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Abstract 

Numerous organizations and companies rely upon business failure prediction to assess and minimize 

the risk of initiating business relationships with partners, clients, debtors or suppliers. Advances in 

research on business failure prediction have been largely dominated by algorithmic development and 

comparisons led by a focus on improvements in model accuracy. In this context, ensemble learning has 

recently emerged as a class of particularly well-performing methods, albeit often at the expense of 

increased model complexity. However, in practice, model choice is rarely based on predictive 

performance alone. Models should be comprehensible and justifiable to assess their compliance with 

common sense and business logic, and guarantee their acceptance throughout the organization. A 

promising ensemble classification algorithm that has been shown to reconcile performance and 

comprehensibility are rule ensembles. In this study, an extension entitled spline-rule ensembles is 

introduced and validated in the domain of business failure prediction. Spline-rule ensemble complement 

rules and linear terms found in conventional rule ensembles with smooth functions with the aim of better 

accommodating nonlinear simple effects of individual features on business failure. Experiments on a 

large selection of 21 datasets of European companies in various sectors and countries (i) demonstrate 

superior predictive performance of spline-rule ensembles over a set of well-established yet powerful 

benchmark methods, (ii) show the superiority of spline-rule ensembles over conventional rule ensembles 

and thus demonstrate the value of the incorporation of smoothing splines, (iii) investigate the impact of 

alternative term regularization procedures and (iv) illustrate the comprehensibility of the resulting models 

through a case study. In particular, the ability of the technique to reveal the extent and the way in which 

predictors impact business failure, and if and how variables interact, are exemplified.  
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1 Introduction 

The global financial crisis of 2007-2008 and the subsequent economic recession initiated a wave of 

companies in financial distress. In the European Union alone, in 2009, over 178,000 companies became 

insolvent, an increase of 19% in comparison to 2008. While in the years following no significant change 

could be observed, figures for 2012 increased by another 9.1 percent in comparison to 2011 

(Creditreform, 2014). Company insolvency or bankruptcy affects and thus represents a risk to all 

stakeholders involved, ranging from capital investors, creditors, suppliers, tax collection agencies, 

employees to customers.  

In general, companies increasingly rely upon principles of enterprise risk management (ERM) to face 

and manage risks. ERM prescribes the development and execution of integrated strategies and processes 

to anticipate, face and overcome risks (Wu, Chen, & Olson, 2014; Wu & Olson, 2010; Wu, Olson, & 

Dolgui, 2015). ERM subdomains include investment risk evaluation (e.g. Wu, Zheng, & Olson, 2014), 

accounts receivable risk management (e.g. Baesens, et al., 2003; Lessmann, Baesens, Seow, & Thomas, 

2015; Wu, Olson, & Luo, 2014) and vendor selection (e.g. Wu & Olson, 2010; Wu, Zhang, Wu, & Olson, 

2010). Risk management often relies upon business intelligence nowadays, and more specifically, data 

mining (Wu, Chen, et al., 2014). In this context, this paper focuses on models for business failure 

prediction (BFP) that are widely used as early warning systems for financial distress or bankruptcy in 

partnering companies.  
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A BFP model generalizes the relation between business failure and a range of variables characterizing 

the company, its activities and performance in the past. Consider the following notation. T is a data set 

containing historical data, denoted the training data set, with information on n companies, described by a 

set of p predictive features    to    and the binary outcome variable y that indicates whether a business 

failed (y=1) or survived (y=0). A BFP model is any function      that maps a given instance x to a 

conditional bankruptcy probability. Once estimated, the model allows the analyst to score, i.e., to produce 

estimations of future business failure for a new set of companies based upon their current profile and 

performance. 

Since the 1960s, business failure prediction is an active domain of research. Over the years, different 

techniques for finding      have been introduced and compared. Globally, a distinction is often made 

between statistical and data mining techniques (Ravi Kumar & Ravi, 2007). The basis of the domain and 

the first category of techniques is formed by (Beaver, 1966) and (Altman, 1968). While both studies 

depend upon the usage of financial ratio’s, the latter one was the first to deploy a multivariate statistical 

technique, linear discriminant analysis (LDA), to discriminate between failing and non-failing companies. 

Martin (1977) and Ohlson (1980) experimented with the usage of logistic regression for business failure 

prediction. Until today, both LDA and logistic regression remain popular candidate algorithms in industry 

to develop models for BFP and have served as benchmark algorithms in many comparative studies. Other 

statistical methods include probit regression (Grablowsky & Talley, 1981) and linear probability models 

(Meyer & Pifer, 1970). 
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By far, the majority of methodological contributions in the business failure prediction literature has 

focused upon methods originating from the data mining and machine learning literature. In this category 

one can cite artificial neural networks (Atiya, 2001; Pendharkar, 2005), decision trees (Frydman, Altman, 

& Kao, 1985), support vector machines (Li & Sun, 2011a), Bayesian networks (Sun & Shenoy, 2007), 

rough sets (McKee, 2003), k-nearest neighbors (Park & Han, 2002), association rules (Janssens, Wets, 

Brijs, & Vanhoof, 2005) and finally, ensemble learners (Li & Sun, 2011b). A comprehensive review of 

statistical and data mining techniques used for business failure prediction can be found in Ravi Kumar 

and Ravi (2007). 

A special subcategory of data mining techniques which has received a growing amount of attention in 

BFP literature are ensemble learners. In recent years, the practice of combining predictions from single 

algorithms has become a popular topic in theoretical and applied research (Rodríguez, Kuncheva, & 

Alonso, 2006; van Wezel & Potharst, 2007; Xu, Krzyzak, & Suen, 1992). The predictions of ensemble 

learners are taken as combinations of the individual ensemble member predictions. The main factor 

defining the popularity of ensemble algorithms is their high level of predictive accuracy that has been 

observed within multiple comparative studies in various domains and applications (e.g. Bauer & Kohavi, 

1999; Dietterich, 2000). An ensemble of individual prediction models is likely to generate better and 

more robust predictions than a single algorithm if accuracy and diversity are simultaneously present 

amongst the ensemble members. Several studies have demonstrated the strong performance of ensemble 

learners in the field of BFP (e.g. Verikas, Kalsyte, Bacauskiene, & Gelzinis, 2010). 
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Alternatively, techniques used for business failure prediction can be classified according to their ability 

to provide insight into the relationship between predictive features and business failure. It is often noted 

that in BFP literature predictive performance dominates as an evaluation criterion in benchmark studies, 

accuracy should not improve at the expense of model comprehensibility (Wu, 2010). As noted in Olson, 

Delen and Meng (2012), the transparency of data mining models for BFP is a highly desirable feature as 

(i) stakeholders share a need to understand the relative influence of financial and company-specific 

indicators on business failure, and (ii) increased comprehensibility makes models more transportable; i.e. 

easily applicable to new data sets or alternative business settings. While ensemble learners have received 

critical acclaim for their ability to generate accurate predictions, the practice of combining models 

introduces a level of complexity making such models difficult to understand. Similar to methods such as 

artificial neural networks, ensemble classifiers are sometimes criticized for their black box nature. Very 

few studies in BFP have evaluated ensemble methods in function of comprehensibility. 

A promising technique designed to combine the merits of ensemble learners with a high degree of 

interpretability are rule ensembles (Friedman & Popescu, 2008). Similar to many ensemble learners, rule 

ensembles first generate a set of decision trees. However, in a subsequent phase, the technique 

decomposes trees into rules and only retains a compact set of rules derived from these trees through the 

application of regularized lasso regression. To account better for linear effects, the original features are 

also added as linear terms to the lasso regression. The simple structure of resulting models allows 

straightforward model interpretation, and the rule ensemble algorithm incorporates a number of additional 

instruments to gain insight into the model’s functioning.  

This study evaluates rule ensembles for business failure prediction and delivers a methodological 

contribution as a novel extension of the rule ensemble framework is proposed, entitled spline-rule 

ensembles (SRE). Spline-rule ensembles complement rules and linear terms by smooth terms (single-term 

penalized cubic regression splines) in order to better accommodate univariate, nonlinear relationships 

between the probability of bankruptcy, and individual explanatory variables. 
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The contributions of this paper are the following: (i) spline-rule ensembles are introduced to the field of 

BFP as a novel model category reconciling strong accuracy and advanced model interpretability, (ii) 

spline-rule ensembles are proposed as a natural extension of generic rule ensembles whereby smooth 

functions are added to rules and linear terms; (iii) experiments are conducted on a large set of 21 datasets 

containing information for European companies in various sectors to compare spline-rule ensemble to 

conventional rule ensembles and a set of benchmark algorithms in terms of several criteria of predictive 

performance, and (iv) through a case study, the comprehensibility of spline-rule ensembles is 

demonstrated. 

The remainder of this article is structured as follows. In Section 2, an overview is given of related 

literature. In particular, the usage of ensemble learning in the domain of business failure prediction is 

addressed. Then, rule ensembles are explained in detail. In Section 3, spline-rule ensembles and their 

training process are introduced. Section 4 presents the experimental setup of this study whilst in Section 

5, the results are described. This section first addresses the results of a benchmark study in terms of 

predictive performance (Section 5.1) and then presents the various deliverables of the rule ensemble 

technique that contribute to model insight (Section 5.2). A final Section concludes the study and 

addresses limitations to the study and directions for future research. 
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2 Related Literature 

2.1 Ensemble learning for business failure prediction 

Ensemble learners have become a popular algorithm choice in the field of business failure prediction 

over the past 10 years. The rationale of ensemble learning is straightforward:  predictions of ensemble 

learners are taken as combinations of probability or class predictions delivered by multiple ensemble 

members or base learners (Kuncheva, 2004). An important factor explaining the popularity of ensemble 

algorithms at present is the strong predictive performance that is observed within multiple comparative 

studies (Sun, Li, Huang, & He, 2014). An ensemble of individual prediction models is likely to generate 

better and more robust predictions than a single algorithm when both accuracy and diversity are present 

amongst the ensemble members. 

Applications of ensemble learning in BFP can be categorized according to whether the ensemble 

learner consists of ensemble members that belong to various algorithm classes, or whether it consists of 

multiple replications of a single algorithm. In the majority of ensemble learning applications in BFP 

literature, models originating from multiple algorithm classes are combined and the resulting ensemble 

learners are thus called hybrid ensembles. Early applications of hybrid ensembles in business failure 

prediction include an ensemble combining a multilayer perceptron, case-based reasoning and discriminant 

analyses through weighted averaging (Jo & Han, 1996) and the hybrid classifier proposed in Olmeda and 

Fernández (1997) consisting of a multilayer perceptron, linear discriminant analysis, logistic regression, 

MARS and a C4.5 decision tree. Other, more recent hybrid ensemble approaches can be found in Ravi, 

Kurniawan, Thai, and Kumar (2008) and Sun and Li (2008). 
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Other applications involve homogeneous ensemble classifiers, whereby a single base learner algorithm 

is chosen and replicated multiple times to constitute an ensemble. In this category, two classic approaches 

are bagging (Breiman, 1996) and boosting (Freund & Schapire, 1997). In the former, an ensemble is 

constructed by training ensemble members on bootstrap samples of the training data set. In the latter, in 

an iterative process, the algorithm is forced to attribute higher importance to observations that were 

misclassified during earlier rounds, either by reweighing or by resampling the training data set. Bagging 

and AdaBoost have been by far the most extensively researched homogeneous ensemble classifiers in the 

domain of BFP (e.g. Alfaro, García, Gámez, & Elizondo, 2008; Cortes, Martinez, & Rubio, 2007; Sun, 

Jia, & Li, 2011; West, Dellana, & Qian, 2005). More recently, the strong performance of bagging and 

AdaBoost was confirmed and found similar to random forests, another well-known homogenous 

ensemble learning algorithm (Barboza, Kimura, & Altman, 2017). Finally, Zięba, Tomczak, & Tomczak 

(2016) introduce a novel method to the domain entitled extreme gradient boosting and demonstrate its 

superiority over a large set of benchmark algorithms in the context of business failure prediction in 

Poland. For a comprehensive reviews on the usage of ensemble learning in  the field of business failure 

prediction, see Verikas, et al. (2010) and Sun, et al. (2014). 

2.2 Rule Ensembles 

Rule ensembles (Friedman & Popescu, 2008) constitute a predictive method that combines principles 

of ensemble learning and semi- parametric regression. A rule ensemble derives simple rules from a 

training data set and then combines them linearly, as terms in an additive equation. The method belongs 

to the category of homogenous ensemble learners (Xie, Li, Ngai, & Ying, 2009).  
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Rule ensembles differ from other ensemble learning methods on three levels: (i) the members that 

constitute the ensemble, (ii) the combination rule used to combine individual predictions, and (iii) options 

for model interpretation. First, a rule ensemble is an ensemble of rules and linear terms. To come to this 

ensemble, the technique first generates a number of decision trees from the training data set T while 

subsequently, a library of a large number of rules is derived by, for every node within every tree (both 

interior and terminal), formulating the conditions that define the path down the tree to reach the node as a 

rule. Any rule       takes the form  

                       ) (1) 

i.e. a product of indicator functions whereby each indicator function         ) represents a node 

condition and thus resolves to 1 if the value    falls within the interval or set    . In other words, a rule 

resolves to 1 for companies for which all its conditions are true and to 0 otherwise. Note that the product 

function is limited to factors where the subset of values that define the condition is not equal to the entire 

value set   . Further, to enhance both accuracy and interpretability, the original variables             

are added to the set of rules as additional candidate base learners for the final ensemble. As such, the 

model is better able to capture potential linear relationships between variables and the odds of business 

failure. Specifically, a new intermediate training data set T’ is created by merging the rule set with the 

original training data set T. The final model is trained using T’ and takes the form 

                 
 
               

 
    (2) 

with q the total number of rules generated and functions        denoting winsorizations of the original 

variables, i.e., truncations of the variable values below and above the β
th
 and (1-β)

th
 percentiles (indicated 

by   
  and   

 ), respectively: 

               
         

      . (3) 



 

13 

 

Second, rule ensembles differ in terms of the combination rule used to combine member predictions. 

Whilst many ensemble algorithms apply basic methods such as majority voting or averaging, rule 

ensembles train a regression model to this end. Specifically, to find coefficients              and 

             for this combination function, a linear regularized lasso-regression is applied. The 

advantages over using heuristic combination methods are twofold. First, the regularization enforces 

model shrinkage. Typically, many rule parameters will be set to 0, so that a large library of rules and 

linear terms is reduced to a smaller subset that is more easily interpretable. This makes the model more 

generalizable, leading to more accurate predictions and a better understanding of the data generation 

process. Second, selected terms (rules or linear terms) obtain a coefficient indicating whether it 

contributes positively or negatively to a prediction, and to which extent. The regularized lasso regression 

takes the form 

     
 
 
      

 
 
   

 
      

    
 
 
      

 
 
                  

 
          

 
      

 
             

 
           

 
     

    (4) 

with λ denoting shrinkage parameter: larger values of λ will penalize the attribution of coefficient to 

less predictive rules or variables. As a result, many coefficients will be set to zero when the value of λ is 

increased.  

Third, the method implements a number of instruments that make model interpretation straightforward. 

Apart from rule and linear terms and term coefficients, these indicators include variable importance 

measures, interaction strengths and partial dependence functions. These are discussed and illustrated in 

detail in Section 5. 
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Several advantages motivate the adoption of rule ensembles in business failure prediction. First, the 

technique has demonstrated highly competitive predictive performance (Friedman & Popescu, 2008). 

Second, unlike other ensemble methods, the resulting rule ensemble model is very easy to interpret. 

Third, data pre-processing such as feature selection can be omitted while model post-processing such as 

pruning is not necessary. Fourth, rules ensembles can easily handle high-dimensional data both in terms 

of number of observations and number of features. 

3 Spline-Rule Ensembles 

Rule ensembles are very flexible and due to their nature they automatically detect and accommodate 

two-way and higher-order interaction terms (through the inclusion and selection of rules) as well as linear 

terms (through the inclusion of winsorized linear terms). Non-linear correlations between individual 

variables and the outcome variable can also emerge in the model, but only in an indirect fashion, through 

an interplay of multiple rules.  

Spline-rule ensembles are proposed in this study as a natural extension to conventional rule ensembles. 

Other than rules and linear terms, spline-rule ensembles introduce smooth functions of individual 

continuous variables as a third term category as a more direct strategy to accommodate non-linear effects 

in the model. In particular, penalized cubic regression splines (Wood, 2006) are chosen for smooth 

functions. Penalized cubic regression splines model the functional relation between the logit of the failure 

probability on a variable x by defining a set of u knots            on the range of the variable, and 

estimating a function that is built up of cubic polynomials between every pair of adjacent knots. Hence, 

     takes the form 

               
     

                          

with         
              

           
  (5) 

A solution can be found by minimizing 

             
  

                 (6) 
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where      is the cubic regression spline function and ρ is the smoothing parameter, a penalty term that 

is required to penalizes excessive curvature in the function. This study suggests an automated 

optimization of smoothness (i.e., parameter ρ) based upon the generalized cross-validation (GCV) 

criterion (Craven & Wahba, 1979; Wood, 2004).  

Given the addition of smooth functions, the regularized regression in spline-rule ensembles takes the 

form 

 

     
 
 
      

 
 
     

 
 
   

 
      

    
 
 
      

 
 
     

 
 
 

                 
 
          

 
      

 
                

 
    

             
 
           

 
           

 
          

  
         

  
         

  
    

 
    

 with     
  

     
  and       (7) 

 

Note that the regularized regression represented in equation (7) is the elastic net proposed by Zou and 

Hastie (2005) which can be seen as a generalization of ridge regression and lasso-regularized regression 

that combines the strengths and avoids weaknesses of both methods. The adoption of a more flexible form 

of regularization in spline-rule ensembles is inspired by the secondary objective of this study to 

experimentally compare alternative methods. Unlike ridge regression, lasso regression results in variable 

selection rather than mere parameter shrinkage, but has been found to underperform when 

multicollinearity occurs and is characterized by an undesirable degree of randomness when selecting one 

variable out of a group of correlating ones. Moreover, lasso regression does not perform well when there 

are more variables than observations which is a potential problem in rule ensembles since they prescribe 

term selection from a large library of rules and terms. Note that for    , equation 4 resolves to ridge 

regression and to lasso regression when       

Figure 1 provides a schematic representation of the training process of spline-rule ensemble models. 
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Figure 1: Schematic representation of spline-rule ensemble model training process. 

As can be seen in Figure 1, the training process takes a data set as input and involves 3 subsequent 

phases: (i) training of classification trees, (ii) rule set derivation, (iii) evolved training data set creation 

and (iv) regularized regression. The output of the training process is a rule ensemble model of which the 

exact form depends upon model shrinkage, i.e. the terms selected through the regularized regression.  
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Figure 2 illustrates the training process of the spline-rule ensemble algorithm further by means of an 

example for a simplified data set containing 5 continuous variables (V1-V5).  The figure shows how the 

term selection matrix is populated with rules, splines and linear terms. It also illustrates how rules are 

derived from decision trees. Linear terms are simple transformations of the input variables and are 

graphically represented by their class-conditional density curves. The final model has, through lasso 

regularization, out of a total of 26 (16 rules, 5 splines and 5 linear terms) terms, selected 5 (4 rules and 

one smooth term). Note that this example simultaneously illustrates the comprehensible nature of the 

model. 
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Figure 2: Illustration of the spline-rule ensemble training algorithm through application on a simplified data set.  
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4 Experimental Setup 

4.1 Data Description 

To assess and benchmark the accuracy and interpretability of spline-rule ensembles, experiments are set 

up using 21 datasets provided by two global data aggregators. These datasets contain information for a 

large selection of Belgian, French and Italian companies from various industries. Table 1 contains 

detailed information on the data sets considered in this study.  

 

Data 

set Country SIC Bin SIC Bin Definition 

Nbr. of 

Companies 

Nbr. of 

Features Failure Rate 

ds1 Belgium 15.000.000 <= SIC 8 < 18.000.000 Construction industries 9,976 108 4.54% 

ds2 Belgium 20.000.000 <= SIC 8 < 40.000.000 Manufacturing 10,430 108 2.73% 

ds3 Belgium 40.000.000 <= SIC 8  < 50.000.000 
Transportation, 

communications and utilities 
5,339 108 4.57% 

ds4 Belgium 50.000.000 <= SIC 8 < 52.000.000 Wholesale trade 15,896 108 3.04% 

ds5 Belgium 52.000.000 <= SIC 8 < 60.000.000 Retail trade 13,626 108 5.19% 

ds6 Belgium 60.000.000 <= SIC 8 < 68.000.000 
Finance, insurance and real 

estate 
10,055 108 1.64% 

ds7 Belgium 70.000.000 <= SIC 8 < 89.000.000 Service industries 20,364 108 2.73% 

ds8 France 15.000.000 <= SIC 8 < 18.000.000 Construction industries 5,678 19 33.74% 

ds9 France 20.000.000 <= SIC 8 < 40.000.000 Manufacturing 3,266 19 21.68% 

ds10 France 40.000.000 <= SIC 8  < 50.000.000 
Transportation, 

communications and utilities 
1,787 19 16.96% 

ds11 France 50.000.000 <= SIC 8 < 52.000.000 Wholesale trade 3,337 19 17.44% 

ds12 France 52.000.000 <= SIC 8 < 60.000.000 Retail trade 6,450 19 23.55% 

ds13 France 60.000.000 <= SIC 8 < 68.000.000 
Finance, insurance and real 

estate 
2,874 19 6.51% 

ds14 France 70.000.000 <= SIC 8 < 89.000.000 Service industries 8,576 19 15.24% 

ds15 Italy 15.000.000 <= SIC 8 < 18.000.000 Construction industries 3,801 19 14.29% 

ds16 Italy 20.000.000 <= SIC 8 < 40.000.000 Manufacturing 5,093 19 12.84% 

ds17 Italy 40.000.000 <= SIC 8  < 50.000.000 
Transportation, 

communications and utilities 
1,837 19 10.02% 

ds18 Italy 50.000.000 <= SIC 8 < 52.000.000 Wholesale trade 3,671 19 12.45% 

ds19 Italy 52.000.000 <= SIC 8 < 60.000.000 Retail trade 3,309 19 9.34% 

ds20 Italy 60.000.000 <= SIC 8 < 68.000.000 
Finance, insurance and real 

estate 
3,732 19 4.02% 

ds21 Italy 70.000.000 <= SIC 8 < 89.000.000 Service industries 6,579 19 5.46% 

Table 1: Data set characteristics 
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Note that companies are assigned to industry categories based upon their 8-digit Standard Industry 

Code (SIC). As such, this study follows the recommendation made by several authors to train models for 

predicting business failure using single-industry samples (Brigham & Gapenski, 1994; Dimitras, Zanakis, 

& Zopounidis, 1996; McGurr & DeVaney, 1998). Numerous studies have focused on sector-specific BFP 

(e.g. Doumpos, Andriosopoulos, Galariotis, Makridou, & Zopounidis, 2017; Lanine & Vennet, 2006) 

whereas the inclusion of multiple data sets from several countries enhances the generalizability of results. 

The data sets consist of companies with an obligation to publish consolidated annual accounts and 

contains information that describes their history. This information is used to model the dependent 

variable, a binary business failure indicator (1=business failure; 0= survival) that was measured over an 

observation time horizon of 12 months as shown in Figure 3. Note that the timeline deviates for the data 

sets describing Belgian companies versus the ones describing French and Italian companies. 

(a) (b) 

  

Figure 3: Data collection time lines. Figure (a) applies to data for Belgian companies (ds1 – ds7) while figure (b) applies to 

data for French and Italian companies (ds8-ds21) 
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To predict business failure, several independent variables were collected and created. For the Belgian 

data sets, these variables can be categorized into three categories: (i) financial ratios, (ii) payment 

promptness indicators and (iii) firmographics. For the French and Italian data sets, variables are limited to 

financial ratios. Financial ratios and variables related to cash flow have since long been the most 

important category of predictors used in business failure prediction (McGurr & DeVaney, 1998). The 

ratios considered in this study can be classified further into liquidity ratios (1a), long-term solvency ratios 

(1b), asset management ratios (1c) and profitability ratios (1d), analogous to (Ross, Westerfield, Jordan, 

& Roberts, 2002). For the Belgian datasets (ds1-ds7), two additional variable categories have been 

included: promptness of payment behavior, i.e. how well and timely a company pays its amounts due to 

the tax authority, social security authority and selected suppliers, and firmographics; a category that 

groups a number of features describing the company (e.g. company age, industry category, legal form and 

number of employees) and the company directors.  

Tables 2 and 3 provide an overview of all features included in the data sets. 
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Variable category Variable name Description 

1. Financial ratios     

1a. Liquidity ratios Cash ratio t-i Cash ratio: cash and cash equivalent assets / total liabilities, at time t-i 

  Current ratio t-i Current ratio: current assets / current liabilities, at time t-i 

  NWC2TA ratio t-i Net working capital to total assets ratio: (current assets - current liabilities) / total assets, at time t-i 

  Quick ratio t-i Quick ratio: (current assets - inventories) / current liabilities, at time t-i 

1b. Long-term 

solvency ratios 
Debt ratio t-i Debt ratio: total liabilities / total assets, at time t-i 

Debt2worth ratio t-i Debt to net worth ratio: total debt / (total assets - total liabilities), at time t-i 

  Solvency ratio t-i Solvency ratio: net profit after taxes / total liabilities, at time t-i 

  Times interest earned ratio t-i Times interest earned ratio: EBITDA / total financial charges, at time t-i 

  Avg. collection period ratio t-i Average collection period ratio: (average accounts receivable / sales revenue ) * 365, at time t-i 

1c. Turnover ratios Debtor turnover ratio t-i Debtor turnover ratio: net credit sales / average accounts receivable, at time t-i 

Fixed-asset turnover t-i Fixed-asset turnover: sales / average net fixed assets, at time t-i 

  Inventory turnover t-i Inventory turnover: cost of goods sold / average inventory, at time t-i 

  Asset turnover t-i Asset turnover: net sales revenue / average total assets, at time t-i 

1d. Profitability ratios Gross profit margin t-i Gross profit margin: profit before tax / revenue, at time t-i 

  Profit margin t-i Profit margin: profit after tax / revenue, at time t-i 

  ROA t-i Return on assets (ROA): net income before tax / total assets, at time t-i 

  ROE t-i Return on equity (ROE): net income after tax / equity, at time t-i 

  ROI t-i Return on investment (ROI): net income after interest and tax / total assets, at time t-i 

2. Payment 

promptness 

indicators 

Social security dues t-i Amounts due to social security authority, at time t-i 

Tax dues t-i Amounts due to tax authority, at time t-i 

Nbr. protested bills [t-j;t] Number of protested bills in period [t-j;t] 

  Nbr. summons [t-j;t] Number of social security summons in period [t-j;t] 

  Overdue balance [t-j;t] Total current overdue balance in period [t-j;t] 

  Pct. late payments [t-j;t] Percentage reported transactions with late payment in period [t-j;t] 

  Pct. late payments cat. k [t-j;t] Percentage of reported transactions with late payment in payment delay category k in period [t-j;t] 

3. Firmographics Avg. director age Average age of the directors and owners 

  Domestic purchases only Dummy indicator for exclusive domestic purchases 

  Domestic sales only Dummy indicator for exclusive domestic sales 

  Move recency Days since last change of business address 

  Nbr. directors Number of directors and/or owners 

  Nbr. new directors Number of directors appointed during last 12 months 

  Nbr. resigned directors Number of directors who resigned during last 12 months 

  Nbr. directors with stock Number of directors and/or owners holding stock 

  Nbr. employees Number of employees 

  Nbr. directors  (fail hist.) Number of directors previously employed in a company that failed 

  Nbr. directors  (oob hist.) Number of directors previously employed in a company that went out of business 

  Years in business Company age (total number of years of business activity) 

  Legal form code Legal form code 

Table 2: Variable descriptions for datasets ds1 until ds7: Belgian companies. Year count indices i {0,1,2} and j {1,2} are 

used to indicate at which moment in time, or for which time interval, certain variables are calculated. Additionally, 

payment delay categories k;k {1,2,3,4,5,6}  in the variable Pct. late payments cat. k [t-j;t] are coded as 1=up to 30 days ; 

2=from 31 to 60 days ; 3=from 61 to 90 days; 4= from 91 to 120 days; 5= from 121 to 180 days and 6=more than 180 days. 
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Variable category Variable name Description 

Financial ratios     

1a. Liquidity ratios Cash ratio  Cash ratio: cash and cash equivalent assets / total liabilities 

  Current ratio  Current ratio: current assets / current liabilities 

  NWC2TA ratio  Net working capital to total assets ratio: (current assets - current liabilities) / total assets 

  Quick ratio  Quick ratio: (current assets - inventories) / current liabilities 

1b. Long-term 

solvency ratios 
Debt ratio  Debt ratio: total liabilities / total assets 

Debt2worth ratio  Debt to net worth ratio: total debt / (total assets - total liabilities) 

  Solvency ratio  Solvency ratio: net profit after taxes / total liabilities 

  
Times interest earned 

ratio  
Times interest earned ratio: EBITDA / total financial charges 

  
Avg. collection period 

ratio  
Average collection period ratio: (average accounts receivable / sales revenue ) * 365 

1c. Turnover ratios Debtor turnover ratio  Debtor turnover ratio: net credit sales / average accounts receivable 

Fixed-asset turnover  Fixed-asset turnover: sales / average net fixed assets 

  Inventory turnover  Inventory turnover: cost of goods sold / average inventory 

  Asset turnover  Asset turnover: net sales revenue / average total assets 

1d. Profitability ratios Gross profit margin  Gross profit margin: profit before tax / revenue 

  Profit margin  Profit margin: profit after tax / revenue 

  ROA  Return on assets (ROA): net income before tax / total assets 

  ROE  Return on equity (ROE): net income after tax / equity 

  ROI  Return on investment (ROI): net income after interest and tax / total assets 

Table 3: Variable descriptions for datasets ds8 to ds21: French and Italian companies.  

 

A seen in Table 2, for the Belgian sets, most variables are available in a number of variations to take 

into account their evolution over time. In Table 2, time-varying variables are distinguished by a year 

count indicator which represents the year in which they are calculated, using the most recent information 

available at that time. Time index t denotes the end of the independent variable collection period, i.e. May 

31
st
 2008. Consequently, for example, the variable ROI t-1 provides the return on investment calculated 

using the most recent information available on May 31
st
 2007, i.e. using annual account information for 

the year 2006. A set of variables that belong to the payment promptness category are measured over time 

intervals, dating either one or two years back prior to time t. For example, the variable Nbr. summons [t-

2;t] counts the number of social security summons during a two-year period until May 31
st
, 2008.  
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The data sets underwent a number of preprocessing steps. First, outlier detection and treatment was 

applied, consistent with previous literature (Bou-Hamad, Larocque, & Ben-Ameur, 2011; Chava & 

Jarrow, 2004). In particular, winsorization was applied: variables’ values are truncated below the 2.5
th
 and 

above the 97.5
th
 percentile. Note that this winsorization is an implicit element in the spline-rule ensemble 

algorithm (see Section 3) and was separately applied to the training data for benchmark algorithms. 

Second, feature selection is another important data preprocessing step, and considered good practice in 

the domain of bankruptcy prediction (Abellán & Castellano, 2017; Tsai, 2009). Therefore, correlation-

based feature selection (Hall, 2000) is applied, a basic filter feature selection approach that has seen prior 

applications in BFP literature (e.g. Tsai, 2009). As explained in the next Section, some methods that are 

known to be especially sensitive to the inclusion of uninformative or correlating features are implemented 

with an additional, wrapper-based feature selection; Finally, undersampling, a strategy known to reduce 

the negative impact that class imbalance exerts on many predictive methods (Weiss, 2004) and nowadays 

common practice in business failure prediction (Kotsiantis, Tzelepis, Koumanakos, & Tampakas, 2007) is 

applied. 

4.2 Experimental Settings 

Experimental results are all based on a ten-fold cross-validation that is repeated 10 times, in line with 

other studies on BFP. In ten-fold cross-validation, a data set is divided in 10 parts of equal size, while 

stratified random sampling is applied in order to maintain the original class distributions. Each data part 

serves as test set once, while the remaining data parts are stacked to form a training set. This results in 10 

measurements of model performance. Note that undersampling of the training data sets is applied after the 

division of the data for the cross-validation, and that winsorization and feature selection are also repeated 

for each fold, whereby truncation percentiles and feature subsets are determined on the training dataset 

and applied on the corresponding test set. 
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To assess the predictive performance of rule ensembles, the method is compared to three groups of 

benchmark algorithms. A first set includes uncombined (i.e., non-ensemble) techniques with a proven 

track record in BFP and leading to highly interpretable models, i.e. logistic regression, linear discriminant 

analysis (LDA), quadratic discriminant analysis (QDA) and a C4.5 decision tree. A second category 

includes uncombined algorithms that have been popular choices in BFP literature but that lead to models 

that are difficult to interpret. These methods are neural networks (specifically, multi-layer perceptrons 

(MLP)), support vector machines (SVMs) and k-nearest neighbors (kNN). A third set includes the 

ensemble algorithms bagging, AdaBoost and random forests which have also been applied to BFP before 

(see Section 2) and are known to result in complex models with low comprehensibility. Algorithms are 

implemented in R (spline-rule ensemble, rule ensemble, random forest, bagging, AdaBoost), SAS 

(logistic regression, kNN, MLP, LDA and QDA), WEKA (C4.5) and Python/LIBSVM (SVM). Penalized 

cubic regression spline estimation depends on the mgcv R package (Wood, 2004) and regularized 

regression (ridge, lasso and elastic net) was implemented using the glmnet R package (Friedman, Hastie, 

& Tibshirani, 2010). Logistic regression, LDA and QDA are implemented with forward wrapper feature 

selection, while the C4.5 decision trees are pruned to reduce model overfitting. Given that these steps are 

commonly used in tandem with these algorithms, this makes for a fairer and more challenging 

comparison. SVM is implemented using a linear kernel function and its regularization parameter, the soft 

margin constant, is determined through grid search; MLP is implemented with one hidden layer and in 

kNN, k is set to 5. Note that for the latter two parameters, multiple values were tested and the ones 

leading to the best performance over all metrics were retained. All ensemble algorithms contain 100 

members. For rule ensembles and spline-rule ensembles, this translates to initially training 100 trees from 

which rules are then derived and selected. An important additional parameter defining rule complexity in 

rule and spline-rule ensembles is average tree depth (the number of terminal nodes). This parameter was 

set to 9 in this study, allowing for the discovery of higher-order interactions. Penalized cubic regression 

spline estimation depends on specification of the knots for each variable (parameter u, and values 

           as defined in Section 3). u is set to 10 and the knots’ values are automatically determined in 
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order to ensure equally-sized intervals. Finally, unless specified differently, spline-rule and rule 

ensembles are configured with regularized lasso regression. 

It is worth noting that this study and its experimental setup overcomes many of the problems associated 

with benchmark studies in BFP (Balcaen & Ooghe, 2006). First, while undersampling is applied to the 

training data in order to increase models’ performance, models are evaluated on representative, 

unbalanced test data sets. This contrasts with the sample biases introduced by the oversampling of failed 

companies and the arbitrary matched pair sampling of failing and non-failing companies. Second, 

predictive information is not limited to financial account information and financial ratios only. Third, 

variable selection is applied as a wrapper and only to those techniques sensitive to the inclusion of 

uninformative or correlating variables. 

4.3 Evaluation Criteria 

As business failure is modeled as a problem of binary classification, failing and non-failing companies 

can be classified correctly or incorrectly, which leads to a 2-dimensional confusion matrix as shown by 

Table 4.  

  Predicted class 

Real class Business survival Busines failure 

Business survival tn (true negative) fp (false positive) 

Business failure fn (false negative) tp (true positive) 

Table 4: Confusion matrix 

 

Accuracy, or the percentage of correctly classified instances, is a conventional evaluation criterion in 

BFP studies (Balcaen & Ooghe, 2006). Using the notation from Table 3; it is calculated as     

                 . 
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While accuracy is a straightforward and intuitive measure and the most widely used metric to evaluate 

the predictive performance of business failure prediction models, it has been criticized for a number of 

reasons. First, it is unreliable in a situation of class imbalance (Weiss, 2004). As an example, consider a 

naïve decision rule assigning the majority class to all test set instances, which would exhibit an inflated 

accuracy above 50% despite the absence of any discriminative power. Second, data resampling applied to 

reduce class imbalance also harms the reliability of accuracy estimations, albeit in a different way, as the 

model is forced to focus on failing companies at the expense of non-failing companies. On a balanced test 

sample, this would lead to an overly pessimistic accuracy level. Third, accuracy does not take into 

account predicted class membership probabilities but instead requires setting a cut-off to convert posterior 

probabilities or predicted scores to class. Accuracy can vary severely depending on the choice of this cut-

off (Balcaen & Ooghe, 2006). 

An alternative performance metric that circumvents these drawbacks is the Area Under the Receiver 

Operating Characteristics curve (AUC or AUROC). Several authors  (e.g. Langley, 2000; Provost, 

Fawcett, & Kohavi, 2000) advocate AUC as an objective performance criterion, well-suited for the 

comparison of classifier performance. Unlike accuracy, it evaluates the ability of a classifier to 

distinguish between the two classes based on the predicted class membership probabilities, and is 

therefore suitable for imbalanced classification problems such as business failure prediction. While not as 

commonly used as accuracy in BFP studies, AUC starts to emerge as a viable alternative (e.g. Bou-

Hamad, et al., 2011; Nanni & Lumini, 2009).  

An expression for AUC can be derived from the confusion matrix. Using the definitions of the true 

positive rate;     
  

     
  and false positive rate;     

  

     
 , and trivially parameterizing these 

expressions to acknowledge their dependence upon the choice of cutoff t, required to translate real-valued 

predictions to class predictions, the AUC can be expressed as 

                        (8) 
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Finally, as observed by Balcaen and Ooghe (2006), misclassification costs associated with type I and 

type II errors are not equal in BFP. For example, for a financial institution, the inability of a model to 

timely predict the bankruptcy of a lending company could entail severe financial losses, while the cost 

associated with wrongfully flagging a company as potential risk would typically be limited (e.g. to the 

cost of an in-depth screening, or the loss of the contribution if the contract is cancelled). The evaluation 

and benchmarking of classifiers should take this into account. Similar to Chen and Ribeiro (2013), we 

therefore evaluate in terms of expected misclassification cost using multiple cost ratios. Expected 

misclassification cost (EMC) is given by the following formula: 

     
              

 
 (9) 

Where n is the total number of observations,     denotes the cost associated with falsely predicting 

survival for a failing company, and     the cost associated with falsely predicting business failure for a 

healthy company. The expected misclassification cost measure of a BFP model can be interpreted as the 

average cost that will be incurred from using the model to score one company. To facilitate the analyses, 

    is assumed to be 1 and         . Three cost ratios (          are considered in this study: 2, 5 and 

10. 

Following Demšar (2006), in order to statistically compare algorithm performance over multiple data 

sets, Wilcoxon signed rank tests (Wilcoxon, 1945) are computed for comparisons involving two 

algorithms, while Friedman non-parametric ANOVA’s (Friedman, 1937) are considered for comparisons 

involving more than two algorithms. Both tests are based upon the average rank of the performance 

measures of the algorithms considered, taken over all data sets. For the Friedman test, post-hoc tests are 

administered using the test statistic for comparing methods i and j are obtained as 

   
       

 
      

  

 (10) 
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where    is the average rank of method I, k is the number of algorithms and N the number of datasets. 

The probabilities associated with these statistics, obtained from the standard-normal distribution are 

compared to corrected values of α in order to account for family-wise error, introduced through making 

multiple algorithm comparisons. In this study, Hommel’s procedure (Hommel, 1988) is used to this end. 

5 Results 

To assess the potential of rule-spline ensembles for business failure prediction, this Section focuses on 

model performance benchmarking and, subsequently, on detailing and illustrating the interpretability 

instruments inherent to rule ensembles through a case study on one chosen data set. 

5.1 Predictive Performance 

The assessment of the predictive performance of spline-rule ensembles for business failure prediction 

consists of three parts. First, as spline-rule ensembles are an extension of the rule ensemble framework as 

proposed by Friedman & Popescu (2008), the performance of both algorithms is compared. Second, the 

sensitivity of spline-rule ensembles to the choice of the regularization method used is investigated by 

comparing three alternative regularization methods: ridge regression, lasso regularized regression and 

elastic net regularization. Third, spline-rule ensembles are compared to established methods in BFP 

literature. Please note that this section reports aggregated performance indicators and results of statistical 

tests. The full cross-validated results (average cross-validation performance values and standard errors per 

data set, per algorithm) are available from the author upon request. 
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A first question involves whether the addition of smoothing spline terms in spline-rule ensembles 

enhances performance in business failure prediction over standard rule ensembles. Table 5 summarizes 

the statistical comparison of spline-rule ensembles versus rule ensembles. It reports the results of 

Wilcoxon signed rank tests for every metric considered, based upon cross-validated results in terms of 

accuracy (ACC), AUC and misclassification rate for cost ratios 2, 5 and 10 (denoted EMC2, EMC5 and 

EMC10, respectively), over all data sets. The table also reports wins, losses and ties counts which 

summarizes pairwise comparisons, over the 21 datasets, of both algorithms in terms of their average 

cross-validated performance. 

Metric Evaluation method SRE vs. RE 

ACC Wilcoxon signed-ranks test  T-statistic 103 (df =20) 

 Significance n.s. (p=0.332) 

 Wins / losses / ties   13/8/0 

      AUC Wilcoxon signed-ranks test T-statistic 19 (df=20) 

   Significance *** (p=0.0004) 

 Wins / losses / ties   18/3/0 

      EMC2 Wilcoxon signed-ranks test T-statistic 0 (df=20) 

   Significance *** (p<0.0001) 

 Wins / losses / ties   21/0/0 

      EMC5 Wilcoxon signed-ranks test T-statistic 0 (df=20) 

   Significance *** (p<0.0001) 

 Wins / losses / ties   21/0/0 

      EMC10 Wilcoxon signed-ranks test T-statistic 0 (df=20) 

   Significance *** (p<0.0001) 

  Wins / losses / ties   21/0/0 

         

Table 5: Statistical comparison of spline-rule ensembles (SRE) versus conventional rule ensembles (RE). ACC=accuracy, 

AUC=area under the ROC curve and EMCθ = expected misclassification cost based upon cost ratio θ. n.s. = not 

significant; *** indicates a significant difference at the 99% confidence level (α=0.01) 

These results clearly show the dominance of spline-rule ensembles over conventional rule ensembles 

for business failure prediction for all metrics considered, but accuracy. As AUC and expected 

misclassification cost metrics are considered more appropriate model evaluation metrics in the context of 

BFP where different types of errors are associated with different costs, it is concluded that extending the 

conventional rule ensemble framework to include smooth terms as a third category of candidate terms 

next to rules and winsorized linear terms. 
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A second experiment involves in investigation into the sensitivity of spline-rule ensembles to the 

adoption of alternative regularization schemes: ridge regression, lasso regression and regularized 

regression through the elastic net. Table 6 shows results of global Friedman tests per metric, as well as 

average algorithm ranks on which the Friedman test is based.  

 

Metric Evaluation method   SRE 

(Lasso) 

SRE (Elastic 

Net) 

SRE 

(Ridge) 

ACC Friedman test Chi-quare statistic 2.5714 (df=2) 
 

    Significance n.s. (p=0.2765) 
 

  Average ranks     2.1429 1.7143 2.1429 

           AUC Friedman test Chi-quare statistic 1.2381 (df=2) 
   

    Significance n.s. (p=0.5385) 
   

  Average ranks     2.1905 1.8571 1.9524 

           EMC2 Friedman test Chi-quare statistic 0.09524 (df=2) 
   

   Significance n.s. (p=0.9535) 
   

 Average ranks     1.9524 2 2.0476 

          EMC5 Friedman test Chi-quare statistic 0.09524 (df=2) 
   

   Significance n.s. (p=0.9535) 
   

 Average ranks 

  

2.0476 1.9524 2 

          EMC10 Friedman test Chi-quaret statistic 0.09524 (df=2) 
   

    Significance n.s. (p=0.9535) 
   

  Average ranks     2 1.9524 2.0476 

              
Table 6: Statistical comparison of alternative regularization schemes for spline-rule ensembles (SRE). ACC=accuracy, 

AUC=area under the ROC curve and EMCθ = expected misclassification cost based upon cost ratio θ. 

 

Variation comparisons demonstrate that no overall difference between regularization schemes could be 

identified in this study’s setting. This holds for all evaluation metrics considered. However, it is crucial to 

understand that in the case of ridge regression parameter shrinkage does not involve term selection, which 

substantially compromises model subsequent model interpretation. Moreover, as expected, regularization 

through the elastic net resulted in significantly larger models than lasso regression. An optimization 

exercise in function of both model performance and interpretability suggests a preference for lasso 

regularization. 
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A third comparison involves a benchmark of spline-rule ensembles to alternative, established methods 

in the domain of business failure prediction. Table 7 shows the results for a comparison to 5 established 

benchmark algorithms: multi-layer perceptron, support vector machines, logistic regression, linear – and 

quadratic discriminant analysis  
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Metric Evaluation method   SRE Multi-Layer 

Perceptron 

Support Vector 

Machines 

Logistic Regression Linear Discriminant 

Analysis 

Quadratic 

Discriminant Analysis 

ACC Friedman test Chi-square statistic 16.075 (df=5)       

   Significance *** (p=0.0066)       

 Average ranks  3.3333 4.6190 3.8571 3.3810 2.3810 3.4286 

 Post-hoc sign. (SRE vs. benchmark)   - n.s. (adj. p=0.2723) n.s. (adj. p=0.9343) n.s. (adj. p=0.9343) n.s. (adj. p=0.7326) n.s. (adj. p=0.9343) 

 Wins / losses / ties (SRE vs. benchmark)  - 15/6/0 13/8/0 7/14/0 6/15/0 12/9/0 

            AUC Friedman test Chi-square statistic 65.109 (df=5)       

   Significance *** (p<0.0001)       

 Average ranks  1 4 4.9524 2.9048 3.2871 4.8571 

 Post-hoc sign. (SRE vs. benchmark)   - *** (adj. p<0.0001) *** (adj. p<0.0001) *** (adj. p=0.0087) *** (adj. p=0.0009) *** (adj. p<0.0001) 

 Wins / losses / ties (SRE vs. benchmark)  - 21/0/0 21/0/0 21/0/0 21/0/0 21/0/0 

          EMC2 Friedman test Chi-square statistic 59.721 (df=5)       

   Significance *** (p<0.0001)       

 Average ranks   1.1905 3.5238 4.9048 3.0476 3.2857 5.0476 

 Post-hoc sign. (SRE vs. benchmark)   - *** (adj. p=0.0007) *** (adj. p<0.0001) ** (adj. p=0.0104) *** (adj. p=0.0032) *** (adj. p<0.0001) 

 Wins / losses / ties (SRE vs. benchmark)  - 21/0/0 20/1/0 20/1/0 20/1/0 21/0/0 

          EMC5 Friedman test Chi-square statistic 62.061 (df=7)       

   Significance *** (p<0.0001)       

 Average ranks   1.0952 3.5714 4.9523 3.1429 3.2381 5 

 Post-hoc sign. (SRE vs. benchmark)   - *** (adj. p=0.0002) *** (adj. p<0.0001) *** (adj. p=0.0043) *** (adj. p=0.0023) *** (adj. p<0.0001) 

 Wins / losses / ties (SRE vs. benchmark)  - 21/0/0 21/0/0 20/1/0 20/1/0 21/0/0 

          EMC10 Friedman test Chi-square statistic 63.122 (df=5)       

   Significance *** (p=0.0000)       

 Average ranks   1 3.8095 5 3.0952 3.2857 4.8095 

 Post-hoc sign. (SRE vs. benchmark)    *** (adj. p<0.0001) *** (adj. p<0.0001) *** (adj. p=0.0031) *** (adj. p=0.0009) *** (adj. p<0.0001) 

 Wins / losses / ties (SRE vs. benchmark)  - 19/2/0 21/0/0 21/0/0 21/0/0 21/0/0 

            

Table 7: Predictive performance benchmarking: SRE versus non-ensemble (uncombined) classifiers. ACC=accuracy, AUC=area under the ROC curve and EMCθ = 

expected misclassification cost based upon cost ratio θ. For each metric, the lowest (i.e., most favorable) average rank over all data sets is indicated in bold face type. n.s. 

= not significant; ** and *** indicate significant differences at the 95% and 99% significance levels, respectively. 
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A number of observations are made from Table 7. First, Friedman tests indicate that for all metrics, 

significant differences emerge between algorithms when average performance ranks are compared. 

Second, these results clearly demonstrate the dominance of spline-rule ensembles over uncombined 

algorithms. For all metrics except accuracy, spline-rule ensembles significantly outperform all benchmark 

algorithms. In terms of AUC and the three misclassification cost metrics, this is clearly shown by the 

post-hoc test results, average ranks, and further illustrated by the wins/losses/ties counts. In terms of 

accuracy, LDA demonstrates a lower (hence, more favorable) average rank than spline-rule ensembles, 

but the post-hoc tests indicate that the difference is not significant. The best performing benchmark 

algorithm in terms of average ranks for AUC and EMC is logistic regression. This is somewhat 

unexpected, as some authors have criticized logistic regression for its low predictive performance (Li & 

Sun, 2011b). 

 

Metric Evaluation method   SRE AdaBoost Bagging Random Forest 

ACC Friedman test Chi-square statistic 14.714 (df=3)     

    Significance *** (p=0.0021)     

  Average ranks   1.5714 2.9048 2.8095 2.7143 

  Post-hoc sign. (SRE vs. benchmark)    - *** (adj. p=0.0008) *** (adj. p=0.0094) ** (adj. p=0.0165) 

  Wins / losses / ties (SRE vs. benchmark)   - 17/4/0 18/3/0 16/5/0 

            AUC Friedman test Chi-square statistic 57.057 (df=3)     

    Significance *** (p<0.0000)     

  Average ranks   1 4 2.381 2.6191 

  Post-hoc sign. (SRE vs. benchmark)    - *** (adj. p<0.0000) *** (adj. p=0.0011) *** (adj. p=0.0002) 

 Wins / losses / ties (SRE vs. benchmark)   - 21/0/0 21/0/0 21/0/0 

          EMC2 Friedman test Chi-square statistic 27 (df=3)     

    Significance *** (p<0.0000)     

  Average ranks   1.7143 3.6667 2.52381 2.0952 

  Post-hoc sign. (SRE vs. benchmark)    - *** (adj. p<0.0000) n.s. (adj. p=0.1295) n.s. (p=0.3390) 

 Wins / losses / ties (SRE vs. benchmark)   - 19/2/0 17/4/0 12/9/0 

         EMC5 Friedman test Chi-square statistic 44.371 (df=3)     

    Significance *** (p<0.0000)     

  Average ranks   1.1905 3.8095 2.7143 2.2857 

  Post-hoc sign. (SRE vs. benchmark)    - *** (adj. p=0.0000) *** (adj. p=0.005) ** (adj. p=0.0119) 

 Wins / losses / ties (SRE vs. benchmark)   - 21/0/0 21/0/0 17/4/0 

         EMC10 Friedman test Chi-square statistic 47 (df=3)     

    Significance *** (p<0.0000)     

  Average ranks   1.0476 3.7619 2.5238 2.6667 

  Post-hoc sign. (SRE vs. benchmark)    - *** (adj. p<0.0000) *** (adj. p=0.0008) *** (adj. p=0.0002) 

 Wins / losses / ties (SRE vs. benchmark)   - 21/0/0 21/0/0 20/1/0 

                
Table 8: Predictive performance benchmarking: SRE versus ensemble (uncombined) classifiers. ACC=accuracy, 

AUC=area under the ROC curve and EMCθ = expected misclassification cost based upon cost ratio θ. For each metric, 

the lowest (i.e., most favorable) average rank over all data sets is indicated in bold face type. n.s. = not significant; ** and 

*** indicate significant differences at the 95% and 99% significance levels, respectively. 
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Finally, Table 8 reports results from a comparison of SRE to three ensemble algorithms: AdaBoost, 

Bagging, and Random Forests. The Friedman test results again reveal significant differences between 

algorithms for all evaluation criteria. Spline-rule ensembles are dominant across all metrics in terms of 

average ranks, in a comparison to AdaBoost, Bagging and Random Forest. Statistically, this superiority is 

confirmed by post-hoc tests, except in the case of misclassification cost with a cost ratio of 2 where the 

spline-rule ensembles do not significantly outperform Bagging and Random Forest.  

In summary, these results demonstrate the highly competitive performance of spline-rule ensembles 

over conventional rule ensembles, and a large set of benchmark algorithms. 

5.2 Model interpretation case study: business failure prediction in the Belgian services sector 

In this Section, the comprehensibility of spline-rule ensembles is demonstrated by means of a case 

study focusing on business failure prediction in the service sector in Belgium. To this end, a spline rule 

ensemble is trained on the corresponding data set listed in Table 1 (ds7). This setting was chosen for two 

reasons: (i) the prevalence of the services sector in Belgium (accounting for about 77% of economic 

activity in 2016; (European Commission, 2016)), and (ii) the fact that this particular data set is the largest, 

in terms of number of companies and number of company characteristics.  

The case study illustrates how the spline-rule ensemble model offers a high degree of 

comprehensibility through the model itself, and by demonstrating how additional insights can be 

delivered through calculation of variable importance scores and deriving partial dependence functions.  
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5.2.1 Model visualization and interpretation 

Spline-rule ensembles, analogous to rule ensembles, derive their interpretability from three model 

characteristics: (i) the simplicity of their candidate member classifiers (i.e., rules, splines and linear 

terms), (ii) their simple linear combination and (iii) the shrinkage resulting from the selection procedure 

to which they are submitted. Consequently, the most obvious source of insights into the model’s 

functioning is the model itself, i.e. the rules and terms that are selected by the regularized linear 

regression. Moreover, several measures reflect the relative influence and importance of the terms in the 

rule ensemble model. The first category are the term coefficients, i.e. the parameters              and 

             of the linear regularized regression that have received non-zero values. For a rule, a term 

coefficient reflects the relative influence a term has upon the logit transformation of the probability to fail 

if its conditions are met. Second, rule support refers to the percentage of training observations for which a 

rule holds, i.e., for which all rule conditions are true. Finally, for any rule j, the rule importance     is 

then calculated as 

                     (11) 

where    represents the rule support. For a linear predictor   , a linear term importance         is 

obtained as 

                           (12) 

wherein             is the standard deviation of        and similarly, for cubic regression splines, a 

spline term importance         is calculated through 

                           (13) 

wherein             is the standard deviation of       .  Both importance measures are comparable, 

as they correspond to an absolute value of the coefficient of the respective standardized term (Friedman & 

Popescu, 2008).
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Term Type Term/spline visualization or  rule conditions Coefficient Rule support Term importance 

1 Rule ROA t >= -24.67 % -0.9532 0.804 100 

    Nbr. summons [t-1;t] < 1       

2 Spline s(Pct. late payments cat. 3 [t-1;t]) 0.3197 - 65.07 

    

 

                

          

          

          

          

          

3 Rule Pct. late payments [t-2;t] < 65.83 % -0.469 0.6349 59.66 

    Nbr. summons [t-2;t] < 1       

4 Rule Years in business >= 1.7329 0.3992 0.3273 49.5 

    Move recency < 699 days       

5 Rule Nbr. summons [t-2;t] < 1 -0.3415 0.4928 45.12 

    Move recency >= 699 days       

6 Rule Move recency >= 487.5 days -0.3089 0.5809 40.27 

    Nbr. summons [t-1;t] < 1       

7 Spline s(Solvency ratio t) 0.3274 0.393 34.00 

    

 

      
          

          

          

          

          

          

8 Linear 

term 

  

  

  

  

  

  

  

Pct. late payments [t-2;t] 0.3876 - 31.56 

  

 

                      

        

        

        

  

      

9 Spline s(Cash ratio t-1)   - 29.67 

    

 

                

          

          

          

          

          

10 Spline s(ROI t-2) 0.2629 - 21.48 

    

 

                          

          

          

          

          

          

          

11 Rule Cash ratio t >= 55%  -0.1442 0.4766 19.03 

  Nbr. summons [t-1;t] < 1    

 Table 9: The spline-rule ensemble model: terms, term types, rule conditions and visualization of splines and linear terms; 

coefficients, rule support and term importance
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Table 9 shows the selected terms in the current setting, their coefficients, rule supports and importance 

measures. Note that model terms have been sorted by their importance. From the table, the following 

observations emerge. First, the spline-rule ensemble showcases the capability of a spline-rule ensembles 

to account for different types of effects as the model contains 11 terms in total and combines rules (6), 

splines (4) and one linear term. Nonlinear effects have been identified for a variable on late payment 

behavior (term 2), solvency ratio (term 7), cash ratio (term 9) and return on investment (term 10), while a 

linear effect was found for another, more general variable on reported late payments (term 8). Second, all 

rules contain multiple conditions, indicating the possible presence of interaction effects. Interaction 

effects are analyzed in detail at a later stage. All rules, except one, decrease failure probability when 

fulfilled and include a condition on a payment promptness variable. Term 4 is an exception to both 

observations. Third, in general, closer inspection of splines, rule conditions and the linear term reveals 

that all effects are intuitive. In line with what can be reasonably expected, conditions based upon financial 

ratios specify left-discrete value intervals (hence, associate higher values with reduced failure risk) while 

conditions based upon creditworthiness variables most often specify right-discrete value intervals (i.e., 

associate timely payment behavior with lower risk). 

5.2.2 Variable Importance Measures 

Data sets in BFP typically consist of many predictors belonging to different variable categories. The 

relative importance of variables and variable categories is usually of great importance to financial 

analysts. Relative variable importances can be easily derived from the rule set by calculating variable 

importance measures         which attribute higher value to variables appearing (i) more frequently and 

(ii) in more influential rules than others:  

                                 
 
   
     

 (14) 
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where the first part         is the importance of the linear term devoted to variable    (receiving a 

value of zero if no such term was selected by the model) and the second term sums the rule importance 

measures of rules     containing    and divides each by   , the number of variables featuring in the 

respective rule j. Similarly, the variable category importance measure for variable set    is defined as the 

sum of constituent variable importance measures:  

                         .  (15) 

          

Rank Variable Variable category Description Variable 

importance 

1 Nbr. summons [t-1;t] Payment promptness Number of social security summons in period [t-1;t] 100.00 

2 Move recency Firmographics Days since last change of business address 91.12 

3 Nbr. summons [t-2;t] Payment promptness Number of social security summons in period [t-2;t] 72.27 

4 ROA t Financial ratios Return on assets (ROA): net income before tax / total assets 62.77 

5 Pct. late payments [t-2;t] Payment promptness Percentage reported transactions with late payment in period 

[t-2;t] 
37.45 

6 Years in business Firmographics Company age (years) 31.07 

7 Cash ratio t Financial ratios Cash ratio: cash and cash equivalent assets / total liabilities, 

at time t 
11.95 

8 Pct. late payments cat. 3 [t-

1;t] 

Payment promptness Percentage of reported transactions with late payment in 

payment delay category 3 in period [t-1;t] 0.31 

9 Solvency ratio t Financial ratios Solvency ratio: (net profit after taxes) / total liabilities  0.16 

10 Cash ratio t-1 Financial ratios Cash ratio: cash and cash equivalent assets / total liabilities, 

at time t-1 
0.14 

11 ROI t-2 Financial ratios Return on investment (ROI): net income after interest and tax / total 

assets, at time t-2 0.10 

Table 10: Variable importance measures.  

 Table 10 presents variable importance measures for all variables in the model. Measures have been 

rescaled so that the most important variable receives a score of 100. In total, 11 variables appear in the 

spline-rule ensemble model. Amongst selected variables, 5 financial ratios, 4 variables related to payment 

promptness and 2 firmographics emerge. The single most influential predictor is the number of social 

security summons counted over a period of one year. Further, the distribution of variable importance 

measures is highly skewed. 7 variables exhibit scores above 10 while the remaining 4 predictors 

demonstrate values below 0.5. Finally, payment promptness variables emerge as the most important 

variable category with a variable category importance measure of 210.03, followed by firmographics 

(122.19) and financial ratios (75.02). 
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5.2.3 Partial Dependence Plots 

Partial dependence functions are a generic method for unveiling the nature of the dependence of a 

predictive model      on a selection of one or more predictor variables (Hastie, Tibshirani, & Friedman, 

2001). For a subset of variables    they are estimated from the data as 

          
 

 
           
 
     (16) 

where n is the number of observations and      represents the values of all variables not occurring in 

variable set     for observation i. Hence, partial dependence functions isolate the effect of the variables in 

subset    by taking into account an averaged effect of the other variables. 

Figure 4 shows the partial dependence plots for the variables in the model, ordered by importance (see 

Table 10). Note that these plots are based upon partial dependence functions populating    with only one 

variable at a time. As such, they reveal the nature of the relationship between a single variable and the log 

odds of business failure. 

Figure 4 demonstrates that the majority of partial dependence functions are non-linear and in most 

cases monotonically in- or decreasing. There are two exceptions to this latter observation: the partial 

dependence functions for the variables Pct. late payments cat. 3 [t-1;t] and Solvency ratio t. that 

demonstrate a more complex trend. In summary, the probability of failure increases in the presence of 

social security summons (Nbr. Summons [t-1;t] and Nbr. Summons [t-2;t]), with an increasing percentage 

of late payments (Pct. late payments [t-2;t]) and with company age (Years in business). On the other 

hand, the risk decreases as the number of days since the last change of address increases (Move recency), 

for larger values of the return on assets (ROA t), cash ratio (Cash ratio t-1 and Cash ratio t) and return on 

investment (ROI t-2).  The variable solvency ratio (Solvency ratio t) defines higher risk at the extreme 

ends of its distribution and boasts the only non-monotonic partial dependence function in the selection. 
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It is interesting to compare these partial dependence functions (and their graphical representations) with 

the model described earlier. The smooth functions can be easily recognized, and the partial dependence 

function for the variable Pct. late payments [t-2;t] is a composite of the linear term and the rule that 

feature the variable. 
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Figure 4: Partial dependence plots for selected variables 
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5.2.4 Variable Interactions 

Partial dependence functions can be utilized further to analyze variable interactions. In particular, it can 

be insightful to identify variables that are involved in interactions, the specific variables they interact with 

as well as the degree, strength and functional form of these interaction effects. A measure for the strength 

of the interaction effect between variables    and    ,    
 , can be obtained by  

    
                                     

 
      

          
 
   

 
   .  (17) 

Figure 5 visualizes interaction effects and interaction strength values for all interaction effects present 

in the model.  
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T

hese 

resul

ts 

indic

ate 

that 

the 

varia

bles Nbr. Summons [t-1;t] and Move recency are both involved in 3 interactions while Nbr. Summons [t-

2;t] is involved in two interactions. Higher-order interactions can be identified using extensions of 

formula (11), but in the current setting, no such interaction effects were discovered. 

A final step in the analysis of interaction effects involves the investigation of the nature of interaction 

effects. This is easily achieved by plotting partial dependence functions               for couples of 

variables that have been found to significantly interact.  

 

Figure 5: Visualization of interaction effects and interaction strengths 
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Figure 6: Graphical representation of partial dependence plots for 3 most important interaction effects 
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Figure 6 shows these partial dependence plots for the 3 most important interaction effects: Move 

recency – Years in business, Nbr. Summons [t-2;t] – Move recency and Nbr. Summons [t-2;t] and Pct late 

payments [t-2,t]. In the first, the interaction effect dictates that a recent move increases the failure 

probabity (i.e., the main effect of Move recency), but that this effect is substantially less pronounced when 

the company is young. This partial dependence plot also demonstrates that the variables Years in business 

has no impact when the company has not recently moved. The second interaction effect shows that the 

main effect of Move recency weakens for larger values of . Nbr. Summons [t-2;t], the number of social 

security summons in the past two years. Lastly, the last interaction effect dictates that there is a positive 

relation between the percentage of late payments and company risk, but once at least one social security 

summon is observed, this effect is cancelled out. 
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6 Conclusions and Study Limitations 

In the context of a growing interest in principles and practice of risk management, and specifically, 

enterprise risk management (ERM), companies turn to business intelligence and data mining tools to help 

them anticipate, face and overcome many types of risk. In this study, rule ensembles and a novel 

variation, spline-rule ensembles, are introduced and benchmarked in the domain of business failure 

prediction, a key tool for assessing and minimizing risks associated in business relations. Spline-rule 

ensembles extend the rule ensembles framework by introducing penalized cubic regression splines as a 

third term category in order to better accommodate simple, nonlinear effects. Due to the model’s 

simplicity and regularization, spline-rule ensembles combine the strong performance of ensemble 

learning whilst offering a high degree of model interpretability and thus avoiding increased model 

complexity and more difficult model interpretation, a pitfall often associated with ensemble learning 

methods. Straightforward model interpretation is a quality typically more associated with uncombined 

(non-ensemble) methods. As such, spline-rule ensembles can be seen to offer the better of two worlds. To 

train a spline-rule ensemble model, in a first phase, a large set of rules are derived from decision trees and 

splines are trained, while in a second phase, ensemble selection is applied through regularized linear 

regression. As such, compact and insightful, yet powerful models are obtained. Both characteristics are 

investigated in the domain of business failure prediction. First, an experimental evaluation of the method 

demonstrates the superiority of spline-rule ensembles over conventional rule ensembles, and the method’s 

ability to outperform several well-established, yet powerful methods in the field. Second, the method’s 

integrated mechanisms to extract insights from the model are exemplified through a case study focusing 

on business failure prediction in the services sector in Belgium These include the rule model itself (rules, 

splines, linear terms and model coefficients), rule importances, variable importance measures, partial 

dependence functions and plots and interaction strengths. 
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Certain limitations can be identified for the current setup and the technique under consideration. First, 

while this study clearly demonstrates the versatility of spline-rule ensembles in terms of explaining 

underlying mechanisms and relationships within a business failure model, it does not link back these 

model insights to variable effects discovered in prior research. Future research should address a 

comparison between methods, and studies, in terms of the drivers of business failure and the nature of 

their influence. Second, the setup does not allow to assess the extent to which a spline-rule ensemble 

model is capable of unveiling the true data generation process and relations between variables, and how it 

compares to other techniques in this respect. To this end, experiments on simulated data would be more 

appropriate.  
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