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a b s t r a c t 

Predictive monitoring of business processes is a challenging topic of process mining which is concerned

with the prediction of process indicators of running process instances. The main value of predictive mon- 

itoring is to provide information in order to take proactive and corrective actions to improve process

performance and mitigate risks in real time. In this paper, we present an approach for predictive mon- 

itoring based on the use of evolutionary algorithms. Our method provides a novel event window-based

encoding and generates a set of decision rules for the run-time prediction of process indicators according

to event log properties. These rules can be interpreted by users to extract further insight of the busi- 

ness processes while keeping a high level of accuracy. Furthermore, a full software stack consisting of a

tool to support the training phase and a framework that enables the integration of run-time predictions

with business process management systems, has been developed. Obtained results show the validity of

our proposal for two large real-life datasets: BPI Challenge 2013 and IT Department of Andalusian Health

Service (SAS).
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1. Introduction

Process mining techniques allow the extraction of useful infor

ation from the event log and historical data of business processe

 Li et al., 2016a; Schnig, Cabanillas, Jablonski, & Mendling, 2016 )

nowledge can be generated from this information to improve

he processes ( Kamsu-Foguem, Rigal, & Mauget, 2013; Nkambou

ournier-Viger, & Mephu-Nguifo, 2011; Potes-Ruiz, Kamsu-Foguem

 Grabot, 2014 ). Generally, this knowledge is extracted after the

rocess has been finished. Nevertheless, the interest to apply pro-

ess mining to running process instances is increasing ( Maggi, 

rancescomarino, Dumas, & Ghidini, 2014 ). One of the main is

ues in process mining is the predictive monitoring of busines

rocesses ( de Leoni, van der Aalst, & Dees, 2016 ). The main value

f predictive monitoring is to provide information in order to take

roactive and corrective actions to improve process performance
nd mitigate risks in real time. Predictive monitoring of business 

rocess provides the prediction of business process indicators of a 

unning process instance with the generation of predictive mod- 

ls. Business process indicators are quantifiable metrics that can 

e measured directly by data that is generated within the process 

f  

F  

(  

n  

f  
ow ( del Río-Ortega, Resinas, Cabanillas, & Ruiz-Cortés, 2013 ). An

mprovement in the prediction of these indicators, in many occa-

ions, also means savings in human and economic resources and

revention of important loss of turnover to the companies. Some

ssues of real companies can also be solved with predictive mon-

toring. For instance, Push to front problem, detailed in Verbeek

2013) and covered in this work, try to identify those incidences

hich are not resolved by the service desks and are pushed to the

ther support lines of the company. 

Since predicting these process indicators can be interpreted as

 classification or regression problem, machine learning algorithms

an be used for this task ( Francescomarino, Dumas, Maggi, & Teine-

aa, 2015; Maggi, Francescomarino, Dumas, & Ghidini, 2014 ). Clas-

ification and regression are used for the prediction of discrete or

ontinuous target values, respectively. For instance, an indicator

uch as, the cycle time of a process instance can be regarded as

 regression problem. By contrast, the fulfillment of a determined

arget, e.g. the process instance must complete in less than 4 h, or

 condition, e.g. whether a specific activity occurs in the process

nstance, can be interpreted as a classification problem. 

Multiple machine learning approaches have been applied

or predictive monitoring, such as decision trees ( Maggi,

rancescomarino, Dumas, & Ghidini, 2014 ), clustering methods

 Francescomarino, Dumas, Maggi, & Teinemaa, 2015 ) or neural

etworks ( Tax, Verenich, Rosa, & Dumas, 2016 ). Nevertheless, as

ar as we are concerned, evolutionary algorithms (EAs) have not
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Table 1

Event log example.

case id event id timestamp activity resource cost

1 107561 12-12-2016:12.15 A Lucas 100

107562 12-12-2016:14.55 B Lucas 300

107563 12-12-2016:17.30 C Paul 200

107564 13-12-2016:12.15 D Laura 400

2 108631 14-12-2016:10.00 A Fred 100

108632 14-12-2016:12.52 D Fred 200

108633 14-12-2016:13.27 E Barney 100

3 108945 15-12-2016:10.32 B Alan 100

108946 16-12-2016:09.18 E Sylvia 300
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been applied for the prediction of process indicators. The use of an

evolutionary algorithm may be justified for four different reasons

( Fogel, 1997 ): (a) it can handle continuous and discrete attributes

and automatically discretizes the continuous features; (b) it also

handle missing attribute values and noise; (c) it can build models

that can be easily interpreted by humans and finally (d) it finds

a sub-set of the features that are relevant to the classification

without the use of feature selection. In addition, EAs have shown

the capacity of finding suboptimal solutions in search spaces

when the search space is characterized by high dimensionality

( Marquez-Chamorro, Asencio-Cortes, Divina, & Aguilar-Ruiz, 2014 ).

In this case, the set of possible state conditions of a process,

encoding in decision rules, determine the search space and fulfil

these requirements. Some methods in process mining area also

utilize association or decision rules for the improvement of the

performance of the processes ( Karray, Chebel-Morello, & Zerhouni,

2014; Wen, Zhong, & Wang, 2015 ). 

In this work, we have developed a general method based on an

evolutionary rule learning approach for the prediction of business

process indicators in execution time. The resulting model consists

in a set of decision rules that determine a prediction for an indica-

tor of a running process instance. We have employed as encoded

features, a window of the previous events to the point in the pro-

cess execution where the prediction is carried out. This window of

events considers attributes of a typical event log, such as activity

name or timestamps, together with the data of each event. A com-

bination of continuous and discrete values is allowed by the evo-

lutionary algorithm. An advantage of this approach is that the gen-

erated decision rules can be interpreted by users to extract further

insight of the business processes. Furthermore, as previously men-

tioned, the method incorporates a new encoding based on event

windows of different sizes which provides more information from

event logs. Additionally, this method is accompanied by a full soft-

ware stack we have developed to support both the training and the

prediction phase of our predictive monitoring approach. The learn-

ing phase is supported by a ProM plugin that helps in the compu-

tation of process indicators and the preprocessing of the event log

for the machine learning algorithm. The prediction phase is sup-

ported by a framework that enables the integration of run-time

predictions obtained from the predictive models generated by the

training phase with business process management systems like Ca-

munda ( Camunda, 2016 ). 

Our approach was exhaustively tested with two different real-

life event logs to assess the validity of the proposal. The datasets

belong to IT Department of Health Services of Andalusia (Spain)

and the BPI 2013 Challenge ( Verbeek, 2013 ). For the validation

of the proposal, we also include a comparison with a method of

the literature, described in Breuker, Matzner, Delfmann, and Becker

(2016) , and several machine learning approaches, under the same

experimental conditions, in order to justify the use of the evolu-

tionary algorithm. 

The remainder of this paper is organized as follows.

Section 2 introduces the main concepts referred throughout

the paper. Section 3 summarizes the related work in this area.

Section 4 introduces our methodology. Section 5 presents the

experimentation and obtained results. Finally, Section 6 , includes

some conclusions and possible future works. 

2. Background on predictive monitoring

The goal of predictive monitoring is to predict some aspect of

the execution of a running process instance. To do so, it relies on

the existence of an event log that contains the relevant informa-

tion of the execution of a business process. An event log ( L ) is

composed of a set of traces ( T ) that contain each event ( E ) that

occurs in the different instances of a business process. Each exe-
ution of a process instance is reflected in a trace. Formally, we

an express a trace T i as a list of events T i = [ E i 1 , ..., E i m ] where E i 1
epresents the first event and E i m reflects the final event of the ex-

cution of the process instance. An event ( E ) represents an instant

f the execution of an activity of the process. Each event contains a

et of attributes or properties ( p ) which represents all the informa-

ion for the definition of such event, e.g . timestamp or the resource

hat execute a determined activity E j = [ p j 1 , ..., p j n ] where n deter-

ines the total number of properties of the event. Finally, we can

epresent a log as a sequence of instances which have finished in

n interval of time L = [ T 1 , ..., T m 

] where T 1 represents the first ex-

cuted trace and T m 

is the last execution trace in the time interval.

Table 1 depicts an example of event log. Each grouped row rep-

esents a trace. Therefore, the example shows 3 traces (case id:

, 2 and 3) consisting of 4, 3 and 2 events, respectively (event id

ow). The number of events of each trace can be different. Finally,

ach event has several properties. In the table, four of them are

epicted, namely: timestamp, activity, resource and cost . 

A business process indicator ( I ) is a quantifiable metric that can

e measured directly by data that is generated within the process

ow. There are two types of process indicators: instance-level indi-

ator and aggregated indicator ( del Río-Ortega, Resinas, Cabanillas,

 Ruiz-Cortés, 2013 ). An instance-level indicator provides a metric

or a single process instance. It can be defined as a function of a

race T, i.e. I ( T ), which is calculated by using the values of the at-

ributes of the events that belong to this trace. This function can

eturn a Boolean value, e.g. a determined condition fulfilled by the

race, or a real value, e.g. the duration of an activity. An aggre-

ated indicator ( I A ) can be represented as a function I A ( L 
f ), where

 

f = { T i ∈ L | f ilter(T i ) } contains all the traces T i from an event log

L that fulfill a determined requirement filter ( T i ). Generally, this fil-

er is defined as a temporal constraint, such as an interval of time.

n this work, we consider only instance-level indicators. 

The goal of predictive monitoring is to predict the value of the

ndicator before a process instance finishes by means of a pre-

ictive model, which are usually built based on the information

rovided by the traces of previous process instances. Therefore, a

redictive model for an indicator I is a function P I ([ E i k , . . . , E i l ]) ,

ith k ≤ l , that computes a prediction for I from the partial trace

 E i k , . . . , E i l ] , where E i l is the last event that have occurred in trace

 i at a given moment. If k = 1 , then all events that have occurred

n the process instance at hand are considered. Otherwise, if k = l,

hen only the last event of the process instance is considered. 

There are two types of predictions that are usually relevant

n the context of predictive monitoring, namely: next-event pre-

iction and end-of-instance prediction. In next-event prediction,

he goal is to predict the value of the indicator for the next

vent in the process instance ( E i l+1 
), i.e. , P I ([ E i k , . . . , E i l ]) is approxi-

ately I([ E i 1 , . . . , E i l+1 
]) . On the other hand, in end-of-instance pre-

iction, the goal is to predict the value of the indicator at the

nd of the process instance, i.e. , P I ([ E i k , . . . , E i l ]) is approximately

([ E i 1 , . . . , E i m ]) , where E i m is the last event of the process instance.
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he prediction of one indicator or the other usually depends on

he type of indicator and the moment in which actions to mitigate

he risks of not fulfilling an indicator can be put in place. In this

ork, we address both types of predictions. 

. Related work

Several approaches for the predictive monitoring of business

rocess indicators can be found in the literature. We have clas-

ified some of these methods according to the type of predicted

utcome, such as time, risk indicators, SLA violation indicators and

ther indicators. 

Time is one of the most valuable indicators during the ex-

cution of a business process. Following two works predict the

xpected time of the process. In Polato, Sperduti, Burattin, and

e Leoni (2014) , authors present a Naive–Bayes (NB) and (sup-

ort vector regression) SVR approach to predict the remaining time

f a running process which takes into account two different fac-

ors: the likelihood of the future states of a transition system cal-

ulated by a NB technique and the remaining time of the pro-

ess given by a regression model. The work described in Rogge-

olti and Weske (2015) , presents a time prediction method based

n non-Markovian Petri net enriched with duration distributions.

he method predicts the expected remaining duration of a running

rocess instance and also predicts the risk of reaching a temporal

eadline. 

Following works consider risk factors across all running pro-

ess instances for the prediction. The method proposed in Conforti,

e Leoni, Rosa, van der Aalst, and ter Hofstede (2015) measures the

ikelihood and severity of a fault in the system, providing a deci-

ion tree based technique for the risk predictions. In Pika, van der

alst, Fidge, ter Hofstede, and Wynn (2013) , authors propose a set

f process risk indicators (5 different types) than can be predicted

y using a statistical method. This method, based on the detection

f outliers, uses standard deviations to determine if a value follow

 normal distribution. Prediction of risks is taken into account in

he work presented in Conforti, de Leoni, Rosa, and van der Aalst

2013) . The risks are predicted using decision trees generated from

he event logs. Attributes such as process data, involved resources,

ask durations and other contextual information were considered

y the algorithm. Authors describe in Pika, van der Aalst, Wynn,

idge, and ter Hofstede (2016) a method for identifying risk factor

n business processes. They calculate current aggregate values for

he different risks and estimates a prediction from an annotated

etri net. 

The prediction of SLA violations is also taken into account in

everal proposals. The clustering-oriented method, presented in

olino, Guarascio, and Pontieri (2012) predicts processing times

nd associated SLA violations. The instance is assigned to a ref-

rence scenario (cluster) which is used for the prediction. The

redictive model is based on decision trees and is called Predic-

ive Clustering Tree (PCT). In Francescomarino, Dumas, Maggi, and

einemaa (2015) , authors describe a clustering method for the pre-

iction of the fulfilment or violation of a determined service level

bjective (SLO). A cluster is assigned for each running instance and

ecision tree is built for each cluster to determine the prediction.

n Leitner, Hummer, and Dustdar (2013) , authors present the PRE-

ENT tool (prediction and prevention based on event monitoring),

hich uses multilayer artificial neural networks for the prediction

f quantitative SLOs and C4.5 decision trees for qualitative SLOs. 

Other process indicators, such as an abnormal termination of

he process, are predicted in the following proposals. In Cabanillas,

iccio, Mendling, and Baumgrass (2014) , authors define the moni-

oring of tasks as a set of requirements for a predictive system. A

upport vector machine (SVM) approach is used to classify whether

he execution will lead to a successful completion or not according
o the event log data. Authors describe in Kang, Kim, and Kang

2012) a real-time monitoring system which predicts the abnormal

ermination of a running business process. The machine learning

pproach employed is a KNN technique in combination with a local

utlier factor (LOF) approach as a fault detection algorithm. A gen-

ral framework for the prediction is presented in de Leoni, van der

alst, and Dees (2016) . This work analyzes the correlation among

he different variables of the event log and constructs a classifica-

ion or regression tree for the prediction of a problem. Clustering

s also applied to identify traces with similar behavior. 

According to the predicted outcomes in the literature, the types

f predicted indicator can be an estimation of the value of a ba-

ic indicator (continuous, e.g . the remaining execution time, or dis-

rete, e.g. an incident is reopened or not), an aggregate attribute,

hich is an indicator calculated in an interval of time ( e.g. the

roportion of incidents solved in a month), the probability that a

etermined risk occurs in the process ( e.g. the violation of a con-

traint), a logical predicate, such as a LTL formula, which deter-

ines that a certain situation in the process occurs or the predic-

ion of the following event of the running process instance. 

A difference between some works in the literature, e.g. Polato,

perduti, Burattin, and de Leoni (2014) , Rogge-Solti and Weske

2015) and Pika, van der Aalst, Wynn, Fidge, and ter Hofstede

2016) , with respect to our approach is that they only receive as

nput a process model with the sequence of events with the con-

equent loss of information. Nevertheless, our approach consid-

rs the event data of the activities to perform the prediction us-

ng an event window-based encoding which provides enough in-

ormation and reduces the computational cost. Furthermore, some

f the works utilize a synthetic database, e.g. Pika, van der Aalst,

ynn, Fidge, and ter Hofstede (2016) . In our work, all the ex-

erimentation was performed using two real-life datasets. More-

ver, we provide comprehensible models based on decision rules

o extract further insights of the business processes. Instead, some

f the predictive models provided by the majority of methods,

uch as SVM ( Cabanillas, Ciccio, Mendling, & Baumgrass, 2014 ), SVR

 Polato, Sperduti, Burattin, & de Leoni, 2014 ) or Neural networks

 Leitner, Hummer, & Dustdar, 2013 ), are hardly understandable by

umans without a previous preprocessing. In addition, the lack of

omparison among proposals in most of the cited works is ev-

denced, e.g. Cabanillas, Ciccio, Mendling, and Baumgrass (2014) ,

ogge-Solti and Weske (2015) , Pika, van der Aalst, Wynn, Fidge,

nd ter Hofstede (2016) and de Leoni, van der Aalst, and Dees

2016) . This is due to the lack of available software and datasets

hich makes difficult a reliable comparison. We have determined

hat only three proposals are publicly available but the character-

stics of these works are not appropriated for a real comparison

ith our proposal. Thus, we provide the source code and all the

ecessary datasets (under demand) for the replication of the exper-

mental study described in this paper. All this information is avail-

ble in our web page ( Marquez-Chamorro & Resinas, 2017 ). We

ave also provided a comparison with several machine learning

pproaches, obtaining a good performance in terms of precision,

ecall and specificity under the same experimental conditions and

ave also included a comparative analysis with a recent work of

he literature, which justify the use of the evolutionary algorithm.

inally, our approach introduces a full software stack to support

ll the stages of the predictive monitoring process (preprocessing,

raining and prediction) and can be integrated with a business pro-

ess management system like Camunda ( Camunda, 2016 ). On the

ther hand, other works, e.g. Folino, Guarascio, and Pontieri (2012) ,

rancescomarino, Dumas, Maggi, and Teinemaa (2015) , Kang, Kim,

nd Kang (2012) and Conforti, de Leoni, Rosa, van der Aalst, and ter

ofstede (2015) , only consider the prediction stage in their soft-

are tools. 



Fig. 1. Procedure scheme.
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4. Predictive monitoring with evolutionary algorithms

This section describes our proposal for the prediction of busi-

ness process indicators. In particular, our proposal is based on an

evolutionary algorithm (EA) using the information data of a win-

dow of events described in the event logs. This section is divided

into three different subsections. The first one introduces the proce-

dure of predictive monitoring. The calculation of indicators and the

encoding of the algorithm are detailed in Section 4.2 . Finally, the

evolutionary method and a brief introduction of EAs is described

in Section 4.3 . The evolutionary operators, fitness function and set-

tings of the algorithm are also detailed in this section. 

4.1. Procedure 

Fig. 1 represents the procedure adopted in our work. This pro-

cedure in divided into two phases. First, in the training phase, the

event log of a process is obtained and preprocessed. These pre-

processing includes the calculation of the process indicators to be

predicted and the encoding of the event traces of the log in feature

vectors that can be interpreted by the classifiers. These feature vec-

tors are composed by the properties of the different events. In ad-

dition, for each feature vector, a class that corresponds to the value

of the indicator which we are aimed to predict, is assigned. The

preprocessing stage may also include other steps that are common

before the application of machine learning algorithms such as the

use of techniques to address the imbalanced class problem ( Branco,

Torgo, & Ribeiro, 2016 ). Once the data is preprocessed, these fea-

ture vectors will constitute the training dataset for the machine

learning algorithm. Then, our evolutionary algorithm is trained and

generates, as predictive model, a set of decision rules as output of

the training phase. 

During the prediction phase, the model generated in the train-

ing phase can be used to predict at runtime the outcome of run-

ning process instances. The input to this phase is the partial log of

a running process instance. This partial log is first encoded follow-
ng the same approach as in the training phase in order to obtain

 feature vector. Then, the learned predictive model is applied to

he feature vector to determine the predicted value for the process

ndicator. 

.2. Log preprocessing: computing indicators and encoding 

The goal of the preprocessing is to transform the event log into

 format that can be used as input for machine learning algo-

ithms. Most machine learning algorithms receive as input a set

f feature vectors that contains a target attribute with the value to

e predicted. These set of feature vectors conform the training set

f the algorithm. 

To build the feature vector two steps are required. First, it is

ecessary to compute the value of the indicator to be predicted.

his value is computed according to the existing attributes of the

race, as a result of a combination or arithmetic operation between

wo or more properties ( e.g. the sum of all the activity durations). 

Second, it is necessary to convert the event log into feature vec-

ors. There are several possible ways to do so. In our case, we fol-

ow an approach based of windows of events. Our system parses

ll the traces of an instance from the event log. For each instance,

e represent all the possible combinations of consecutive events

nd their properties for a determined window size. Table 2 show a

epresentation of an encoding example from the event log depicted

n Fig. 1 . In this case, the size of the event window is 3. Therefore,

he vectors consist of the properties of the events A, B, C and B, C,

 for the case 1. These properties are eventid (EI), timestamp (TS),

esource (RS) and cost (C). Finally, the class represents the value of

 process indicator, and is assigned at the end of each vector. For

he next-event prediction the class represents a value of the in-

icator when the following event occurs. For the end-of-instance

rediction, the class is calculated according to the value of the in-

icator at the end of the execution. 

Formally, we define the feature vector v , as a window of events

f size N . The information contained for each event property is in-



Table 2

Encoded vectors from the event log example showed in Fig. 1 .

1 ABC EI A EI B EI C TS A TS B TS C RS A RS B RS C C A C B C C ... class

1 BCD EI B EI C EI D TS B TS C TS D RS B RS C RS D C B C C C D ... class

2 ACB EI A EI C EI B TS A TS C TS B RS A RS C RS B C A C C C B ... class

2 CBD EI C EI B EI D TS C TS B TS D RS C RS B RS D C C C B C D ... class
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t  

w  

d  
icated as p i, j such that 1 ≤ j ≤ L where L is the maximum num-

er of properties of an event, and 1 ≤ i ≤ N , as it can be shown

n Eq. (1) for N = 3 . Last feature corresponds to the class which in-

icates a value of the indicator to be predicted. Each attribute can

e nominal or a real number. 

 = [ p 1 , 1 , p 2 , 1 , p 3 , 1 , p 1 , 2 , p 2 , 2 , p 3 , 2 , ..., p 1 , j , p 2 , j , p 3 , j , class ] (1)

The size of the event window has a direct impact on the effec-

iveness and efficiency (computational and time cost) of the exe-

ution of the algorithm. Therefore, the selection of this parameter

s an important issue which is considered in the Experimentation

ection. 

These feature vectors will determine the set of decision rules

enerated by our evolutionary algorithm at the end of its execu-

ion. This set of rules will be considered our predictive model. We

an define a decision rule as a subset of properties p of N events,

here N is the size of the event window. An example of one of

he decision rules for a subsequence of events A, B and C of the

og depicted in Fig. 1 is showed in the following: 

f EI A ∈ [107 , 0 0 0 , 108 , 0 0 0] and T S A = [12 − 12 − 2016 : 12 . 00] 

nd RS B = [ F red, Laura ] and C A ∈ [20 0 , 40 0] and C C ∈ [30 0 , 40 0] 

nd RS C = [ F red] then true 

ccuracy = 0 . 885 (2) 

This rule determines a true value of a generic indicator, when

ll the antecedents of the rule are fulfilled. Note that only the rep-

esentative properties appear in the rule and their values are pre-

ented in intervals. 

.3. Evolutionary algorithm 

Although evolutionary algorithms has been applied to sev-

ral issues in process mining, such as process model discovery

 Bratosin, Sidorova, & van der Aalst, 2010; Medeiros, Weijters, &

an der Aalst, 2007 ), they have never been applied to the runtime

rediction of process indicators. 

Evolutionary algorithms are population-based stochastic itera-

ive optimization techniques based on the Darwinian concepts of

volution. EA tackles difficult problems by evolving approximate

olutions of an optimization problem. An application of EAs is the

enetic algorithm (GA). The mechanisms used by GAs to carry out

his search can be seen as a metaphor of the processes of biolog-

cal evolution (reproduction and mutation). This kind of optimiza-

ion and search algorithms can be applied to solve optimization

roblems in various fields. 

A general scheme of a GA starts with initialization. In this step,

n initial population is randomly generated. This population con-

ists of a set of individuals which represent possible solutions of

he problem. In our problem, each individual represents a window

f N events of a trace, and is composed of a set of event proper-

ies or attributes and a class value which reflects the value of a

etermined process indicator, as we have described in Section 4.2 .

herefore, each individual describes a set of conditions to deter-

ine a value of a process indicator. In our EA, each one of the at-

ributes are defined using a lower and upper bound. Thus, EA con-

erts nominal-coded attributes in real-coded attributes to facilitate

he calculation of the evolutionary operators. 
The second step is the evaluation of the individuals that will

pply a fitness function to know how “good” is the encoded solu-

ion. In this case, the fitness of a particular individual corresponds

o the accuracy or the percentage of test instances correctly classi-

ed by the rule. 

After this, the algorithm performs a number of generations. The

A should stop when the optimal solution is reached, or other

topping criteria is fulfilled. Typically two criteria are established:

unning a maximum number of generations or the algorithm stops

hen there are not changes in the population. 

Until the stop condition is not fulfilled, the algorithm performs

he following steps. A selection operator selects a number of indi-

iduals according to the fitness of the individuals, where fitter in-

ividuals have more chances of being selected, simulating the con-

ept of survival of the fittest. Our method randomly choose two

ndividuals among all the chromosomes of the population. 

Offsprings are generated with the application of crossover and

utation. The crossover and mutation operator are applied accord-

ng to a given probability. For the crossover, a determined number

f positions of the chromosome of the parent individuals are ran-

omly selected. Then, the genes are exchanged on both sides of

hese positions and the new descendants are generated. A simple

utation randomly replaces a selected attribute value with an al-

owed value between a determined range. Offsprings are then eval-

ated and a new population is created. The best individual is se-

ected and added to the population of the next generation (elitism).

At the end of the execution of the algorithm, the best individual

s extracted as a solution of the proposed problem. This individual

onstitutes one of the resulting rules of the set of solutions of the

roblem. When a rule is generated by our EA, all the training ex-

mples covered by that rule are deleted. Therefore, repeated rules

re not generated by the algorithm. 

The settings of our EA and fitness function are explained in the

ollowing. The algorithm starts with a randomly initialized pop-

lation of 100 individuals and is run for a maximum number of

enerations (100). In order to obtain the next generation, individ-

als are selected with a tournament selection mechanism of size

wo. Crossover and mutation are then applied in order to gener-

te offsprings. We have used a 1-point crossover operator and two

ifferent mutation operators, creep and simple random mutation,

s explained in Corcoran and Sen (1994) . The crossover and muta-

ion probabilities were set to 0.8 and 0.5 respectively. After having

erformed several runs of the algorithm, the best results were ob-

ained for the cited parameter settings. The fitness function con-

ists in calculating the number of examples correctly classified by

he rule, i.e. f itness = P/P t where P is the number of correctly pre-

icted examples and P t represents the total number of examples.

he best individual of the population is maintained in the next

eneration of EA, following an elitist scheme. The obtained rules

enerated after each execution of the algorithm, constitute the so-

ution set of rules which are part of the predictive model. 

. A software system for predictive monitoring

Two software systems were developed for our proposal: one of

hem is used to preprocess the event log during the training phase,

hereas the other is used to support the prediction phase. In ad-

ition, a generic machine learning software was used to support



Fig. 2. Software systems architecture.
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the process of creating the prediction model. The reason why we

decided not to include support for building the prediction model

together with the log preprocessor is because there are dozens

of machine learning frameworks that provide very useful tools to

build and evaluate prediction models, so we wanted to left this

open so that each user can choose the framework they find more

useful in each case. In this paper, we have used KEEL ( Alcala-Fdez

et al., 2011 ), which is a framework specially targeted to evolution-

ary algorithms. Fig. 2 depicts how these tools can be used together.

The colored components of the figure were implemented by us.

Next we detail each of them. 

5.1. Log preprocessor 

This software component has been developed to support the

task of preprocessing the log, which includes indicators computa-

tion and log encoding, in order to obtain a set of feature vectors

that is used as input of the machine learning algorithm. The soft-

ware has been developed in Java as a plugin ( Marquez-Chamorro,

2016 ) of the ProM framework ( van Dongen, de Medeiros, Verbeek,

Weijters, & van der Aalst., 2005 ), which is the most used frame-

work for process mining. The inputs of the plugin, showed in Fig. 3 ,

are three, namely: the log event in XES format (a XML-based stan-

dard for event logs), the specifications for the calculation of the

indicator in JSON format (JavaScript Object Notation) and the con-

figuration of the encoding, which, for the encoding described in

Section 4.2 includes the specification of the window size. In the

current version only this encoding is implemented. However, new

encodings can be easily added to the system. The output of the

plugin is a set of encoded feature vectors that can be directly used

as an input for any machine learning algorithm. 

Internally, the plugin uses the PPINOT Tool Suite ( del Rio-

Ortega, 2017 ) described in del Río-Ortega et al. (2017) , to com-

pute the indicator. Therefore the JSON format that specifies how

the indicator is computed is defined following the PPINOT meta-

model described in del Río-Ortega, Resinas, Cabanillas, and Ruiz-

Cortés (2013) . An example of a JSON file is showed in our web

page ( Marquez-Chamorro & Resinas, 2017 ). 

5.2. Runtime predictions 

The software for runtime predictions can be divided into two

types of components, namely: predictor and connector. A predic-

tor encapsulates a prediction model and provides a generic API to

make predictions of running instances following the approach de-

tailed in Section 4.1 . Therefore, once a prediction model has been
btained in the training phase it has to be deployed into a predic-

or in order to use it at runtime. To deploy a prediction model into

 predictor, there are two aspects that must be configured: the en-

oding that uses, which must match the one used in the prediction

odel, and the type of prediction model (e.g. whether it is a deci-

ion tree, a decision rule set or a regression function). In the cur-

ent implementation, only window-based encodings and rule set

rediction models are available, but new encodings and types of

odels can be easily added. 

The other component of the runtime prediction software are

onnectors. A connector is used to integrate the predictions pro-

ided by predictors into a specific process-aware information sys-

em. This enables process participants to make decisions based on

he predictions obtained. For instance, if the process-aware infor-

ation system is a business process management system like Ca-

unda ( Camunda, 2016 ), the connector can be implemented as a

amunda task list plug-in that, together with the information of

he process instance at hand, it shows the value of the predictions

or all the indicators defined for that process so that the process

articipants can act accordingly. Fig. 4 shows our Camunda plug-

n for process indicator predictions using an example of running

rocess instance. 

. Experimentation

This section presents the experimentation results obtained by

he evolutionary approach. The aim of this experimentation con-

ists on providing an analysis of the effectiveness of our system

ith respect to other machine learning approaches. In particular,

ur evaluation focuses on the following research questions: 

• RQ1. Does the proposed approach provide reliable results in

terms of prediction with respect to other similar machine

learning approaches?
• RQ2. Does the proposed encoding provide enough information

for a good performance of a learning classifier?
• RQ3. Which is the best event window size for the encoding of

the datasets considering the quality of the results?
• RQ4. Which is the most adequate configuration for the evolu-

tionary algorithm according to the quality of the results?
• RQ5. Which imbalanced class technique is the most convenient

for the datasets considering to the quality of the results?

The first question is related to the quality of the results pro-

ided by the proposed evolutionary algorithm. The second one

akes into account if the proposed encoding provides reliable re-

ults. The third one is related to the selection of the size of the

indow with the aim of testing the quality of the results when

omputed with different window sizes. Finally, the fourth and fifth

uestions refer to the aim of finding the best configuration of the

A and the best imbalanced class technique respectively, for the

resented datasets in terms of performance results. In the follow-

ng, we describe the experiments carried out to answer these re-

earch questions. 

The rest of the section is organized as follows. The character-

stics of the datasets used in the experimentation and the prepro-

essing stage of these datasets are presented in Sections 6.1 and

.2 , respectively. Then, we define the evaluation measures used for

esting the effectiveness of methods in Section 6.3 . In Section 6.4 , a

iscussion of the obtained results is provided. Finally, the solution

et of resulting rules is described in Section 6.5 . 

.1. Datasets 

Event logs used in our experimentation were extracted from the

PI Challenge 2013 ( Verbeek, 2013 ) and from the IT Department of

ealth Services of Andalusia, Spain. 



Fig. 3. ProM plugin for the calculation of process indicators.

Fig. 4. Example of our Camunda plugin for process indicator predictions.
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.1.1. BPI Challenge 2013 dataset 

Volvo IT incident management log ( Repository, 2013 ) contains

ll the information of the management of incidents registered at

he Volvo IT department. A solution should be established for each

ncident in order to restore the service with minimum disruption

o the business. After providing a solution to the problem and ver-

fying that the service is restored, the incident is closed. Event at-

ributes refers to the support teams involved in the different inci-

ents, the date and time of each event, the impact of the incident

nd the status of the event among others. The cited dataset con-

ists of 67,543 training instances which belong to 7554 different

ases (process instances). The total number of attributes for each

raining instance is 12. The attributes used for each event are SR

umber, Change Date + Time, Status, Sub Status, Involved ST Func-

ion Div, Involved Org line 3, Involved ST, SR Latest Impact, Prod-

ct, Country, Owner Country and Owner First Name. A training in-

tance consists of a list of these attributes for each of the three

vents and the class attribute (1 for positive cases and 0 for nega-
ive cases). An aggregated attribute, named C hangeDat e + T ime, has

een calculated as the number of seconds from the beginning of

he process until the execution of this event. In this context, this

hallenge poses three different risk situations to be predicted. 

In the first one, a Push to Front (PTF) mechanism reveals that

ost of the incidents need to be resolved by the first line support

eams (mainly service desks). Push to front works if the 1st line sup-

ort team can resolve the incident without interference of a 2nd

r 3rd line support team. Therefore, we have classified those cases

hich have finished using only the 1st line support team and those

hich have been resolved with the interference of the 2nd or 3rd

ine support team. Our method must predict which cases have to

e more likely to be resolved using the 2nd or 3rd support teams. 

A second problem to be predicted, is the PingPong behavior in

he company: the support teams start to send incidents to each

ther again and again, e.g. the 1st line support team sends an in-

ident to the 2 nd team (Ping) and viceversa (Pong), and conse-

uently the total life time of the incident is increased. In this case,
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we predict the PingPong situations, i.e . 1st line and also 2 nd or 3 rd

and again 1st support line teams take action in the solution of an

incident. 

A third situation presented in this challenge is the abuse of

waituser substatus. There exists a PPI that measures the resolution

time of the incident. With the use of this substatus, the timing

clock stops. Unless someone is really waiting for an end-user, this

substatus should not be used by the action owners according to

the company guidelines. In this case, the abuse of this substatus in

inappropriate situations justify the prediction. 

Therefore, we have defined three different process indicators to

be predicted in the experimentation: the system will alert from

the risk of a PTF fail situation, a Ping Pong situation or a Waituser

substatus situation. 

According to the definitions provided in Section 2 , the three in-

dicators stated in this section are classified as instance-level indi-

cators, since they provide a value for each executed trace. Next-

event prediction is considered for these indicators because they

represent a value for the following event. 

6.1.2. IT Department of Andalusian Health Service dataset 

This dataset reflects the incident management log of the IT De-

partment of Andalusian Health Service. In this context, a service

level agreement (SLA) is established considering certain key per-

formance indicators (KPIs). This SLA determines the penalties de-

rived from the under-fulfilling of a threshold for each of the KPIs.

Thus, predictive monitoring is necessary to warn the possibility of

violation of the SLA. In this case, two KPIs are considered: K1 de-

termines if an incident is solved in time and K6 determines if an

incident has been reopened because it was not correctly solved.

Furthermore, three priority levels are also considered for each in-

cident, i.e. normal (P3), high (P2) and very high (P1). The higher

the level of priority, the higher the penalties in case of violation of

SLA. For K1, priority levels are related with the resolution time of

the incidents. P1 means that the resolution time must be lower or

equal than 2 h. P2 establish that the resolution time must be lower

or equal than 4 h. Finally, P3 indicates that the resolution time

should be lower or equal than 17 h. The different process instances

are classified according to their priority levels. Since we have con-

sidered three different priorities for each KPI, we have obtained 6

different datasets, named K1_P1, K1_P2, K1_P3, K6_P1, K6_P2 and

K6_P3. 

This dataset consists of 1,055,128 training instances or events.

For the K1 indicator and according to the type of priority, we

have found 11,254 instances for P1, 18.310 instances for P2 and

1,015,133 instances for P3. On the other hand, for the K6 indica-

tor, we have considered 5425 instances for P1, 10,785 instances for

P2 and 852,539 instances for P3. The total number of attributes for

each event in the training instance is 14. The attributes used for

each event are Autor, Nodo, Resolutor, Descorg, Tipologia, Asunto,

Asignatario, Prioridad, GrupoAutor, Estado, Centro, Origen, Type-

Org, Recurso and MotivoCierre. A training instance consists of a

list of these attributes and the class attribute. In this case, the two

cited process indicators (K1 and K6) for the prediction of SLA vio-

lations have been defined for the experimentation. 

According to the definitions provided in Section 2 , the two indi-

cators stated in this section are classified as instance-level indica-

tors, since they provide a value for each executed trace. For these

indicators, end-of-instance prediction is used, since we are predict-

ing the value of the indicator at the end of the process. 

6.2. Preprocessing of datasets 

This section provides a description of the preprocessing stage

for the different datasets presented in the previous section. 
Considering the event window size for the encoding, we have

erformed several analysis, described in the Window size experi-

entation section, and determine that best results were obtained

or N = 3 for the BPI Challenge and N = 2 for the IT Department

atasets. 

For the PTF dataset, the class is defined according to the at-

ribute Involved ST of the event that follows the events included in

he window. If the value of this attribute is 2nd or 3rd and it is dif-

erent for the previous event, then we determine a fail in the PTF

echanism (positive class) and set the class attribute to 1. Other-

ise, we set the class attribute to 0. 

For the Ping Pong dataset, the class is also defined according to

he attribute Involved ST of the following event for the Ping and

lso for the Pong situation. If the value of this attribute is 1st, 2nd

r 3rd and it is different for the previous event in the Ping sit-

ation, and this value changes to the original support team in the

ong situation, we define a positive class and set the class attribute

o 1. The class attribute is set to 0 in the rest of the cases. 

Finally, for the wait user substatus dataset, the class is defined

ccording to the attribute Substatus of the following event. If the

alue of this attribute is set to wait user , then we set the class

ttribute to 1 (positive class). 

For the K1 dataset, the class attribute determine if a process in-

tance was solved in time (negative class) or not (positive class).

or the K6 dataset, the class attribute determines if the incident

as reopened (positive class) or not (negative class). In this case,

he definition and calculation of indicators both have been per-

ormed using PPINOT tool ( del Río-Ortega, Resinas, Cabanillas, &

uiz-Cortés, 2013 ) and the ProM plugin described Section 5.1 . 

Analyzing all the datasets, we have noticed that the positive

nd negative classes are notably imbalanced. This is a common

roblem which affect to machine learning due to having dispropor-

ionate number of positive and negative class instances, that lead

o provide a misleading classification accuracy. There are many ap-

roaches to deal with this problem. Standing out, the re-sampling

hat can be classified in two methodologies: over-sampling and

nder-sampling. Over-sampling consists in adding copies of in-

tances to the under represented class. By contrast, under-sampling

onsists in deleting instances from the over-represented class. We

ave tested several imbalanced class techniques for the two result-

ng datasets, and finally, we have obtained the best results using

he following methods. For the BPI challenge dataset, we have per-

ormed an under-sampling of data using 1:1 and 2:1 ratios. The

ptimization of this parameter also implies a lower computational

ost for the algorithm. On the other hand, for the IT Department

ataset, the Borderline SMOTE method ( Han, Wang, & Mao, 2005 )

as applied as over-sampling method. This algorithm selects these

amples using the nearest neighbor approach. Experimentations for

he justification of these decisions, are provided in Section 6.4 . 

.3. Effectiveness evaluation 

The effectiveness of our proposal is assessed using several

easures. We have computed precision, recall, specificity and

_measure defined as shown in Eqs. (3) , (4), (5) and (6) respec-

ively. These measures are widely used for testing machine learn-

ng approaches in literature. 

 recision = 

T P 

T P + F P 
(3)

ecall = 

T P 

T P + F N 

(4)

peci f icity = 

T N 

T N + F P 
(5)
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Table 3

Average results obtained for the different classification algorithms for

PTF behavior dataset with balance ratio 2:1 (a) and 1:1 (b), for Ping Pong

behavior dataset with balance ratio 1:1 (c) and for Wait user substatus

dataset with balance ratio 1:1 (d), respectively

(a) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.821 ±0.05 0.585 ±0.05 0.932 ±0.04 0.657

RT 0.807 ±0.08 0.670 ±0.07 0.840 ±0.03 0.732

ANN 0.492 ±0.03 0.599 ±0.02 0.673 ±0.06 0.540

SVM 0.958 ±0.09 0.523 ±0.08 0.890 ±0.07 0.676

EA 0.874 ±0.01 0.758 ±0.01 0.930 ±0.02 0.811

(b) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.950 ±0.03 0.398 ±0.06 0.982 ±0.07 0.560

RT 0.884 ±0.07 0.722 ±0.08 0.782 ±0.05 0.795

ANN 0.610 ±0.01 0.722 ±0.01 0.577 ±0.02 0.661

SVM 0.930 ±0.11 0.507 ±0.08 0.897 ±0.10 0.656

EA 0.916 ±0.2 0.868 ±0.01 0.899 ±0.03 0.891

(c) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.963 ±0.07 0.580 ±0.05 0.965 ±0.09 0.723

RT 0.830 ±0.03 0.724 ±0.06 0.913 ±0.06 0.784

ANN 0.495 ±0.10 0.415 ±0.12 0.760 ±0.08 0.451

SVM 0.580 ±0.04 0.500 ±0.04 0.987 ±0.05 0.537

EA 0.895 ±0.01 0.753 ±0.03 0.930 ±0.04 0.817

(d) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.892 ±0.08 0.870 ±0.03 0.960 ±0.07 0.880

RT 0.837 ±0.02 0.725 ±0.05 0.853 ±0.06 0.776

ANN 0.315 ±0.12 0.274 ±0.10 0.778 ±0.09 0.293

SVM 0.425 ±0.05 0.603 ±0.03 0.730 ±0.06 0.498

EA 0.960 ±0.02 0.772 ±0.04 0.981 ±0.03 0.855

Table 4

Average results obtained for the different classification algorithms for K1

dataset and different priorities: P1 (a), P2 (b) and P3 (c), respectively.

(a) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.933 ±0.02 0.727 ±0.03 0.974 ±0.03 0.817

RT 0.827 ±0.04 0.622 ±0.03 0.972 ±0.03 0.709

SVM 0.838 ±0.08 0.737 ±0.09 0.978 ±0.07 0.784

ANN 0.742 ±0.09 0.570 ±0.07 0.933 ±0.07 0.644

EA 0.875 ±0.06 0.830 ±0.05 0.978 ±0.05 0.851

(b) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.833 ±0.12 0.791 ±0.04 0.984 ±0.03 0.811

RT 0.712 ±0.08 0.595 ±0.09 0.976 ±0.03 0.648

SVM 0.848 ±0.07 0.778 ±0.09 0.986 ±0.05 0.811

ANN 0.853 ±0.11 0.513 ±0.05 0.994 ±0.06 0.471

EA 0.885 ±0.07 0.801 ±0.08 0.993 ±0.07 0.840

(c) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.700 ±0.04 0.513 ±0.03 0.890 ±0.03 0.592

RT 0.661 ±0.05 0.503 ±0.05 0.871 ±0.05 0.571

SVM 0.689 ±0.07 0.596 ±0.09 0.865 ±0.08 0.639

ANN 0.584 ±0.9 0.338 ±0.08 0.764 ±0.09 0.428

EA 0.898 ±0.09 0.749 ±0.12 0.890 ±0.10 0.816

Table 5

Average results obtained for the different classification algorithms for K6

dataset and different priorities: P1 (a), P2 (b) and P3 (c), respectively.

(a) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.886 ±0.08 0.855 ±0.03 0.977 ±0.06 0.855

RT 0.793 ±0.07 0.541 ±0.04 0.977 ±0.08 0.643

SVM 0.950 ±0.10 0.810 ±0.05 0.965 ±0.06 0.874

ANN 0.511 ±0.03 0.541 ±0.06 0.950 ±0.07 0.525

EA 0.960 ±0.03 0.875 ±0.05 0.954 ±0.12 0.915

(b) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.865 ±0.05 0.847 ±0.03 0.994 ±0.06 0.855

RT 0.846 ±0.06 0.588 ±0.05 0.993 ±0.05 0.693

SVM 0.844 ±0.05 0.786 ±0.06 0.943 ±0.04 0.814

ANN 0.754 ±0.04 0.557 ±0.07 0.818 ±0.05 0.640

EA 0.886 ±0.06 0.829 ±0.06 0.955 ±0.09 0.856

(c) Precision μ ± σ Recall μ ± σ Specificity μ ± σ F _ measure

DT 0.871 ±0.08 0.472 ±0.07 0.995 ±0.02 0.612

RT 0.776 ±0.04 0.506 ±0.04 0.941 ±0.03 0.612

SVM 0.872 ±0.06 0.649 ±0.06 0.952 ±0.05 0.744

ANN 0.735 ±0.07 0.497 ±0.06 0.995 ±0.04 0.593

EA 0.898 ±0.08 0.849 ±0.09 0.934 ±0.10 0.872
 _ measure = 2 · P recision · Recall

P recision + Recall 
(6) 

TP represent true positives, FP are false positives, TN indicate

rue negatives and FN are false negatives. Precision is the ratio of

orrectly predicted instances divided by the total of predicted in-

tances. In our case, this measure represents the ratio of instances

hat have been correctly predicted, over the total of predicted pos-

tive instances. Recall or true positive rate indicates what percent-

ge of correctly predicted instances for the positive class have been

orrectly identified. In our method, this measure shows the ratio

f instances that have been correctly predicted over the total of in-

tances. Specificity or true negative rate represents the ratio of cor-

ectly predicted instances for the negative class have been correctly

dentified. In this case, specificity indicates the ratio of correctly

redicted instances which have been correctly predicted over the

otal of instances. F_measure represents the weighted average of

he precision and recall. 

In the case of imbalanced data, a reliable indicator is area under

he curve (AUC) ROC ( He & Ma, 2009 ). The AUC provides a single

easure of a classifier performance for evaluating which model is

etter on average. The ROC curve graphic allows the visualization

f the trade-off between the true positives rate and the false pos-

tive rate. The true positive rate (TPR) formula is TP/TP + FN which

s equivalent to the Recall and represents the benefits of the al-

orithm. On the other hand, false positive rate (FPR) is equal to

P/FP + TN which is equivalent to (1 − speci f icity ) and represents

he cost of the algorithm. The diagonal line represents a random

lassifier. Points above the diagonal represent good classification

esults (better than random). Points below the diagonal represent

oor classification results (worse than random). 

.4. Results 

In order to answer the five research questions, we have per-

ormed the following experiments described in this section. All the

xperimentation was performed using the KEEL tool ( Alcala-Fdez

t al., 2011 ) and the following classifiers: artificial neural network

ANN)( Broomhead & Lowe, 1988 ), random trees (RT)( Gray & Fan,

008 ), support vector machine (SVM)( Cortes & Vapnik, 1995 ) and

4.5 decision tree (DT)( Quinlan, 1993 ). Settings used for the exper-

mentation are as follows, for the decision tree, a confidence factor

sed for pruning of 0.25 and a minimum number of object per

eaf of 2. For the random trees, we have established 0 randomly

hosen attributes at each node and 1 as minimum total weight of

nstances in a leaf. For the multilayer perceptron, we have set the

earning rate to 0.3, the momentum to 0.2, the training time to

00 epochs, the hidden layers is equal to (at t ribs + classes ) / 2 and

he validation threshold was set to 20. Finally, for the support vec-

or machine, we have selected the polynomial kernel with an ex-

onent value of 1.0, the complexity parameter c is set to 0.1, the

olerance parameter is set to 0.001 and ε is set to 1 . 0 −12 . Available

atasets can be downloaded from our web ( Marquez-Chamorro &

esinas, 2017 ). 

The obtained results can be seen in Tables 2–7 for a 10-fold

ross-validation partitioning scheme. The experiments were also

erformed with the aim of validating our representation and con-

rms that the new encoding provides enough information for

 good performance of a learning classifier. Moreover, we can

lso notice that the EA, based on the algorithms described in

orcoran and Sen (1994) and Aguilar-Ruiz, Riquelme, and Toro

2003) , achieved good accuracy results for all datasets in contrast

o the other algorithms as shown in Tables 2–7 . 



Table 6

Average accuracy results for the prediction of next event using

BPI Challenge 2013 dataset.

Method Precision Recall Specificity F _ measure

History 0.569 0.308 0.961 0.399

2-gram 0.621 0.346 0.965 0.4 4 4

3-gram 0.633 0.368 0.966 0.465

4-gram 0.635 0.377 0.967 0.473

5-gram 0.631 0.378 0.966 0.472

6-gram 0.624 0.375 0.966 0.468

EA 0.972 0.692 0.791 0.808

Table 7

Average accuracy results obtained for different sizes of the event window.

Size Precision μPTF Recall μPTF P recision μK1 _ P 1 Recall μ K1_P1

2 0.907 ±0.05 0.856 ±0.02 0.875 ±0.02 0.830 ±0.05

3 0.916 ±0.02 0.868 ±0.06 0.795 ±0.09 0.792 ±0.08

4 0.897 ±0.01 0.847 ±0.01 0.774 ±0.10 0.750 ±0.08

5 0.885 ±0.05 0.835 ±0.03 0.760 ±0.08 0.743 ±0.09
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6.4.1. Results for BPI Challenge 2013 dataset 

In the following, we present the results for the prediction of the

three different process indicators cited in Datasets section (PTF fail,

Ping Pong and wait user ). 

Push-to-front (PTF) behavior. Table 3 (a) shows the average re-

sults and standard deviations achieved for the classification algo-

rithms for the PTF dataset with balance ratio 2:1. We can appreci-

ate that best values of recall and F_measure are achieved using the

EA. Although DT obtains similar values of specificity, this method

only predicts a 58.5% of the positive cases (recall) in contrast to

the 75.8% achieved by the EA. SVM obtains a good precision rate

of 95.8%, however the recall rate is low (52.3%), in contrast to our

method that achieves a good 87.4% and 75.8% of precision and

recall rates respectively. The F_measure of our method obtains 8

points above the second best rate. 

Table 3 (b) presents the results for the PTF dataset with balance

ratio 1:1. DT obtains good results of precision and specificity, how-

ever, the recall rate is widely improved by our algorithm (86.8%

against 39.8%). We can also appreciate that our F_measure exceeds

substantially (more than 33 points approximately) the equivalent

rate for DT. Although the SVM approach achieves similar results for

precision and specificity, the true positive rate is low in contrast to

the recall rate achieved by the EA approach (50.7% against 86.8%).

Low values of standard deviation of our method, show us that

our results are not significantly spread. Recall rate and F_measure

achieved by EA overcomes the equivalent results of the rest of ap-

proaches. 

Generally, we can appreciate that recall rates of the EA widely

improved the rates achieved by the other proposals. One of the

purposes of the prediction in this area is the prevention of unde-

sirable situations ( i.e . fails in the PTF mechanism in our case). In

that sense, a low value of recall means that there is a high num-

ber of fails in the PTF mechanism that the algorithm will not be

able to detect. Therefore, the high recall obtained by the EA means

that our algorithm cover the highest number of situations without

PTF. 

Fig. 5 (a) and (b) shows the ROC curve for the results of the four

best classifiers for both PTF datasets (2:1 and 1:1). As we can see,

the higher value is widely achieved by the EA in both cases. 

Ping Pong behavior. Table 3 (c) shows the results for the Ping

Pong dataset with balance ratio 1:1. F_measure and recall rates

achieved by our algorithm are the highest values in comparison

to the other approaches. Although precision rate of DT overcomes

the one achieved by our EA, our recall rate exceeds in is almost 20

points to DT recall rate. That means that our algorithm identifies
5.3% (recall) of Ping Pong cases and from that percentage, a 89%

precision) of the cases are correctly identified. Specificity achieved

y the EA is among the three best rates. Fig. 5 (c) presents the AUC

raphic for the results of the four best classifiers. The outcomes

how that the value of AUC of the EA improves the value of the

ther classifiers. 

Wait user substatus problem. Table 3 (d) presents the results

or the prediction of the Wait user substatus dataset with bal-

nce ratio 1:1. Best results of precision and specificity are achieved

ith our algorithm. In this case, recall rate of EA is overcome by

T method (0.870 against 0.772), although the rate of correctly

redicted Wait user situations (precision) of the EA, exceeds in 7

oints to the DT precision. F_measure of our method is the second

est rate (0.85) of the rest of predictors. Fig. 5 (d) shows the ROC

urve for the results of the four best classifiers. As we can see, the

igher value of AUC is achieved by the EA. 

.4.2. Results for IT Department of Andalusian Health Service dataset 

Two indicators have been predicted for this dataset. K1 pre-

icts if a process instance is going to be solved in time. K6 deter-

ines the possibility of an incident will be reopened after being

losed. The prediction of these indicators attempt to prevent the

on-compliance of the established SLAs. 

Prediction of K1 indicator. Table 4 shows the average re-

ults and standard deviations achieved for the classification algo-

ithms for the K1 dataset and the different priorities. Best values

f F_measure, specificity and recall are achieved using the EA for

he three priorities. Precision also obtains best values for P2 and P3

riorities. We can highlighted that, for P3 priority in Table 4 (c),

ecall rate exceeds in 15 points to the second best rate classi-

er (SVM) and the precision obtained by the EA achieves a 89.8%

hich is considered a high value with respect to the 70.0% ob-

ained by the DT. Therefore, in this case, we have achieved the

ighest differences with respect to the rest of the classifiers. This

ould be due to the fact that this is the largest dataset and EAs are

ood classifiers finding suboptimal solutions in high dimensional-

ty search spaces. Fig. 6 shows for the three different priorities that

he higher value of AUC is achieved by the EA. 

Prediction of K6 indicator. Table 5 shows the average results

nd standard deviations achieved for the classification algorithms

or the K6 dataset and the different priorities. For all the priorities,

recision and F_measure values of the EA, widely improves the rest

f the classifiers rates. The EA also obtains best values of recall for

1 and P3 priorities and for P2 priority, we can observe that DT

btain best recall rate, but is closely followed by our EA. Fig. 7

hows that AUC value of the EA, improves the value of the other

lassifiers in this case. 

According to the obtained results in this and previous sec-

ions, we can provide a positive response to RQ1 research ques-

ion. We have obtained reliable results for the EA which improve,

n most cases, the outcomes of the other machine learning tech-

iques. Specifically, EA outperforms the performance rates of the

ther approaches in 8/10 experiments for recall, 8/10 for specificity,

nd 6/10 for precision and 10/10 for F_measure. We can conclude

hat our EA obtains good recall rates in average with respect to

he other classifiers because EA is adequate for working with huge

imensional search spaces. 

We can also conclude that this encoding provide enough infor-

ation for a good performance of a learning classifier. This is ev-

denced by the good results achieved by all the machine learning

lassifiers. In this case, we can also provide a positive answer to

Q2. 

.4.3. Comparative analysis 

We have performed a comparative analysis with one of the re-

ent works of the literature ( Breuker, Matzner, Delfmann, & Becker,



Fig. 5. ROC curves for the different classification algorithms for PTF behavior, Ping Pong behavior and Wait user substatus datasets with balance ratios.

Fig. 6. ROC curves for the different classification algorithms for K1 dataset. First graph on the left correspond to P1 priority. Second graph on the right belongs to P2 priority

and graph at the bottom corresponds to P3 priority.
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016 ) which also utilizes BPI Challenge 2013 dataset. In this case,

he predicted outcome is the following event of the running pro-

ess instance. We have defined the events with the properties Sta-

us and Substatus and their possible values, i.e. Queued, Accepted

nd Completed for Status and In progress, Awaiting assignment,

ssigned, Wait - User, Closed, Wait - Implementation, Resolved,

n call, Wait - Customer and Wait - Vendor for Substatus. A 3-
vent window was selected for the encoding. Results are shown

n Table 6 . The method named History uses as input the entire

equence of events, whereas n-gram methods take into account a

liding window of size n of events, as seen in Breuker, Matzner,

elfmann, and Becker (2016) . Our method, named EA, widely ex-

eeds all the results for precision, recall and F_measure in more

han 30 percentage points. 



Fig. 7. ROC curves for the different classification algorithms for K6 dataset. First graph on the left correspond to P1 priority. Second graph on the right belongs to P2 priority

and graph at the bottom corresponds to P3 priority.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8

Average accuracy results obtained for different configura- 

tions of the EA using K1_P1 dataset.

Cross. prob. Precision μ Recall μ

0.5 0.869 ±0.05 0.830 ±0.02

0.6 0.786 ±0.02 0.821 ±0.06

0.7 0.764 ±0.01 0.827 ±0.01

0.8 0.875 ±0.02 0.830 ±0.05

0.9 0.816 ±0.01 0.840 ±0.01

1.0 0.816 ±0.05 0.842 ±0.03

Mutat. prob. Precision μ Recall μ
0.5 0.875 ±0.02 0.830 ±0.05

0.6 0.750 ±0.02 0.790 ±0.06

0.7 0.764 ±0.03 0.817 ±0.01

0.8 0.764 ±0.04 0.805 ±0.03

0.9 0.845 ±0.01 0.825 ±0.01

1.0 0.742 ±0.07 0.801 ±0.03

Generations Precision μ Recall μ
100 0.875 ±0.02 0.830 ±0.05

200 0.816 ±0.03 0.818 ±0.03

300 0.897 ±0.08 0.847 ±0.07

400 0.875 ±0.03 0.825 ±0.03

500 0.875 ±0.05 0.825 ±0.04
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6.4.4. Window size experimentation 

In order to answer the third research question, we have per-

formed an experiment using different window sizes for the en-

coding. Specifically, we have varied the window size from 2 to 5

events. Different results for precision and recall rates are shown

in Table 7 . All the experimentations were performed with the PTF

dataset with balance ratio 1:1 and using K1 dataset with priority

P1 in representation of each one of the two datasets previously

described. As can be seen in Table 7 , the window of three events

provides the best recall and precision performances for the PTF

dataset. On the other hand, K1 dataset achieves its best recall and

precision rates for a 2-window size. Furthermore, a window size of

2 and 3 implies a lower computational cost. Based on the results

of the table, we adopt these sizes of window for our encoding in

order to answer to RQ3. 

6.4.5. Evolutionary algorithm settings 

One of the challenges using an EA is to find the best configu-

ration of the evolutionary parameters. In this experimentation, we

have tested several configurations as result of modifying the prob-

ability values of evolutionary operators (crossover and mutation)

and the number of generations of each execution in order to an-

swer RQ4. According to the Table 8 , best precision results were ob-

tained using a probability of 0.8 for crossover. Fixing the crossover

probability, we have obtained best results for a mutation proba-

bility of 0.5. Although we appreciate that some configurations for

crossover, achieve better recall rates ( e.g . probability of 1.0), maxi-

mum precision rate is reached using these settings. Concerning the

number of generations, we can notice a slight improvement us-

ing 300 generations, however the execution time was moderately

increased with this modification, and we finally chose 100 as the

number of generations. For those reasons, and considering RQ4, we

conclude that most adequate configuration for the evolutionary al-

gorithm according to the quality of the results is probability of 0.5

and 0.8 for the mutation and crossover operators respectively, and

100 as number of generations. 
.4.6. Imbalanced class techniques comparison 

Different unbalanced classes techniques have been applied to

ur datasets in order to obtain the best prediction results and

o answer RQ5. Imbalanced techniques can be divided into four

roups: over-sampling methods, under-sampling methods, cost-

ensitive methods and algorithmic modifications for class imbal-

nce. We have analyzed the different over-sampling and under-

ampling techniques in the literature using the K1_P1 dataset.

able 9 shows the performance rates for the different imbalanced

ethods. Best results were achieved using Borderline SMOTE ( Han,

ang, & Mao, 2005 ), an over-sampling method that generates pos-

tive examples from other instances of the original training dataset

electing k nearest neighbors. Thus, we can conclude that the most

onvenient imbalanced class technique for our datasets considering

he performance results is Borderline SMOTE. 



Table 9

Average accuracy results obtained for different imbalanced class techniques.

Over-sampling Precision μ Recall μ

ADASYN ( He, Bai, Garcia, & Li, 2008 ) 0.588 ±0.05 0.338 ±0.02

SPIDER ( Stefanowski & Wilk, 2008 ) 0.600 ±0.02 0.264 ±0.06

Bline-SMOTE ( Han, Wang, & Mao, 2005 ) 0.897 ±0.01 0.847 ±0.01

ROS ( Kubat & Matwin, 1997 ) 0.777 ±0.05 0.529 ±0.03

SMOTE ( Chawla, Bowyer, Hall, & Kegelmeyer, 2002 ) 0.636 ±0.01 0.617 ±0.01

Under-sampling Precision μ Recall μ

CNN ( Hart, 1968 ) 0.619 ±0.05 0.477 ±0.02

CPM ( Yoon & Kwek, 2005 ) 0.575 ±0.02 0.507 ±0.06

NCL ( Laurikkala, 2001 ) 0.714 ±0.01 0.225 ±0.01

OSS ( Kubat & Matwin, 1997 ) 0.549 ±0.05 0.529 ±0.03

RUS ( Batista, Prati, & Monard, 2004 ) 0.507 ±0.01 0.461 ±0.01
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.5. Resulting rules 

The predictive system has generated a total of 20 rules on av-

rage for each fold. Two examples of rules generated by the algo-

ithm, one that predicts a fail in the Push to front mechanism, and

ne that reflects the possibility of violation of the SLA defined by

1 indicator, are showed below: 

f Status _ 2 ∈ [ accepted , waiting] and In v olv ed ST F unctionDi v _ 1 

 [ A 24] and In v olv edST F unctionDi v _ 2 = [ A 24] 

nd In v olv edOr gLine 3 3 = Or gLineA 2 and SRLatest Impact _ 2 ∈ 

 medium, high ] and P roduct _ 1 ∈ [ P R 582 , P R 583] and Country _ 3 

 F rance then yes Accuracy = 0 . 893 (7) 

If we inspect this rule, a fail in the Push to front mechanism is

ore likely to occur when the status of the second event is ac-

epted or waiting and the InvolvedSTFunctionDiv of the first and sec-

nd events is A 24 and InvolvedOrgLine 3 of the third event is equal

o OrgLineA 2 and SRLatestImpact of the second event is medium or

igh and the Product of the first event is PR 582 or PR 583 and the

ountry of third event is France . 

f Resolutor ∈ [ CE GE S GE ST ION SERV ICIO ... SAS OF IMAT ICA ] 

nd T ipologia ∈ [ Incidencia, Incidencia.Sistema ] and 

signatario = H. U. REINA SOF IA and Moti v oCierre 

 Recurso.Reparado and T ypeOrg2 ∈ [ RE, CL ] and Nodo2 

 [ SSCC, CADIZ] and P r ior id ad 2 = P 3 and Origen 2 

 [ T E LE F ON O, IN T RAN ET ] then false Accuracy = 0 . 822 (8) 

This second rule reflects that, a violation of the SLA is more

ikely to happen when, for the first event, Resolutor is CEGES GES-

ION or SAS OFIMATICA and Tipologia is Incidencia or Incidencia. Sis-

ema and Asignatario is equal to H . U . REINA SOFIA I and MotivoCierre

s equal to Recurso.Reparado and for the second event, TypeOrg 2 is

E or CL and Nodo 2 is SSCC or CADIZ and Prioridad 2 is equal to

 3 and Origen 2 is TELEFONO or INTRANET . We can notice that rules

enerated by our proposal are characterized by a high reliability,

ccuracy values of 0.893 and 0.822, and also high interpretability,

hich would allow users to easily inspect the results for further

alidation. 

Some conclusions can be extracted from these generated rules.

e can analyze the relevant attributes for the prediction according

o their number of appearances in the rules. We can also analyze

he rules from different perspectives of the characteristics of the

rocesses to extract further conclusions. For instance, the first rule

etermines a mostly use of attributes referred to the organizational

erspective, e.g. InvolvedSTFunctionDiv and InvolvedOrgLine 3 which

efine the name of the team that executes the activity and the

rganizational level, respectively. The resource/organizational per-

pective was used for process mining in Park et al. (2015) . Sec-
nd rule determine the use of context attributes, such as Tipologia ,

hich determines the typology of the IT incident, or Nodo related

o the location of the company. Context information was also in-

olved in several process mining works, such as do Espírito-Santo-

arvalho, Santoro, and Revoredo (2015) . 

. Conclusions and future work

In this paper an evolutionary decision rule-based system for

he prediction of business process indicators is described. The en-

oding of this approach is based on the attributes of the events

xtracted from the event logs. The decision rules determine a

rediction of a specified process indicator. Our system can pre-

icts instance-level indicators using both next-event and end-of-

nstance predictions. Unlike the prediction models obtained by

ther machine learning techniques, these generated decision rules

an be easily interpreted by users to extract further insight of

he business processes and improve the running process. An inter-

retable model is important in order to identify relevant features

r find out the reasons of performance problems in the process.

or instance, rules described in previous section define the situ-

tions to avoid the PTF problem. Results presented in this work

sing two real-life event logs, show the validity of the proposal.

btained results in terms of recall, precision and specificity, are

erceived superior in comparison to the other machine learning

pproaches. The development of a ProM plugin for the definition

nd calculation of process indicators also represents a significative

ontribution of this work. As far as we are concerned, any other

oftware is able to define business process indicators and provide

he calculation of their values for the different process instances of

n event log. The different datasets used in the experimentation of

his work are collected in our web page. 

Future steps will involve identifying alternative technologies for

he prediction such as deep learning which is becoming in a thriv-

ng research topic. In this sense, recurrent neural networks can be

sed to predict process indicators, as seen in Evermanna, Rehseb,

nd Fettkeb (2016) . We trust that a comparative analysis between

ur evolutionary method and a deep-learning-based one may pro-

ide helpful insights about the applicability and usefulness of deep

earning on predictive analytics. Furthermore, an extended ProM

lugin with the prediction method will also be developed. Finally,

n analysis of root causes of performance issues, based on Li, Joe-

in, and Yuan (2016b) , will be performed in order to find new pre-

icted indicators. 
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