11.42% 15.60m 11.42%

”Hi! I want to talk to you but you are 13.6 meters away so I cannot under-
stand you properly”. This means that, from the HRI point of view, it is not
necessary to obtain the exact distance between the robot and the objects, but
it is important to define the zone they are located in.

In this sense, we have considered the distances which are relevant during inter-
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personal interactions and, inspired by previous works in HRI (Walters et al.,
2005), we have defined four possible zones related to the robot:

(1) Immediate: less than 0.5 meters.
(2) Near: between 0.5 and 8 meters.
(3) Far: more than 8 meters.
(4) Unknown: out of range.

With this in mind, the distance estimation given by our system is good enough
to assign each identified object to one of this four interpersonal zones.

Nevertheless, when dealing with moving objects and people moving
around, due to the considered heuristic (1.5s window), fast move-
ments between zones can lead to a wrong localization. For example,
if a user changes from zone 2 to zone 1 and then back to zone 2 in
less than 1.5 seconds, our method might localize that user in any of
both zones. However, considering the application field of our system,
i.e. human-robot interaction, most of the times a user approaches
the robot to perform a social interaction, it takes much longer that
1.5 seconds and therefore this situation barely will happen. Notice
that if an object or user is moving inside one of the four predefined
zones, the moving rate does not alter our estimation.

5 Illustrating the benefits of BLE beacons in Social Robotics

In this section we illustrate the benefits of EBs in social robotics from two
perspectives. The first one (Section 5.1) is an example of application where
EBs provide information to the dialog management system of a social robot.
The second one (Section 5.2) is a case study to exemplify how human-robot
interactions can be improved with the real-time information about the inter-
personal zones where people and objects are at.

5.1 Example of application: Using EBs in our dialog management system

The system reported here has been used to extend the Robotics Dialog Sys-
tem (RDS) presented by the authors in a previous work (Alonso-Martin, 2014).
The RDS has been applied to multiple social robots running an Ubuntu OS
and using the middle-ware Robotic Operating System (ROS) (Quigley et al.,
2009). The RDS is in charge of handling the multimodal dialogs between a
person and a robot: based on different sources of information (e.g. the per-
son’s pose, an utterance, or the distance to an object), the robot generates the
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Fig. 2. The Robotics Dialog System extended with EBs as a new input source.
Colored shapes represent the new elements added in this work. Rectangles refer to
the main modules: multimodal fusion, multimodal fission, and Interaction Manager

appropriate communicative expressions (e.g. asking for an object the robot is
pointing at). In this application, the RDS has been extended by including EB
as a new source of information. That is, using EBs the robot considers the ob-
jects (and users) around it and their zone (immediate, near, far, or unknown)
during its multimodal dialogs with people.

Figure 2 shows the general scheme of the RDS, including the EB system.

The RDS is a rule-based engine which has a set of predefined dialogs.
Each dialog contains the rules to manage the human-robot interac-
tion for a particular situation. The flow of the interaction during
this dialog varies depending on the inputs from the users and the
environment. Seeing that our system is multimodal, different kind of
communication channels are considered (e.g. artificial vision system,
automatic speech recognition, or touch). All the inputs are tempo-
rally aggregated in the Multimodal Fusion process. The result of
this process is fed into the Interaction Manager which, based on
the information received, will guide the interaction flow and gen-
erate different communicative expressions (CE). CEs are executed
by the Multimodal Fission module which combines several output
interaction channels (e.g. utterances, nonverbal sounds, gestures, or
images on a screen) to transmit the right message in a proper way.

In order to clearly illustrate the operation of the RDS, imagine a
dialog named obtaining age which is in charge of asking and ob-
taining a user’s age. Initially, the robot starts the dialog by issuing
the greeting CE, where the robot says ”hello” and waves its arms.
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Code Listing 1. ROS message published when an EB has changed its zone

string name // For example, Fernando or Teddy

string type // Type of object: human or item

string HUMAN = ”Human”
string ITEM = ”Item”

string zone // immediate (<0.5m), near(0.5-8m), far(>8m)

↪→ , unknown

string IMMEDIATE = ” immediate”
string NEAR = ”Near”
string FAR = ”Far”
string UNKNOWN = ”Unknown”

After that, the robot uses other CE to ask about his age and waits
for an answer. The user can reply by voice or entering his/her age
through a touch screen. Once the user has informed about his/her
age, the robot executes the thanks CE and the goodbye CE. If the
user does not reply within a time frame, it will be asked again. If the
user keeps on refusing to answer, the robot will execute the goodbye
CE and the obtaining age dialog is ended.

In this application, the RDS has been extended to consider the zone
where objects and people are located. How EB are included in the
RDS is shown in the colored boxes in Figure 2. Note that EBs are
attached to objects and people we want our robot to detect; the rest
of the modules run inside the robot. Starting from the bottom, a BLE
beacon (gray oval) emits a periodical signal that can be recognized
by the robot. When this signal is detected by the BLE Receiver (green
rectangle) in the robot, it processes it as follow:

(1) The ID of the emitting EB is extracted from the signal.
(2) After querying the EB database, the name and type of the object attached

to the EB is obtained.
(3) Considering the calibration coefficients (Section 4.1) and the arrival en-

ergy of the signal, the distance from the emitting EB to the robot is
computed.

(4) Once the distance is calculated, a zone is assigned: immediate, near, or
far.

(5) If the assigned zone is different from the previous one, it means that the
object (or user) has changed its position or entered in the BLE range
of action. Thus, a ROS message is sent to inform of this change. This
ROS message is presented in Code Listing 1 and contains the name of
the object, its type, and its new zone.

18



These ROS messages, that are sent when an EB (i.e. object or user) changes
its location from one zone to another, are received by the Multimodal Fusion
module. This module groups it with other data coming from the other
input interaction channels and send it to the Interaction Manager .

In order to identify users and objects, the system needs: (i) some configuration
parameters, stored in a configuration file that contains all the required infor-
mation to identify an advertiser and calculate its position. This file contains
the protocol used (iBeacon, in our case), txPower, and the three coefficients
A, B, and C; and (ii) a database that contains the relationships between the
beacon ids and the object description, i.e. the type (human or item) and its
name (for example, David or teddy bear). This information will be used to fill
the ROS message emitted by the BLE receiver module.

5.2 Case study: a children-robot hidden toy hunt game

In order to clarify the implications of the system reported here from a user
point of view, in this section we detail a child-robot game that makes use of
the BLE beacons.

In a previous work, the authors presented a quiz game where a robot asked
questions about animals; children had to answer them by picking up the right
stuffed animal and approaching it to the robot’s nose (Gonzalez-Pacheco et al.,
2011). In that game, the stuffed animals had an RFID tag and the robot was
equipped with an RFID reader inside the head (in the nasal area). During the
game, we observed some limitations: the extremely short range of action of
this system caused frequent false negative identifications, some children had
difficulties to reach the robot’s nose because of their height, and the robot
was not able to identify the participant that answered the question.

The EB system presented in this work overcomes these limitations. To illus-
trate the advantages of the implemented system in HRI scenarios,
we have developed a hidden toy hunt game where children have to
find several soft toys that are hidden in different places and bring them to
Mini (Salichs et al., 2016), a desktop robot which is equipped with the BLE
receiver, (see Figure 3(a)). Moreover, to make the game more appealing, one
of the soft toys is attached to Mbot’s back (see Figure 3(b)). In this game,
Mbot is wandering around the game scenario acting as an appealing
character and adding extra complexity to the hunt. The goal posi-
tions for Mbot are randomly selected within the game area. Each
child carries a necklace with a BLE beacon and, in the case of the toys, the
advertiser is located inside their body. Figure 4 shows a possible scenario with
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(a) The robot Mini during
the game

(b) The robot Mbot moves
around with a toy on its
back

(c) Toys and BLE beacons

Fig. 3. Social robots, beacons, and toys used in the game

Fig. 4. Example of scenario including robots, toys, and participants. Colored areas
represent the different zones: immediate (yellow), near (orange), and far (red)

the robots, the interpersonal zones in relation to Mini, and several toys and
users.

Figure 5 presents the flow of the game and how EBs are used during the
human-robot dialogs. We divided the game in three different phases: Greeting
(the initial phase), Game (where the main part of the hidden toy hunt game
is conducted), and Results (the robot notifies the results). In the Greeting
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Fig. 5. Flow diagram of the dialogs in the hidden toy hunt game. The information
provided by the BLE beacons is detailed.

phase, as children enter the immediate o near zones (shown in Fig.
4) the robot welcomes them. Once all users are within those areas,
the robot explains the game rules; that is, the three children have to
look for (hunt) 5 plushy toys that are placed (hidden) throughout
the laboratory and on the back of Mbot. When a child finds a toy,
he/she has to bring it to Mini and scores one point. After all toys
are found, the game finishes, passing to the Results phase in which
the robot tells the scores achieved.

For each one of these phases, we have created a dialog that manages the inter-
action between the children and the robot Mini. Notice that yellow hexagons
in Figure 5 refer to input of information due to the use of EBs.

The interaction begins when the children step into the working range of the
EBs. When this happens, Mini identifies them, localize them in the corre-
sponding zone, and greets them. Every time a new participant appears in the
surroundings of the robot, Mini greets the child using a welcome sentence like
“Hi David, I’m happy to see you! Let’s play together”. After the greetings,
since Mini has to explain the game, it asks participants in the far zone (if
there is anyone) to move closer (“Please David, get closer to me”). When all
participants are in the near or immediate zone, Mini tells them the game in-
structions. This interaction is defined in the Greeting dialog (top box Figure
5).
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After that, the game starts and the interaction is modelled in the Game dialog
(middle box Figure 5). In this dialog, while children are looking for hidden soft
toys, Mini encourages them by calling by their names (“Come on Diego!”), and
by playing animated music or funny sounds (such as laughs, applause, etc).
These motivating expressions are executed when a child changes its zone and
while stuffed animals remain hidden. Besides, after a long time searching toys
without success, Mini gives hints such us ”David, look for the rabbit further!”.
While the soft toy attached to MBot is not retrieved, Mini gives clues about
it from time to time. For example, in case MBot moves from near to far, Mani
says “Watch out! There is an animal escaping”.

In the course of the game, Mini identifies each toy and the child who brings it
by matching the variations of the positions of the children and the toys within
a certain time window. That is, if a child moves from the far/near zone to the
immediate zone and, at the same time, a toy also moves in the same way, the
algorithm determines that this child is carrying that toy. This algorithm may
fail if, for example, two children carry the same toy. In this case, the child who
moved in a most similar way than the toy would be selected. In the case that a
participant finds a toy, when she hands it in to Mini, the robot congratulates
the child using her name, says the name of the toy, and encourages the child
to go for the remaining toys (e.g. “Well done David! You found Donald. Let’s
get the next animal!”).

Once all stuffed animals are found, the game is over and Mini summarizes the
results of the game using the Results dialog (bottom box Figure 5). Here, Mini
notifies the end of the game and asks all children to get closer. Once they are
closer, the robot congratulates the children, plays a happy music, and informs
about the number of stuffed animals found by each participant.

6 Conclusions

In Social Robotics, identification and localization of objects and people are two
fundamental skills for getting a successful HRI. Traditionally, those processes
have been carried out using systems based on artificial vision or artificial hear-
ing, but they present several weaknesses. This paper has introduced a system
based on electronic beacons for the identification and distance estimation of
users and objects. After conducting a comparative analysis of the different
technologies, we have found out that BLE beacons are the most appropriate
for social robots.

The main advantages of the presented system are: (i) it can perform an ac-
curate identification; (ii) it is not affected by the environmental conditions
(such as light or noise); (iii) direct line of sight is not required; (iv) it is cost-
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efficient; (v) it does not need that the user talks or moves in order to determine
its presence; and finally, (vi) the devices used are very small and light-weight.

Nevertheless, this technology also has some drawbacks. The first one is that ob-
jects and users must carry a BLE beacon, which can be perceived as a foreign
object. The second one is the imprecise calculation of the distance between the
advertiser and the receiver. We have shown that this rough estimation can be
valid for HRI applications but it could represent a limitation for others, such
as grasping. The third problem is the need of calibration. The system must be
calibrated for each kind of BLE device and configuration. For example, dif-
ferent models of BLE beacons will require different calibration pro-
cesses; even when using the same model, differences can be found
between multiple instances (although we did not observe significant
differences among the multiple instances of our BLE receiver). The
location of the receiver has to be selected carefully before calibration: it should
be placed in the external parts of the robot shell to avoid the signal attenu-
ation produced by the hardware elements. Besides, if the beacons run low of
battery, the energy of the signal changes and the distance estimation is sig-
nificantly affected. Also, structural elements, such as walls and doors,
mitigate the received signal by the robot. Consequently, the distance
estimation is affected and the BLE transmitter (person or object)
is located farther than where it actually is. Therefore, assessing the
effect of structural elements in the detection is an important matter
that, although out of the scope of the current paper, we intend to
carry out as a future work. We believe those results might be inter-
esting for the community. The last main drawback is related to the delay
caused during the distance calculation. This is caused by the heuristic se-
lected: the transmission frequency of the beacons and the number of readings
considered to perform the distance estimation. Considering previous studies
in HRI, we set this delay to 1.5 seconds as a compromise between the quality
of the HRI and an accurate enough distance estimation. In other applications
or scenarios, where the distance estimation is not relevant and the operation
of beacons for long periods is not a matter, the system could be configured to
work with just one reading and the transmission frequency could be increased,
for example, to 5 times per second. In this case, the robot would be able to
make the identification every 0.2s.

Although this technology has some drawbacks, we believe that the use of BLE
beacons in social robots has more advantages than disadvantages. Specially, in
applications were social robots must be small, light, with a long battery life,
and low cost. In order to show this benefits, we have presented an example
of application where a robotics dialog system uses the information provided
by the EBs. Besides, we have detailed a case study where a robot enriches
the interaction thanks to the information provided by the EBs. This case
study, where children and robot interact during a game, shows the usefulness
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and advantages of BLE beacons in HRI, as well as their potential for other
applications.

The semantic information regarding the zones (immediate, near, far) and the
objects detected (toy, child) are input in our Dialog Management System (a
rule-based engine), which integrates these inputs with a priori knowledge to
produce natural interactions. These interactions are then used in the case
study where human-robot interaction becomes a keystone.
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