
Detecting Unseen Falls from Wearable Devices using
Channel-wise Ensemble of Autoencoders

Shehroz S. Khanb,a,∗, Babak Taati a

aToronto Rehabilitation Institute, 550 University Ave, Toronto, ON, M5G 2A2, Canada
bUniversity of Toronto, Canada

Abstract

A fall is an abnormal activity that occurs rarely, so it is hard to collect real
data for falls. It is, therefore, difficult to use supervised learning methods to
automatically detect falls. Another challenge in using machine learning methods
to automatically detect falls is the choice of engineered features. In this paper,
we propose to use an ensemble of autoencoders to extract features from different
channels of wearable sensor data trained only on normal activities. We show
that the traditional approach of choosing a threshold as the maximum of the
reconstruction error on the training normal data is not the right way to identify
unseen falls. We propose two methods for automatic tightening of reconstruction
error from only the normal activities for better identification of unseen falls. We
present our results on two activity recognition datasets and show the efficacy of
our proposed method against traditional autoencoder models and two standard
one-class classification methods.

Keywords: fall detection, one-class classification, autoencoders, anomaly
detection

1. Introduction

Falls are a major cause of both fatal and non-fatal injury and a hindrance in
living independently. Each year an estimated 424, 000 individuals die from falls
globally and 37.3 million falls require medical attention [23]. Experiencing a fall
may lead to a fear of falling [6], which in turn can result in lack of mobility,
less productivity and reduced quality of life. There exist several commercial
wearable devices to detect falls [24]; most of them use accelerometers to capture
motion information. They normally come with an alarm button to manually
contact a caregiver if the fall is not detected by the device. However, most
of the devices for detecting falls produce many false alarms [3]. Automatic
detection of falls is long sought; hence, machine learning techniques are needed

∗Corresponding author: Tel.: +1 416-597-3422; Fax: +1 416-597-6201;
Email addresses: shehroz.khan@utoronto.ca (Shehroz S. Khan), babak.taati@uhn.ca

(Babak Taati)

Preprint submitted to Expert Systems with Applications March 24, 2017

ar
X

iv
:1

61
0.

03
76

1v
3

 [
cs

.C
V

]
 2

2
M

ar
 2

01
7

to automatically detect falls based on sensor data. However, a fall is a rare event
that does not happen frequently [30, 12]; therefore, during the training phase,
there may be very few or no fall samples. Standard supervised classification
techniques may not be suitable in this type of skewed data scenario. Another
issue regarding the use of machine learning methods in fall detection is the
choice of features. Traditional activity recognition and fall detection methods
extract a variety of domain specific features from raw sensor readings to build
classification models [26, 11]. It is very difficult to ascertain the number or
types of features, specially in the absence of fall specific training data to build
generalizable models.

To handle the problems of lack of training data from real falls and the
difficulty in engineering appropriate features, we explore the use of Autoencoders
(AE) that are trained only on normal activities. AEs can learn generic features
from the raw sensor readings and can be used to identify unseen falls as abnormal
activities during testing based on a threshold on the reconstruction error. We
present two ensembles approaches of AE that train on the raw data of the normal
activities from different channels of accelerometer and gyroscope separately and
the results of each AE is combined to arrive upon a final decision. Typically,
while using AE, the maximum of reconstruction error on the training set is
considered as the threshold to identify an activity as abnormal. However, we
experimentally show that such threshold may not be appropriate for detecting
falls due to noisy sensor data. We present two threshold tightening techniques
to remove few outliers from the normal data. Then, either a new threshold is
derived using inter-quartile range or by training a new AE on the training data
with outliers removed. We show result on two activity recognition datasets that
contain different normal activities along with falls from wearable sensors.

The rest of the paper is organized as follows. In the next Section, we present
a brief introduction to Autoencoders. Section 3 reviews the literature on fall
detection using AE and on the use of AE in general outlier detection tasks. We
present the proposed channel-wise ensemble of autoencoder and two threshold
tightening approaches using reconstruction error in Section 5. Experimental
analysis and results are discussed in Section 6, followed by conclusions and
future work in Section 7.

2. Brief Introduction to Autoencoders

An AE is an unsupervised multi-layer neural network that learns compact
representation of the input data [29]. An AE tries to learn an identity function
such that its outputs are similar to its inputs. However, by putting constraint
on the network, such as limiting the number of hidden neurons, it can discover
compact representations of the data that can be used as features for other
supervised or unsupervised learning tasks. An AE is often trained by using the
backpropagation algorithm and consists of an encoder and decoder part. If there
is one hidden layer, an AE takes the input x ∈ Rd and maps it onto h ∈ Rp, s.t.

h = f(Wx + b) (1)

2

where W is a weight matrix and b is a bias term and f(.) is a mapping function.
This step is referred to as encoding or learning latent representation, after which
h is mapped back to reconstruct y of the same shape as x, i.e.

y = g(W′h + b′) (2)

This step is referred to as decoding or reconstructing the input back from la-
tent representation. An AE can be used to minimize the squared reconstruction
error, L i.e.,

L(x,y) =‖ x -y ‖2 (3)

AE can learn compact and useful features if p < d; however, it can still
discover interesting structures if p > d. This can be achieved by imposing a
sparsity constraint on the hidden units, s.t. neurons are inactive most of the
time or the average activation of each hidden neuron is close to zero. To achieve
sparsity, an additional sparsity parameter is added to the objective function.
Multiple layers of AEs can be stacked on top of each other to learn hierarchical
features from the raw data. They are called Stacked AE (SAE). During encoding
of a SAE, the output of first hidden layer serves as the input to the second layer,
which will learn second level hierarchical features and so on. For decoding, the
output of the last hidden layer is reconstructed at the second last hidden layer,
and so on until the original input is reconstructed.

3. Related Work

AEs can be used both in supervised and unsupervised mode for identifying
falls. In a supervised classification setting, AE is used to learn representative
features from both the normal and fall activities. This step can be followed by
a standard machine learning classifier trained on these compressed features [17]
or by a deep network [10]. In the unsupervised mode or One-Class Classification
(OCC) [14] setting, only data for normal activities is present during training the
AE. In these situations, an AE is used to learn representative features from the
raw sensor data of normal activities. This step is followed by either employing (i)
a discriminative model by using one-class classifiers or (ii) a generative model
with appropriate threshold based on reconstruction error, to detect falls and
normal activities. The present paper follows the unsupervised AE approach
with a generative model and finding an appropriate threshold to indentify unseen
falls.

A lot of work has been done in evaluating the feasibility of learning generic
representations through AEs for general activity recognition and fall detection
tasks. Plötz et al. [25] explore the potential of discovering universal features for
context-aware application using wearable sensors. They present several feature
learning approaches using PCA and AE and show their superior performance
in comparison to standard features across a range of activity recognition appli-
cations. Budiman et al. [1] use SAEs and marginalized SAE to infer generic
features in conjunction with neural networks and Extreme Learning Machines

3

as the supervised classifiers to perform pose-based action recognition. Li et
al. [16] compare SAE, Denoising AE and PCA for unsupervised feature learning
in activity recognition using smartphone sensors. They show that traditional
features perform worse than the generic features inferred through autoencoders.
Jokanovic et al. [10] use SAE to learn generic lower dimensional features and
use softmax regression classifier to identify falls using radar signals. Other re-
searchers [8, 31] have used AEs to reduce the dimensionality of domain specific
features prior to applying traditional supervised classification models or deep
belief networks.

AEs have also been extensively used in anomaly detection. Japkowicz et
al. [9] present the use of AE for novelty detection. For noiseless data, they
propose to use a reduced percentage of maximum of reconstruction error as a
threshold to identify outliers. For noisy data, they propose to identify both
the intermediate positive and negative regions and subsequently optimizing the
threshold until a desired accuracy is achieved. Manevitz and Yousef [18] present
an AE approach to filter documents and report better performance than tradi-
tional classifiers. They report to carry out certain type of uniform transforma-
tion before training the network to improve the performance. They discuss that
choosing an appropriate threshold to identify normal documents is challenging
and present several variants.The method that worked the best in their applica-
tion is to tighten the threshold sufficiently to disallow the classification of the
highest 25 percentile error cases from the training set. Erfani et al. [4] present a
hybrid approach to combine the AEs and one-class SVM (OSVM) for anomaly
detection in high-dimensional and large-scale applications. They first extract
generic features using SAE and train an OSVM with linear kernel on learned
features from SAE. They also use SAE as a one-class classifier by setting the
threshold to be 3 times of standard deviation away from the mean. Their results
show comparable results in comparison to AE based anomaly classifier but the
training and testing time greatly reduced. Sakurda and Yairi [28] show the use
of AE in anomaly detection task and compare it with PCA and Kernel PCA.
They demonstrate that the AE can detect subtle anomalies that PCA could not
and is less complex than Kernel PCA.

Ensembles of AE have been used to learn diverse feature representations,
mainly in the supervised settings. Ithapu et al. [7] present an ensemble of
SAE by presenting it with randomized inputs and randomized sample sets of
hyper-parameters from a given hyperparameter space. They show that their
approach is more accurately related to different stages of Alzheimer’s disease
and leads to efficient clinical trials with very less sample estimates. Reeve and
Gavin [27] present a modular AE approach that consists of M AE modules
trained separately on different data representations and the combined result is
defined by taking an average of all the modules present. Their results on several
benchmark datasets show improved performance in comparison to baseline of
bootstrap version of the AE. Dong and Japkowicz [2] present a supervised and
unsupervised ensemble approach for stream learning that uses multi-layer neural
networks and AE. They train their models from multi-threads which evolve
with data streams, the ensemble of the AE is trained using only the data from

4

positive class and is accurate when anomalous training data are rare. Their
method performs better as compared to the state-of-the-art in terms of detection
accuracy and training time for the datasets.

The research on using AE show that it can successfully learn generic features
from raw sensor data for activity and fall recognition tasks. We observe that
AE can be effectively used for anomaly detection tasks and their ensembles
can perform better than a single AE. In this paper, fall detection problem is
formulated as an OCC or anomaly detection, where abundant data for normal
activities is available during training and none for falls. We investigate the
utility of features learned through AE and their ensembles for the task of fall
detection.

4. Autoencoder Ensemble for Detecting Unseen Falls

In the absence of training data for falls, a fall can be detected by training an
AE/SAE on only the normal activities to learn generic features from a wearable
device. These features can be fed to standard OCC algorithms to detect a test
sequence as a normal activity or not (a fall in our case). Alternatively, based
on the training data, a threshold can be set on the reconstruction error of the
AE/SAE to identify a test sequence as an abnormal activity (a fall in our case) if
its reconstruction error is higher than a given threshold. Intuitively, this would
mean that the test sequence is very different from the training data comprising
of normal activities. Below, we discuss two types of AE approaches used in the
paper.

4.1. Monolithic Autoencoders

Figure 1 shows the AE/SAE for training normal activities using raw sensor
data from a three-channel accelerometer and gyroscope. The raw sensor read-
ings coming from each of the channels of accelerometer (ax, ay, az) and gyroscope
(ωx, ωy, ωz) are combined and presented as input to the AE/SAE. For a sliding
window of a fixed length (n samples), ax = [a1x, a

2
x, ..., a

n
x], ay = [a1y, a

2
y, ..., a

n
y],

and so on. The feature vector for a time window is constructed by concatenating
these sensor readings as f = [ax,ay,az,ωx,ωy,ωz]T . We call this feature learn-
ing approach as monolithic because it combines raw sensor data from different
channels as one input to an AE.

Figure 1: Monolithic AE for detecting unseen falls.

5

(a) Ensemble of 6 separate channels of ac-
celerometer and gyroscope.

(b) Ensemble of 2 channels of the magni-
tude of accelerometer and gyroscope.

Figure 2: Channel-wise AE for detecting unseen falls.

4.2. Channel-wise Autoencoders

Li et al. [16] present the use of ensemble of SAE by extracting generic fea-
tures per each of the three accelerometer channels and additional channel for the
magnitude of the accelerometer vector in 3-dimensions. They extract fixed num-
ber of features for each of these 4 channels and concatenate them. Supervised
classification methods are then used on these extracted features. This setting
can work for supervised classification but not in OCC scenario. In our case,
we deal with OCC scenario with only normal data available during training.
Therefore, separate AEs are trained on the raw data from different channels of

6

the sensors. Each AE can detect a test sample as an unseen fall or not based
on the reconstruction error and their overall result is combined to take a final
decision. We propose to use two types of channel-wise ensemble strategies for
detecting unseen falls as follows:

• Six Channel Ensemble (6 CE): For each of the 6 channels of an accelerom-
eter and a gyroscope (i.e., ax,ay,az,ωx,ωy,ωz), 6 separate AE/SAE are
trained to learn a compact representation for each channel. A decision
threshold can be employed on each of these 6 AEs to decide whether a
test sample is normal or a fall.

• Two Channel Ensemble (2 CE): Alternatively, we can compute the mag-
nitude of the 3 accelerometer channels and that of the 3 gyroscope chan-
nels. The magnitude vector gives direction invariant information. We
train two separate AE/SAE to learn a compact representation for each
of the two magnitude channels. Thresholding the reconstruction error on
these two channels can be used to decide whether a test sample is normal
activity or a fall.

For a given test sample, the 6 CE will give 6 different decisions and the 2 CE
give 2 decisions. These decisions can be combined by majority voting to arrive
at a final decision; as a convention, ties are considered as falls. For simplicity,
we keep the hyper-parameters for each AE/SAE corresponding to a channel as
the same. The ensemble approach can be faster than the monolithic approach
because AE/SAE per channel uses less amount of data in comparison to the
combined 6 channel data to a single AE/SAE. Figure 2 shows the graphical
representation of the 6 CE and 2 CE approaches.

5. Optimizing the Threshold on the Reconstruction Error

For the fall detection problem, we assume that fall data is rare and is not
present during training phase [13]. Therefore, we train monlithinc and channel-
wise AE and SAE on the raw sensor data to learn a compact representation of
the normal activities. The next step is to identify a test sample as normal or
fall based on the trained AE/SAEs. The typical approach to identify a fall as
an anomaly is to set a threshold on the reconstruction error. This threshold is
generally set as the maximum of the reconstruction error on the full training
data. We call this threshold MaxRE. During testing, any sample that has a
reconstruction error greater than this value can be identified as a fall. However,
sensor readings are not perfect and may contain spurious data [12], which can
affect this threshold. Due to the presence of a few outliers in the training data,
MaxRE is often too large, which could result in many of the falls being missed
during testing time. To handle this situation, tightening of threshold is often
required (as discussed in Section 3). We use the approach of Erfani et al. [4] that
sets the threshold as 3 standard deviations away from the mean of the training
data reconstruction error. We call this threshold method as StdRE. The StdRE

7

threshold can result in identifying more falls during testing in comparison to
MaxRE at the cost of few false alarms because the threshold in this case is
smaller in comparison to MaxRE. A problem with StdRE is that it is chosen in
an adhoc manner and it may not be an appropriate choice for a given data.

We now present two new approaches to tighten the threshold on reconstruc-
tion error. These approaches derive the threshold from the training data such
that it can better identify unseen falls. These methods are similar to finding
an optimal operating point on an ROC curve by reducing false negatives at the
cost of false alarms. However, in a OCC framework, it is difficult to adopt a
traditional ROC approach because of the unavailability of the validation data
for the negative class. The proposed methods overcome these difficulty by re-
moving outliers from the training data prior to setting a threshold based on
only the training data.

5.1. Reduced Reconstruction Error

As we discussed earlier, the raw sensor data may not be perfect and may
contain spurious or incorrectly labeled readings [12]. If an AE/SAE is trained on
normal activities on such data, the reconstruction error for some of the samples
of the training set may be very large. In this case, choosing the maximum of
reconstruction error as the threshold to identify falls may lead to accepting most
of the falls as normal activities.

Khan et al. [13] propose to use the concept of quartiles from descriptive
statistic to remove few outliers present in the normal activities class. We use a
similar idea but adapt it to AE to tighten the threshold on the reconstruction
error. We first train an AE on normal activites, then find the reconstruction
error of each training sample. Given the reconstruction error on the training
data comprising of only instances of normal activities, the lower quartile (Q1),
the upper quartile (Q3) and the inter-quartile range (IQR = Q3 −Q1), a point
P is qualified as an outlier of the normal class, if

P > Q3 + Ω× IQR || P < Q1 − Ω× IQR (4)

where Ω is the rejection rate that represents the percentage of data points
that are within the non-extreme limits. Based on Ω, the extreme values of
reconstruction error that represents spurious training data can be removed and
a threshold can be chosen as the maximum of the remaining reconstruction
errors. We call this method as Reduced Reconstruction Error (RRE). The
value of Ω can be found experimentally or set to remove a small fraction of the
normal activities data. We describe a cross-validation technique in Section 5.3
to find RRE from only the normal activities.

5.2. Inlier Reconstruction Error

In this method, we first train an AE/SAE on full normal data and then
remove the corresponding anomalous training instances based on Ω from the
training set (as discussed in the previous section). After this step, we are left
with training data without the outlier instances. Then, we train a new AE on

8

this reduced data comprising of just the inlier. The idea is that the variance of
reconstruction error for such inlier data will not be too high and its maximum
can serve as the new threshold. We call this method as Inlier Reconstruction
Error (IRE).

For the channel-wise ensemble approach, each AE/SAE is trained only using
the raw sensor data from a specific channel of normal activities, then various
thresholds, i.e., MaxRE, StdRE, RRE and IRE are computed for each channel
separately. During testing, for a given threshold method, the final decision is
taken as the majority voting outcome of all the AE/SAE. The intuition behind
RRE and IRE is that they should provide a better trade-off between false pos-
itive and true positive rate in comparison to MaxRE and StdRE. The threshold
MaxRE may work better in one direction, whereas StdRE is an adhoc approach
to minimize errors. Both RRE and IRE are derived from the data and not ar-
bitrarily set to a fixed number. The proposed threshold tightening methods, i.e.
RRE and IRE, attempt to find a threshold after removing spurious sensor data
from the normal activities, this may lead to improved sensitivity in detecting
falls.

5.3. Cross Validation

The parameter Ω to tighten the threshold for RRE and IRE cannot be di-
rectly optimized because there is no validation set due to the absence of fall
data during training. Khan et al. [13] propose to remove some outliers from
the normal data and consider them as proxy for unseen falls. They show that
rejected outliers from the normal activities can be used to create a validation set
and tune parameters of a learning algorithm in the absence of fall data. They
use hidden markov models and show that some of the proxy for falls bear re-
semblance to actual falls. We modify this idea with respect to the autoencoders
and present a cross-validation method to optimize Ω in our setting.

Firstly, we train an AE on full normal data and compute reconstruction er-
ror of each training example. Then we reject some instances from the normal
activities based on a parameter ρ, using their reconstruction error. The pa-
rameter ρ also uses IQR technique (as discussed in Section 5.1); however it is
very different from the parameter Ω. The parameter ρ represents the amount
of outlier data removed from normal activities to generate samples for proxy
falls to create a validation set. The remaining normal activities are called non-
falls. The parameter Ω represents the amount of reconstruction error removed
to set a ‘threshold’ to identify unseen falls during testing. For a given value of
ρ, several values of Ω can be tested and the best is used for further analysis.
Therefore, ρ is considered as a hyper-parameter and Ω as a parameter to find
RRE and IRE. Then the data from both the classes (non-falls and proxy fall)
is divided into K-folds. The non-fall data from (K − 1) folds is combined and
an AE is trained on it. The data from Kth fold for non-fall and proxy fall is
used for testing and tuning the parameters. The process is repeated K times for
different values of Ω, the one with the best average performance over K folds
is chosen for further analysis. The peformance metric is discussed in Section
6.1. Lastly, for a given ρ, we retrain on the non-fall data. The maximum of the

9

reconstruction error corresponding to the best Ω (obtained in the step discussed
above for a given ρ) is taken as RRE. To compute IRE, we remove the outliers
from the non-falls corresponding to Ω; then retrain on the reduced training set
and take the maximum of the reconstruction error as IRE.

The value of hyper-parameter ρ can be varied to observe an overall effect on
the performance of the proposed threshold tightening methods, RRE and IRE.
Intuitively, a large value of ρ means less number of instances are removed from
normal activities as proxy for fall, which may lead to classify a lot of test samples
as normal activities and may miss to identify some falls. Whereas, a small value
of ρ means more instances from normal activities may be rejected as proxy for
falls; thus, the normal class will be smaller that may result in identifying most
of the falls but at the cost of more false alarms. In summary, we exect that
with increase in ρ, both the true positive rate and false positive rate should
reduce (fall is the positive class). By varying ρ, we can find an optimum range
of operation with a good balance of true positives and false positives. It is to be
noted that in this cross-validation method, no actual falls from the training set
are used because it is only comprised of normal activities and all the parameters
are tuned in the absence of actual falls.

6. Experimental Analysis

6.1. Performance Metrics
We consider a case for detecting falls where they are not available during

training and occur only during testing. Therefore, during the testing phase, we
expect a skewed distribution of falls. Hence, the standard performance metrics
such as accuracy may not be appropriate because it may give an over-estimated
view of the performance of the classifier. To deal such a case, we use the
geometric mean (gmean) [15, 12] as the performance metric to present the test
results and optimize the parameters during cross-validation. gmean is defined
as the square root of the multiplication of true positive and true negative rate,
i.e.

gmean =
√
TPR ∗ TNR

gmean =
√
TPR ∗ (1− FPR)

(5)

where TPR is the true positive rate, TNR is the true negative rate and
FPR is the false positive rate. The value of gmean varies from 0 to 1, where a
1 means a perfect classification among falls and normal activities and 0 as the
worst outcome. We also use the TPR and FPR as other performance metrics
to further elaborate our results.

To evaluate the performance of the proposed approaches for fall detection,
we perform leave-one-subject-out cross validation (LOOCV) [5], where only nor-
mal activities from (N−1) subjects are used to train the classifiers and the N th

subject’s normal activities and fall events are used for testing. This process is
repeated N times and the average performance metrics are reported. This eval-
uation is person independent and demonstrates the generalization capabilities
as the subject who is being tested is not included in training the classifiers.

10

6.2. Datasets

We show our results on two activity recognition datasets that includes dif-
ferent normal activities and fall events collected via wearable devices.

6.2.1. German Aerospace Center (DLR) [21]

This dataset is collected using an Inertial Measurement Unit with a sam-
pling frequency of 100 Hz. The dataset contains samples from 19 people of
both genders of different age groups. The data is recorded in indoor and out-
door environments under semi-natural conditions. The sensor is placed on the
belt either on the right or the left side of the body or in the right pocket in
different orientations. The dataset contains labelled data of the following 7
activities: Standing, Sitting, Lying, Walking (up/downstairs, horizontal), Run-
ning/Jogging, Jumping and Falling. One of the subjects did not perform fall
activity; therefore, their data is omitted from the analysis.

6.2.2. Coventry Dataset (COV) [22]

This dataset is collected using two SHIMMERTMsensor nodes strapped to
the chest and thighs of subjects with a sampling frequency of 100 Hz. Two
protocols were followed to collect data from subjects. In Protocol 1, data for
six types of fall scenarios are captured (forward, backward, right, left, real fall-
backward and real fall forward) and a set of ADL (standing, lying, sitting on
a chair or bed, walking, crouching, near falls and lying). Protocol 2 involved
ascending and descending stairs. 42 young healthy individuals simulated various
ADL and fall scenarios (32 in Protocol 1 and 10 in Protocol 2). These data from
different types of falls are joined together to make one separate class for falls.
The subjects for Protocol 2 did not record corresponding fall data; therefore,
that data is not used. In our analysis, we used accelerometer and gyroscope
data from the sensor node strapped to the chest.

6.3. Experimental Setup

For both the datasets, all the normal activitis are joined together to form
a normal class. For COV dataset, different types of falls are joined to make
a fall class. The raw sensor data is processed using a 50% overlapping sliding
window. The time window size is set to 1.28 seconds for the DLR dataset and
2.56 seconds for the COV dataset (as shown in Khan et al. [13]). After pre-
processing, the DLR dataset has 26576 normal activities and 84 fall segments,
and the COV dataset has 12392 normal activities and 908 fall segments.

We test two types of AE for the analysis; one with a single hidden layer
and other with three layered SAE. For the monolithic AE, the raw data within
a time window for each of the 3 channels of accelerometer and gyroscope is
concatenated, which leads to 768(= 128 × 6) input layer neurons for the DLR
dataset and 1536(= 256 × 6) input layer neurons for the COV dataset. The
number of hidden neurons (i.e., the number of generic features learned) is set to
31 (as suggested for the engineered features case in the work of Khan et al. [13]).
For the monolithic SAE, the number of hidden neurons in the first layer is chosen

11

to be half of the number of input neurons, i.e. 384 for DLR dataset and 768
for COV dataset and the second layer has 31 number of features. For the
channel-wise ensemble method, each channels is fed to the AE/SAE separately.
Therefore, the number of neurons in the input layer per AE is set to 128 for DLR
dataset and 256 for COV dataset and the hidden layers has 31 neurons. For the
channel-wise SAE, the hidden neurons for first layer is half the number of input
layer, i.e. 64 for DLR dataset and 128 for the COV dataset. The second hidden
layer for both the datasets has 31 neurons. The number of training epochs is
fixed to 10 for all the different autoencdoers. Rest of the parameters such as the
sparsity parameter, activation function etc., are kept at the default values [19].
Compressed features learned through monolithic AE and SAE are further used
to train OSVM and One-class nearest neighbour (OCNN) classifiers [14] for
comparison.

6.3.1. Internal Cross-Validation

For OCNN , the number of nearest neighbours to identify an outlier is kept
as 1. OSVM has a parameter ν (or the outlier fraction), which is the expected
proportion of outliers in the training data. The value of this parameter is tuned,
similar to parameter optimization discussed in Section 5.3. That is, reject a
small portion of normal class data as a proxy for unseen falls for a given ρ and
create a validation set. Then perform a K fold cross-validation for different
values of ν and choose the one with the largest average gmean over all the K-
folds. The ‘KernelScale’ parameter is set to ‘auto’ and ’Standardize’ to ‘true’,
other parameters are kept to default values [20].

An internal K = 3-fold cross validation is employed to optimize the parame-
ters ν for the OSVM and Ω for the RRE and IRE thresholding methods. The
parameter Ω is varied from from [0.001, 0.01, 0.1, 0.5, 1, 1.5, 1.7239, 2, 2.5, 3] and
ν is varied from [0.1, 0.3, 0.5, 0.7, 0.9]. The best parameter is chosen based on
the average gmean over K folds. To understand the effect of removing outlier
data from the normal activities in building classification models for unseen falls,
the hyper-parameter ρ is varied from [0.001, 0.01, 0.1, 0.5, 1, 1.5, 1.7239, 2, 2.5, 3].

Along with 6 channel raw data to train different classifiers to detect unseen
falls, we also use 2 channel magnitude data from each of the datasets to train
different classifiers. Therefore, in the experiment we compare the following
different classifiers for two types of channels data (i.e. 6 and 2 channels):

• Two types of AE, i.e. single layer AE and three layered SAE.

• Four types of thresholding methods i.e. MaxRE, StdRE, RRE and IRE.

• Two types of feature learning techniques - (i) monolithic and (ii) channel-wise
ensemble.

• Two one-class classifiers (OCNN and OSVM) trained on features learned
from AE and SAE (not for the channel-wise case).

This results in 20 different classifiers trained per 6 / 2 channels input raw
sensor data, we compare their performance in the next section.

12

6.4. Results and Discussion

Tables 1 and 2 show the results for the DLR datasets for 6 and 2 channel
input raw data. The results correspond to ρ = 1.5. Tables 1d and 2d show
the results when the features learned using AE and SAE are fed to OSVM and
OCNN. We observe that for the 6 channel case, the best gmean is obtained
for channel-wise AE with RRE followed by IRE method (see Tables 1a. The
traditional thresholding methods of MaxRE and StdRE does not perform well.
We observe similar results for DLR dataset with 2 channel input; however, the
gmean values using 6 channel input data are higher. Both the RRE and IRE
methods with channel-wise AE give good trade-off between TPR (see Tables 1b
and 2b) and FPR (see Tables 1c and 2c).

Results on the COV dataset for the 6 and 2 channels input data are shown in
Table 3 and 4. For the 6 channel case, channel-wise ensemble method with AE
for RRE and IRE give equivalent values of gmean, which is higher than other
methods of thresholding. Both the best methods give a good trade-off between
TPR and FPR (see Tables 3b and 3c). For the 2 channel case, the IRE thresh-
old method for both the monolithic and channel-wise approaches for AE and
SAE give equivalent performance along with monolithic SAE with RRE. The
channel-wise approach gives more false alarms but detects more falls than the
monolithic approach. For both the DLR and COV datasets, the OCNN classi-
fier perform worse than the proposed methods because it gives large number of
false alarms; whereas, OSVM classifies all the test samples as falls (see Tables
1d, 2d, 3d, 4d).

By convention, we classify a test sample as a fall in case of a tie in the
channel-wise approach. The probability of a tie occurring is higher in 2 channel
ensemble method than in 6 channel ensemble; therefore, its sensitivity to detect
falls is higher than the 6 channel case with an increase in the false alarm rate.
We observe this behavior for both the DLR and COV datasets (see the Channel-
wise rows in Tables 1c, 2c, and 3c, 4c). From this experiment we infer that the
traditional methods of thresholding, i.e., MaxRE and StdRE, are not suitable for
the task of fall detection. MaxRE may not work properly because of the presence
of noise in the sensor data that can significantly increase the reconstruction
error of an AE/SAE, leading to classify most of the test samples as normal
activity. The StdRE is an ad-hoc approach that arbitrarily chooses a threshold
to identify fall and does not derive it from a given dataset. However, it can
perform better than MaxRE, in terms of identifying more falls. Both of these
methods attempt to find a discriminating threshold from the training dataset
to to get a good trade-off between TPR and FPR. Our experiments suggest
that for both the datasets, the proposed threshold tightening methods RRE and
IRE with channel-wise ensemble approach perform equivalently and consistently
better than the traditional methods of threshold tightening.

We vary the hyper-parameter ρ to understand its impact on the performance
of different thresholding techniques. Figures 3 and 4 show the variation of TPR,
FPR and gmean with increasing ρ. We observe that as the value of ρ increases,
both TPR and FPR reduce. The reason is that at smaller values of ρ, a large

13

(a) gmean values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 0 0.106 0.825 0.757
SAE 0 0.234 0.840 0.837

Channel- AE 0 0.547 0.860 0.849
wise SAE 0 0.334 0.818 0.811

(b) TPR values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 0 0.056 0.856 0.762
SAE 0 0.138 0.893 0.893

Channel- AE 0 0.428 0.902 0.840
wise SAE 0 0.226 0.774 0.750

(c) FPR values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 5.9e-6 0.025 0.189 0.169
SAE 5.9e-6 0.025 0.199 0.204

Channel- AE 0 0.010 0.169 0.122
wise SAE 0 0.008 0.088 0.079

(d) Performance on OSVM and OCNN methods.

Classifier Autoencoder
Type

gmean TPR FPR

OSVM
AE 0 1 1
SAE 0 1 1

OCNN
AE 0.460 0.911 0.761
SAE 0.423 0.681 0.701

Table 1: Performance of different fall detection methods on DLR dataset (6 channels) for
ρ = 1.5

portion of normal data is rejected as outliers and used for parameter tuning;
thus, the number of instances in the non-fall class is small. This means that the
AE/SAE will learn on a smaller dataset and will reject most of the variations

14

(a) gmean values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 0 0 0.504 0.774
SAE 0 0 0.630 0.776

Channel- AE 0.013 0.487 0.839 0.822
wise SAE 0 0.446 0.678 0.655

(b) TPR values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 0 0 0.966 0.949
SAE 0 0 0.959 0.941

Channel- AE 0.003 0.323 0.941 0.926
wise SAE 0 0.329 0.629 0.579

(c) FPR values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 7.4e-5 0.037 0.705 0.363
SAE 3.7e-5 0.039 0.544 0.353

Channel- AE 1.0e-4 0.032 0.245 0.264
wise SAE 7.7e-5 0.033 0.099 0.094

(d) Performance on OSVM and OCNN methods.

Classifier Autoencoder
Type

gmean TPR FPR

OSVM
AE 0 1 1
SAE 0 1 1

OCNN
AE 0.459 0.815 0.719
SAE 0.318 0.317 0.449

Table 2: Performance of different fall detection methods on DLR dataset (2 channels) for
ρ = 1.5

from this small subset of normal activities as potential falls. Consequently,
many falls will also be identified correctly. The reverse behavior will happen
when ρ is large, thus less number of normal data is rejected as outliers and the

15

(a) gmean values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 0.015 0.744 0.774 0.771
SAE 0.019 0.743 0.772 0.771

Channel- AE 0.014 0.463 0.795 0.795
wise SAE 0 0.226 0.737 0.707

(b) TPR values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 0.004 0.589 0.744 0.740
SAE 0.007 0.588 0.738 0.738

Channel- AE 0.003 0.248 0.7 0.7
wise SAE 0 0.082 0.665 0.573

(c) FPR values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 1.1e-4 0.017 0.169 0.169
SAE 1.1e-4 0.017 0.166 0.167

Channel- AE 0 0.002 0.067 0.072
wise SAE 0 5.9e-5 0.128 0.078

(d) Performance on OSVM and OCNN methods.

Classifier Autoencoder
Type

gmean TPR FPR

OSVM
AE 0 1 1
SAE 0 1 1

OCNN
AE 0.432 0.977 0.805
SAE 0.484 0.949 0.751

Table 3: Performance of different fall detection methods on COV dataset (6 channels) for
ρ = 1.5

class of normal activities will be large. This will reduce the number of false
alarms but can also lead to missing to identify some falls. The experimental
observation for each of the 6 and 2 channel datasets is consistent with this

16

(a) gmean values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 0.041 0.743 0.668 0.785
SAE 0.019 0.724 0.784 0.784

Channel- AE 0.337 0.767 0.726 0.788
wise SAE 0.331 0.757 0.739 0.786

(b) TPR values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 0.012 0.587 0.729 0.698
SAE 0.007 0.557 0.677 0.674

Channel- AE 0.147 0.621 0.805 0.779
wise SAE 0.142 0.606 0.781 0.779

(c) FPR values.

Features
Types

Autoencoder
Type

Thresholding

MaxRE StdRE RRE IRE

Monolithic
AE 1.7e-4 0.013 0.287 0.094
SAE 1.7e-4 0.012 0.06 0.056

Channel- AE 1.1e-4 0.015 0.298 0.186
wise SAE 1.1e-4 0.016 0.255 0.182

(d) Performance on OSVM and OCNN methods.

Classifier Autoencoder
Type

gmean TPR FPR

OSVM
AE 0 1 1
SAE 0 1 1

OCNN
AE 0.594 0.905 0.606
SAE 0.580 0.606 0.432

Table 4: Performance of different fall detection methods on COV dataset (2 channels) for
ρ = 1.5

intuition discussed in Section 5.3. Similar observation can be made for the
COV dataset from Figures 5 and 6. For both datasets, we notice that at large
value of ρ, the performance of best thresholding approaches drops slower. This

17

experimental observation suggests that a smaller amount of data (corresponding
to ρ ≥ 1.5) may be removed from the normal activities class as outliers, which
can be used as a validation set to optimize the parameters of the AE/SAE and
better performance can be achieved for identifying unseen falls. We also infer
that channel-wise approach outperforms monolithic in all the 6 and 2 channel
data variants of both the datasets.

7. Conclusions and Future Work

A fall is a rare event; therefore, it is difficult to build classification models
using traditional supervised algorithms in the absence of training data. An as-
sociated challenge for fall detection problem is to extract discriminative features
in the absence of fall data for training generalizable classifiers. In this paper, we
presented solutions to deal with these issues. Firstly, we formulated a fall detec-
tion problem as a one-class classification or outlier detection problem. Secondly,
we presented the use of AE, more specifically a novel way to train separate AE
for each channel of the wearable sensor, to learn generic features and create
their ensemble. We proposed threshold tightening methods to identify unseen
falls accurately. This work provides useful insights that an ensemble based on
channels of a wearable device with optimized threshold is a useful technique to
identify unseen falls. In future work, we are exploring extreme value theory and
combining it with the proposed approaches to identify unseen falls.

Acknowledgments

This work was partially supported by the AGE-WELL NCE Trainee Award
Program and by the Canadian Consortium on Neurodegeneration in Aging
(CCNA).

References

References

[1] Budiman, A., Fanany, M. I., Basaruddin, C., Oct 2014. Stacked denoising
autoencoder for feature representation learning in pose-based action recog-
nition. In: 2014 IEEE 3rd Global Conference on Consumer Electronics
(GCCE). pp. 684–688.

[2] Dong, Y., Japkowicz, N., 2016. Advances in Artificial Intelligence: 29th
Canadian Conference on Artificial Intelligence, Canadian AI 2016, Victoria,
BC, Canada, May 31 - June 3, 2016. Proceedings. Springer International
Publishing, Cham, Ch. Threaded Ensembles of Supervised and Unsuper-
vised Neural Networks for Stream Learning, pp. 304–315.

[3] El-Bendary, N., Tan, Q., Pivot, F. C., Lam, A., 2013. Fall detection and
prevention for the elderly: A review of trends and challenges. International
Journal on Smart Sensing and Intelligent Systems 6 (3), 1230–1266.

18

[4] Erfani, S. M., Rajasegarar, S., Karunasekera, S., Leckie, C., 2016. High-
dimensional and large-scale anomaly detection using a linear one-class
{SVM} with deep learning. Pattern Recognition 58, 121 – 134.

[5] He, Z., Jin, L., 2009. Activity recognition from acceleration data based on
discrete consine transform and svm. In: SMC. IEEE, pp. 5041–5044.

[6] Igual, R., Medrano, C., Plaza, I., 2013. Challenges, issues and trends in fall
detection systems. BioMedical Engineering OnLine 12 (1), 1–24.

[7] Ithapu, V. K., Singh, V., Okonkwo, O., Johnson, S. C., 2014. Randomized
denoising autoencoders for smaller and efficient imaging based ad clinical
trials. In: Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2014. Springer, pp. 470–478.

[8] Jankowski, S., Szymanski, Z., Dziomin, U., Mazurek, P., Wagner, J., 2015.
Deep learning classifier for fall detection based on ir distance sensor data.
In: Intelligent Data Acquisition and Advanced Computing Systems: Tech-
nology and Applications (IDAACS), 2015 IEEE 8th International Confer-
ence on. Vol. 2. IEEE, pp. 723–727.

[9] Japkowicz, N., Myers, C., Gluck, M., 1995. A novelty detection approach
to classification. In: Proceedings of the 14th international joint conference
on Artificial intelligence-Volume 1. Morgan Kaufmann Publishers Inc., pp.
518–523.

[10] Jokanovic, B., Amin, M., Ahmad, F., 2016. Radar fall motion detection
using deep learning. In: 2016 IEEE Radar Conference (RadarConf). pp.
1–6.

[11] Khan, S., 2016. Classification and decision-theoretic framework for detect-
ing and reporting unseen falls. Ph.D. thesis, University of Waterloo.

[12] Khan, S. S., Karg, M. E., Kulić, D., Hoey, J., Dec 2014. X-factor HMMs for
detecting falls in the absence of fall-specific training data. In: et al., L. P.
(Ed.), Proceedings of the 6th International Work-conference on Ambient
Assisted Living (IWAAL 2014). Vol. 8868. Springer International Publish-
ing Switzerland, Belfast, U.K., pp. 1–9.

[13] Khan, S. S., Karg, M. E., Kulić, D., Hoey, J., 2017. Detecting falls with
x-factor hidden markov models. Applied Soft Computing 55, 168–177.

[14] Khan, S. S., Madden, M. G., 2014. One-class classification: taxonomy of
study and review of techniques. The Knowledge Engineering Review 29,
345–374.

[15] Kubat, M., Matwin, S., 1997. Addressing the curse of imbalanced training
sets: One-sided selection. In: In Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning.

19

[16] Li, Y., Shi, D., Ding, B., Liu, D., 2014. Mining Intelligence and Knowl-
edge Exploration: Second International Conference, MIKE 2014, Cork,
Ireland, December 10-12, 2014. Proceedings. Springer International Pub-
lishing, Cham, Ch. Unsupervised Feature Learning for Human Activity
Recognition Using Smartphone Sensors, pp. 99–107.

[17] Li, Y., Shi, D., Ding, B., Liu, D., 2014. Unsupervised feature learning for
human activity recognition using smartphone sensors. In: Mining Intelli-
gence and Knowledge Exploration. Springer, pp. 99–107.

[18] Manevitz, L., Yousef, M., 2007. One-class document classification via neu-
ral networks. Neurocomputing 70 (79), 1466 – 1481, advances in Compu-
tational Intelligence and Learning14th European Symposium on Artificial
Neural Networks 200614th European Symposium on Artificial Neural Net-
works 2006.

[19] MATLAB, 2017. Train autoencoder. http://www.mathworks.com/help/
nnet/ref/trainautoencoder.html, accessed on 23rd February, 2017.

[20] MATLAB, 2017. Train binary support vector machine classifier. https://
www.mathworks.com/help/stats/fitcsvm.html, accessed on 23rd Febru-
ary, 2017.

[21] Nadales, M. J. V., 2010. Recognition of human motion related activities
from sensors. Master’s thesis, University of Malaga and German Aerospace
Cener.

[22] Ojetola, O., Gaura, E., Brusey, J., 2015. Data set for fall events and daily
activities from inertial sensors. In: Proceedings of the 6th ACM Multimedia
Systems Conference. MMSys ’15. ACM, New York, NY, USA, pp. 243–248.

[23] Organization, W. H., 2016. Falls fact sheet, reviewed september 2016.
http://www.who.int/mediacentre/factsheets/fs344/en/, accessed on
7th March 2017.

[24] Pannurat, N., Thiemjarus, S., Nantajeewarawat, E., 2014. Automatic fall
monitoring: a review. Sensors 14 (7), 12900–12936.

[25] Plötz, T., Hammerla, N. Y., Olivier, P., 2011. Feature learning for activity
recognition in ubiquitous computing. In: Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Two. IJ-
CAI’11. AAAI Press, pp. 1729–1734.

[26] Ravi, N., Dandekar, N., Mysore, P., Littman, M. L., 2005. Activity recog-
nition from accelerometer data. In: Proceedings of the 17th conference on
Innovative applications of artificial intelligence - Volume 3. IAAI’05. AAAI
Press, pp. 1541–1546.

20

http://www.mathworks.com/help/nnet/ref/trainautoencoder.html
http://www.mathworks.com/help/nnet/ref/trainautoencoder.html
https://www.mathworks.com/help/stats/fitcsvm.html
https://www.mathworks.com/help/stats/fitcsvm.html
http://www.who.int/mediacentre/factsheets/fs344/en/

[27] Reeve, H. W. J., Brown, G., 2015. Modular autoencoders for ensemble fea-
ture extraction. In: NIPS 2015 Workshop on Feature Extraction: Modern
Questions and Challenges. pp. 242–259.

[28] Sakurada, M., Yairi, T., 2014. Anomaly detection using autoencoders
with nonlinear dimensionality reduction. In: Proceedings of the MLSDA
2014 2Nd Workshop on Machine Learning for Sensory Data Analysis.
MLSDA’14. ACM, New York, NY, USA, pp. 4:4–4:11.

[29] Scholz, M., Vigário, R., 2002. Nonlinear pca: a new hierarchical approach.
In: ESANN. pp. 439–444.

[30] Stone, E., Skubic, M., Jan 2015. Fall detection in homes of older adults us-
ing the microsoft kinect. Biomedical and Health Informatics, IEEE Journal
of 19 (1), 290–301.

[31] Wang, L., 2016. Recognition of human activities using continuous autoen-
coders with wearable sensors. Sensors 16 (2), 189.

21

(a) True Positive Rate

(b) False Positive Rate

(c) gmean

Figure 3: Performance of top 5 fall detection methods by varying ρ on DLR dataset. AE - Sin-
gle Layer Autoencoder, SAE - 3 Layer Stacked Autoencoder, RRE - Reduced Reconstruction
Error, IRE - Inlier Reconstruction Error, CW - Channel-wise Ensemble

22

(a) True Positive Rate

(b) False Positive Rate

(c) gmean

Figure 4: Performance of top 5 fall detection methods by varying ρ on DLR-norm dataset.
AE - Single Layer Autoencoder, SAE - 3 Layer Stacked Autoencoder, RRE - Reduced Recon-
struction Error, IRE - Inlier Reconstruction Error, CW - Channel-wise Ensemble

23

(a) True Positive Rate

(b) False Positive Rate

(c) gmean

Figure 5: Performance of top 5 fall detection methods by varying ρ on COV dataset. AE - Sin-
gle Layer Autoencoder, SAE - 3 Layer Stacked Autoencoder, RRE - Reduced Reconstruction
Error, IRE - Inlier Reconstruction Error, CW - Channel-wise Ensemble

24

(a) True Positive Rate

(b) False Positive Rate

(c) gmean

Figure 6: Performance of top 5 fall detection methods by varying ρ on COV-norm dataset.
AE - Single Layer Autoencoder, SAE - 3 Layer Stacked Autoencoder, RRE - Reduced Recon-
struction Error, IRE - Inlier Reconstruction Error, CW - Channel-wise Ensemble

25

	1 Introduction
	2 Brief Introduction to Autoencoders
	3 Related Work
	4 Autoencoder Ensemble for Detecting Unseen Falls
	4.1 Monolithic Autoencoders
	4.2 Channel-wise Autoencoders

	5 Optimizing the Threshold on the Reconstruction Error
	5.1 Reduced Reconstruction Error
	5.2 Inlier Reconstruction Error
	5.3 Cross Validation

	6 Experimental Analysis
	6.1 Performance Metrics
	6.2 Datasets
	6.2.1 German Aerospace Center (DLR) dlr65511
	6.2.2 Coventry Dataset (COV) Ojetol2015data

	6.3 Experimental Setup
	6.3.1 Internal Cross-Validation

	6.4 Results and Discussion

	7 Conclusions and Future Work

