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a b s t r a c t 
This paper presents an efficient two-stage traffic sign recognition system. First, 3D point cloud data is 
acquired by a LINX Mobile Mapper system and processed to automatically detect traffic signs based on 
their retro-reflective material. Then, classification is carried out over the point cloud projection on RGB 
images applying a Deep Neural Network which comprises convolutional and spatial transformer layers. 
This network is evaluated in three European traffic sign datasets. On the GTSRB, it outperforms previous 
state-of-the-art published works and achieves top-1 rank with an accuracy of 99.71%. Furthermore, a 
Spanish traffic sign recognition dataset is released. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 
According to the European Union Road Federation (ERF), there 

exists a negative trend regarding road infrastructure investments 
and maintenance, as the funding for those expenses is decreasing 
since 2008 ( European Union Road Federation, 2015 ). This report 
points out that this negative trend has a massive economic im- 
pact in the mid and long term, as both the investments required 
for the maintenance of the infrastructure and the vehicle operating 
costs increase exponentially as the condition of the road deterio- 
rates. Vertical signs are an essential asset which regulate the traffic 
and guide road users. Traffic signs need to be visible during both 
day and night time, therefore periodic inspections should ensure 
the visual performance of the sign. However, the ERF pointed out 
the existence of an alarming backlog in traffic sign maintenance in 
many European countries because it reduces the safety of the roads 
as traffic signs might have faded colors or lose their retro-reflective 
properties. Given that accidents caused by infrastructure deficien- 
cies result in high human and economic costs, investing in road 
infrastructure (and specifically in vertical signage) will have a posi- 
tive impact in terms of road safety and economic return. There are 
different strategies for the maintenance and replacement of traf- 
fic signs. They can be replaced in fixed time intervals, or periodic 
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inventories can be established. Typically, these inventories are car- 
ried out manually and in situ. Nowadays, remote-sensing technol- 
ogy allows the road to be measured faster, safer and expending 
less resources, hence significantly improving the outcomes of in- 
vestments in road infrastructures. Mobile Mapping Systems (MMS) 
are able to collect large amounts of 3D and 2D data using Mo- 
bile Laser Scanner (MLS) technology together with imagery sys- 
tems. The 3D representations of surveyed environments are dense 
and accurate and provide reliable information about the geometric 
and radiometric properties of the scanned areas ( Puente, González- 
Jorge, Martínez-Sánchez & Arias, 2013a ). However, despite the in- 
creasing attention this technology is receiving, there exist some 
limitations given by the resolution of the scanning system and the 
storage and processing capabilities of the computers. For that rea- 
son, imagery data may be useful for some applications. Classifying 
2D images of traffic signs captured by RGB sensors is a traditional 
research topic in computer vision since developing a robust traffic 
sign recognition system is still a challenging task. 

This research is motivated by (1) the need to develop method- 
ologies allowing for the automation of road infrastructure inspec- 
tion activities and therefore improving inventory and maintenance 
of a huge financial public asset as it is the road network, and (2) 
the potential usefulness of combining different data sources from 
a Mobile Mapping System, complementing an accurate 3D descrip- 
tion of the road network with RGB imagery, in order to offer pre- 
cise semantic descriptions. 

http://dx.doi.org/10.1016/j.eswa.2017.07.042 
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A robust pipeline is proposed to efficiently process LiDAR data, 

detect with high accuracy vertical traffic signs and recognize their 
classes applying a Deep Neural Network (DNN) to the correspond- 
ing 2D images. The growing acceptance in developed countries of 
the benefits of LiDAR implies several countries can apply this ro- 
bust methodology. 

The rest of the paper is organized as follows. Section 2 analy- 
ses the state of the art of traffic sign recognition systems from two 
points of view, LiDAR and 2D images. Section 3 shows the proposed 
methodology and results are explained in Section 4 . Finally conclu- 
sions are drawn in Section 5 . 
2. Related works 

Traffic sign recognition systems (TSRS) are helpful for Advanced 
Driver Assistance Systems (ADAS) or autonomous vehicles, never- 
theless, a wide range of challenges needs to be overcome such as 
changing ambient lighting conditions, occlusions, focusing or blur- 
ring problems and deterioration or deformations due to ageing or 
vandalism. Furthermore, the variety of different traffic signs that 
have to be distinguished is very wide and diverse for different 
countries. For example, there are more than 200 traffic sign classes 
in Spain ( Spanish Government, 2003 ), Germany 1 and Belgium. 2 All 
of these issues affect TSRS and are important factors that should 
be considered. 

One of the main problems before the year 2011 was the lack of 
a public traffic sign dataset. The Belgian Traffic Sign Classification 
dataset (BTSC) ( Timofte, Zimmermann, & Van Gool, 2011 ) and the 
German Traffic Sign Recognition Benchmark (GTSRB) ( Stallkamp, 
Schlipsing, Salmen, & Igel, 2011 ), a multi-category classification 
competition, solved this issue and boosted the research in TSRS. 
GTSRB made publicly available a traffic sign dataset with more 
than 50,0 0 0 labeled samples divided into 43 classes. It is com- 
monly used to evaluate the performance of computer vision al- 
gorithms and compare them versus the human visual system 
( Stallkamp, Schlipsing, Salmen, & Igel, 2012 ). 

Mathias, Timofte, Benenson, and Van Gool (2013) propose 
fine grained classification applying different methods through a 
pipeline of three stages: feature extraction, dimensionality reduc- 
tion and classification. On GTSRB, they reach 98.53% of accuracy 
merging grayscale values of traffic sign images and Histogram of 
Oriented Gradients (HOG) based features, reducing the dimen- 
sionality through Iterative Nearest Neighbors-based Linear Pro- 
jections (INNLP) and classifying with Iterative Nearest Neighbors 
(INN). Although Support Vector Machines (SVMs) ( Maldonado- 
Bascón, Acevedo-Rodríguez, Lafuente-Arroyo, Fernández-Caballero, 
& López-Ferreras, 2010 ), Random Forests ( Zaklouta, Stanciulescu, 
& Hamdoun, 2011 ) and Nearest Neighbors ( Gudigar, Chokkadi, 
Raghavendra, & Acharya, 2017 ) classifiers have been used to recog- 
nize traffic sign images, Convolutional Neural Networks (ConvNets 
or CNNs) ( Lecun, Bottou, Bengio, & Haffner, 1998 ) showed par- 
ticularly high classification accuracies in the competition. Cire ̧s an, 
Meier, Masci, and Schmidhuber (2012) won the GTSRB contest with 
a 99.46% accuracy thanks to a committee of 25 ConvNets with 3 
convolutional layers and 2 fully connected layers each. Sermanet 
and LeCun (2011) use multi-scale ConvNets achieving an accuracy 
of 98.31% and second place in the GTSRB challenge. In 2014, Jin, 
Fu, and Zhang (2014) proposed a hinge loss stochastic gradient de- 
scent method to train ConvNets that brought off 99.65% accuracy 
and offered a faster and more stable convergence than previous 
works. 

1 https://www.adac.de/ _ mmm/pdf/fi_ verkehrszeichen _ engl _ infobr _ 0915 _ 30482. 
pdf (accessed 17.03.22). 

2 http://wiki.openstreetmap.org/wiki/Road _ signs _ in _ Belgium (accessed 17.03.22). 

Most TSRS rely exclusively on image or video processing, 
for instance, Kaplan Berkaya, Gunduz, Ozsen, Akinlar, and Gunal 
(2016) propose a circle detection algorithm along with an RGB- 
based color thresholding procedure during detection stage over 2D 
images which are classified applying an ensemble of features com- 
prising HOG, Gabor and local binary patterns (LBP) within a SVM 
afterward. Nevertheless, the use of MMS allows new approaches. A 
MMS is formed by different com ponents, namely mapping sensors 
(typically laser scanners and RGB or infrared cameras), a navigation 
unit which is composed of Global Navigation Satellite Systems, In- 
ertial Measuring Units and Distance Measurement Indicators, and 
a time referencing unit which allows the temporal synchronization 
of the different measurements collected. In recent years, a large 
number of methodologies have been developed which automati- 
cally process the geometric and radiometric information acquired 
by a MMS for different applications. Among them, object detec- 
tion and recognition is a topic that has received considerable at- 
tention in the literature. Oliveira, Nunes, Peixoto, Silva, and Moita 
(2010) propose the semantic fusion of point cloud data gathered 
with laser scanners and computer vision to detect pedestrians in 
urban scenarios. 

With regard to traffic signs, Pu, Rutzinger, Vosselman, and El- 
berink (2011) classify planar shapes in point clouds using geomet- 
ric based approaches. González-Jorge, Riveiro, Armesto, and Arias 
(2013) show that laser scanner systems can capture the geome- 
try of traffic sign panels based on the intensity values of those 
laser beams that are reflected on the panels. These values are 
much higher than those in their surroundings, owing to the retro- 
reflective properties of traffic signs paint. Riveiro, Díaz-Vilarino, 
Conde-Carnero, Soilán, and Arias (2016) rely on the intensity at- 
tribute of the point clouds in order to segment reflective elements. 
Then, they recognize the shape of the detected elements by eval- 
uating their contour and fitting a polynomial curve to it, which 
is compared with a set of patterns that represent simple shapes. 
However, this approach faced some limitations; distinguishing be- 
tween circular shapes and octagonal shapes was not possible due 
to the low resolution of the point cloud, and the specific mean- 
ing of a traffic sign could not be retrieved. Recently, some work 
has been published which combines 3D point cloud information 
and imagery data. Wen et al. (2016) detect traffic signs on a pre- 
processed point cloud using a single threshold value and imple- 
ment an on-image sign detection which consist on the projection 
of detected signs on 2D images and a classification by means of 
SVM using a combination of Hue SIFT and HOG feature vectors. 
Yu et al. (2016) present a similar approach which uses a bag of vi- 
sual phrases for the detection and a deep Boltzmann machine hi- 
erarchical classifier, which is a deep learning model that allows to 
generate highly distinctive features. 
3. Methodology 

In this work we propose the next methodology: initially our ve- 
hicle equipped with LiDAR and RGB cameras gathers information 
(3D point cloud and 2D imagery). Then, the point cloud is pro- 
cessed to automatically detect traffic signs based on their retro- 
reflective properties. Furthermore, each detected traffic sign is as- 
sociated with its respective RGB images. Finally, a DNN is applied 
to classify the type of traffic sign from the filtered set of RGB im- 
ages (see Fig. 1 ). 

The next subsections detail the traffic sign detection, point 
cloud projection on RGB images and traffic sign classification. 
3.1. Traffic sign detection from 3D point clouds 

This subsection summarizes the traffic sign detection method. 
It is based on Soilán, Riveiro, Martínez-Sánchez, and Arias (2016) 

https://www.adac.de/_mmm/pdf/fi_verkehrszeichen_engl_infobr_0915_30482.pdf
http://wiki.openstreetmap.org/wiki/Road_signs_in_Belgium


288 Á. Arcos-García et al. / Expert Systems With Applications 89 (2017) 286–295 

Fig. 1. Proposed methodology. Traffic sign detection by means of LiDAR data processing and traffic sign recognition through a DNN. 

Fig. 2. Point cloud processing. Workflow of the point cloud processing methodology. 
work and consists of a sequence of data processing modules which 
aim to detect traffic sign panels in 3D point clouds acquired by a 
MMS. The global processing chain can be seen in Fig. 2 . 
3.1.1. Point cloud preprocessing 

In order to reduce the amount of data processed, redundant or 
unnecessary information should be removed from the input point 
cloud. For that purpose, the distance from the 3D point cloud 
points to the trajectory registered by the MMS is computed. Once 
all the distances are computed, points further than 15 m from the 
trajectory are filtered out, as the objects to be studied are sup- 
posed to be displayed alongside the road. 
3.1.2. Ground segmentation 

Next step of the method consists of the segmentation of the 
ground. Let P = (x, y, z, I, t) be a 3D point cloud acquired by a 
MMS, where ( x, y, z ) are the 3D coordinates of the point cloud, I 
is the intensity of the returned pulse for each measured 3D point, 
and t is the time stamp of each point. Let T = (x r , y r , z r , t r ) be the 
trajectory of the MMS during the acquisition of the point cloud P , 
as measured by the positioning system of the vehicle. 

Here, the input point cloud P is voxelized, that is, a N x × N y × N z 
cubic grid with size g s is defined such that a voxel with a coordi- 
nate (x v 

i , y v i , z v i ) within the grid and a voxel index is assigned to 
every point ( x i , y i , z i ) in according to Eqs. (1) –(4) . 
x v i = round(x i − min (x )) /g s (1) 
y v i = round(y i − min (y )) /g s (2) 
z v i = round(z i − min (z)) /g s (3) 
id v i = (z i − min (z)) /g s (4) 

Let V (P ) = (x, y, z, µz , v z ) be the voxelized point cloud of P , and 
V (P, id v ) = (x, y, z, µz , v z ) be the voxel with index id v , where ( x, y, 
z ) is the centroid, and ( µz , v z ) are the vertical mean and variance, 
of the points in P with index id v . 

At this point, the ground segmentation is conducted based on 
a modification of Douillard et al. (2011) method for the partition 

of the ground. They cluster together adjacent voxels whose verti- 
cal mean and variance differences are less than certain thresholds, 
and select the largest partition as the ground. Here, voxels that be- 
long to the ground are selected as seeds for a region growing pro- 
cess where vertical mean and variance differences between adja- 
cent voxels are used as criteria to decide whether a voxel belongs 
to the ground or not. 

The ground seeds are selected using the trajectory T and the 
fact that the mapping system always travels over the ground. A K- 
Nearest-Neighbor algorithm is used to obtain the closest voxel for 
each point in the trajectory such that the elevation of the voxel is 
smaller than the elevation of the trajectory. That way, a set of vox- 
els in the ground is obtained, making the region growing process 
faster and eliminating the necessity of clustering and selecting the 
largest region. 

This process is driven by two parameters, which are the thresh- 
olds for vertical mean and vertical variance differences, d µ and d σ . 
This method aims for a coarse segmentation of the ground, includ- 
ing curbs and speed bumps. The parameters have been empiri- 
cally tuned, and for the study case experiments their values are 
d µ = 0 . 1 m and d σ = 0 . 05 . 
3.1.3. Detection of traffic signs based on the intensity data 

Let P ng ⊂ P be the non-ground segment point cloud ( Fig. 3 a), 
which is obtained after filtering out the ground segment from the 
point cloud. 

Traffic signs are panels made of retro-reflective materials. 
Therefore, the intensity property of the point cloud, which is di- 
rectly related with the reflectance of the objects can be used for 
the detection of traffic signs. It can be assumed that the intensity 
distribution of both reflective and non-reflective points in P ng fol- 
lows a normal distribution ( Riveiro et al., 2016 ). Therefore, an unsu- 
pervised classification algorithm based on Gaussian Mixture Mod- 
els (GMM) is proposed. GMM are multivariate distributions con- 
sisting of one or more Gaussian distribution components. Here, a 
mixture distribution with two components is estimated given the 
intensity values of the points in P ng . Then, each point in the cloud 
is assigned to one of the components, and those points assigned 
to the component with largest mean are selected for the next pro- 
cessing step. 
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Fig. 3. Traffic sign detection. (a) The ground segment is filtered out from the point cloud. Therefore, only non-ground points (colored in red) are analyzed in the subsequent 
steps. (b) Both intensity and geometry filters are applied in order to segment traffic sign panels (colored in red). (c) The 3D point cloud traffic sign panels are projected on 
2D images and the bounding box of the projection is used for cropping the images, facilitating the traffic sign recognition process. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

The selected points have large intensity values, but they are still 
unorganized, that is, there is no relation between the points in the 
cloud. Hence, a clustering algorithm is applied in order to group 
together points that may belong to the same object. DBSCAN al- 
gorithm ( Ester, Kriegel, Sander, & Xu, 1996 ) groups points which 
are closely packed together while selecting isolated points as out- 
liers. This algorithm allows to group points that belong to different 
objects in a set of clusters C = { C 1 , . . . , C i , . . . , C n }| C i ⊂ P ng . That is, 
each cluster C i contains a group of points from P ng which belong 
to the same object and have large intensity values. 

Finally, C is filtered using the knowledge about the geometry 
of the traffic sign panels, that is, they are planar surfaces, and they 
have an enclosed range of heights. First, the dimensionality of each 
cluster is analyzed. For each C i ⊂ P ng a Principal Component Analy- 
sis (PCA) of the covariance matrix of the points within the cluster 
is carried out such that the planarity of C i is according to Eq. (5) , 
where λi is the i − th eigenvalue returned by PCA. 
a 2 D = (√ 

λ2 − √ 
λ3 )/ √ 

λ1 (5) 
If a 2 D < 1/3, the cluster cannot be labeled as a plane ( Gressin, 

Mallet, Demantké, & David, 2013 ) and therefore it is filtered out. 
Subsequently, a height filter is applied such that clusters with 
heights smaller than 25cm are also filtered out. Both filters elim- 
inate objects with reflective properties which are not planar or 
small, such as vehicle license plates. The detection process outputs 
a subset of C, C ts ⊂ C which contain traffic sign panels ( Fig. 3 b). 
3.2. Point cloud projection on RGB images 

The resolution of traffic sign panel clusters C ts is not enough to 
obtain semantic information of the traffic sign. Although it is pos- 
sible to recognize different shapes, most of the visual information 
is lost in the 3D point cloud. Therefore, the traffic sign recogni- 
tion task is carried out using RGB images taken by four cameras 
installed in the MMS. The camera calibration parameters, namely 
radial distortion parameters ( k 1 , k 2 ), focal length ( f j , j = 1 . . . 4) , 
pixel size ( s pix ), and pixel coordinates of the principal point ( c x , 
c y ) are known, together with the orientation parameters that relate 
the camera coordinate system and the vehicle ( Puente, González- 
Jorge, Riveiro, & Arias, 2013b ). Moreover, the position of the vehicle 
and the time stamp is known for each RGB image. For each clus- 
ter C i ⊂ C , the average time stamp t ave of the 3D points is computed 
and only those images whose time stamp is in the interval t ave ± 5 s 
are analyzed. Let p ih be 3D homogeneous coordinates of the points 

of the traffic sign panel i . First, the coordinates are transformed 
from the global coordinate system to the vehicle coordinate sys- 
tem following ( Eq. (6) ): 
p c ih = (T ab T ac ) −1 p A ih (6) 

Where A is the global coordinate system, B is the GNSS coor- 
dinate system, C is the vehicle coordinate system, and T ab , T ac are 
the transformation matrices between AB and BC . 

Once the traffic sign panel coordinates and the camera position 
are both related to the vehicle coordinate system, the 3D points 
can be projected onto the plane of each camera and the coordi- 
nates with respect to the camera frame ( d u , d v ) can be obtained. A 
radial distortion model is applied to correct the coordinates (tan- 
gential distortion is not considered), and pixel coordinates can be 
retrieved using the pixel size value together with the coordinates 
of the principal point ( Eqs. (7) and (8) ). 
x pix = d u (k 1 r 2 + k 2 r 4 ) + c x /s pix (7) 
y pix = d v (k 1 r 2 + k 2 r 4 ) + c y /s pix (8) 

Once every point of a traffic sign panel is projected into an im- 
age, the bounding box of the pixel coordinates is retrieved. The im- 
age is automatically cropped according to the bounding box with 
a margin of a 25% ( Fig. 3 c) to compensate for possible calibration 
errors and add some background for training classification models. 
3.3. Traffic sign recognition 

Once the RGB images have been selected and the image sam- 
ples containing the traffic signs have been stored, the classification 
process starts. As seen in Section 2 , ConvNets have been widely 
used to classify traffic signs. In our work a traffic sign recognition 
system based on DNN is proposed, whose main blocks are convolu- 
tional and spatial transformer layers. In the following subsections, 
the initial dataset, the data preprocessing and our DNN architec- 
ture are described. 
3.3.1. Initial dataset preparation 

In Spain there is not any public dataset available for its 252 
traffic sign categories. Gathering a sufficient number of images of 
all the categories is a challenging task. In this work, an initial 
dataset with 83 classes has been obtained thanks to the filtered 
images collected with the MLS explained above, combined with 
images from the German and Belgian dataset that are similar to 



290 Á. Arcos-García et al. / Expert Systems With Applications 89 (2017) 286–295 

Fig. 4. Mixset dataset. (a) Traffic sign categories. (b) Relative class frequencies. 
Table 1 
European datasets mixed. 

Dataset Training images Validation images Classes 
GTSRB 39,209 12,630 43 
Adapted BTSC 4024 2263 58 
Spain 897 452 43 
Mixset 44,130 15,345 83 

Spanish case. The dataset is available at https://daus-lab.github.io/ 
spanish- traffic- sign- dataset . 

All the collected images from Spain were manually classified 
in a collaborative way through a web site designed specifically for 
that task. Only those categories with more than six examples were 
used in the initial dataset. Later, images are randomly mixed and 
split into training and validation sets five times in order to evalu- 
ate the recognition system through cross-validation. Each of these 
folds is composed by 897 training images and 452 validation im- 
ages distributed in 43 categories. As may be seen, the scale of the 
collected dataset is small and will be enlarged in future work even 
though the current dataset version along with the Mixset ground 
truth files will be kept for reproducibility and comparability pur- 
poses. 

In the German traffic sign recognition dataset, the training set 
has 39,209 images and validation set consists of 12,630 that are 
used to measure the performance of algorithms in the GTSRB 
( Stallkamp et al., 2011 ). All the German categories are included in 
the Spanish Road Traffic Regulations document ( Spanish Govern- 
ment, 2003 ). 

The Belgian traffic sign classification dataset was carefully re- 
vised because it contains categories that cluster different traffic 
signs types (e.g. 50 speed limit sign and 70 speed limit sign). It 
also includes some classes that were removed because they are not 
defined in the Spanish Road Traffic Regulations document. Thus, 
testing images from Belgian dataset were used as validation set. 
Some empty categories were filled selecting one random sample 
per each road track from training set and moving it to our valida- 
tion set, according to Sermanet and LeCun (2011) . After adaptation, 
the Belgian dataset consists of 4024 training images and 2263 val- 
idation images divided into 58 categories. 

Classes of the three datasets were related to each other, result- 
ing in an initial dataset ( Table 1 ) of 44,130 training images, 15,345 
validation images and 83 traffic sign types ( Fig. 4 a). The usage of 
the Spanish dataset permits to add 13 unique traffic sign categories 

that were not in the German or Belgian ones. From now on, we 
will refer to this dataset as Mixset. Note that Mixset is highly im- 
balanced, for example, 9 out of 83 categories in training set and 
21 out of 83 classes in validation set have less than 10 samples. By 
contrast, 17 out of 83 types of traffic signs contain more than 10 0 0 
training samples ( Fig. 4 b). 
3.3.2. Data pre-processing of Mixset images 

Mixset samples are raw RGB and sizes vary from 21 × 22 to 
700 × 700 pixels. All of them are up-sampled or down-sampled to 
4 8x4 8 pixels and preprocessed with global and local contrast nor- 
malization with Gaussians kernels ( Jarrett, Kavukcuoglu, Ranzato, & 
LeCun, 2009 ) that centers each input image around its mean value 
and enhances edges. 
3.3.3. Deep Neural Network architecture 

The proposed method to recognize traffic signs is a DNN that 
combines several convolutional, spatial transformer, non-linearity, 
contrast normalization and max-pooling layers. It acts as a feature 
extractor that maps raw pixel information of the input image into a 
tensor to be classified by two fully connected layers. Spatial trans- 
former layers are used to perform explicit geometric transforma- 
tions on input images and feature maps in order to focus on the 
object to be learned, removing progressively background and geo- 
metric noise. All variable parameters used in each of these layers 
are optimized together through minimization of the misclassifica- 
tion error over the Mixset training set. 

The convolutional layers carry out a 2-dimensional convolution 
of its n − 1 input maps with a filter of size F n x × F n y , where x and 
y represent the size of each dimension. Each convolutional layer 
is composed by neurons which have learnable biases and weights. 
During the feed forward process of the neural network, each fil- 
ter is convolved across the height and width of the input map, 
performing a dot product that produces a 2-dimensional activation 
map of that filter. The resulting activations of the n output maps 
are given by the sum of the n − 1 convolutional responses that are 
passed through a non-linear activation function f where n is the 
convolutional layer, i and j represent the input map and the out- 
put map respectively, a indicates a map of size x × y , the weights 
w ij are represented as a filter of size F x × F y which connects the in- 
put map with the output map, and b j is the bias of the output map 
( Eq. (9) ). Rectified Linear Units (ReLU) layers are used to compute 

https://daus-lab.github.io/spanish-traffic-sign-dataset
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Fig. 5. Spatial transformer network. Input images on the first row and computed output images on the second row. 
the non-linear activation function. 
a n j = n −1 ∑ 

i =1 a n −1 
i ∗ w n i j + b n j (9) 

ReLU layers are made up of neurons that apply the activation 
function f (x ) = max (0 , x ) , where x is the input to a neuron. It en- 
hances the non-linear properties of the network, including the de- 
cision function, without affecting the learnable parameters of the 
convolutional layer. 

Max-pooling layers are used to reduce progressively the spa- 
tial size of the representation, in order to decrease the amount of 
parameters, computation in the network and to control overfitting 
by selecting superior invariant features, and improving generaliza- 
tion. The output of this layer is given by the maximum activation 
over non-overlapping regions of filter size F x × F y , where the input 
map is downsampled by a factor of F x and F y along both width and 
height, nevertheless depth dimension remains unchanged. 

Contrast normalization layers ( Jarrett et al., 2009 ) are used to 
normalize the contrast of an input map through subtractive local 
normalization and divisive local normalization. Both operations use 
a Gaussian kernel, and are computed at local spatial regions of the 
input map on a per feature basis. 

Fully connected layer neurons have full connections to all acti- 
vations in the previous layer, in other words, it combines the out- 
puts of the previous layer into a 1-dimensional feature vector. The 
last fully-connected layer of the network performs the classifica- 
tion task since they have one output neuron per class, followed by 
a logarithmic soft-max activation function. 

Spatial Transformer Networks ( Jaderberg, Simonyan, Zisserman, 
Kavukcuoglu, 2015 ) aim to perform geometric transformation on 
an input map so that provides to ConvNets the ability to be spa- 
tially invariant to the input data in a computationally efficient 
manner. Thanks to such transformations, there is no need for ex- 
tra training supervision, handcrafted data augmentation (e.g. ro- 
tation, translation, scale, skew, cropping) or dataset normalization 
techniques. This differentiable module can be inserted into exist- 
ing convolutional architectures since the parameters of the trans- 
formation that are applied to feature maps are learned by means 
of a backpropagation algorithm. Spatial transformer networks con- 
sist of 3 elements: the localization network, the grid generator and 
the sampler ( Fig. 6 ). 

The localization network f loc () takes an input feature map 
U ∈ R H × W × C , where H, W and C are the height, width and channels 
respectively, and outputs the parameters θ of the transformation 
T θ to be applied to the feature map θ = f loc (U) . The dimension of 
θ depends on the transformation type T θ that is being parameter- 
ized, being 6-dimensional in our proposed net since it performs a 
2D affine transformation A θ which allows translation, cropping, ro- 
tation, scale and skew. The localization network can comprise any 
number of convolutional and fully connected layers, and must have 
at least one final regression layer to generate the transformation 
parameters θ . Such parameters are used by the grid generator to 
create a sampling grid, which is a set of points where the input 
map has to be sampled to obtain the desired transformed output. 

Fig. 6. Spatial transformer network components ( Jaderberg et al., 2015 ). 
Finally, the sampler uses as inputs the sampling grid and the input 
feature map U in order to perform a bilinear sampling which pro- 
duces the transformed output feature map V ∈ R H ′ ×W ′ ×C , where H ′ , 
W ′ are the height and width of the sampling grid. 

For source coordinates in the input feature map (x s 
i , y s i ) and a 

learned 2D affine transformation matrix A θ , the target coordinates 
of the regular grid in the output feature map (x t 

i , y t i ) are given as 
follows ( Eq. (10) ): 
(

x s i 
y s i 

)
= A θ

⎛ 
⎝ x t i y t i 

1 
⎞ 
⎠ = [θ11 θ12 θ13 

θ21 θ22 θ23 
]⎛ 
⎝ x t i y t i 

1 
⎞ 
⎠ (10) 

Regarding traffic sign recognition, spatial transformer networks 
learn to focus on the traffic sign removing gradually geometric 
noise and background so that only the interesting zones of the in- 
put are forwarded to the next layers of the network ( Fig. 5 ). Up to 
our knowledge, no peer review work has been published includ- 
ing the spatial transformer unit into a ConvNet for the traffic sign 
recognition task. 

Our proposed DNN consists of three main blocks that act as 
feature extractors and comprises a spatial transformer network, a 
convolutional layer, a ReLU layer, a max-pooling layer and a local 
contrast normalization layer. Then, the classification is carried out 
by two fully-connected layers separated by a ReLU layer. The last 
fully-connected layer is made of 83 neurons corresponding to each 
the traffic sign categories to be classified ( Fig. 7 ). 

The localization network of the three spatial transformer net- 
works is built with a max-pooling layer followed by two blocks of 
convolutional, ReLU and max-pooling layers. Also in this case, the 
classification stage has 2 fully-connected layers and a ReLU one al- 
though the last fully-connected only contains 6 neurons that cor- 
respond to the parameters of the affine transformation matrix. 

The DNN architecture proposed is shown in Tables 2 and 3 . 
Convolutional layers stride is set to 1 in order to leave all spa- 
tial down-sampling computation to max-pooling layers, and zero 
padding is set to 2, in contrast with max-pooling layers, whose 
stride is set to 2 and zero padding to 0. The total parameters 
learned (weights) by this single DNN is 14,629,801 which is much 
less than in other ConvNets proposed for traffic sign recognition 
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Fig. 7. DNN for traffic sign recognition proposed. Local contrast normalization layers have been omitted in the figure above to simplify its visualization as well as localization 
networks of spatial transformers. The st layers refer to spatial transformer networks, conv to convolutional layers, mp to max-pooling layers, fc to fully-connected layers and 
sm to soft-max layer. 
Table 2 
Detailed DNN architecture proposed for traffic sign recognition. 

Layer Type # Maps and neurons Kernel # Weights 
0 Input 3 m. of 48 × 48 n. 
1 Spatial Transformer 1 3 m. of 48 × 48 n. 3,833,506 
2 Convolutional 200 m. of 46 × 46 n. 7 × 7 29,600 
3 Non-linearity (ReLU) 200 m. of 46 × 46 n. 
4 Max-Pooling 200 m. of 23 × 23 n. 2 × 2 
5 Contrast Norm. 200 m. of 23 × 23 n. 
6 Spatial Transformer 2 200 m. of 23 × 23 n. 1,742,456 
7 Convolutional 250 m. of 24 × 24 n. 4 × 4 800,250 
8 Non-linearity (ReLU) 250 m. of 24 × 24 n. 
9 Max-Pooling 250 m. of 12 × 12 n. 2 × 2 
10 Contrast Norm. 250 m. of 12 × 12 n. 
11 Spatial Transformer 3 250 m. of 12 × 12 n. 1,749,956 
12 Convolutional 350 m. of 13 × 13 n. 4 × 4 1,400,350 
13 Non-linearity (ReLU) 350 m. of 13 × 13 n. 
14 Max-Pooling 350 m. of 6 × 6 n. 2 × 2 
15 Contrast Norm. 350 m. of 6 × 6 n. 
16 Fully connected 400 neurons 1 × 1 5,040,400 
17 Non-linearity (ReLU) 400 neurons 
18 Fully connected 83 neurons 1 × 1 33,283 
19 Soft-max 83 neurons 

Table 3 
Localization network details of spatial transformers used in the main 
DNN. Kernel size of convolutional layers is set to 5 × 5 and max-pooling 
layers to 2 × 2. The annotation shown in the table is simplified, for in- 
stance, 3 of 48 × 48 stands for 3 maps of 48 × 48 neurons each one. 

Layer/Type Loc. net of ST 1 Loc. net of ST 2 Loc. net of ST 3 
0/Input 3 of 48 × 48 200 of 23 × 23 250 of 12 × 12 
1/Max-Pool 3 of 24 × 24 200 of 11 × 11 250 of 6 × 6 
2/Conv 250 of 24 × 24 150 of 11 × 11 150 of 6 × 6 
3/ReLU 250 of 24 × 24 150 of 11 × 11 150 of 6 × 6 
4/Max-Pool 250 of 12 × 12 150 of 5 × 5 150 of 3 × 3 
5/Conv 250 of 12 × 12 200 of 5 × 5 200 of 3 × 3 
6/ReLU 250 of 12 × 12 200 of 5 × 5 200 of 3 × 3 
7/Max-Pool 250 of 6 × 6 200 of 2 × 2 200 of 1 × 1 
8/Fc 250 neurons 300 neurons 300 neurons 
9/ReLU 250 neurons 300 neurons 300 neurons 
10/Fc 6 neurons 6 neurons 6 neurons 

( Table 4 ), leading this advantage to lower memory consumption, 
computational cost and simpler pipeline. 

Table 5 
Number of 3D points analyzed in two 
different scenarios. 

Area Points 
Urban 129,553,905 
Road 145,759,301 

4. Results 
In this section, the performance of the traffic sign detection and 

classification methodologies are presented. 
4.1. Acquisition hardware 

The LYNX Mobile Mapper by Optech was used for the collec- 
tion of the data ( Puente et al., 2013b ). The methodology presented 
in Sections 3.1 and 3.2 was tested in two different scenarios. The 
first one is an urban area, that comprises 2.5 km three-lane av- 
enue that encircles the city center of Lugo, in northwest Spain. 
The second one is a road environment that includes 7.5 km section 
of AP-9 highway and N-552, N-554 roads in the outskirts of Vigo. 
The number of 3D points that were analyzed for each scenario, as 
noted in Soilán et al. (2016) can be found in Table 5 . 
4.2. Traffic sign detection results 

The traffic sign detection process was evaluated using the urban 
and road areas of the study case. The ground truth was created by 
manually annotating the position of the traffic signs in these areas. 
The ground truth is compared with the output of the road sign de- 
tection algorithm for traffic signs, which is a set of 3D point clus- 
ters, C . The evaluation is carried out using Precision, Recall and F1- 
score for measuring the performance. The results, based in Soilán 
et al. (2016) are shown in Table 6 together with a comparison with 
Riveiro et al. (2016) and Wen et al. (2016) results. 
4.3. RGB processing results 

Finally, regarding the projection of traffic sign points in RGB im- 
ages, a data reduction metric is provided which shows the quality 
of the image cropping process and aim to prove that the 3D point 
cloud processing highly diminishes the non-meaningful data to be 
analyzed by a 2D TSRS. A ratio that compares the total number 
of images available over the number of images obtained after the 

Table 4 
Proposed DNN information compared with previous state-of-the-art methods. 

Paper Data augment. or jittering # trainable parameters # ConvNets 
Ours No 14,629,801 1 
Jin et al. (2014) Yes ∼ 23 millions 20 (ensemble) 
Cire ̧s an et al. (2012) Yes ∼ 90 millions 25 (committee) 
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Fig. 8. Confusion matrices. GTSRB on the left, BTSC in the middle and Mixset on the right. 
Table 6 
Traffic sign detection results. 

Area Precision (%) Recall (%) F1 score (%) 
Urban 86.1 95.4 90.5 
Road 92.8 100 96.3 
Global performance 
This paper 89.7 97.9 93.4 
Riveiro et al. (2016) 91.3 90.9 91.1 
Wen et al. (2016) 91.92 90.53 91.22 
Table 7 
GTSRB, BTSC and Mixset precision, recall and f1-score recogni- 
tion results. Mixset includes the cross-validation percentage. 

Dataset Precision (%) Recall (%) F1 score (%) 
GTSRB 99.71 99.71 99.71 
BTSC 98.95 98.87 98.86 
Mixset 99.37 ± 0.03 99.36 ± 0.03 99.35 ± 0.03 

projection of the 3D points of sign panel was computed, obtaining 
a value of 5.275. 
4.4. Traffic sign recognition results 

The following subsections describe the experiments and 
achieved results in the GTSRB dataset, BTSC dataset and Mixset 
dataset. As development tools, Torch scientific computer frame- 
work 3 and an implementation of spatial transformer networks 4 
were used. Overall recognition results of each dataset are shown 
in Table 7 and confusion matrices in Fig. 8 . 
4.4.1. GTSRB dataset results 

Firstly, to find empirically the best DNN architecture, GTSRB 
dataset was used in the execution of more than 200 experiments 
run during 10 epochs with a wide range of DNN configurations 
composed by the layers described in Section 3.3.3 . Each of them 
consists of 39,209 training images, 12,630 validation traffic signs, 
a base learning rate fixed to 0.01 and a vanilla Stochastic Gradient 
Descent algorithm (SGD) as loss function optimizer. 

Secondly, top-10 DNN configurations were revised and executed 
again increasing the number of epochs to 26 expecting to improve 
accuracy results. Nevertheless, in some cases the accuracy of the 
DNNs trained grew a little and in other cases it was the same. The 

3 http://torch.ch/ (accessed 17.03.22). 
4 https://github.com/qassemoquab/stnbhwd (accessed 17.03.22). 

best one reached an accuracy of 99.71% in GTSRB, whose config- 
uration is the DNN architecture deeply detailed in Section 3.3.3 . It 
outperforms several GTSRB methods used previously ( Table 8 ). By 
the time of writing this paper our proposed DNN is top-1 in the 
GTSRB out of the previously published works. 
4.4.2. BTSC dataset results 

The Belgian traffic sign classification dataset ( Mathias et al., 
2013 ) has 4533 training images and 2562 validation ones split into 
62 traffic sign types. Even though an adaptation of this dataset was 
handcrafted to populate the Mixset showed off in Section 3 , in the 
current subsection experiment the original dataset was used with- 
out any further modification in order to measure the performance 
of the DNN proposed. Considering that this dataset has different 
traffic sign pictograms, lighting conditions, occlusions, image reso- 
lutions and so on than in the GTSRB dataset, our DNN configura- 
tion achieves an accuracy of 98.87% ( Table 9 ). 
4.4.3. Mixset dataset results 

Mixset dataset was generated using the original images from 
the GTSRB dataset, the adapted ones from the BTSC dataset and 
the ones from the Spanish dataset. As a result, Mixset consists of 
44,130 training traffic sign images and 15,345 validation ones. To 
evaluate the performance of our DNN in this dataset, five mod- 
els were trained and tested corresponding each one to a cross- 
validation fold. The DNN model reaches an average accuracy of 
99.36 ± 0.03% being the second fold used in the cross-validation 
the best one ( Table 10 ). Even though we have a highly imbalanced 
dataset, the DNN performs well classifying traffic signs that belong 
to categories with a small number of training instances ( Table 11 ). 
Some misclassified samples are shown in Fig. 9 . 
4.5. Processing time 

Detection processing times are shown in Table 12 . A section 
of point cloud data of the urban dataset was selected and the 
methodology presented in Section 3.1 was applied several times to 
get the average execution time for each algorithm within the pro- 
cessing chain. It was tested using an Intel Core i7-4771 CPU at 
3.5 GHz. It can be seen that the ground segmentation process is 
the most demanding, and the whole processing of almost 30 mil- 
lion points takes about four minutes. 

Regarding traffic sign recognition, experiments were performed 
in a computer built with an Intel Core i7-6700k CPU, 16 GB of RAM 
and a Nvidia Geforce GTX 1070 discrete GPU which has 1920 CUDA 
cores and 8 GB of RAM. Training and testing execution times are 
shown in Table 13 . 

http://torch.ch/
https://github.com/qassemoquab/stnbhwd
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Table 8 
Recognition rate of different methods on GTSRB dataset. 

Paper Method Accuracy (%) 
Ours CNN with 3 STNs 99.71 
Jin et al. (2014) HLSGD (20 CNNs ensemble) 99.65 
Cire ̧s an et al. (2012) MCDNN (25 CNNs committee) 99.46 
Yu et al. (2016) GDBM 99.34 
Jurisic, Filkovic, and Kalafatic (2015) OneCNN 99.11 ± 0.10 
Stallkamp et al. (2011) Human performance (avg.) 98.84 
Mathias et al. (2013) INNLP + INNC(I,PI,HOGs) 98.53 

Fig. 9. Misclassified samples. Some misclassified samples of the Mixset model trained. As may be seen, the main reason behind them are occlusions and blurred pictographs, 
being their recognition even hard for the human visual system. Columns labeled with S refer to sample, R to real traffic sign category and P to prediction. 

Table 9 
Recognition rate of different methods on BTSC dataset. 

Paper Method Accuracy (%) 
Yu et al. (2016) GDBM 98.92 
Ours CNN with 3 STNs 98.87 
Jurisic et al. (2015) OneCNN 98.17 ± 0.22 
Mathias et al. (2013) INNLP + SRC(PI) 97.83 

Table 10 
Mixset model cross-validation results. 

Fold Precision (%) Recall (%) F1 score (%) 
1 99.37 99.36 99.34 
2 99.40 99.38 99.38 
3 99.36 99.34 99.34 
4 99.33 99.32 99.30 
5 99.40 99.38 99.38 
Avg. 99.37 ± 0.03 99.36 ± 0.03 99.35 ± 0.03 

Table 11 
Second fold results of Mixset model for categories with a small size of train- 
ing examples. The first column represents those categories which contains a 
determined number of training samples included in the range [ Min –Max ]. 

[Min–Max] Avg. precision (%) Avg. recall (%) Avg. F1 score (%) 
[4–20] 99.47 93.28 95.60 
[21–50] 99.14 98.33 98.65 
[51–100] 97.48 99.03 98.15 
[101–500] 98.97 99.14 99.04 
[501–10 0 0] 99.33 99.58 99.45 
[1001–1500] 99.65 98.62 99.13 
[1501–20 0 0] 98.82 99.92 99.36 
[2001–2504] 99.83 99.78 99.81 

Table 12 
Traffic sign detection processing time. 

Algorithm Time (s) # Input points 
Preprocessing 13.75 28,032,301 
Ground Segmentation 117.97 20,440,211 
Detection 77.6 17,127,358 
Image Projection 25.86 6 86 8 
Total 240.34 28,032,301 

Table 13 
Processing time needed by the DNN 
proposed to train and test 1 sample. 

Process Time (ms) 
Learn 1 sample 11.18 ± 0.02 
Test 1 sample 4.28 ± 0.02 

5. Conclusions and future work 
In this paper a method for the automatic detection and recogni- 

tion of vertical traffic signs is presented. 3D point clouds collected 
by a Mobile Mapping System are processed in order to detect traf- 
fic sign panels using both geometric and radiometric features. The 
3D data are projected on 2D images given the spatio-temporal re- 
lationship between the laser scanners and the images taken by the 
RGB cameras. The images that contain traffic signs are properly 
cropped and classified using a single DNN that alternates convo- 
lutional and spatial transformer modules. Although there are other 
approaches that combine LiDAR techniques and 2D imagery ( Tan, 
Wang, Wu, Wang, & Pan, 2016; Wen et al., 2016; Yu et al., 2016 ) 
our methodology outperforms the previous ones. 

The traffic sign detection methodology is tested in different 
scenarios in Spain, obtaining a F1-score of 93.4%. Projecting the 
3D traffic signs detected in the LiDAR point cloud on 2D images 
drastically reduces the amount of data which is fed to the Traffic 
Sign Recognition System. For traffic sign classification, we propose 
and analyze the performance of a single DNN on multiple traffic 
sign classification datasets. It outperforms previous state-of-the-art 
methods reporting a recognition rate accuracy of 99.71% in the GT- 
SRB. Also, the DNN avoids the need of handcrafted data augmenta- 
tion and jittering used in prior approaches ( Cire ̧s an et al., 2012; Jin 
et al., 2014; Sermanet & LeCun, 2011 ). Moreover, there is less mem- 
ory requirements and the network has less number of parameters 
to learn compared with existing methods since we keep away from 
using several ConvNets in an ensemble or in a committee way. 

The main drawback of this method is that it cannot lead to real 
time applications, as 3D point cloud processing is computation- 
ally intensive. Furthermore, setting up the Mobile Mapping System 
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is expensive and complex. The calibration of the cameras has to 
be precise, as well as the geometric transformations with respect 
to the positioning system, where measuring errors of centimeters 
may lead to large accuracy losses when a 3D point cloud is pro- 
jected on 2D imagery. Regarding to the traffic sign classification 
system, the DNN proposed needs a huge amount of traffic sign 
samples of many categories, taken by cameras with different light- 
ing and weather conditions (fog, rain, sun glare), occlusions, bad 
viewpoints, faded colors, etc., in order to train a robust model that 
could cope well with such issues. This is a disadvantage with re- 
spect to computer vision approaches based on color and shape fea- 
ture engineering since such methods do not need any prior knowl- 
edge of traffic signs. 

The main contributions of this work are four-fold: (1) The 
methodology presents state-of-the-art results for traffic sign de- 
tection through 3D point clouds processing and classification in 
2D imagery by means of a DNN, both integrated in the same 
automated framework. (2) We provide an insight into the pro- 
posed DNN capabilities and how do spatial transformer modules 
work with traffic signs. (3) Multiple public available traffic sign 
classification datasets are analyzed and used by the classification 
model, including a dataset with traffic sign images from three Eu- 
ropean countries. (4) A scalable, publicly available dataset contain- 
ing around 1500 images of Spanish traffic signs. These contribu- 
tions lead to practical applications such as automated inventory 
and maintenance of vertical signage using a data source (i.e. 3D 
point clouds) which can be simultaneously processed in order to 
detect a wide range of infrastructure elements, feeding road net- 
work information layers to a spatial database. Furthermore, the 
classification model on its own can be used for real time TSRS 
since its inference time is quite low and it can be deployed as a 
standalone service. For instance, expert systems as self-driving cars 
could benefit from this classification system once the traffic sign 
has been detected. 

Future work should study the impact of different loss func- 
tion optimizers for ConvNets, other kind of non-linearity layers, 
dropout layers, and state-of-the-art ConvNets architectures for im- 
age recognition like ResNet ( He, Zhang, Ren, & Sun, 2016 ) or Incep- 
tion ( Szegedy, Ioffe, Vanhoucke, & Alemi, 2017 ) along with spatial 
transformer networks. Finally, DNN for traffic sign detection should 
be further investigated in order to build cost-effective car-mounted 
devices that handle similar pipelines in real time. 
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