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Abstract

Inductive Logic Programming (ILP) combines rule-based and statistical artificial intelligence
methods, by learning a hypothesis comprising a set of rules given background knowledge and con-
straints for the search space. We focus on extending the XHAIL algorithm for ILP which is based
on Answer Set Programming and we evaluate our extensions using the Natural Language Processing
application of sentence chunking. With respect to processing natural language, ILP can cater for the
constant change in how we use language on a daily basis. At the same time, ILP does not require
huge amounts of training examples such as other statistical methods and produces interpretable re-
sults, that means a set of rules, which can be analysed and tweaked if necessary. As contributions we
extend XHAIL with (i) a pruning mechanism within the hypothesis generalisation algorithm which
enables learning from larger datasets, (ii) a better usage of modern solver technology using recently
developed optimisation methods, and (iii) a time budget that permits the usage of suboptimal results.
We evaluate these improvements on the task of sentence chunking using three datasets from a recent
SemEval competition. Results show that our improvements allow for learning on bigger datasets
with results that are of similar quality to state-of-the-art systems on the same task. Moreover, we
compare the hypotheses obtained on datasets to gain insights on the structure of each dataset.

1 Introduction

Inductive Logic Programming (ILP) (Muggleton and De Raedt,[1994) is a formalism where a set of logi-
cal rules is learned from a set of examples and a background knowledge theory. By combining rule-based
and statistical artificial intelligence, ILP overcomes the brittleness of pure logic-based approaches and the
lack of interpretability of models of most statistical methods such as neural networks or support vector
machines. We here focus on ILP that is based on Answer Set Programming (ASP) as our underlying
logic programming language because we aim to apply ILP to Natural Language Processing (NLP) ap-
plications such as Machine Translation, Summarization, Coreference Resolution, or Parsing that require
nonmonotonic reasoning with exceptions and complex background theories.

In our work, we apply ILP to the NLP task of sentence chunking. Chunking, also known as ‘shal-
low parsing’, is the identification of short phrases such as noun phrases which mainly rely on Part of
Speech (POS) tags. In our experiments on sentence chunking (Tjong Kim Sang and Buchholz, 12000) we
encountered several problems with state-of-the-art ASP-based ILP systems XHAIL (Ray, 2009), ILED
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(Katzouris et all, [2015), and ILASP2 (Law et al), 2015). XHAIL and ILASP2 showed scalability issues
already with 100 sentences as training data. ILED is designed to be highly scalable but failed in the
presence of simple inconsistencies in examples. We decided to investigate the issue in the XHAIL system,
which is open-source and documented well, and we made the following observations:

(i) XHAIL only terminates if it finds a provably optimal hypothesis,

(ii) the hypothesis search is done over all potentially beneficial rules that are supported by at least one
example, and

(iii) XHAIL contains redundancies in hypothesis search and uses outdated ASP technology.

In larger datasets, observation (i) is unrealistic, because finding a near-optimal solution is much easier
than proving optimality of the best solution, moreover in classical machine learning suboptimal solutions
obtained via non-exact methods routinely provide state-of-the-art results. Similarly, observation (ii)
makes it harder to find a hypothesis, and it generates an overfitting hypotheses which contains rules that
are only required for a single example. Observation (iii) points out an engineering problem that can be
remedied with little theoretical effort.

To overcome the above issues, we modified the XHAIL algorithm and software, and we performed
experiments on a simple NLP chunking task to evaluate our modifications.

In detail, we make the following contributions.

e We extend XHAIL with best-effort optimisation using the newest ASP optimisation technol-
ogy of unsat-core optimisation (Andres et all, 2012) with stratification (Alviano et all, 12015H;
Ansotegui et all,2013) and core shrinking (Alviano and Dodaro,2016) using the WASP2 (Alviano et all,
2013, 2015a) solver and the Gringo (Gebser et all, [2011) grounder. We also extend XHAIL to pro-
vide information about the optimality of the hypothesis.

o We extend the XHAIL algorithm with a parameter Pr for pruning, such that XHAIL searches for
hypotheses without considering rules that are supported by fewer than Pr examples.

e We eliminate several redundancies in XHAIL by changing its internal data structures.

e We describe a framework for chunking with ILP, based on preprocessing with Stanford Core NLP
(Manning et all, 12014) tools.

e We experimentally analyse the relationship between the pruning parameter, number of training
examples, and prediction score on the sentence chunking (Tjong Kim Sang and Buchholz, 2000)
subtask of iSTS at SemEval 2016 (Agirre et all, [2016).

o We discuss the best hypothesis found for each of the three datasets in the SemEval task, and we
discuss what can be learned about the dataset from these hypotheses.

Only if we use all the above modifications together, XHAIL becomes applicable in this chunking task.
By learning a hypothesis from 500 examples, we can achieve results competitive with state-of-the-art
systems used in the SemEval 2016 competition.

Our extensions and modifications of the XHAIL software are available in a public fork of the official
XHAIL Git repository (Bragaglia_and Schiiller, [2016).

In Section 2] we provide an overview of logic programming and ILP. Section [3] gives an account of
related work and available ILP tools. In Section [ we describe the XHAIL system and our extensions of
pruning, best-effort optimisation, and further improvements. Section[Bl gives details of our representation
of the chunking task. In Section [ we discuss empirical experiments and results. We conclude in Section
[[l with a brief outlook on future work.

2 Background

We next introduce logic programming and based on that inductive logic programming.



2.1 Logic Programming

A logic programs theory normally comprises of an alphabet (variable, constant, quantifier, etc), vocab-
ulary, logical symbols, a set of axioms and inference rules (Lloyd, 2012). A logic programming system
consists of two portions: the logic and control. Logic describes what kind of problem needs to be solved
and control is how that problem can be solved. An ideal of logic programming is for it to be purely
declarative. The popular Prolog (Clocksin and Mellishi, [2003) system evaluates rules using resolution,
which makes the result of a Prolog program depending on the order of its rules and on the order of
the bodies of its rules. Answer Set Programming (ASP) (Brewka et all, [2011; |Gebser et all, [20124) is a
more recent logic programming formalism, featuring more declarativity than Prolog by defining seman-
tics based on Herbrand models (Gelfond and Lifschitz, [1988). Hence the order of rules and the order
of the body of the rules does not matter in ASP. Most ASP programs follow the Generate-Define-Test
structure (Lifschitz, 2002) to (i) generate a space of potential solutions, (ii) define auxiliary concepts,
and (iii) test to invalidate solutions using constraints or incurring a cost on non-preferred solutions.
An ASP program consists of rules of the following structure:

a<by, ...,by,n0t b, 41,...,n0tbh,

where a, b; are atoms from a first-order language, a is the head and b1, ..., not b, is the body of the rule,
and not is negation as failure. Variables start with capital letters, facts (rules without body condition)
are written as ‘a.” instead of ‘a<’. Intuitively a is true if all positive body atoms are true and no
negative body atom is true.

The formalism can be understood more clearly by considering the following sentence as a simple
example:

Computers are normally fast machines unless they are old.
This would be represented as a logical rule as follows:
fastmachine(X) < computer(X), not old(X).

where X is a variable, fastmachine, computer, and old are predicates, and old(X) is a negated atom.

Adding more knowledge results in a change of a previous understanding, this is common in human
reasoning. Classical First Order Logic does not allow such non-monotonic reasoning, however, ASP was
designed as a commonsense reasoning formalism: a program has zero or more answer sets as solutions,
adding knowledge to the program can remove answer sets as well as produce new ones. Note that ASP
semantics rule out self-founded truths in answer sets. We use the ASP formalism due to its flexibility
and declarativity. For formal details and a complete description of syntax and semantics see the ASP-
Core-2 standard (Calimeri et all, 2012). ASP has been applied to several problems related to Natural
Language Processing, see for example (Mitra and Baral, [2016; [Schiillen, 2013, 2014, [2016; [Schwittex,
2012; [Sharma. et _all, [2015). An overview of applications of ASP in general can be found in (Erdem et all,
2016).

2.2 Inductive Logic Programming

Processing natural language based on hand-crafted rules is impractical because human language is con-
stantly evolving, partially due to the human creativity of language use. An example of this was recently
noticed on UK highways where they advised drivers, ‘Don’t Pokémon Go and drive’. Pokémon Go is being
informally used here as a verb even though it was only introduced as a game a few weeks before the sign
was put up. To produce robust systems, it is necessary to use statistical models of language. These models
are often pure Machine Learning (ML) estimators without any rule components (Manning and Schiitzd,
1999). ML methods work very well in practice, however, they usually do not provide a way for explaining
why a certain prediction was made, because they represent the learned knowledge in big matrices of real
numbers. Some popular classifiers used for processing natural language include Naive Bayes, Decision
Trees, Neural Networks, and Support Vector Machines (SVMs) (Dumais et all, [1998).

In this work, we focus on an approach that combines rule-based methods and statistics and pro-
vides interpretable learned models: Inductive Logic Programming (ILP). ILP is differentiated from ML
techniques by its use of an expressive representation language and its ability to make use of logically



encoded background knowledge (Muggleton and De Raedt, [1994). An important advantage of ILP over
ML techniques such as neural networks is, that a hypothesis can be made readable by translating it
into piece of English text. Furthermore, if annotated corpora of sufficient size are not available or too
expensive to produce, deep learning or other data intense techniques are not applicable. However, we
can still learn successfully with ILP.

Formally, ILP takes as input a set of examples E, a set B of background knowledge rules, and a set
of mode declarations M, also called mode bias. As output, ILP aims to produce a set of rules H called
hypothesis which entails E with respect to B. The search for H with respect to F and B is restricted
by M, which defines a language that limits the shape of rules in the hypothesis candidates and therefore
the complexity of potential hypotheses.

Example 1. Consider the following example ILP instance (M, E, B) (Ray, |2009).

#modeh flies(+bird).
M = < #modeb penguin(+bird). (1)
#modeb not penguin(+bird).

#example flies(a).
o #example flies(b). @)
) #example flies(c).
#example not flies(d).
bird(X) :- penguin(X).
bird(a).
B = { bird(b). 3)
bird(c).
penguin(d).

Based on this, an ILP system would ideally find the following hypothesis.

H = { flies(X) :- bird(X), not penguin(X). } (4)

3 Related Work

Inductive Logic Programming (ILP) is a rather multidisciplinary field which extends to domains such
as computer science, artificial intelligence, and bioinformatics. Research done in ILP has been greatly
impacted by Machine Learning (ML), Artificial Intelligence (AI) and relational databases. Quite a few
surveys (Gulwani et all, [2015; Kitzelmann, [2009; Muggleton et all, 2012) mention about the systems and
applications of ILP in interdisciplinary areas. We next give related work of ILP in general and then focus
on ILP applied in the field of Natural Language Processing (NLP).

The foundations of ILP can be found in research by Plotkin (Plotkin, 1970, [1971), Shapiro (Shapird,
1983) and Sammut and Banerji (Sammut and Banerji,[1986). The founding paper of Muggleton (Muggleton,
1991) led to the launch of the first international workshop on ILP. The strength of ILP lay in its ability to
draw on and extend the existing successful paradigms of ML and Logic Programming. At the beginning,
ILP was associated with the introduction of foundational theoretical concepts which included Inverse
Resolution (Muggleton, [1995; Muggleton and Buntine, 1992) and Predicate Invention (Muggleton, 1991
Muggleton and Buntind, 1992). A number of ILP systems were developed along with learning about
the theoretical concepts of ILP such as FOIL (Quinlan, [1990) and Golem (Muggleton et all, [1990). The
widely-used ILP system Progol (Muggleton, [1995) introduced a new logically-based approach to re-
finement graph search of the hypothesis space based on inverting the entailment relation. Meanwhile,
the TILDE system (De Raedt, 1997) demonstrated the efficiency which could be gained by upgrading
decision-tree learning algorithms to first-order logic, this was soon extended towards other ML problems.
Some limitations of Prolog-based ILP include requiring extensional background and negative examples,
lack of predicate invention, search limitations and inability to handle cuts. Integrating bottom-up and
top-down searches, incorporating predicate invention, eliminating the need for explicit negative examples
and allowing restricted use of cuts helps in solving these issues (Mooney, 1996).



Probabilistic ILP (PILP) also gained popularity (Cussens, 2001d; [De Raedt and Kersting, 12008;
Muggleton et all, [1996), its Prolog-based systems such as PRISM (Sato et all, [2005) and FAM (Cussens,
2001b) separate the actual learning of the logic program from the probabilistic parameters estimation
of the individual clauses. However in practice, learning the structure and parameters of probabilistic
logic representation simultaneously has proven to be a challenge (Muggleton, 2002). PILP is mainly a
unification of the probabilistic reasoning of Machine Learning with the relational logical representations
offered by ILP.

Meta-interpretive learning (MIL) (Muggleton et all, [2014) is a recent ILP method which learns re-
cursive definitions using Prolog and ASP-based declarative representations. MIL is an extension of the
Prolog meta-interpreter; it derives a proof by repeatedly fetching the first-order Prolog clauses and ad-
ditionally fetching higher-order meta-rules whose heads unify with a given goal, and saves the resulting
meta-substitutions to form a program.

Most ILP research has been aimed at Horn programs which exclude Negation as Failure (NAF).
Negation is a key feature of logic programming and provides a means for monotonic commonsense
reasoning under incomplete information. This fails to exploit the full potential of normal programs that
allow NAF.

We next give an overview of ILP systems based on ASP that are designed to operate in the presence
of negation. Then we give an overview of ILP literature related to NLP.

3.1 ASP-based ILP Systems

The eXtended Hybrid Abductive Inductive Learning system (XHAIL) is an ILP approach based on ASP
that generalises techniques of language and search bias from Horn clauses to normal logic programs with
full usage of NAF (Rayl, 2009). Like its predecessor system Hybrid Abductive Inductive Learning (HAIL)
which operated on Horn clauses, XHAIL is based on Abductive Logic Programming (ALP) (Kakas et al.,
1992), we give more details on XHAIL in Section [

The Incremental Learning of Event Definitions (ILED) algorithm (Katzouris et all, 2015) relies on
Abductive-Inductive learning and comprises of a scalable clause refinement methodology based on a
compressive summarization of clause coverage in a stream of examples. Previous ILP learners were batch
learners and required all training data to be in place prior to the initiation of the learning process. ILED
learns incrementally by processing training instances when they become available and altering previous
inferred knowledge to fit new observation, this is also known as theory revision. It exploits previous
computations to speed-up the learning since revising the hypothesis is considered more efficient than
learning from scratch. ILED attempts to cover a maximum of examples by re-iterating over previously
seen examples when the hypothesis has been refined. While XHAIL can ensure optimal example coverage
easily by processing all examples at once, ILED does not preserve this property due to a non-global view
on examples.

When considering ASP-based ILP, negation in the body of rules is not the only interesting addition
to the overall concept of ILP. An ASP program can have several independent solutions, called answer
sets, of the program. Even the background knowledge B can admit several answer sets without any
addition of facts from examples. Therefore, a hypothesis H can cover some examples in one answer set,
while others are covered by another answer set. XHAIL and ILED approaches are based on finding a
hypothesis that is covering all examples in a single answer set.

The Inductive Learning of Answer Set Programs approach (ILASP) is an extension of the notion
of learning from answer sets (Law et all, 2014). Importantly, it covers positive examples bravely (i.e.,
in at least one answer set) and ensures that the negation of negative examples is cautiously entailed
(i.e., no negative example is covered in any answer set). Negative examples are needed to learn Answer
Set Programs with non-determinism otherwise there is no concept of what should not be in an Answer
Set. ILASP conducts a search in multiple stages for brave and cautious entailment and processes all
examples at once. ILASP performs a less informed hypothesis search than XHAIL or ILED, that means
large hypothesis spaces are infeasible for ILASP while they are not problematic for XHAIL and ILED,
on the other hand, ILASP supports aggregates and constraints while the older systems do not support
these. ILASP2 (Law et all, [2015) extends the hypothesis space of ILASP with choice rules and weak
constraints. This permits searching for hypotheses that encode preference relations.



3.2 ILP and NLP

From NLP point of view, the hope of ILP is to be able to steer a mid-course between these two alternatives
of large-scale but shallow levels of analysis and small scale but deep and precise analysis. ILP should
produce a better ratio between breadth of coverage and depth of analysis (Muggleton, 1999). ILP has
been applied to the field of NLP successfully; it has not only been shown to have higher accuracies
than various other ML approaches in learning the past tense of English but also shown to be capable of
learning accurate grammars which translate sentences into deductive database queries (Law et all,2014).

Except for one early application (Wirth,1989) no application of ILP methods surfaced until the system
CHILL (Mooney, 1996) was developed which learned a shift-reduce parser in Prolog from a training
corpus of sentences paired with the desired parses by learning control rules and uses ILP to learn control
strategies within this framework. This work also raised several issues regarding the capabilities and
testing of ILP systems. CHILL was also used for parsing database queries to automate the construction
of a natural language interface (Zelle and Mooney, [1996) and helped in demonstrating its ability to learn
semantic mappings as well.

An extension of CHILL, CHILLIN (Zelle et all, [1994) was used along with an extension of FOIL,
mFOIL (Tang and Mooney, [2001) for semantic parsing. Where CHILLIN combines top-down and
bottom-up induction methods and mFOIL is a top-down ILP algorithm designed keeping imperfect
data in mind, which portrays whether a clause refinement is significant for the overall performance with
the help of a pre-pruning algorithm. This emphasised on how the combination of multiple clause con-
structors helps improve the overall learning; which is a rather similar concept to Ensemble Methods in
standard ML. Note that CHILLIN pruning is based on probability estimates and has the purpose of deal-
ing with inconsistency in the data. Opposed to that, XHAIL already supports learning from inconsistent
data, and the pruning we discuss in Section 1] aims to increase scalability.

Previous work ILP systems such as TILDE and Aleph (Srinivasan, [2001) have been applied to pref-
erence learning which addressed learning ratings such as good, poor and bad. ASP expresses preferences
through weak constraints and may also contain weak constraints or optimisation statements which impose
an ordering on the answer sets (Law et all, 2015).

The system of Mitra and Baral (Mitra and Baral, 2016) uses ASP as primary knowledge representa-
tion and reasoning language to address the task of Question Answering. They use a rule layer that is
partially learned with XHAIL to connect results from an Abstract Meaning Representation parser and
an Event Calculus theory as background knowledge.

4 Extending XHAIL algorithm and system

Initially, we intended to use the latest ILP systems (ILASP2 or ILED) in our work. However, preliminary
experiments with ILASP2 showed a lack in scalability (memory usage) even for only 100 sentences due to
the unguided hypothesis search space. Moreover, experiments with ILED uncovered several problematic
corner cases in the ILED algorithm that led to empty hypotheses when processing examples that were
mutually inconsistent (which cannot be avoided in real-life NLP data). While trying to fix these problems
in the algorithm, further issues in the ILED implementation came up. After consulting the authors of
(Mitra and Baral, [2016) we learned that they had the same issues and used XHAIL, therefore we also
opted to base our research on XHAIL due to it being the most robust tool for our task in comparison to
the others.

Although XHAIL is applicable, we discovered several drawbacks and improved the approach and the
XHAIL system. We provide an overview of the parts we changed and then present our modifications.
Figure [Ml shows in the middle the original XHAIL components and on the right our extension.

XHAIL finds a hypothesis using several steps. Initially the examples E plus background knowledge
B are transformed into a theory of Abductive Logic Programming (Kakas et all,[1992). The Abduction
part of XHAIL explains observations with respect to a prior theory, which yields the Kernel Set, A. A
is a set of potential heads of rules given by M such that a maximum of examples F is satisfied together
with B.

Example 2 (continued). Given (M, E, B) from Example, XHAIL uses B, E, and the head part of M,
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Figure 1: XHAIL architecture. The dotted line shows the replaced module with our version represented
by the thick solid line.

to generate the Kernel Set A by abduction.

flies(a)
A=< flies(b)
flies(c)

The Deduction part uses A and the body part of the mode bias M to generate a ground program K.
K contains rules which define atoms in A as true based on B and F.

The Generalisation part replaces constant terms in K with variables according to the mode bias M,
which yields a non-ground program K.

Example 3 (continued). From the above A and M from (d), deduction and generalisation yield the
following K and K'.

flies(a) :- bird(a), not penguin(a)
K =< flies(b) :- bird(b), not penguin(b)
flies(c) :- bird(c), not penguin(c)
flies(X) :- bird(X), not penguin(X)
K'=< flies(Y) - bird(Y), not penguin(Y)
flies(Z) :- bird(Z), not penguin(Z)

The Induction part searches for the smallest part of K’ that entails as many examples of E as possible
given B. This part of K’ which can contain a subset of the rules of K’ and for each rule a subset of body
atoms is called a hypothesis H.

Example 4 (continued). The smallest hypothesis that covers all examples E in [2)) is ().

We next describe our modifications of XHAIL.

4.1 Kernel Pruning according to Support

The computationally most expensive part of the search in XHAIL is Induction. Each non-ground rule
in K’ is rewritten into a combination of several guesses, one guess for the rule and one additional guess
for each body atom in the rule.

We moreover observed that some non-ground rules in K’ are generalisations of many different ground
rules in K, while some non-ground rules correspond with only a single instance in K. In the following,
we say that the support of r in K is the number of ground rules in K that are transformed into r € K’
in the Generalisation module of XHAIL (see Figure [J).



Intuitively, the higher the support, the more examples can be covered with that rule, and the more
likely that rule or a part of it will be included in the optimal hypothesis.
Therefore we modified the XHAIL algorithm as follows.

e During Generalisation, we keep track of the support of each rule r € K’ by counting how often a
generalisation yields the same rule r.

e We add an integer pruning parameter Pr to the algorithm and use only those rules from K’ in the
Induction component that have a support higher than Pr.

This modification is depicted as bold components which replace the dotted Generalisation module in
Figure [I

Pruning has several consequences. From a theoretical point of view, the algorithm becomes incomplete
for Pr > 0, because Induction searches in a subset of the relevant hypotheses. Hence Induction might not
be able to find a hypothesis that covers all examples, although such a hypothesis might exist with Pr =0.
From a practical point of view, pruning realises something akin to regularisation in classical ML; only
strong patterns in the data will find their way into Induction and have the possibility to be represented
in the hypothesis. A bit of pruning will therefore automatically prevent overfitting and generate more
general hypotheses. As we will show in Experiments in Section [6 the pruning allows to configure a
trade-off between considering low-support rules instead of omitting them entirely, as well as, finding a
more optimal hypothesis in comparison to a highly suboptimal one.

4.2 Unsat-core based and Best-effort Optimisation

We observed that ASP search in XHAIL Abduction and Induction components progresses very slowly
from a suboptimal to an optimal solution. XHAIL integrates version 3 of Gringo (Gebser et all, [2011)
and Clasp (Gebser et all, 2012h) which are both quite outdated. In particular Clasp in this version does
not support three important improvements that have been found for ASP optimisation: (i) unsat-core
optimisation (Andres et all,2012), (ii) stratification for obtaining suboptimal answer sets (Alviano et al.,
2015b; |Ansotegui et all, [2013), and (iii) unsat-core shrinking (Alviano and Dodara, 2016).

Method (i) inverts the classical branch-and-bound search methodology which progresses from worst
to better solutions. Unsat-core optimisation assumes all costs can be avoided and finds unsatisfiable cores
of the problem until the assumption is true and a feasible solution is found. This has the disadvantage of
providing only the final optimal solution, and to circumvent this disadvantage, stratification in method
(ii) was developed which allows for combining branch-and-bound with method (i) to approach the optimal
value both from cost 0 and from infinite cost. Furthermore, unsat-core shrinking in method (iii), also
called ‘anytime ASP optimisation’, has the purpose of providing suboptimal solutions and aims to find
smaller cores which can speed up the search significantly by cutting more of the search space (at the cost
of searching for a smaller core). In experiments with the inductive encoding of XHAIL we found that all
three methods have a beneficial effect.

Currently, only the WASP solver (Alviano et all, 2013, 2015a) supports all of (i), (ii), and (iii), there-
fore we integrated WASP into XHAIL, which has a different output than Clasp. We also upgraded XHAIL
to use Gringo version 4 which uses the new ASP-Core-2 standard and has some further (performance)
advantages over older versions.

Unsat-core optimisation often finds solutions with a reasonable cost, near the optimal value, and
then takes a long time to find the true optimum or prove optimality of the found solution. Therefore,
we extended XHAIL as follows:

e a time budget for search can be specified on the command line,

e after the time budget is elapsed the best-known solution at that point is used and the algorithm
continues, furthermore

e the distance from the optimal value is provided as output.

This affects the Induction step in Figure [l and introduces a best-effort strategy; along with the obtained

hypothesis we also get the distance from the optimal hypothesis, which is zero for optimal solutions.
Using a suboptimal hypothesis means, that either fewer examples are covered by the hypothesis than

possible, or that the hypothesis is bigger than necessary. In practice, receiving a result is better than
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Figure 2: General overview of our framework

receiving no result at all, and our experiments show that XHAIL becomes applicable to reasonably-sized
datasets using these extensions.

4.3 Other Improvements

We made two minor engineering contributions to XHAIL. A practically effective improvement of XHAIL
concerns K’. As seen in Example [B] three rules that are equivalent modulo variable renaming are
contained in K’. XHAIL contains canonicalization algorithms for avoiding such situations, based on
hashing body elements of rules. However, we found that for cases with more than one variable and for
cases with more than one body atom, these algorithms are not effective because XHAIL (i) uses a set data
structure that maintains an order over elements, (ii) the set data structure is sensitive to insertion order,
and (iii) hashing the set relies on the order to be canonical. We made this canonicalization algorithm
applicable to a far wider range of cases by changing the data type of rule bodies in XHAIL to a set that
maintains an order depending on the value of set elements. This comes at a very low additional cost for
set insertion and often reduces size of K’ (and therefore computational effort for Induction step) without
adversely changing the result of induction.

Another improvement concerns debugging the ASP solver. XHAIL starts the external ASP solver
and waits for the result. During ASP solving, no output is visible, however, ASP solvers provide output
that is important for tracking the distance from optimality during a search. We extended XHAIL so
that the output of the ASP solver can be made visible during the run using a command line option.

5 Chunking with ILP

We evaluate the improvements of the previous section using the NLP task of chunking. Chunking
(Tjong Kim Sang and Buchholz, 2000) or shallow parsing is the identification of short phrases such as
noun phrases or prepositional phrases, usually based heavily on Part of Speech (POS) tags. POS provides
only information about the token type, i.e., whether words are nouns, verbs, adjectives, etc., and chunking
derives from that a shallow phrase structure, in our case a single level of chunks.

Our framework for chunking has three main parts as shown in Figure 2l Preprocessing is done using
the Stanford CoreNLP tool from which we obtain the facts that are added to the background knowledge
of XHAIL or used with a hypothesis to predict the chunks of an input. Using XHAIL as our ILP solver we
learn a hypothesis (an ASP program) from the background knowledge, mode bias, and from examples
which are generated using the gold-standard data. We predict chunks using our learned hypothesis
and facts from preprocessing, using the Clingo (Gebser et all, [2008) ASP solver. We test by scoring
predictions against gold chunk annotations.

Example 5. An example sentence in the SemFEval iSTS dataset (Agirre et all, 2016) is as follows.
Former Nazi death camp guard Demjanjuk dead at 91 (5)
The chunking present in the SemFEwval gold standard is as follows.

[ Former Nazi death camp guard Demjanjuk | [ dead | [ at 91 ] (6)

5.1 Preprocessing

Stanford CoreNLP tools (Manning et all, 2014) are used for tokenisations and POS-tagging of the input.
Using a shallow parser (Bohnet et all, [2013) we obtain the dependency relations for the sentences. Our
ASP representation contains atoms of the following form:



¢ NNP,1). head(2,1). form(1,"Former"). rel(c NAME,1).
¢ NNP,2). head (5,2). form(2,"Nazi"). rel(c_ NMOD,2).
). head(4,3). form(3,"death"). rel(c NMOD,3).
). head(5,4). form(4,"camp"). rel(c NMOD,4).
). head(7,5). form(5,"guard"). rel(c_SBJ,5).
pos(c_NNP,6). head (5,6). form(6,"Demjanjuk"). rel(c APPO,6).
7). head(root ,7). form(7,"dead"). rel(c_ ROOT,7).
). head(7,8). form(8,"at"). rel(c_ADV,8).
)

¢ CD,9). head(8,9). form(9,"91"). rel(c PMOD,9).

(a) Preprocessing Output

postype(X) :— pos(X, ).
token (X) :— pos(_ ,X).
nextpos (P,X) :— pos(P,X+1).

(b) Background Knowledge

#modeh split(+token).
#modeb pos($postype,+token).
#modeb nextpos($postype,+token).

(c) Mode Restrictions

goodchunk (1) :— not split (1), not split(2), not split(3),
not split (4), not split(5), split (6).

goodchunk (7) :— split (6), split (7).

goodchunk (8) :— split (7), not split (8).

#example goodchunk (1).
#example goodchunk (7).
#example goodchunk (8).

(d) Examples

Figure 3: XHAIL input for the sentence 'Former Nazi death camp guard Demjanjuk dead at 91’ from
the Headlines Dataset

e pos(P, T) which represents that token T has POS tag P,
e form(T, Text) which represents that token T' has surface form Text,

e head(T;, Te) and rel(R, T') which represent that token T5 depends on token T with dependency
relation R.

Example 6 (continued). Figure[3d shows the result of preprocessing performed on sentence (&), which
is a set of ASP facts.

We use Penn Treebank POS-tags as they are provided by Stanford CoreNLP. To form valid ASP
constant terms from POS-tags, we prefix them with ‘c_’, replace special characters with lowercase
letters (e.g., ‘PRP$’ becomes ‘c_ PRPd’). In addition, we create specific POS-tags for punctuation (see

Section [6.4]).

5.2 Background Knowledge and Mode Bias

Background Knowledge we use is shown in Figure Bl We define which POS-tags can exist in predicate
postype /1 and which tokens exist in predicate token/1. Moreover, we provide for each token the POS-tag
of its successors token in predicate nextpos/2.

Mode bias conditions are shown in Figure [Bd these limit the search space for hypothesis generation.
Hypothesis rules contain as head atoms of the form

split(T)
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which indicates, that a chunk ends at token T and a new chunk starts at token 7"+ 1. The argument of
predicates split/1 in the head is of type token.

The body of hypothesis rules can contain pos/2 and nextpos/2 predicates, where the first argument
is a constant of type postype (which is defined in Figure BD) and the second argument is a variable of
type token. Hence this mode bias searches for rules defining chunk splits based on POS-tag of the token
and the next token.

We deliberately use a very simple mode bias that does not make use of all atoms in the facts obtained
from preprocessing. This is discussed in Section

5.3 Learning with ILP

Learning with ILP is based on examples that guide the search. Figure [3dlshows rules that recognise gold
standard chunks and #ezample instructions that define for XHAIL which atoms must be true to entail
an example. These rules with goodchunk /1 in the head define what a good (i.e., gold standard) chunk is
in each example based on where a split in a chunk occurs in the training data to help in the learning of
a hypothesis for chunking.

Note that negation is present only in these rules, although we could use it anywhere else in the
background knowledge. Using the background knowledge, mode bias, and examples, XHAIL is then able
to learn a hypothesis.

5.4 Chunking with ASP using Learned Hypothesis

The hypothesis generated by XHAIL can then be used together with the background knowledge specified
in Figure BD and with the preprocessed input of a new sentence. Evaluating all these rules yields a set
of split points in the sentence, which corresponds to a predicted chunking of the input sentence.

Example 7 (continued). Given sentence (B) with token indices 1,...,9, an answer set that contains the
atomns {split(6), split(7)} and no other atoms for predicate split/1 yields the chunking shown in (@).

6 FEvaluation and Discussion

6.1 Datasets

We are using the datasets from the SemEval 2016 iSTS Task 2 (Agirre et all, [2016), which included two
separate files containing sentence pairs. Three different datasets were provided: Headlines, Images, and
Answers-Students. The Headlines dataset was mined by various news sources by European Media Moni-
tor. The Images dataset was a collection of captions obtained from the Flickr dataset (Rashtchian et all,
2010). The Answers-Students corpus consists of the interactions between students and the BEETLE II
tutorial dialogue system which is an intelligent tutoring engine that teaches students in basic electric-
ity and electronics. In the following, we denote S1 and S2, by sentence 1 and sentence 2 respectively,
of sentence pairs in these datasets. Regarding the size of the SemEval Training dataset, Headlines and
Images datasets are larger and contained 756 and 750 sentence pairs, respectively. However, the Answers-
Students dataset was smaller and contained only 330 sentence pairs. In addition, all datasets contain a
Test portion of sentence pairs.

We use k-fold cross-validation to evaluate chunking with ILP, which yields k& learned hypotheses and
k evaluation scores for each parameter setting. We test each of these hypotheses also on the Test portion
of the respective dataset. From the scores obtained this way we compute mean and standard deviation,
and perform statistical tests to find out whether observed score differences between parameter settings
is statistically significant.

Table [l shows which portions of the SemEval Training dataset we used for 11-fold cross-validation.
In the following, we call these datasets Cross-Validation Sets. We chose the first 110 and 550 examples
to use for 11-fold cross-validation which results in training set sizes 100 and 500, respectively. As the
Answers-Students dataset was smaller, we merged its sentence pairs in order to obtain a Cross-Validation
Set size of 110 sentences, using the first 55 sentences from S1 and S2; and for 550 sentences, using the
first 275 sentences from S1 and S2 each. As Test portions we only use the original SemEval Test datasets
and we always test S1 and S2 separately.
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Dataset Cross-Validation Set Test Set

Size Examples S1 S2
100 S1 first 110 all *
H/T 500 S1 first 550 all *
100 S2 first 110 * all
500 S2 first 550 * all
AS 100 S1 first 55 + S2 first 55 all all
500 S1 first 275 + S2 first 275 all all

Table 1: Dataset partitioning for 11-fold cross-validation experiments. Size indicates the training set
size in cross-validation. Fields marked with * are not applicable, because we do not evaluate hypotheses
learned from the S1 portion of the Headlines (H) and Images (I) datasets on the (independent) S2 portion
of these datasets and vice versa. For the Answers-Students (A-S) dataset we need to merge S1 and S2
to obtain a training set size of 500 from the (small) SemEval Training dataset.

6.2 Scoring

We use difflib.SequenceMatcher in Python to match the sentence chunks obtained from learning in ILP
against the gold-standard sentence chunks. From the matchings obtained this way, we compute precision,
recall, and F1-score as follows.

No. of Matched Sequences

No. of ILP-learned Chunks

No. of Matched Sequences
No. of Gold Chunks

Precision x Recall

Precision =

Recall =

Score = 2 x

Precision + Recall

To investigate the effectivity of our mode bias for learning a hypothesis that can correctly classify
the dataset, we perform cross-validation (see above) and measure correctness of all hypotheses obtained
in cross-validation also on the Test set.

Because of differences in S1/S2 portions of datasets, we report results separately for S1 and S2. We
also evaluate classification separately for S1 and S2 for the Answers-Students dataset, although we train
on a combination of S1 and S2.

6.3 Experimental Methodology

We use Gringo version 4.5 (Gebser et all,2011) and we use WASP version 2 (Git hash a44a95) (Alviano et all,
2015a) configured to use unsat-core optimisation with disjunctive core partitioning, core trimming, a bud-
get of 30 seconds for computing the first answer set and for shrinking unsatisfiable cores with progressive
shrinking strategy. These parameters were found most effective in preliminary experiments. We configure
our modified XHAIL solver to allocate a budget of 1800 seconds for the Induction part which optimises
the hypothesis (see Section .2). Memory usage never exceeded 5 GB.

Tables @H6] contains the experimental results for each Dataset, where columns Size, Pr, and So respec-
tively, show the number of sentences used to learn the hypothesis, the pruning parameter for generalising
the learned hypothesis (see Section 1)), and the rate of how close the learned hypothesis is to the optimal
result, respectively. So is computed according to the following formula: So = Y22 erbzz;’i;biﬂf[bw"d ,
which is based on upper and lower bounds on the cost of the answer set. An So value of zero means
optimality, and values above zero mean suboptimality; so the higher the value, the further away from
optimality. Our results comprise of the mean and standard deviation of the F1-scores obtained from our
11-fold cross-validation test set of S1 and S2 individually (column CV). Due to lack of space, we opted
to leave out the scores of precision and recall, but these values show similar trends as in the Test set.
For the Test sets of both S1 and S2, we include the mean and standard deviation of the Precision, Recall
and Fl-scores (column group T).
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When testing machine-learning based systems, comparing results obtained on a single test set is often
not sufficient, therefore we performed cross-validation to obtain mean and standard deviation about our
benchmark metrics. To obtain even more solid evidence about the significance of the measured results,
we additionally performed a one-tailed paired t-test to check if a measured F1 score is significantly
higher in one setting than in another one. We consider a result significant if p < 0.05, i.e., if there is
a probability of less than 5 % that the result is due to chance. Our test is one-tailed because we check
whether one result is higher than another one, and it is a paired test because we test different parameters
on the same set of 11 training/test splits in cross-validation. There are even more powerful methods for
proving significance of results such as bootstrap sampling (Efron and Tibshirani, [1986), however these
methods require markedly higher computational effort in experiments and our experiments already show
significance with the t-test.

Rows of Tables @H6] contain results for learning from 100 resp. 500 example sentences, and for different
pruning parameters. For both learning set sizes, we increased pruning stepwise starting from value 0
until we found an optimal hypothesis (So=0) or until we saw a clear peak in classification score in
cross-validation (in that case, increasing the pruning is pointless because it would increase optimality of
the hypothesis but decrease the prediction scores).

Note that datasets have been tokenised very differently, and that also state-of-the-art systems in
SemEval used separate preprocessing methods for each dataset. We follow this strategy to allow a fair
comparison. One example for such a difference is the Images dataset, where the ‘.’ is considered as
a separate token and is later defined as a separate chunk, however in Answers-Students dataset it is
integrated onto neighboring tokens.

6.4 Results

We first discuss the results of experiments with varying training set size and varying pruning parameter,
then compare our approach with the state-of-the-art systems, and finally inspect the optimal hypotheses.

Training Set Size and Pruning Parameter Tables dHf show results of experiments, where T
denotes the Test portion of the respective dataset.

We observe that by increasing the size of the training set to learn the hypothesis, our scores improved
considerably. Due to more information being provided, the learned hypothesis can predict with higher
F1 score. We also observed that for the smaller training set size (100 sentences), lower pruning numbers
(in rare cases even Pr=0) resulted in achieving the optimal solution. For a bigger training set size (500
sentences), without pruning the ILP procedure does not find solutions close to the optimal solution.
However, by using pruning values up to Pr=10 we can reduce the size of the search space and find
hypotheses closer to the optimum, which predict chunks with a higher F1 score. Our statistical test
shows that, in many cases, several increments of the Pr parameter yield significantly better results, up
to a point where prediction accuracy degrades because too many examples are pruned away. To select
the best hypothesis, we increase the pruning parameter Pr until we reach the peak in the F1 score in
cross-validation.

Finding optimal hypotheses in the Inductive search of XHAIL (where So=0) is easily attained when
learning from 100 sentences. For learning from 500 sentences, very higher pruning results in a trivial
optimal hypothesis (i.e., every token is a chunk) which has no predictive power, hence we do not increase
Pr beyond a value of 10.

Note that we never encountered timeouts in the Abduction component of XHAIL, only in the Induc-
tion part. The original XHAIL tool without our improvements yields only timeouts for learning from 500
examples, and few hypotheses for learning from 100 examples. Therefore we do not show these results
in tables.

State-of-the-art comparison Table [2 shows a comparison of our results with the baseline and the

three best systems from the chunking subtask of Task 2 from SemEval2016 Task2 (Agirre et all, 2016):

DTSim (Banjade et all, 12016), FBK-HLT-NLP (Magnolini et all, 2016) and runs 1 and 2 of IISCNLP
(Tekumalla and Jatl,[2016). We also compare with results of our own system ‘Inspire-Manual’ (Kazmi and Schiiller,
2016).
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Data System St 52

P R F1 Rank P R F1 Rank
Baseline 60.5 36.6 37.6 63.6 42.5 42.8
» DTSim 72.5 74.3 71.3 * 72.1 74.3 70.5 *
.g FBK-HLT-NLP 63.6 51.3 51.5 57.1 51.1 48.3
?} IISCNLP - Runl 61.9 68.5 61.4 61.1 65.7 60.1
T IISCNLP - Run2 67.6 68.5 64.5 ok 714 71.9 68.9 ok
Inspire - Manual 64.5 70.4 62.4 64.3 68.4 62.2
Inspire - Learned 68.1£2.5 70.6%£2.5 65.4+2.6 ** 67.2+1.3 68.24+2.4 64.0+1.8 ***
Baseline 19.0 15.7 16.4 13.6 17.5 13.5
DTSim 77.8 77.4 77.5 * 79.5 79.1 79.2 *
g”ﬁo FBK-HLT-NLP 41.0 39.2 38.8 40.5 43.1 40.8
< IISCNLP - Runl 61.6 60.9 60.7 66.1 66.2 65.9
E IISCNLP - Run2 65.8 65.6 65.4 67.7 67.2 67.3
Inspire - Manual 74.5 74.2 74.2 ok 73.8 73.6 73.6 ok
Inspire - Learned 66.4+15.5 74.3+0.7 73.7£0.7 k¥ 71.1+0.8 71.1+0.8 70.9+0.8 ***
é Baseline 62.1 30.9 34.6 59.2 33.4 36.6
L  DTSim 78.5 73.6 72.5 * 83.3 79.2 77.8 ok
£ FBK-HLT-NLP 70.3 52.5 52.8 72.4 59.1 59.3
U£ IISCNLP - Runl 67.9 63.9 60.7 Hork 65.7 55.0 54.0
E IISCNLP - Run2 63.0 59.8 56.9 66.2 52.5 52.8
@ Inspire - Manual 66.8 64.4 59.7 71.2 62.5 62.1 Hokx
<< Inspire - Learned 66.8+2.8 70.54+2.5 63.5+2.4 ** 89.3+3.0 80.1+0.7 80.3+1.7 *

Table 2: Comparison with systems from SemEval 2016 Task 2. The number of stars shows the rank of
the system.

e The baseline makes use of the automatic probabilistic chunker from the IXA-pipeline which provides
Perceptron models (Colling, 2002) for chunking and is trained on CONLL2000 corpora and corrected
manually,

e DTSim uses a Conditional Random Field (CRF) based chunking tool using only POS-tags as
features,

e FBK-HLT-NLP obtains chunks using a Python implementation of MBSP chunker which uses a
Memory-based part-of-speech tagger generator (Daelemans et all, [1996),

e Run 1 of IISCNLP uses OpenNLP chunker which divides the sentence into syntactically correlated
parts of words, but does not specify their internal structure, nor their role in the main sentence.
Run 2 uses Stanford NLP Parser to create parse trees and then uses a perl script to create chunks
based on the parse trees, and

e Inspire-Manual (our previous system) makes use of manually set chunking rules (Abney, [1991)
using ASP (Kazmi and Schiiller, 2016).

Using the gold-standard chunks provided by the organisers we were able to compute the precision,
recall, and F1-scores for analysis on the Headlines, Images and Answers-Students datasets.

For the scores of our system ‘Inspire-Learned’, we used the mean and average of the best configuration
of our system as obtained in cross-validation experiments on the Test set and compared against the other
systems’ Test set results. Our system’s performance is quite robust: it is always scores within the top
three best systems.

Inspection of Hypotheses Table[3]shows the rules that are obtained from the hypothesis generated
by XHAIL from Sentence 1 files of all the datasets. We have also tabulated the common rules present
between the datasets and the extra rules which differentiate the datasets from each other. POS-tags for
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Rules H I A-S
split(V) :- token(V), pos(c_ VBD,V). X X X
split(V) :- token(V), nextpos(c_IN,V). X X X
split(V) :- token(V), nextpos(c_ VBZ,V). X X X
split(V) :- token(V), pos(c_VB,V). X X
split(V) :- token(V), nextpos(c_TO,V). X X
split(V) :- token(V), nextpos(c_ VBD,V). X X
split(V) :- token(V), nextpos(c_ VBP,V). X X
split(V) :- token(V), pos(c_ VBZ,V), nextpos(c_DT,V). X X
split(V) :- token(V), pos(c_NN,V), nextpos(c_ RB,V). X X
split(V) :- token(V), pos(c_ NNS,V). X

split(V) :- token(V), pos(c_ VBP,V). X

split(V) :- token(V), pos(c_ VBZ,V). X

split(V) :- token(V), pos(c_c,V). X

split(V) :- token(V), nextpos(c_ POS,V). X

split(V) :- token(V), nextpos(c_ VBN,V). X

split(V) :- token(V), nextpos(c_c,V). X

split(V) :- token(V), pos(c_ PRP,V). X
split(V) :- token(V), pos(c_RP,V). X
split(V) :- token(V), pos(c_p,V). X
split(V) :- token(V), nextpos(c_p,V). X
split(V) :- token(V), pos(c_ CC,V), nextpos(c_ VBG,V). X
split(V) :- token(V), pos(c_NN,V), nextpos(c_ VBD,V). X
split(V) :- token(V), pos(c_NN,V), nextpos(c_ VBG,V). X
split(V) :- token(V), pos(c_NN,V), nextpos(c_ VBN,V). X
split(V) :- token(V), pos(c_NNS,V), nextpos(c_ VBG,V). X
split(V) :- token(V), pos(c_ RB,V), nextpos(c_IN,V). X
split(V) :- token(V), pos(c_ VBG,V), nextpos(c_DT,V). X
split(V) :- token(V), pos(c_ VBG,V), nextpos(c_JJ,V). X
split(V) :- token(V), pos(c_ VBG,V), nextpos(c_ PRPd,V). X
split(V) :- token(V), pos(c_ VBG,V), nextpos(c_ RB,V). X
split(V) :- token(V), pos(c_ VBZ,V), nextpos(c_IN,V). X
split(V) :- token(V), pos(c_EX,V). X
split(V) :- token(V), pos(c_ RB,V). X
split(V) :- token(V), pos(c_ VBG,V). X
split(V) :- token(V), pos(c_ WDT,V). X
split(V) :- token(V), pos(c_ WRB,V). X
split(V) :- token(V), nextpos(c_ EX,V). X
split(V) :- token(V), nextpos(c_ MD,V). X
split(V) :- token(V), nextpos(c_ VBG,V). X
split(V) :- token(V), nextpos(c_ RB,V). X
split(V) :- token(V), pos(c_IN,V), nextpos(c_ NNP,V). X
split(V) :- token(V), pos(c_ NN,V), nextpos(c_ WDT,V). X
split(V) :- token(V), pos(c_NN,V), nextpos(c_IN,V). X
split(V) :- token(V), pos(c_ NNS,V), nextpos(c_IN,V). X
split(V) :- token(V), pos(c_ NNS,V), nextpos(c_ VBP,V). X
split(V) :- token(V), pos(c_ RB,V), nextpos(c_DT,V). X

Table 3: Rules in the best hypotheses obtained from training on 500 sentences (S1), where X marks the
presence of the rule in a given dataset.

punctuation are ‘c_p’ for sentence-final punctuation (*.”, ‘?’, and ‘") and ‘c_ ¢’ for sentence-separating
punctuation (¢,, %', and ¢’).

Rules which occur in all learned hypotheses can be interpreted as follows (recall the meaning of
split(X) from Section[5.2): (i) chunks end at past tense verbs (VBD, e.g., ‘walked’), (ii) chunks begin at
subordinating conjunctions and prepositions (IN, e.g., ‘in’), and (iii) chunks begin at 3rd person singular
present tense verbs (VBZ, e.g., ‘walks’). Rules that are common to H and AS datasets are as follows:
(i) chunks end at base forms of verbs (VB, e.g., ‘[to] walk’), (ii) chunks begin at ‘to’ prepositions (TO),
and (iii) chunks begin at past tense verbs (VBD). The absence of (i) in hypotheses for the Images dataset
can be explained by the rareness of such verbs in captions of images. Note that (iii) together with the
common rule (i) means that all VBD verbs become separate chunks in H and AS datasets. Rules that
are common to I and AS datasets are as follows: (i) chunks begin at non-3rd person verbs in present
tense (VBP, e.g., {[we] walk’), (ii) chunk boundaries are between a determiner (DT, e.g., ‘both’) and a
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3rd person singular present tense verb (VBZ), and (iii) chunk boundaries are between adverbs (RB, e.g.,
‘usually’) and common, singular, or mass nouns (NN, e.g., ‘humor’). Interestingly, there are no rules
common to H and I datasets except for the three rules mutual to all three datasets.

For rules occurring only in single datasets, we only discuss a few interesting cases in the following.
Rules that are unique to the Headlines dataset include rules which indicate that the sentence separators
7, %%, and “, become single chunks, moreover chunks start at genitive markers (POS, “’s’). Both is
not the case for the other two data sets. Rules unique to the Images dataset include that sentence-
final punctuation (*.”, ¢?’, and ‘!’) become separate chunks, rules for chunk boundaries between verb
(VB_) and noun (NN ) tokens, and chunk boundaries between possessive pronouns (PRP$, encoded
as ‘c_ PRPd’, e.g., ‘their’) and participles/gerunds (VBG, e.g., ‘falling’). Rules unique to Answers-
Students dataset include chunks containing ‘existential there’ (EX), adverb tokens (RB), gerunds (VBG),
and several rules for splits related to WH-determiners (WDT, e.g., ‘which’), WH-adverbs (WRB, e.g.,
‘how’), and prepositions (IN).

We see that learned hypotheses are interpretable, which is not the case in classical machine learning
techniques such as Neural Networks (NN), Conditional Random Fields (CRF), and Support Vector
Machines (SVM).

6.5 Discussion

We next discuss the potential impact of our approach in NLP and in other applications, outline the
strengths and weaknesses, and discuss reasons for several design choices we made.

Impact and Applicability ILP is applicable to many problems of traditional machine learning, but
usually only applicable for small datasets. Our addition of pruning enables learning from larger datasets
at the cost of obtaining a more coarse-grained hypothesis and potentially suboptimal solutions.

The main advantage of ILP is interpretability and that it can achieve good results already with small
datasets. Interpretability of the learned rule-based hypothesis makes the learned hypothesis transparent
as opposed to black-box models of other approaches in the field such as Conditional Random Fields,
Neural Networks, or Support Vector Machines. These approaches are often purely statistical, operate on
big matrices of real numbers instead of logical rules, and are not interpretable. The disadvantage of ILP
is that it often does not achieve the predictive performance of purely statistical approaches because the
complexity of ILP learning limits the number of distinct features that can be used simultaneously.

Our approach allows finding suboptimal hypotheses which yield a higher prediction accuracy than
an optimal hypothesis trained on a smaller training set. Learning a better model from a larger dataset
is exactly what we would expect in machine learning. Before our improvement of XHAIL, obtaining any
hypothesis from larger datasets was impossible: the original XHAIL tool does not return any hypothesis
within several hours when learning from 500 examples.

Our chunking approach learns from a small portion of the full SemEval Training dataset, based
on only POS-tags, but it still achieves results close to the state-of-the-art. Additionally it provides an
interpretable model that allowed us to pinpoint non-uniform annotation practices in the three datasets of
the SemEval 2016 iSTS competition. These observations give direct evidence for differences in annotation
practice for three datasets with respect to punctuation and genitives, as well as differences in the content
of the datasets

Strengths and weaknesses Our additions of pruning and the usage of suboptimal answer sets make
ILP more robust because it permits learning from larger datasets and obtaining (potentially suboptimal)
solutions faster.

Our addition of a time budget and usage of suboptimal answer sets is a purely beneficial addition to
the XHAIL approach. If we disregard the additional benefits of pruning, i.e., if we disable pruning by
setting Pr=0, then within the same time budget, the same optimal solutions are to be found as if using
the original XHAIL approach. In addition, before finding the optimal solution, suboptimal hypotheses
are provided in an online manner, together with information about their distance from the optimal
solution.

The strength of pruning before the Induction phase is, that it permits learning from a bigger set of
examples, while still considering all examples in the dataset. A weakness of pruning is, that a hypothesis
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which fits perfectly to the data might not be found anymore, even if the mode bias could permit such a
perfect fit. In NLP applications this is not a big disadvantage, because noise usually prevents a perfect fit
anyways, and overfitting models is indeed often a problem. However, in other application domains such
as learning to interpret input data from user examples (Gulwani et all, [2015), a perfect fit to the input
data might be desired and required. Note that pruning examples to learn from inconsistent data as done
by Tang and Mooney (Tang and Mooney, 2001 is not necessary for our approach. Instead, non-covered
examples incur a cost that is optimised to be as small as possible.

Design decisions In our study, we use a simple mode bias containing only the current and next POS
tags, which is a deliberate choice to make results easier to compare. We performed experiments with
additional body atoms head/2 and rel/2 in the body mode bias, moreover with negation in the body
mode bias. However, these experiments yielded significantly larger hypotheses with only small increases
in accuracy. Therefore we here limit the analysis to the simple case and consider more complex mode
biases as future work. Note that the best state-of-the-art system (DTSim) is a CRF model solely based
on POS-tags, just as our hypothesis is only making use of POS-tags. By considering more than the
current and immediately succeeding POS tag, DTSim can achieve better results than we do.

The representation of examples is an important part of our chunking case as described in Section
We define predicate goodchunk with rules that consider presence and absence of splits for each chunk. We
make use of the power of NAF in these rules. We also experimented with an example representation that
just gave all desired splits as #example split(X) and all undesired splits as #example not split(Y).
This representation contains an imbalance in the split versus not split class, moreover, chunks are not
represented as a concept that can be optimised in the inductive search for the best hypothesis. Hence,
it is not surprising that this simpler representation of examples gave drastically worse scores, and we do
not report any of these results in detail.

7 Conclusion and Future Work

Inductive Logic Programming combines logic programming and machine learning, and it provides inter-
pretable models, i.e., logical hypotheses, which are learned from data. ILP has been applied to a variety
of NLP and other problems such as parsing (Tang and Mooney, 2001; |Zelle and Mooney, [1996), auto-
matic construction of biological knowledge bases from scientific abstracts (Craven and Kumlier, 1999),
automatic scientific discovery (King et all, [2004), and in Microsoft Excel |Gulwani et all (2015) where
users can specify data extraction rules using examples. Therefore, ILP research has the potential for
being used in a wide range of applications.

In this work, we explored the usage of ILP for the NLP task of chunking and extend the XHAIL ILP
solver to increase its scalability and applicability for this task. Results indicate that ILP is competitive to
state-of-the-art ML techniques for this task and that we successfully extended XHAIL to allow learning
from larger datasets than previously possible. Learning a hypothesis using ILP has the advantage of an
interpretable representation of the learned knowledge, such that we know exactly which rule has been
learned by the program and how it affects our NLP task. In this study, we also gain insights about the
differences and common points of datasets that we learned a hypothesis from. Moreover, ILP permits
learning from small training sets where techniques such as Neural Networks fail to provide good results.

As a first contribution to the ILP tool XHAIL we have upgraded the software so that it uses the newest
solver technology, and that this technology is used in a best-effort manner that can utilise suboptimal
search results. This is effective in practice, because finding the optimal solution can be disproportionately
more difficult than finding a solution close to the optimum. Moreover, the ASP technique we use here
provides a clear information about the degree of suboptimality. During our experiments, a new version of
Clingo was published which contains most techniques in WASP (except for core shrinking). We decided
to continue using WASP for this study because we saw that core shrinking is also beneficial to search.
Extending XHAIL to use Clingo in a best-effort manner is quite straight-forward.

As a second contribution to XHAIL we have added a pruning parameter to the algorithm that
allows fine-tuning the search space for hypotheses by filtering out rule candidates that are supported
by fewer examples than other rules. This addition is a novel contribution to the algorithm, which leads
to significant improvements in efficiency, and increases the number of hypotheses that are found in a
given time budget. While pruning makes the method incomplete, it does not reduce expressivity. The
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hypotheses and background knowledge may still contain unrestricted Negation as Failure. Pruning in
our work is similar to the concept of the regularisation in ML and is there to prevent overfitting in
the hypothesis generation. Pruning enables the learning of logical hypotheses with dataset sizes that
were not feasible before. We experimentally observed a trade-off between finding an optimal hypothesis
that considers all potential rules on one hand, and finding a suboptimal hypothesis that is based on
rules that are supported by few examples. Therefore the pruning parameter has to be adjusted on an
application-by-application basis.

Our work has focused on providing comparable results to ML techniques and we have not utilised the
full power of ILP with NAF in rule bodies and predicate invention. As future work, we plan to extend
the predicates usable in hypotheses to provide a more detailed representation of the NLP task, moreover
we plan to enrich the background knowledge to aid ILP in learning a better hypothesis with a deeper
structure representing the boundaries of chunks.

We provide the modified XHAIL system in a public repository fork (Bragaglia and Schiiller, [2016).
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3 0.0£0.0 65.9+5.9 66.6£3.4 69.7+1.7 63.0+2.9 65.1£15.6 64.7+£0.9  68.5+0.3 61.6+£0.5

500 0 31954.44£7057.7 39.4+18.1 50.9£9.8 34.8+18.7 35.7£14.0 39.2+12.7 53.24+8.0 384+14.1 38.9+11.7
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Table 4: Experimental Results for Headlines Dataset, where * indicates statistical significance (p < 0.05). Additionally, for Size = 500, the F1 scores for

all pruning values Pr > 1 are significantly better than Pr =0 (p < 0.05).
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Table 5: Experimental Results for Images Dataset, where * indicates statistical significance (p < 0.05). Additionally, for Size = 500, the F1 scores for all
pruning values Pr > 0 are significantly better than Pr =0 (p < 0.05).
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S1+S2 S1 S2
Size Pr So CVv T T
F1 P R F1 P R F1
100 0 93.24+22.6 66.1+£12.9 69.3+1.5 63.2+3.2 61.0+2.6 89.3+3.0 80.1+£0.7 80.3+1.7
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Table 6: Experimental Results for Answers-Students Dataset, where * indicates statistical significance (p < 0.05). Additionally, for Size = 500, the F1

scores for all pruning values Pr > 0 are significantly better than Pr =0 (p < 0.05).
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