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Abstract

Purpose—To assess the impact of varying magnetic resonance imaging (MRI) scanner 

parameters on the extraction of algorithmic features in breast MRI radiomics studies.

Methods—In this retrospective study, breast imaging data for 272 patients were analyzed with 

magnetic resonance (MR) images. From the MR images, we assembled and implemented 529 

algorithmic features of breast tumors and fibrograndular tissue (FGT). We divided the features into 

10 groups based on the type of data used for the feature extraction and the nature of the extracted 

information. Three scanner parameters were considered: scanner manufacturer, scanner magnetic 

field strength, and slice thickness. We assessed the impact of each of the scanner parameters on 

each of the feature by testing whether the feature values are systematically diverse for different 

values of these scanner parameters. A two-sample t-test has been used to establish whether the 

impact of a scanner parameter on values of a feature is significant and receiver operating 

characteristics have been used for to establish the extent of that effect.

Results—On average, higher proportion (69% FGT versus 20% tumor) of FGT related features 

were affected by the three scanner parameters. Of all feature groups and scanner parameters, the 

feature group related to the variation in FGT enhancement was found to be the most sensitive to 

the scanner manufacturer (AUC = 0.81 ± 0.14).

Conclusions—Features involving calculations from FGT are particularly sensitive to the scanner 

parameters.
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Introduction

Breast MRI is an imaging modality used in complement to mammography and ultrasound 

for cancer diagnosis, staging, and gaining additional knowledge about the tumor biology 

(Brasic, Wisner, & Joe, 2013; Knuttel, Menezes, van den Bosch, Gilhuijs, & Peters, 2014; 

Sardanelli et al., 2004; Saslow et al., 2007). MR imaging of breasts also finds usage in 

screening in high risk patients (C. K. Kuhl et al., 2005; Warner et al., 2001). More recently, 

two research directions, radiomics (Lambin et al., 2012) and radiogenomics (Mazurowski, 

2015), focus on extracting a variety of algorithmic imaging features to assess the 

abnormalities in breast for improved diagnosis (Yang, Li, Zhang, Shao, & Zheng, 2015; 

Zheng et al., 2009), prediction of outcomes (Cho et al., 2014; Mahrooghy et al., 2015; 

Mazurowski et al., 2015), and correlation with tumor genomics (Ashraf et al., 2014; Grimm, 

Zhang, & Mazurowski, 2015; Mazurowski, Zhang, Grimm, Yoon, & Silber, 2014; Wan et 

al., 2016; Wang et al., 2015).

Breast MRI radiomics and radiogenomics features use dynamic contrast enhanced MR 

imaging sequences as the primary input for feature extraction. Acquisition of an MRI is a 

complex procedure and has several factors that affect the image’s appearance, quality and 

interpretation (Hendrick, 2007; C. K. Kuhl & Schild, 2000; Mann, Kuhl, Kinkel, & Boetes, 

2008; Rausch & Hendrick, 2006; Sawyer-Glover & Shellock, 2000). Moreover, breast MR 

image acquisition protocols vary significantly across different studies, and across and within 

institutions. As these factors affect the image, they are likely to also affect the features 

extracted from the images for radiomics and radiogenomics studies. Currently, the imaging 

features prevalent in the literature are extracted by different investigators from different 

datasets. This could affect generalizability of the presented results. Therefore, we believe 

that it is of high importance to systematically evaluate the effect of parameter scanners on 

extraction of features for radiomics and radiogenomics studies.

Assessing variability of radiomics features for imaging equipment or its different settings is 

an important topic and has been studied for non small cell lung cancers in different studies 

(Lu, Ehmke, Schwartz, & Zhao, 2016; Mackin et al., 2015; Zhao et al., 2016) and in breast 

MRI based lesion classification (Chen et al., 2010). Repeated CT scans of the same patient 

in the same day were used to assess reproducibility of a set of feature in (Lu et al., 2016; 

Zhao et al., 2016). The study in (Mackin et al., 2015) focused on the comparison of imaging 

features from patients and phantoms computed using 17 different scans of the phantom 

(used as ground truth). While in the first two studies, the datasets are dependent, the third 

study enables study of independent datasets by using the phantom. While repeated scans 

subject patients to discomfort, employing a phantom involves increase in cost developing the 

phantom. The study in (Chen et al., 2010) used on two independent datasets (generated 

using images from two different scanner manufacturers) to analyze the effect of training a 

model on with images from a single manufacturer and testing it on the dataset consisting 

images from a different manufacturer.

In this retrospective study, in the absence of repeated scans and phantoms, we assume there 

is no significant difference in the independent patient subgroups corresponding to different 
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values of a specific scanner parameter, and these subgroups belong to the same patient 

population. Hereafter, to conduct this study, we extracted a set of radiomic and 

radiogenomic imaging features that have been commonly used in literature, and that have 

exhibited significance in various aspects of breast cancer. We extended this set by more 

features defined in our laboratory to arrive at a comprehensive description of the tumor and 

its surrounding. These features were grouped according to their origin (for example, tumor 

or tissue) and the type of information they conveyed. Then, we investigated how our 

comprehensive set of breast MRI features and feature groups are affected by different 

scanner parameters.

Methods

Patient Population

In this institutional review board approved study, we used data for 272 patients at our 

institution. To arrive at this set, we collected a set of pre-operative MR images from 400 

consecutive female breast cancer patients at our institution from September 2007 to June 

2009. We excluded 109 patients for the following clinical reasons: (a) for having breast 

cancer or elective breast surgery (n=38) prior to MRI, (b) for undergoing breast cancer 

treatment at the time of the MRI (n=29), and (c) for missing pathology data (n=42). The 

remaining 291 patients were annotated by radiologists. After the annotation, 19 more cases 

were excluded for the following imaging related reasons: (a) missing MRI sequences 

required for feature computation (n = 3), (b) discordant numbers of slices in pre and post-

contrast sequences (n=1), (c) the features of the tumor could not be confidently described by 

a reader (n=11), (d) biopsied-lesion was not marked by reader (n=1), and (e) unsuccessful 

algorithmic extraction of the breast mask (n =3). Thus, 272 patients were used in the 

analysis. The clinicopathological characteristics for our patient cohort are provided in Table 

1.

Selection of Scanner Parameters

Acquisition of MRI uses several parameters for the optimal acquisition of the image (Huang 

et al., 2004; C. Kuhl, 2007). Though there are various scanner parameters that can influence 

the final image, the study in (Kumar et al., 2012) reports dose of contrast agent, method of 

dose administration, used pulse sequence, magnetic field strength and method of analysis as 

the principal factors that affect dynamic contrast enhanced MRI. As discussed in the next 

section, contrast agent dose, method of dose administration and the pulse sequence have not 

varied for patients included in the study.

In our study, we chose the following three scanner parameters: scanner manufacturer, 

magnetic field strength, and slice thickness. We chose scanner manufacturer as the first 

parameter as it captures the intrinsic differences in the acquisition devices and used 

protocols (Hendrick, 2007; Ikeda et al., 2001). The second parameter is magnetic field 

strength as it is shown to affect signal-to-noise ratio and spatial resolution (Bernstein, 

Huston, & Ward, 2006; Haacke, Brown, Thompson, & Venkatesan, 1999; Hendrick, 2007; 

C. K. Kuhl et al., 2006) in any MRI acquisition. The third selected parameter is the slice 

thickness, as it is typically the largest dimension of the voxel and captures the poorest spatial 
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resolution (Heywang-Köbrunner, Viehweg, Heinig, & Küchler, 1997). In terms of the 

scanner manufacturer, our cohort has two categories for magnetic field strength. The slice 

thickness has four different values and therefore, we bifurcated the set into two categories 

(high and low), based on the median value of the slice thickness for our cohort. We found 

that we have sufficient variability for these three parameters in our cohort. The distributions 

of patients for different scanner parameters are shown in Table 2. The MRI scanning 

protocol is presented in Table 3.

Imaging Data and Image Annotation

All of our patients had axial MRI acquired by the scanner in prone position. The following 

MRI sequences were available: a non-fat saturated T1-weighted sequence, a fat-saturated 

gradient echo T1-weighted pre-contrast sequence, typically four post-contrast T1-weighted 

sequences acquired after the intravenous administration of contrast agent using a weight 

based protocol of 0.2 mL/kg. The contrast agents used were: gadopentetate dimeglumine 

(Magnevist, Bayer Health Care, Berlin, Germany in 93.75% of our cohort), gadobenate 

dimeglumine (MultiHance, Bracco, Milan, Italy in 2.94 % of our cohort). This data was not 

available for 3.31% of the patients. The pulse sequence type of ‘gradient recalled (GR)’ was 

used for all patients.

The images were annotated by six fellowship-trained breast imagers (6–22 years of post-

fellowship experience) using an internally developed graphical user interface. In each 

imaging study, up to 5 mass or/and non-mass-enhancements were outlined by drawing a 

rectangle in a slice and then indicating the first and the last slices that had the lesion. For 

each patient, the annotated mass/ non-mass corresponding to the largest biopsied tumor was 

used to extract the features.

Image Segmentation

The tumor segmentation was accomplished using a fuzzy C-means based automatic 

segmentation algorithm (Bezdek, 1981) and the tumor mask was obtained. Two 

fibrograndular tissue masks were extracted based on two different MRI sequences. For the 

first mask, the N4-corrected (Tustison et al., 2010) T1-non-fat saturated (T1-NFS) image 

was used to : (i) segment the breast to obtain the breast mask (Mazurowski et al., 2015), (ii) 

segment the fibrograndular tissue using the breast mask, (iii) register the FGT mask to the 

DCE-MRI. For the second mask, first T1- fat saturated post contrast (PostCon) sequence 

was used to: (i) register the breast mask extracted from T1-NFS to PostCon, and (ii) segment 

the FGT. From both of these masks, any overlap with the tumor mask was removed. A set of 

four masks was extracted for each study: (1) breast mask (registered) (2) tumor mask, (3) 

FGT from T1-NFS, and (4) FGT from PostCon.

Selection and Organization of Imaging Features

To define a set of imaging features in DCE-MRI, we first reviewed the literature on the 

topic. We selected features that previously described the breast, tumor and fibrograndular 

tissue properties and were shown to have significance in terms of their prognostic abilities of 

outcomes or predictive ability for different genomic factors. Our categorization of these 

features can be found in Fig.1.

Saha et al. Page 4

Expert Syst Appl. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We have 10 categories of features that we believe to be depicting breast cancer MRI 

substantially with imaging features. At first, we divided the features into two sections that 

(a) use tumor/FGT masks only and (b) image intensity values along with the tumor/FGT 

masks. Using the breast and FGT masks only, breast and FGT volumetric features 

comprising of breast volume, FGT volume and FGT density features (Faermann, Sperber, 

Schneebaum, & Barsuk, 2014; Klifa et al., 2010) can be computed. Using the tumor mask 

only, general features of tumor shape and morphology (Czarnek, Clark, Peters, & 

Mazurowski, 2017; Georgiou, Mavroforakis, Dimitropoulos, Cavouras, & Theodoridis, 

2007; Giger, Vyborny, & Schmidt, 1994; Sutton et al., 2015) can be calculated.

Features which use both masks and intensity values are called enhancement and kinetic 

features as they use intensity values from a subset of post-contrast sequences and pre-

contrast sequence (if necessary). These features were further divided into 8 groups: tumor 

enhancement, FGT enhancement and combining tumor enhancement, tumor enhancement 

texture, FGT enhancement texture, tumor enhancement spatial heterogeneity, FGT 

enhancement variation and tumor enhancement variation.

Features of tumor enhancement include mean and volumetric features computed after 

grouping tumor voxels (Ashraf et al., 2014), and forming signal enhancement ratio (SER) 

and peak enhancement (PE) maps (Arasu et al., 2011). Similar features from FGT masks 

were also computed along with features related to background parenchymal enhancement 

(Wu et al., 2015) as FGT enhancement features. Features of combined tumor and FGT 

enhancements (Grimm et al., 2015; Mazurowski et al., 2015; Mazurowski et al., 2014) were 

also included. Different measures of dispersion were computed from grouped tumor/FGT 

voxels, and SER and PE maps of tumor/FGT to obtain features of tumor/FGT enhancement 

variation. In addition to these, different properties of the tumor uptake curves (Chen, Giger, 

Bick, & Newstead, 2006; Chen, Giger, Lan, & Bick, 2004; Gilhuijs, Giger, & Bick, 1998) 

were also included as tumor enhancement variation features. The 5 enhancement related 

feature groups, mentioned in the paragraph, do not use the spatial relationships of the voxels 

included in the tumor/FGT masks.

The feature groups that use spatial relationships of voxels are texture features from tumor 

and FGT, and features from spatial heterogeneity of tumor. Features of enhancement texture 

include commonly used texture features (Haralick, Shanmugam, & Dinstein, 1973) from the 

first post contrast (Bhooshan et al., 2010), PE, SER and washin rate maps. Texture features 

computed from Discrete Fourier Transform (DFT) (Zheng et al., 2009), Dynamic Local 

Binary Patterns (DLBP) and Dynamic Histogram of Oriented Gradients (DHOG) (Wan et 

al., 2016), and spatial variations of tumor enhancement were also included in our feature set. 

Heterogeneity of spatial enhancement was computed using global Morans’I (Song, Smith, 

Huang, Jeraj, & Fain, 2009) from different enhancement maps. We are including two new 

features of spatial heterogeneity: EnhancementClusterNeighborhoodSimilarity_Tumor and 

EnhancementClusterDiscontinuity_Tumor. To see the list of all features and the definitions 

of the new features, please refer to the “Supplemental Material A”.

Kinetic curves of breast lesions were affected by MRI scanner protocols as shown in (Jansen 

et al., 2009). In a previous study using MR scans of a phantom (Collewet, Strzelecki, & 
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Mariette, 2004), different MRI scanner protocols were shown to affect texture features. 

Therefore, some investigators have used intensity normalization prior to the extraction of 

texture features by excluding tumor voxels having intensity values beyond outside a 

predefined range (Karahaliou et al., 2010; Waugh et al., 2016). As our study aims to 

investigate the effect of scanner parameters on the feature groups discussed, we have not 

conducted any intensity normalization prior to the extraction of features.

Analysis of the Effect of Scanner Parameter Variation

After the feature extraction, we conducted our analyses that aim at determining whether 

different scanner parameters affect values of the features. In the absence of repeated scans 

(at the same time or with a short time gap) of a patient, we analyzed whether the feature 

values differed for patients given one value of a parameter (e.g. a GE scanner) than for 

another (e.g. a Siemens scanner). This is based on the assumption that the patients scanned 

by different scanners come from the same distributions of patients (e.g., that there is nothing 

inherently different about the population of patients scanned by GE scanners and Siemens 

scanners). The natural variation between patients is accounted for in our analysis. Please 

note that this methodology is similar to that used in drug trials where two different 

conditions (e.g. a drug and a placebo) are applied to two samples of patients to determine 

whether their eventual outcomes (e.g. survival of cancer patients) will differ under the two 

conditions. Please see our supplementary materials on analysis of the inherent characteristics 

of the samples dichotomized by the scanner parameters. The rationale and details of our 

analyses methods are provided below.

Two sample t-test—For each of the scanner parameters and each feature, we conducted a 

two-sample t-test to assess, if the feature’s values are significantly diverse for different 

scanner parameters. For a particular scanner parameter, we bifurcate the values of the feature 

under consideration in two different sets. Next, we evaluate with t-test, if these sets are from 

populations with equal means in terms of the feature value. It is desired that the two sample 

sets for different scanner parameters should belong to populations that have same means.

Receiver operating characteristics (ROC)—ROC analysis is popularly conducted for 

the evaluation of medical diagnostic systems (Akobeng, 2007). While that is a typical use of 

ROC and the area under the ROC (AUC), it can also be used to assess a correlation of a 

binary variable with a continuous one or similarly to assess an impact of a binary variable 

(such as a scanner manufacturer) on a continuous variable (such as an MRI feature). The 

latter is the way that we use the ROC analysis. In this interpretation, an AUC value of 0.5 

signifies that there is no relationship between a particular scanner parameter and a particular 

feature and AUC values notably above 0.5 indicate that the distribution of the feature values 

is different for one value of a scanner parameter (e.g. a scanner manufacturer) than for 

another value of that scanner parameter implying an effect of the scanner parameter on 

feature values. Please note that in our study we are not evaluating how predictive the MRI 

features are of diagnosis or prognosis of a patient.

Specifically, we calculated the area under the receiver operating characteristic (Bradley, 

1997) curves for every feature and scanner parameter to assess the ability of the feature to 
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predict the value of the scanner parameter. A high value of this association for a feature is 

undesirable in our analysis as we need the feature values to be independent of the scanner 

parameter value.

Pearson’s linear correlation coefficient—In an additional analysis, to assess how the 

correlation of feature groups are affected by different values of the scanner parameters, we 

computed the Pearson’s linear correlation coefficient between each pair of features keeping 

the value of one of the scanner parameters constant at a time. Since we have six values from 

all of the scanner parameters, we have six sets of correlations. From each set, the within-

group correlation was computed as the average correlation of all features belonging to the 

same group and the between-group correlation was the average correlation from all of the 

features belonging to the corresponding pair of groups. It is desirable that these correlations 

remain similar when computed for different values of scanner parameters.

Results

The effect of different scanner parameters on each of the feature groups is shown in Fig. 2. 

Specifically, this figure shows the proportion of the features in each group that proved to be 

significantly associated (at the level of significance of p<0.05, please see Supplementary 

Material B for the p-values obtained from the t-tests for individual features) with scanner 

parameters. We found that high proportions of features are affected by the scanner 

manufacturer (58.22%) and slice thickness (50.47%). A lower proportion (38.94%) of the 

features are affected by the magnetic field strength. In our study, 30.62% of the features are 

affected by all of the three scanner parameters. Only 3.7% of these features are tumor-

related. The proportion of FGT related features is 56.14% in this study and they are more 

affected by the scanner parameters.

In Fig. 3, we presented the Area Under Curve (AUC) of every feature and arranged them 

group-wise. The AUC values are sorted in ascending order from top to bottom. This figure 

helps us to observe the group-wise traits of features. For every group, the highest predictive 

value is obtained for scanner manufacturer. For magnetic field strengths and slice thickness, 

the predictive ability of the features decreases. Thus, the effect of scanner manufacturer is 

more prevalent in the features compared to the effect of magnetic field strength and slice 

thickness.

For each of the 529 features and 3 scanner parameters, the AUC for each of the features 

alongside with the value of the test for association between a scanner parameter and the 

feature values are included in the “Supplemental Material B”.

Figure 4 shows the correlation of features within and between-groups. To discuss the 

correlation values shown in this figure, we are considering correlation values greater than 

0.6 to be high and those below 0.6 to be low. For the scanner manufacturer, the change in 

correlation for features belonging to the same group (within group correlation) can be 

observed by comparing the anti-diagonal elements of figures 4(a) and 4(b). The maximum 

change of 45% in within group correlation can be observed for the group FGT enhancement 

variation. However, the correlation value remains low. The correlation changes from low to 
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high for the feature groups Combining Tumor and FGT Features and Tumor Enhancement 

Spatial Heterogeneity. The correlation values between groups doesn’t change from low to 

high or vice versa. For change in magnetic field strength values (figures 4(c) and 4(d)), none 

of the within or between group correlation values change from low to high or vice-versa. For 

change in slice thickness (figures 4(e) and 4(f)), within group correlation values for features 

related to groups Tumor Size and Morphology and Combining Tumor and FGT Features 

change from low to high. For all the scanner parameters, the only a few within group 

correlations are high (>0.6). Also in 92% of the comparisons, features belonging to one 

group are more correlated with each other than with features from other groups.

Discussion

We presented a study that assesses the effect of selected scanner parameters on an extensive 

set of features computed from breast cancer MRI. We demonstrated that there is a significant 

effect of scanner parameters on the values of the extracted features. Specifically, for different 

scanner manufacturers, magnetic field strength and slice thicknesses, a high proportion of 

FGT related features show high sensitivity to scanner parameters (i.e. high variability when 

the scanner parameter changes). The tumor related features show lower sensitivity to the 

scanner manufacturer. The features related to both tumor and FGT are sensitive mostly to 

scanner manufacturer and slice thickness. However, their sensitivity to magnetic field is 

lower.

This finding is not surprising since FGT features cover more imaging volume than tumor 

and hence they are more likely to capture changes brought about by the scanning 

parameters. The features related to the combined usage of tumor masks and tissue masks are 

also affected by scanner manufacturers and varying slice thicknesses. However, features 

specifically related to tumor find more usage in clinical context. Hence, their lesser 

dependence on scanner parameters is a positive trait that we observe. This is consistent with 

the study (Chen et al., 2010) where the robustness of tumor morphological and kinetic 

features across scanner manufacturers was reported. This conveys that the tumor related 

features are representative more of the abnormality than that of the scanner used to acquire 

the image of the abnormality. This type of effect has been observed earlier in a scanner 

parameter related study for other disease (Stonnington et al., 2008).

Our study had some limitations. The cases were annotated by six breast imagers and this 

generates reader variability. However, the cases were randomly assigned to the readers. Also, 

with one reader, we would have had individual bias which is not present in this study. We 

have focused on three important scanner parameters for this study. It is likely that other 

scanner related parameters also introduce variability in the features and they are worthy of 

studying. However, that study will demand a patient cohort with significant variation in the 

selected scanner parameters. The scanner parameters were divided into two categories as per 

the available data. In future, this study can be extended to multiple categories of values for 

different scanner parameters across multiple institutions for stronger conclusions. As breast 

cancer radiomics and radiogenomics is expanding with the addition of new features, this 

type of study needs updating with the progression of time.
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This study is of high significance. It demonstrates that the scanner parameters, which vary 

significantly between institutions and even within an institution, have a significant effect on 

the extracted radiomics/radiogenomic features from breast. This effect should be considered 

when interpreting radiomics and radiogenomics studies and careful measures should be 

taken to address the issue. Our results further underline the importance of validating 

radiomics and radiogenomics studies in large heterogeneous cohorts, as these validation 

studies can assess the generalizability of different features. Finally, since we included the 

measured impact of different scanner parameters on extraction of each of the 529 features 

and included all of them in the supporting information, this study could serve as a guide for 

selection of robust features in radiomics and radiogenomics studies in future.

Conclusions

We experimentally assessed the susceptibility of breast cancer MRI features to three types of 

scanner-related parameters. We found that features related to the fibrograndular tissue of the 

breast are more sensitive to scanner parameters than the features related to tumor only. We 

reported the sensitivity of the each of the examined features to each of the scanner 

parameters as a guide for researchers developing radiomics-based tools in breast cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We studied the effect of different MRI scanner parameters on breast 

radiomics.

• We extracted 529 radiomic features from 272 breast cancer patients in our 

cohort.

• The radiomic features were categorized into relevant groups.

• Scanner parameters affected tissue radiomics more compared to tumor 

radiomics.
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Figure 1. 
The grouping of the features used in the analysis
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Figure 2. 
Effect of different scanner parameters in feature groups in terms of proportion of significant 

features
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Figure 3. 
Area under Curves for each group in terms of three scanner parameters
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Figure 4. 
Average Correlation within and between Feature Groups for (a) GE scanner (b) Siemens 

Scanner (c) 1.5 T magnetic field strength (d) 3T magnetic field strength (e) high slice 

thickness (f) low slice thickness
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Table 1

Clinicopathological characteristics of patients in our cohort

Characteristics Pertinent Details Values for 272 patients

Age (years)
Median 53

Range 22–80

Race

White 191

Black 63

Asian 5

Native 3

Hispanic 2

Multi-racial 1

Hawaiian 1

Not Reported 6

Menopausal Status

Pre 111

Post 159

Not Reported 2

Tumor Grade

Low 50

Intermediate 140

High 81

Not Reported 1
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Table 2

Distribution of patients for different values of three scanner parameters

Scanner
Parameter Technical Details Other Pertinent Details Patient

Count

Manufacturer

GE Healthcare, Little Chalfont, UK
Model: Signa HDx 210

Model: Signa HDxt 5

Siemens, Munich, Germany
Model: MAGNETOM Avanto 33

Model: MAGNETOM TrioTim 24

Magnetic Field Strength

1.5T

Signa HDxt, GE Healthcare, Little Chalfont, UK 5

Signa HDx, GE Healthcare, Little Chalfont, UK 166

Avanto, Siemens, Munich, Germany 33

3.0T
Signa HDx, GE Healthcare, Little Chalfont, UK 44

MAGNETOM Trio Tim, Siemens, Munich, Germany 24

Slice Thickness (mm)

1.1 - 70

1.2 - 21

1.3 - 1

2 - 180
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