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Combining K-Means and a Genetic Algorithm
through a Novel Arrangement of Genetic Operators
for High Quality Clustering

Md Zahidul Islam, Vladimir Estivill-Castro, Md Anisur Rahman, and Terry Bossomaier.

Abstract—Knowledge discovery from data demands that it
shall be the data themselves that reveal the groups (i.e. the
data elements in each group) and the number of groups. For
the ubiquitous task of clustering, K-MEANS is the most used
algorithm applied in a broad range of areas to identify groups
where intra-group distances are much smaller than inter-group
distances. As a representative-based clustering approach, K-
MEANS offers an extremely efficient gradient descent approach
to the total squared error of representation; however, it not
only demands the parameter k, but it also makes assumptions
about the similarity of density among the clusters. Therefore, it
is profoundly affected by noise. Perhaps more seriously, it can
often be attracted to local optima despite its immersion in a
multi-start scheme. We present an effective genetic algorithm
that combines the capacity of genetic operators to conglomerate
different solutions of the search space with the exploitation of the
hill-climber. We advance a previous genetic-searching approach
called GENCLUST, with the intervention of fast hill-climbing
cycles of K-MEANS and obtain an algorithm that is faster than
its predecessor and achieves clustering results of higher quality.
We demonstrate this across a series of 18 commonly researched
datasets.

Index Terms—Clustering, Genetic Algorithm, K-MEANS, Data
Mining, Cluster Evaluation.

1. INTRODUCTION

Lustering groups the records of a dataset in such a way

that similar records are grouped together in a cluster
and dissimilar records are placed in different clusters. It has a
broad range of applications in almost all areas including gene
analysis (Brameier & Wiuf, 2007), medical imaging (Loai,
Lin, & Li, 2008)) and market analysis (Chan, Kwong, & Hul
2012).

As a result, many clustering techniques have been proposed,
out of which K-MEANS (Lloyd, [1982) is one of the most
popular techniques (Wu et al., 2008). K-MEANS tops Ex-
pectation Maximization among clustering methods and the
top 10 most used algorithms in data analysis (Wu et all
2008). Although K-MEANS assumes that the data present
clusters that are essentially well separated and spherical, it
is regularly applied to situations for which perhaps there is
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little justification for this. For example, the construction of the
vocabulary tree (Nistér & Stewénius, |2006) in sophisticated
object recognition tasks from images by techniques such as
SIFT. This is so because even if the data is not a mixture
of multivariate normals, identifying the high-density regions
represented by a set of centers and radii is useful information
providing insights into the data.

Other strong reasons for adopting K-MEANS include its
speed, its capacity to work by scanning the data sequentially,
the possibility to stop the algorithm at any time and be
provided with some answer, with also being able to resume
K-MEANS with different subsets of the data or additional
data records. Its simplicity (the centroid finding and centroid
assignment are two simple phases of its core iterative loop)
displays a linear-time complexity (that is, O(n) time) for
clustering a dataset with n records.

However, it has a number of drawbacks. Some of them de-
rived from its inductive least sum of squares principle (Estivill-
Castro, 2002), but some others are due to the algorithm’s
structure. First, it requires the number k of clusters as an input.
In realistic settings, it can be extremely difficult for a user to
guess the number of clusters in advance (Jain, 2010). Second,
K-MEANS is sensitive to the initial seeds (i.e. cluster centers
or genes) that it produces randomly (Arthur & Vassilvitskii,
2007). Bad initial seeds can easily lead K-MEANS to poor
clustering results (Rahman & Islam, 2011)). Third, since it is a
simple hill-climber method for its objective function, it can get
trapped at a local optimum and thus produce a poor clustering
solution (Maulik & Bandyopadhyay, |2000). It assumes that all
clusters have approximately equal density and similar spread;
as a result it can be misguided by noise and outliers.

Hence, there is a huge demand for clustering techniques
that are simple but free from the limitations of K-MEANS.
Genetic algorithms have been used along with K-MEANS to
avoid the requirement of the user input on k and improve
the cluster quality by exploring good quality optima (Maulik
& Bandyopadhyay, [2000; Bandyopadhyay & Maulikl 2002;
Laszlo & Mukherjee, 2007; [Liu, Wu, & Shen, 2011).

Many genetic algorithms select their initial population ran-
domly (Liu et al.| 2011; |Chang, Zhang, & Zheng, [2009) which
may have an adverse impact on final clustering results. A re-
cent technique called GENCLUST uses an advanced approach
in selecting its initial population which was shown (Rahman
& Islam, [2014) to be useful in achieving better clustering
results. Nevertheless, due to the complex initial population
selection process, it suffers from a high complexity of O(n?)
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time. Surprisingly, many existing clustering techniques are
using genetic algorithms with an even worse complexity
of O(n?) time. These include ACCA (Bhattacharya & De,
2010), HC (Pirim, Eksioglu, Perkins, & Yuceer, [2012) and
ACAD (Chowdhury & Dasl 2012). Most of these algorithms
are randomised; thus, if properly implemented, they ought
to be executed several times, and the best result of such
repetitions is to be taken as an answer.

Thus, comparing an algorithm A that is O(n) but potentially
delivers worse clusters than another algorithm B that is O(n?)
needs careful considerations. The reason is that, modulo some
constants the apparently faster but worse quality performer A
can be repeated O(n) times from different random starting
points for each execution of B with apparent higher quality
clustering results but costing O(n?). Care should be taken
when contrasting cluster quality with computational effort
between randomised algorithms, and this is a point we em-
phasise in this paper. We show that with exactly the same
computational effort for multi-start versions of all the algo-
rithms discussed, the proposed GENCLUST++ here produces
clustering of higher quality than the other methods. We show
this across 18 commonly used datasets, and we validate our
results with a statistical analysis that establishes the statistical
significance of our results.

1.1 Notation and Definitions

In order to present the main contributions of this paper
we shall first introduce basic notations and definitions. We
represent a dataset by a sequence R = (R, Ra,...Rg)
of |R| = n records, where two records R; and R; can be
exactly same. Records are members of the Cartesian product
A1 X Ay X ... x Ay, of |A] = m attributes. We denote the set
of attributes by A = {41, As,... Ay, }. An attribute A; can
be either numerical or categorical. If A; is numerical, then its
domain A; = [I, u| varies between a lower limit [ and an upper
limit v where the domain size is the number of possible values
between [ and u. For a numerical attribute (such as “Number
of Students”) with only integer values, the domain size can be
computed as |u — {4 1|. If A; is categorical, then its domain
is presented as A; = {a},a3,...ad} where the domain size
is |A;| = d. R, represents the i-th record, R; ; represents the
j-th attribute value of the i-th record, and R; ; € A;.

We now define the terminology pertinent to the genetic algo-
rithm for clustering. By a population P; we mean a sequence
of chromosomes (Liu et all [2011; Rahman & Islaml| 2014)
(again, in a population duplicates are possible). A chromosome
encodes a clustering solution as a set C = {c1,...,ck}
of genes i.e. cluster centers. All records for which gene c;
is the closest among all genes form the cluster C; (and in
that case c; can be considered as the representative of those
records). A chromosome having a set of genes is a complete
clustering solution with as many clusters as the number of
genes. Different chromosomes may have different number of
genes. Each record is assigned to one and only one gene of
a chromosome to form the clusters. That is, we only consider
crisp clusterings.

Typically, each gene/cluster center is a record, where all
attribute values are drawn from the domains of the attributes.

For a numerical attribute A;, the attribute value of the s-th
gene is the numerical mean of the data records assigned to the
representative gene: #, where |Cy| is the number
of records in cluster Cy. For a categorical attribute Ay, the
attribute value of the gene is the mode of A; of all records

belonging to cluster Cj.

1.2 The main contributions

In this paper we propose a genetic algorithm called GEN-
CLUST++ with several novel components to achieve high
quality clustering solutions with O(n) time complexity. Unlike
many existing techniques (Lloyd, |1982; |Arthur & Vassilvitskiil
2007; Rahman & Islaml| [2012; Rahman, Islam, & Bossomaier],
2014), it does not require any user input on the number of
clusters k£ or radius of a cluster 7. Moreover, it identifies a
set of high quality chromosomes as the initial population —
instead of using a set of random chromosomes.

GENCLUST++ has only O(n) complexity for the initial
population selection, unlike GENCLUST which has O(n?)
complexity for this. GENCLUST uses a series of possible
radius values to compute the initial population, where many
of these radius values are inappropriate for a data set and
thus may not produce sensible cluster/s. Therefore, many
chromosomes in the initial population can still be of bad
quality. There is also no guarantee that the set of radii used in
GENCLUST contains the correct set of radii. Our experimental
results suggest that GENCLUST++ outperforms GENCLUST
without the need to manage sets of radii for defining a cluster
around a center.

To seed in the initial population, GENCLUST++ applies K-
MEANS (Lloyd, [1982} [Jain, 2010) or K-MEANS++ (Arthur
& Vassilvitskii, |2007) multiple times with different & values
ranging from £ = 2 to £k = 10, since a useful number of
clusters k in a dataset generally varies between these values. A
quick analysis of the datasets in UCI machine learning repos-
itory (Frank & Asuncion, 2010) supports this consideration.
Even if this were not the case, human understanding of the
data set would prefer such a bounded number of clusters, and
perhaps later a dendogram or subdivision could be applied
to large clusters. Nevertheless, in order to enable a discovery
where the data speak for themselves GENCLUST++ also uses
a range of k values between 2 and m (recall |R| = n is
the number of records). For each k value, K-MEANS or K-
MEANS++ is applied many times in order to explore the data
and high fitness chromosomes with different forms and values
of k.

GENCLUST++ ranks the k values of the initial solutions,
where a k value with good clusters is ranked high. It then
chooses the initial population probabilistically with higher
probability awarded to chromosomes with higher ranking.
Therefore, the chromosomes in the initial population are of
high quality, where the exploratory nature of traditional genetic
algorithms is still present. In particular, due to various genetic
operations such as crossover and mutation over many genera-
tions a wide range of different k values are explored, without
being limited to only those used in the initial population.

We recently proposed a genetic algorithm for clustering
called HeMI (Beg, Islam, & Estivill-Castro} 2016), where we
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took a somewhat similar approach for the initial population
selection. However, unlike GENCLUST++ HeMI does not
pick chromosomes probabilistically; instead HeMI picks only
the best chromosomes. Moreover, HeMI picks 50% of the
initial population from the pool of chromosomes obtained
through K-means using %k ranging from 2 to 10, and the
remaining 50% from random k. We argue that forcing to
pick 50% chromosomes from random k& may be problematic.
Instead we prefer a probabilistic selection to encourage good
chromosomes (whereever they come from) while maintaining
some uncertainty to facilitate exploration.

In addition to the new initial population selection, GEN-
CLUST++ presents a couple of novel genetic operators such
as the Probabilistic Cloning and short K-MEANS or K-
MEANS++, and a new design/arrangement of the genetic
operators (see Algorithm [I). GENCLUST++ combines the
best features of the fast hill-climbing of K-MEANS and K-
MEANS++, with the exploratory nature of genetic algorithms.
The idea is that any solution of poor quality can rapidly be
polished to a local optima (or near by) using a few iterations of
the K-MEANS’ hill-climber; however combinations of one or
more local-optima can only be achieved by genetic operators.
To this end, GENCLUST++ incorporates a regular intervention
(every 10 generations) where chromosomes that represent
clustering solutions are polished by K-MEANS’ hill-climber
ensuring that the population has a large number of high
performing chromosomes in the population. This benefits the
genetic search, since operators like mutation and crossover
only improve the fitness stochasticly and with low probability.

To drive the search successfully, we recommend storing the
best performing chromosome found so far, and injecting it
back to the population. In every 10-th iteration we carry out
the probabilistic cloning operation where we probabilistically
create a cloned population from a recent population with high
quality. It is possible to have multiple cloned (i.e. exactly
same) chromosomes in this new population. Therefore, di-
versity is re-introduced by applying mutation to the cloned
chromosomes. The loss of fitness due to the mutation is
then repaired by submitting the mutated chromosomes to a
short length (15 iterations) of the K-MEANS’ hill-climber. We
demonstrate experimentally that the cloning and maintaining
a population of high performing chromosomes improve the
overall quality of the clustering solution.

The elitism of GENCLUST++ is effective. In its first form
mentioned above, it re-injects the best performing chromo-
some after any disruption is applied to a population (or
partial population, since we will see that sub-algorithms like
CROSSOVER create several intermediate stages of a popu-
lation) so that a high performer is not lost. However, we
include another form of elitism. In the early generations (ex-
perimentally we have decided to use the first ten generations),
the drastic changes in the population through crossover and
mutation in order to explore the solution space are accepted.
This enables an initial phase of wide exploration.

However, after the initial phase (10 generations), the new
populations is judged against the previous population and
chromosomes are not discarded unless there are better ones
in the new generation. This still allows a level of exploration

(through crossover and mutation) within a generation. How-
ever, it reduces the rate of disruptions by genetic operators
that result in chromosomes of low fitness impacting on the
already high performers. Thus, in later generations when high
quality chromosomes dominate the population, the high quality
chromosomes are not removed and some search efforts are
allowed to be wasted. A final state of polishing is performed to
the best chromosomes of the last generation. This ensures that
from the perspective of K-MEANS this is an excellent solution.
All these novel components make the proposed GENCLUST++
very effective.

In Section [2] we discuss a number of relevant techniques.
Section |3| and Section {4 presents our proposed technique and
experimental results, respectively. We then present concluding
remarks in Section

2. LITERATURE REVIEW

The statistical theory of multivariate analysis of variance is
an inductive principle for clustering that aims at minimizing
the intra-cluster distances and maximizing the inter-cluster
distances. The particular formulation of this is to measure
the trace of the total scatter matrix. This is equivalent to
minimizing the total squared error, namely

min Ly(C) = _ Euclid®(R;, Rep[R;, C). (1)
i=1
Where C = {ci,...,c,} are k centers, and the representative
Rep[R;,C] of R; in C'is the closest ¢; to R;. Except when
k = 1, where the answer is the mean, optimizing Equation
is a computationally hard problem.
K-MEANS (Lloyd, |1982) is an iterative method that applies
a simplified version of Expectation-maximization (EM) to
heuristically hill-climb and approximate a solution for a given
value k. The classical starting point is to randomly chose &
points in the data R as the initial set Cjy. With a set C; of
centers or seeds, a partition of the data R is computed by
finding for each R;, is representative center: Rep[R;, C]. Once
we have a label for each R;, we find a new center as the mean
of all those R; that have the same representative (and thus
attributes need to be numeric):

Gt= X R.|c ]i R, O}
R | “RepiA..c) [I{R: | ¢ = Rep[R;, CT}|
This is considered to be one iteration of K-MEANS and, with
careful programming, both stages (labeling the data and re-
computation of the new centers) can be performed with one
pass through the data. In can be proven formally that both
stages improve the value of the measure Lo(C'), formally
establishing K-MEANS’ hill climbing nature. Thus, iterations
continue until at least one of the termination conditions is
met. Typically one termination condition is a user defined
maximum number of iterations. Another termination condition
is the improvement of objective functions in two consecutive
iterations is less than a user defined threshold.
It has been known for a long time that the final clustering
quality depends heavily on the quality of the initial seeds.
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Remarkably, recently it has been shown that one can guar-
antee an approximation ratio on the objective function: K-
MEANS++ (Arthur & Vassilvitskii, 2007) aims to choose good
quality initial seeds in order to produce better quality final
clustering solutions. It also takes as input the value k£ and then
randomly chooses a record as the first seed. The second seed
is chosen probabilistically where the probability of a record
being chosen as the 2nd seed is proportionate to its distance
from the first seed. That is, the record having the maximum
distance with the first seed has the highest probability of
being chosen as the 2nd seed. The 3rd seed is again chosen
probabilistically where the record having the highest distance
with the seed closest to it has the maximum probability. The
probabilistic seed selection process continues until & seeds are
selected.

While K-MEANS++ aims to reduce the randomness of k-
means in the selection of initial seeds and gives a guarantee on
the approximation ratio, such approximation ratio is O(logn),
which although theoretically informative, it may still be very
much of the mark for large n. K-MEANS++ with its wiser
selection of initial starting points reduces diversity, thus it
is unclear that repeating K-MEANS++ over and over again
results in overall better solutions. Since K-MEANS and K-
MEANS++ use the same hill-climber approach, they obtain
very rapidly the local optima near the initial set Cj of centers.
Such local-optima have been reported in the literature as
usually being of poor quality (Maulik & Bandyopadhyayl
2000; (Xiao, Yan, Zhang, & Tang| [2010). The hybridization of
genetic algorithm with hill-climbers can improve the quality of
the approximation and thus the cluster quality. Incorporating
K-MEANS into genetic search typically improves the quality
of clusters (Maulik & Bandyopadhyayl [2000; Xiao et al.l|2010;
Hruschka, Campello, Freitas, & de Carvalhol [2009). Clustering
techniques based on genetic algorithms also typically do not
require a user input on the number of clusters k. For example,
AGCUK (Liu et al.| [2011)) automatically identifies the number
of clusters.

AGCUK selects the number of genes (i.e. seeds) of a
chromosome randomly. It also randomly chooses records as
genes of a chromosome, for the initial population that has
a user defined number of chromosomes (Liu et al., 2011).
Due to the random selection of genes, the chromosomes in
the initial population may not contain genes representing all
clusters of the dataset. The crossover operation does not create
new genes instead it only re-arranges the genes of parent
chromosomes. The mutation operation slightly changes some
genes and thereby in a way creates new genes. However, the
mutation operation typically performs such a small change
that new genes are still similar to original genes. Therefore,
it is important to contain genes representing all clusters,
especially when AGCUK does not apply K-MEANS on chro-
mosomes.The absence of all genes in the initial population
may cause a drop in the final clustering quality. This has been
illustrated in the literature (Rahman & Islaml [2014).

Another drawback of AGCUK is that it does not re-arrange
the genes before a crossover operation. The crossover oper-
ation takes two parent-chromosomes as input and randomly
divides each chromosome into two parts: the left and right

part. The right part of the second chromosome joins the
left part of the first chromosome to form the first child-
chromosome. The remaining two parts join to form the second
child-chromosome. If the genes in the parent-chromosomes
are sequenced in such a way that the left part of the first
parent-chromosome and the right part of the second parent-
chromosome represent the same area (i.e. clusters) of the
dataset then the genes of the first child-chromosome will rep-
resent only one area of the dataset. The child-chromosome will
not have genes representing the other area (i.e. clusters) of the
dataset. This has also been illustrated in the literature (Rahman
& Islam| 2014).

In order to avoid this GAGR (Chang et al., 2009) re-
arranges the genes before crossover. However, the gene re-
arrangement technique used in GAGR requires both parent-
chromosomes to have the same size i.e. the same number
of genes. GENCLUST (Rahman & Islam| 2014) uses a re-
arrangement approach that can handle chromosomes of differ-
ent size.

GENCLUST also carefully selects high quality initial popu-
lation which was experimentally shown to be effective. While
clustering techniques based on genetic algorithms (Chang
et al. 2009; |Liu et al., 2011) typically work on datasets
having only numerical attributes, GENCLUST can handle both
numerical and categorical attributes.

GENCLUST has the following drawbacks. First, its initial
population selection technique has a time complexity of O(n?)
which can be problematic for big datasets. Second, it uses
a set of user defined radii of clusters to obtain the initial
population. The actual clusters may have radii values that
vary from one dataset to another perhaps depending on several
factors including the dimension (i.e. number of attributes) of
a dataset. The radii of a good clustering may not appear in the
user’s initial supplied set and therefore the initial population
may not have genes representing several existing clusters in
the dataset. Third, since GENCLUST does not use any health
check operation, several healthy chromosomes of the initial
population can quickly be lost (i.e. not preserved) due to the
crossover operation. Selection with GENCLUST ignores earlier
chromosomes when building a new generation. This is another
reason why the healthy chromosomes of the initial population
are not preserved.

While preserving chromosomes with high fitness reduces
diversity and genetic explorations, the presence and preser-
vation of such healthy chromosomes increases the speed of
convergence (Othman, Deris, Illias, Zakaria, & Mohamad,
2006). Many genetic algorithms aim to preserve healthy chro-
mosomes by not applying the mutation operation on good
chromosomes (Chang et al., [2009; Rahman & Islam, [2014).

3. GENCLUST++: THE PROPOSED CLUSTERING
TECHNIQUE

3.1 Basic Ideas

We apply several new ideas into a vanilla genetic-search to
produce a high quality clustering method. The first idea is to
start GENCLUST++ with a set of good quality chromosomes,
instead of using randomly chosen chromosomes. By using the
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hill-climber of K-MEANS we can achieve a set of reasonably
good chromosomes. Therefore, GENCLUST++ uses several
different k-values and for each k-value it runs several instances
of MK-MEANS (Rahman & Islam, [2014) or MK-MEANS++.
These are variants of K-MEANS and K-MEANS++ that can
handle both numerical and categorical attributes; details will
be provided below when we discuss the components of
GENCLUST++. This initial exploration provides several values
of k that result in good clusterings. It then seeds its initial
population of clustering solutions with the best k-values.

The second type of intervention applies elitism to the
vanilla genetic algorithm. It consists of improving the average
population fitness at regular intervals or epochs by cloning
chromosomes (i.e. chromosomes with high fitness values)
and replacing low performing chromosomes by the clones of
high fitness chromosomes. Cloned chromosomes undergo a
mutation operation to introduce divergence among them. The
diverse chromosomes then undergo a short length (15 itera-
tions) MK-MEANS. The application of a few iterations of the
hill-climber of MK-MEANS is justified because generally the
K-MEANS hill-climber reaches a reasonably good clustering
solution within a small number of iterations (Rahman et al.,
2014). Moreover, the aim of the MK-MEANS here is not to
produce a final clustering solutions, but to repair any slight
fitness damage caused by the mutation operation to maintain
a population of high achievers. We refer to the application of
the hill-climber as polishing.

Our algorithm also compares chromosomes between two
consecutive generations. Between ancestor chromosomes and
off-spring chromosomes, the algorithm picks the best chro-
mosomes from them for the next resulting generation. This
ensures that the impact of the elitism is preserved and strong
offsprings of cloning and polishing does improve the popula-
tion fitness and that again, the random crossover and mutation
operations do not introduce very low performers.

Our technique allows a user to specify the fitness function.
Naturally, the evaluation criteria that a user plans to use in the
cluster quality analysis could be used as the fitness function in
order to get a good clustering solution. For example, if a user
plans to evaluate the clustering solution by DB Index (Tan,
Steinbach, & Kumar, 2005), then DB Index could be used
as the fitness function in our algorithm. However, our experi-
mental results show that clustering solutions produced by our
technique also achieve high quality clustering results according
to metrics other than the one used as a fitness function.

3.2 Main Components

Our proposed algorithm GENCLUST++ has the following
eight main components (see Algorithm [I] for the pseudo-code
of GENCLUST++ where the components are identified with
comments).

Component 1:
Component 2:
Component 3:
Component 4:
Component 5:
Component 6:
Component 7:
Component 8:

Normalize the dataset.

Modified K-means called MK-means.

Initial Population with Probabilistic Selection.
Crossover.

Elitism.

Mutation.

Probabilistic Cloning with MK-MEANS.
Chromosome Selection

The components in italic font are contributions of this
paper. Moreover, the overall arrangement of all components
in Algorithm |l| to achieve the higher clustering quality is
another contribution of the paper. There are other modules that
are encapsulated as functions for Algorithm [Tl We proceed to
describe the components in order.

Algorithm 1: GENCLUST++
Input

: A dataset R,, and a user defined number of
generations N
Output: A set of clusters C'
/* Compo. : Normalize the dataset =/
R + Normlize(R,);
/* Compo. : Initial Population with
Probabilistic Selection */
P < InitialPopulation(R);
CRy, + BestChromosome(Py, Fy = fitness(Py, R));
P, < ProbabilisticSelection(Py, R);
for g + 1 to |N| do
if g mod 10 # 0 then
/* Compo. : Crossover */
P. <+ CROSSOVER(F%);

else

/* Compo. : Cloning with
Mutation and MK-MEANS */

P,; < ProbabilisticCloning(P;, R);

/* Compo. 5: Elitism */

CRy, < Elitism(CRy, P,;, R);

P. + MK-MEANS(P,;, R, 15);

/* Compo. : Elitism */
CRy + Elitism(CRy, P., R),
/* Compo. Mutation */
P,, + Mutation(P,, R);
/* Compo. : Elitism x/
CRy + Elitism(CRy, P,,, R);
if ¢ > 10 then
/* Compo. : Chromosome
Selection */
P, + SelectChromosome(P;, P,,, R)

else
L Ps < Py

Component [2| /x Compo. 2: MK-MEANS */
C,, + MK-MEANS(CRy, R, 50);

C < Denormalize(C),, R, R,);

return C

3.2.1 Component [I} Normalize the Dataset: In Algo-
rithm [I] the input is the original sequence of records, as
is, and is denoted by R,. Its attributes can be numerical
and/or categorical. The sequence R, has |R,| = n records
Ro = (R{,R3,... Rl |). RY; denotes the j-th attribute value
of the i-th record in R,.

The numerical attributes of R, are normalized. For a numer-
ical attribute A; = [, u], RY ; is normalized as R; ; = Rq’/_ .
In Algorithm l 1} the normahzed form of R, is denoted as R
where all numerical attributes of R, are normalized to the
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domain [0, 1].

This normalization assumes the influence of each numer-
ical attribute the same, avoiding issues of scale or units of
measurement for distance calculations. We will also place a
similar range for categorical attributes to account equally for
numerical and categorical attributes.

Algorithm 2: Initial Population

Input : A dataset R, population size s of genetic
algorithm

Output: A set Py of high quality chromosomes
from which to sample the initial
population

Set Py + ¢; K =(2,3,4,...(3 x5/10+1));
for j =1to 5 do
for i =1 to |K| do
/+ Produce a chromosome CR
with K; genes;
K1:2,K2:3...K9:10 */
CR < ProduceChromosome(R, K;);
Pf — Pf U CR;

for i =1 to 3 x s/10 do
/+ produce a random number in
the range 2 to +/|R] */
k = ProduceRandNumber (2,+/|| R||);
for j =1 to 5 do
CR + ProduceChromosome(R, k);
L Pf — Pf U CR;

return Py

3.2.2 Component 2} Modified K-MEANS (MK-MEANS):
The modified K-MEANS (Rahman & Islam| [2014) can handle
both numerical and categorical attributes while clustering the
records. The first thing we need is a metric that combines nu-
merical and categorical attributes. In the modified K-MEANS,
the distance between two records R; and Ry is d(R;, R;) =
Zjm ‘Ri‘J_Rl’j‘TET:t“d(Ri’j’Rl’j), where attributes are re-
ordered so the first ¢ attributes are numerical, and the next
|A| — ¢t = m — ¢ attributes are categorical.

Note that the distance among numerical attributes is the
Manhattan metric and not the Euclidean metric. The Manhat-
tan metric is the total absolute error. It is less sensitive to
outliers that the total squared error.

For categorical attributes d(R; ;, Ry ;) =1 — S(R; j, Ri5),
where S(R; j, R; ;) is the similarity between two categorical
values R; ; and R; ; belonging to an attribute A;. Similarity
between two categorical values, S(R;;, R;;) is computed
using an existing technique (Giggins & Brankovic} 2012) and
ranges between 0 and 1. Hence, the distance d(R,;J7 Rl.j) also
ranges between O and 1. A value near 0 for S(aj, a]y-) indicates
low similarity between two categorical values a? € A; and
aj € Aj. Similarly, a value near 1 for S(a},a¥) indicates
high similarity between a7 and a?. With this metric, one can
find for each record who is its representative among a set C
of centers.

If we have a set of records that share a center from
the previous iterations, the new seed/center of a cluster is
computed by taking the average for numerical attributes and
the mode for categorical attributes, over all records belong-
ing to the cluster. The choice of the mean as the center
among numerical attribute values when the distance here is
the Manhattan distance may surprise some readers. However,
computing the center by the Manhattan distance requires
sorting for each dimension/attribute the data records of the
clusters (a slower method than computing the average). The
mean is a sensible center of location when we have filtered
outliers and all attributes have very close range of values (the
effect of normalization).

Once these variations are established, the modified K-
MEANS (MK-MEANS) works exactly the same way as K-
MEANS (Tan et al. [2005). Since K-MEANS++ (Arthur &
Vassilvitskiil, 2007)) uses the same two stages for hill-climbing
its solution, we can apply the corresponding extensions to
create MK-MEANS++ in the same way.

3.2.3 Component 3} Initial Population with Probabilistic
Selection: Most genetic algorithms for clustering (Chang et
al., 2009; [Liu et al| 2011) select the initial population ran-
domly where genes and the number of genes in a chromosome
are selected randomly. The fitness of such a randomly selected
initial population is generally very poor.

A strong and diverse initial population is likely to improve
the final clustering result. Hence, GENCLUST (Rahman &
Islam| |2014) constructs an initial population with a technique
that explores a set of radii. It has two main drawbacks: first,
it has a high complexity of O(n?) where n is the number
of records and second, since many of the radius values are
inappropriate for a given dataset most of the chromosomes in
an initial population are still of poor quality.

To address these issues, we propose an initial population
selection technique that has a O(n) complexity and is likely
to produce an initial population with most members of high-
quality while maintaining diversity. GENCLUST++ will work
with a default population size s of 30. The starting population
is a set of chromosomes denoted by Ps. Each chromosome is
a clustering in that it encodes a value of k, and also k& vectors
with dimensions as the set A of attributes in the dataset R.

To arrive to the initial population, a set Py of 3 x s chromo-
somes will be built first. These are typically 90 chromosomes
built in two stages. Algorithm 2] builds the set Py. It is used in
GENCLUST++ as a function as part of the process of building
the initial population.

The first stage focuses in obtaining good clusterings for
very common values for k. Many datasets observed in practice
have less than 10 clusters. For example, we inspect many
public-domain datasets for classification, where records are
labeled with a class value. Typically, the number of different
values for the class attribute in a dataset is an indication of
the number of clusters. We also did this for datasets of public
domain proposed for clustering tasks, for example, we analyze
157 datasets in the UCI machine-learning repository (Frank
& Asuncion, 2010) for which the size of the class attribute
has been provided. We found that the average number of
classes of the 157 datasets is 5.36 with a standard deviation
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of 5.49. It indicates that typically the number of values of
the class attribute varies between 2 and 10. This supports our
settings that the number of clusters of a dataset generally varies
between 2 and 10.

Thus, in the first stage nine (3 x s/10) different k values for
MK-MEANS/MK-MEANS++ are explored: stage’ = {K{ =
2,K} = 3,... K§ = 10}. The superscript for the constant
K indicates the stage. For each K} € stage! we generate a
clustering solution (from R) having K} clusters using MK-
MEANS/MK-MEANS++ with input k = K}. In this stage, we
use the full length of MK-MEANS/MK-MEANS++; that is,
the instance of hill-climbing converges or a default maximum
of 50 iterations is set a as limit (in our experiments this was
never required).

Such an execution of MK-MEANS/MK-MEANS++ delivers
a clustering with K} clusters and each such clustering solution
forms a chromosome with K} genes. All these 9 clusterings
are added to the set P;. The process is repeated 5 times to
produce altogether 9 x 5 = 45 chromosomes in the first stage.

In the second stage, we generate another set stage? =
{K? K3,...K2}, of cluster numbers with also 3 x s/10
different values to be used as input to MK-MEANS/MK-
MEANS++. Now the focus is potentially many clusters in a
solution. Thus, now each K? is a random number between 2
and /|R|. Note that some K ? can be the same as K 72 (where
i # j) and/or KI}. Again, MK-MEANS/MK-MEANS++ deliv-
ers a clustering solution running full length with a k = K?
as the input for number of clusters. The clustering solution
is also encoded into a chromosome that is added to Pr.
For each of the nine different values, the process is also
repeated five times. Therefore, the second stage also delivers
45 chromosomes Hence, the total number of chromosomes in
Py after two stages is |Py| = 45 + 45 = 90. This completes
the description of algorithm [2}

We now have generated, five times, clusters for 3 X
s/10 inputs for MK-MEANS/MK-MEANS++ in stage one
and also for 3 x s/10 different values of %k in stage
two. We have altogether 6 x s/10 values of k: K =
{K1,... K3 10 K3, K3, 10} Bach of these was used
by MK-MEANS/MK-MEANS++ five times, so there are 5
clusterings for each k € K. Let these 5 clusterings be denoted
Ck1,-..,Ck 5 in descending order of fitness. Now, each of
the 30 x s/10 members of P, has a fitness value (such as
DB Index). As the representative fitness of each k € K, we
take the average fitness of the five solutions. Let

5
Z fitness of ¢-th solution for k 2)

i=1

T (k)

5
= Z fitness of Cj ; 3)

=1

These T values will deliver a probabilistic selection based
on direct proportion for values. Repeatedly, a value of k is
chosen with probability

T (k)

Dhex T(k)

When a value of k is chosen, the next available solution in
order of descending fitness C; is added to P; (the initial
population for GENCLUST++). Initially, all k& € K have
their five solutions available and when a k is chosen, their
next solution is promoted to P, but becomes ineligible for
subsequent selection.

The process repeats s times and thus we get s chromosomes
in P; for the initial population of our genetic algorithm. If
a k € K is chosen more than five times, then we create
a new chromosome by running MK-MEANS/MK-MEANS++
once more with input £ for the number of clusters.

3.2.4 Component {} The Crossover Operation: Like most
genetic algorithms, an important component of our GEN-
CLUST++ algorithm is its crossover. We use an existing
crossover operation CROSSOVER (Rahman & Islam|[2014) that
is reproduced in Algorithm 3] All chromosomes are first sorted
in a list L in descending order of their fitness values. That
is, the chromosome P; having the best fitness is placed at
the beginning of L and the chromosome P; having the worst
fitness is placed at the end. The function Sort() in Algorithm 3]
performs this fitness ranking.

The crossover operation is applied on the chromosomes by
finding pairs of parents. One parent is always the chromosome
at the front of the list L, and thus it is the chromosome with
the highest fitness left in L. When chosen, it is removed
from L. The second chromosome of the pair is selected
from the new L by the roulette wheel technique (Maulik &
Bandyopadhyayl 2000) (also known as fitness proportionate
selection) where a chromosome P; is picked with probability

N\ _ _ fitness(p;) N\
P(p) = ST fitness(r;) (where fitness(P;) is the fitness of
chromosome F;). Every time a chromosome P; is selected it

is removed from the list L < L\ {P;}. Therefore, after the
selection of a pair of chromosomes, the size of L decreases by
two. The PickTwoParentChromosomes() function implements
this selection of two chromosomes for L and is used in
Algorithm

Since chromosomes are lists of centers of clusters, and such
centers are our genes, we apply a re-arrangement that lines
up the genes of the second chromosome of a pair (i.e. the
chromosome having inferior fitness) to the gene arrangement
of the first chromosome of the pair, using an existing gene
rearrangement approach (Rahman & Islam, [2014). The re-
arrangement is designed to handle chromosomes even with
unequal lengths. The first chromosome is called the reference
chromosomes and does not change (Rahman & Islaml [2014)
while the second chromosome is called the target chromosome.
The gene re-arrangement operation’s general work-flow is as
follows (but details appear in the original presentation of
GENCLUST (Rahman & Islam| 2014, Algorithm 1)).

Among all genes of the target chromosome, the gene having
the minimum distance with the first gene (i.e. the gene in
the 1st spot) of the reference chromosome is placed at the
front (i.e. in the 1st spot) of the rearranged version of the
target chromosome. This gene is then removed from the
target chromosome. From the remaining genes of the target
chromosome, the gene having the minimum distance with the
gene in the 2nd spot of the reference chromosome is then
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placed at the 2nd spot of the rearranged version of the target
chromosome. This gene is also then removed from the target
chromosome. This process continues until we run out of genes
in the target chromosome; if the length (i.e. number of genes)
of the target chromosome is either equal to or less than the
length of the reference chromosome.

If the target chromosome has more genes than the reference
chromosome, then the gene re-arrangement is carried out
in two phases. In the first phase, x genes of the target
chromosome are re-arranged as before; where x is the length of
the reference chromosome. In the second phase, the remaining
y —x genes of the target chromosome are inserted one by one
in the re-arranged version of the target chromosome in such
a way so that a gene is inserted next to its closest gene in
the re-arranged version of the target chromosome. All other
genes of the re-arranged version of the target chromosome are
bodily shifted (Rahman & Islam| [2014).

Once the second chromosome of a pair is rearranged, the
pair of chromosomes participate in essentially a conventional
single point crossover operation. Each parent chromosome
is randomly and independently divided into two parts by
imposing a partition line in between two genes, where in
each part there are one or more genes. The left part of one
chromosome joins the right part of the other chromosome
to form an offspring chromosome. Similarly, the remaining
two parts join together to form the second offspring chromo-
some. The production of the two offsprings is the function
ConventionalCrossover in Algorithm [3]

From the crossover of a pair of parent chromosomes we
get a pair of offspring chromosomes. Offsprings are added to
an initially empty population P. which is a partial result of
crossover. The selection of chromosome pair as parents, the
gene re-arrangement of the second parent and the crossover
operation is repeated while the current list L is not exhausted.

To obtain a final result from the crossover, we apply a
duplicate removal (i.e. twin removal) operation (Rahman &
Islam| [2014) to each offspring chromosome in the set P,. For
this, a function to declare two centers (two genes) duplicates
is required. Two genes g; and g; were considered duplicates
if the distance dist(g;,g;) < ¢. In the empirical evaluation
of our approach, the value of § was set to zero (i.e the
numerical precision). However, a very small value different
than zero could also be supplied as § for the duplicate
removal operation. If a chromosome has only two genes
and they are deemed duplicates, then the duplicate removal
operation randomly mutates one gene until the genes are no
longer considered duplicates. The DuplicateRemoval function
is where this process is applied.

3.2.5 Component 5| The Elitism Operation: The main
purpose of the Elitism operation (Rahman & Islam, 2014) is
to re-insert the highest fitness chromosome if an iteration is
producing several under-performers. Thus, the best chromo-
some found so far does not get lost and the final clustering
solution can only improve from (or remain the same as) the
best chromosome. The best chromosome found so far up until
the current generation is stored as C'Ry. It is then compared
with the worst chromosome of the offspring produced by
CROSSOVER (and also after Mutation). If C' R, has better

Algorithm 3: CROSSOVER

Input : A set of chromosomes L’
Output: A set of offspring P,

Set P. « ¢;

L «+ Sort(L);

while |L| > 0 do

/+ select a pair of parent
chromosomes P= {P,, P,}
from L */

P « PickTwoParentChromosomes(L);

L+ L\P;

/* rearrange a chromosome of
P */

P <+ RearrangeOperation(P);

O <+ ConventionalCrossover(P);

P.+ P.UO;

P. + DuplicateRemoval (P,.) ;
return P,

fitness than the worst chromosome of the next generation
produced by CROSSOVER, then such worst chromosome is
replaced by C'R;. Always, the best chromosome of the next
generation is compared with C'Ry; if the best chromosome of
the next generation is better than current C'Ry, then it is stored
in C'Ry. The Elitism() operation is carried out after every
CROSSOVER and also after every Mutation (see Algorithm [T)).

3.2.6 Component [6} The Mutation Operation: The muta-
tion operation randomly changes the genes of a chromosome
in order to explore unconventional solutions (Rahman & Islam),
2014). The mutation probability M; of the ¢-th chromosome
CR; in P, is calculated as follows.

o

where fitness(C'R;) is the fitness of the i-th chromosome in
Pe, fmaz = maxcr;ep. fitness(CR;) is the fitness of the
best chromosome in the current population P., and f =
>_cr,ep, fimess(CR;) /|| Fe|| is the average fitness of the
chromosomes in P.. Note that f,,,, may not be the same
as fitness(CRy).

If a chromosome is chosen for mutation, then we randomly
select and (randomly) change an attribute of each gene of
the chosen chromosome. The attribute is selected uniformly
among the d attributes and the value is selected also uniformly
in the corresponding domain.

At the end of the mutation operation the duplicate removal
operation is also performed. In this study, duplicate removal
is considered to be a part of our mutation operation.

3.2.7 Component [} Probabilistic Cloning with MK-
MEANS: At every 10th iteration (i.e. the 10th, 20th, 30th
etc.) we perform a probabilistic cloning of the chromosomes.
We clone chromosomes with probability proportional to the
fitness of the chromosomes as per the wheel technique. That
is, using fitness proportionate selection, from a population P,
we generate another population P,; of the same size where the

fmax—fitNesS(CR;)
2(fmaz—Ff)
1/2

when fitness(CR;) > f
when fitness(CR;) < f
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probability of a chromosome C'R; € Ps to be inserted into an

SI7 fitness(CR,)’ where fitness(C'R;) is

the fitness of C'R;. Because the selection is with replacement,
a chromosome in P; may be cloned more than once into P,
and this is why the operation is called cloning.

At this stage, we apply mutation on all chromosomes in P,;
in order to introduce diversity. The cloning and the associ-
ated mutation are represented by the ProbabilisticCloning(Ps)
function in Algorithm [T}

The cloning accelerates convergence, and thus it is not
applied in every generation. We found experimentally that
a suitable cloning intervention is every 10 iterations. The
application of the other genetic operators, specially crossover,
often results in chromosomes with lower fitness in the popula-
tion. These under-performers enable exploration of the search
space, but if after 10 iterations the corresponding niche has not
been found, poor performers will be probabilisticly removed
by the cloning of high fitness chromosomes. Our cloning
operation is expected to remove low fitness chromosomes and
replace them with chromosomes with high fitness.

Elitism is performed every time we intervene with cloning
(see Algorithm [T) We follow this with 15 iterations of MK-
MEANS on each chromosome of the population driving the
fitness high by hill-climbers (exploitation). The cloning and
its mutation produce chromosomes that are required to reach
levels of high clustering quality, and this is achieved by the
MK-MEANS iterations because the MK-MEANS operation
repairs the potential damage of mutation while sustaining the
diversity also produced by mutation.

We choose 15 iterations (short length) of MK-MEANS since
this is a value regarded in the literature (Rahman et al)
2014) as the number of iterations where K-MEANS makes the
steepest improvement to reach a reasonable solution. Since the
chromosomes produced by this component will be modified
by the next steps (such as crossover and mutation) of the
algorithm anyway, we do not require to specialize them to
the extreme by running K-MEANS for longer iterations.

As always, elitism is again performed (see Algorithm [I))
so this cloning process gets an opportunity to contribute to
the best chromosome C'Ry, found so far. Finally, also within
this component, one more pass of the mutation operation is
applied to all chromosomes, in order to increase diversity as
without it, this step generally reduces such diversity. And once
more, elitism is applied immediately after to ensure the best
chromosome C'R;, found so far is never lost.

3.2.8 Component : Chromosome Selection: The
crossover operation drastically modifies the chromosomes due
to its randomness. Crossover generally replaces all chromo-
somes of a previous generation even if some of them were of
high quality. We allow this to happen in the first nine genera-
tions in order to facilitate an exploration of the solution space.
In the tenth generation we perform the probabilistic cloning
operation. Hence in the 10th generation, the crossover opera-
tion does not happen. But, from this generation onward we also
carry out the Chromosome Selection operation (Component [8])
which merges all chromosomes between two populations of
size s: the last (most recent) population and the resulting

initially empty P,; is

generation from all operations (see Algorithm [I). This second
type of elitism chooses the highest fitted s chromosomes from
the merged populations. This restricts radical disruption by the
genetic operators, but it still enables their exploratory nature
to drive the genetic search.

3.3 Main Steps of GENCLUST++

We now integrate the earlier components and briefly de-
scribe the pseudo-code in Algorithm [T]for GENCLUST++ . The
inputs are the dataset I, and the number IV of generations (the
default is N = 60). We denote by P; the large sequence of
chromosomes that Component [3} Initial Population produces
before it narrows it down to the running population P,. A
population delivered after crossover (nine out of ten times) is
P., while once out of ten generations the cloning, mutation
and short K-MEANS delivers P,;. The mutation result is P,,,
and from the 10th generation onwards we apply chromosome
selection delivering P;. On the next iteration this Ps; becomes
the new P,.

At all times the chromosome having the best fitness among
those explored is remembered as CRy. Finally, after the
genetic generations reach their limit, the best chromosome is
used as the initial solution of a final full-length MK-MEANS to
deliver the final clustering solution.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Datasets

We use 18 publicly available datasets (Frank & Asuncion)
2010) in our experiments. Table [I] presents some basic infor-
mation on the datasets. For example, the Glass Identification
(GI) and Dermatology (DT) datasets (see Row 1 and Row 2
of the table) have 214 and 366 records, respectively. Some
records may have one or more missing attribute value/s, as
indicated in the heading of Column 2. In our experiments, prior
to applying any clustering technique on a dataset, we delete
all record having a missing value/s. For example, DT has 8
records with missing value/s and therefore, DT has 358 records
without missing values (see Column 3). DT has 34 numerical
and zero categorical attributes. It has a class attribute with
domain size 6. Note that class attributes are removed from
the datasets before we apply any clustering technique on the
datasets since in real life a clustering technique is applied on
datasets without any class labels.

Table || shows that there are 12 datasets having only nu-
merical attributes, four (4) datasets having only categorical
attributes and two (2) datasets having both numerical and
categorical attributes. The MGT dataset has 19,020 records,
the PBRHD dataset has 10,992 records and the MR dataset
has 8,124 records. There are eight (8) datasets with more than
1,000 records.

4.2 Experimental Setup

For all experiments here the parameters used for GEN-
CLUST++ are a maximum total of 60 generations, generation
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TABLE I
A BRIEF INTRODUCTION TO THE DATASETS
Total No. of No. of No. of Class
Name No. of  records numerical categorical size
of records  without  attributes attributes
dataset missing
values

Glass Identification (GI) 214 214 10 0 7
Dermatology (DT) 366 358 34 0 6
Liver Disorder (LD) 345 345 6 0 2
Mammographic Mass (MM) 961 830 5 0 2
Page Blocks Classification (PBC) 5,472 5,472 10 0 5
Pima Indian Diabetes (PID) 768 768 8 0 2
Statlog Vehicle Silhouettes (SVS) 846 846 18 0 4
User Knowledge Modelling (UKM) 403 403 5 0 4
Wine Quality (WQ) 4,898 4,898 11 0 7
Yeast 1,484 1,484 8 0 10
Pen-Based Recognition of Handwritten Digits (PBRHD) 10,992 10,992 16 0 10
MAGIC Gamma Telescope (MGT) 19,020 19,020 10 0 2
Chess King-Rook vs. King-Pawn (CKRKP) 3,196 3,196 0 36 2
Contraceptive Method Choice (CMC) 1,473 1,473 2 7 3
Credit Approval (CA) 345 345 6 9 2
Heberman (HM) 306 306 0 3 3
Mushroom (MR) 8,124 5,644 0 22 2
Tic-Tac-Toe (TTT) 958 958 0 9 2

size |Ps| = 30, thus |Pf| = 90. The number of short K-
MEANS iterations after cloning is 15, while the final K-
MEANS on the best chromosome CR; has its number of
iterations bound to 50.

For all other existing algorithms we use the values as rec-
ommended in the original publications. Therefore, The number
of chromosomes in the population of GENCLUST (Rahman &
Islam)| [2014) is set to 30. We run GENCLUST over the recom-
mended limit of 60 generations and maximum 50 iterations of
MK-MEANS.

For all experiments and all algorithms that use some form
of hill-climber of K-MEANS, we impose the termination con-
dition that the difference of SSE of two consecutive iterations
is less than 0.005. The fitness function for both GENCLUST++
and GENCLUST is DB Index (Tan et al., 2005).

In AGCUK (L1u et al., 2011}, the number of chromosomes
in a population and the number of generations are 20 and 50,
respectively as recommended in the original study. The values
of Tynaz and 7, in AGCUK are 1 and 0, respectively. In
GAGR (Chang et al 2009), the number of chromosomes in
the initial population is 50 and the number of generations is
50. The fitness functions used in AGCUK and GAGR are
DB Index and SSE.

4.3 Experimental Results

Since the clustering solutions obtained by the techniques can
vary between different runs, we run each technique ten (10)
times on each dataset recording their cluster quality. The tables
present the average results of the ten (10) clustering solutions
on each dataset for each technique. In contrast to the tables, we
use figures to present the average results over all datasets and
over all repetitions for a dataset. The discussion of the figures
will be followed by a discussion of the statistical significance
analysis we performed through the non-parametric sign test
analysis (Triolal 2001).

We compare the performance of our proposed GEN-
CLUST++ with nine published alternatives: GENCLUST-
H (Rahman & Islam| 2014}, GENCLUST-F (Rahman & Islam)
2014), AGCUK (Liu et al} 2011), GAGR (Chang et al)
2009), SABC (Ahmed & Dey},2007), GFCM (Lee & Pedrycz,
2009), KL-FCM-GM (Chatzisl [2011)), K-MEANS++ (Arthur
& Vassilvitskii, 2007) and K-MEANS (Lloyd, [1982). Some
of these techniques can only handle numerical attributes. So,
we use the first 12 datasets (see Table[ll) for the comparisons
between GENCLUST++ and those methods that use only
numerical attributes. Such comparison on datasets with only
numerical values first uses DB index (see Table since
the DB Index is used as the fitness function in a several of
the techniques being compared: GENCLUST++, GENCLUST-
H, GENCLUST-F and AGCUK. The best average DB Index
(among all techniques) for a dataset is shown in bold font.

We can see from Table [[I] that GENCLUST++ achieves the
best average DB Index among all techniques in 9 out of 12
datasets. On an average over all twelve datasets, Figure [I]
shows that GENCLUST++ achieves the best average DB Index.
Although K-MEANS achieves the best average DB Index
among all techniques in 2 out of 12 datasets, it has a very
high average DB Index over all datasets (see again Figure [I).

Although the fitness function used in GENCLUST++ is
the DB Index we next compare its effectiveness with the
existing techniques in terms of two other fitness functions:
COSEC (Rahman & Islam, 2014) and XB Index (Tan et al.,
2005). The main goal here is to examine whether or not
the clusters obtained by GENCLUST++ are better than those
obtained by other techniques in terms of a fitness function that
is different from the fitness function used in GENCLUST++.
Moreover, since none of the techniques (in our experiments)
uses COSEC and XB Index as the fitness function, this is
a neutral evaluation of techniques being reviewed. Figure
shows that our proposed GENCLUST++ achieves the best
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TABLE II
DB INDEX(LOWER THE BETTER) OF THE TECHNIQUES ON THE 12 NUMERICAL DATASETS

Datasets  GenClust++  GenClust-H  GenClust-F  AGCUK GAGR  K-MEANS

DT 1.0946 1.1759 1.4950 1.2307 2.1240 2.1687
GI 1.2452 1.5079 1.4221 1.4563 1.3367 1.3963
LD 1.0978 1.1295 1.4352 1.2080 1.7698 1.6065
MM 0.5970 0.6067 0.6076 0.7918 1.4228 1.3025
PBC 0.9131 0.9699 1.3005 1.0220 1.7854 1.1902
PID 1.9693 1.9788 2.0549 2.4310 1.8670 1.8120
SVS 0.8911 0.9001 0.9867 0.9074 1.5522 1.5392
UKM 2.1653 2.2752 2.2631 2.1594 1.8721 1.7914
wQ 0.8652 1.8070 2.2953 1.4915 1.5506 1.8581
Yeast 1.5079 1.5944 1.8663 1.6315 1.9571 1.7531
PBRHD 1.5394 1.3724 3.2410 1.5685 1.8295 1.4384
MGT 1.2072 1.2582 1.3624 1.2630 2.2598 1.8810
181 0.8000

Av DB Ind: 12 dataset:
verage DB Indexon 12 datasets Average XB Indexon 12 datasets

0.7000
161 0.6000
157 0.5000
144 0.4000
131 0.3000 j
121 0.2000

GenClust++ GenClust-H| GenClust-F] AGCUK GAGR
1.1 4
GAGR K-Means

GenClust++ I GenClust-H GenClust-F AGCUK
XB Index (lower the better)

DB Index (lower the better)

Fig. 1. Average DB Index of the techniques for 12 datasets, the smaller value  Fig. 3. Average XB Index of the techniques for 12 datasets, the smaller the

the better the clustering result. better.
0.0950
00900 Average COSEC on 12 datasets TABLE III
- DB INDEX (LOWER THE BETTER) OF THE TECHNIQUES ON THE 18
’ DATASETS.
0.0800 Datasets GENCLUST++ GENCLUST-H = GENCLUST-F
DT 1.0946 1.1759 1.4950
00730 Gl 1.2452 1.5079 1.4221
00700 LD 1.0978 1.1295 1.4352
MM 0.5970 0.6067 0.6076
0.0650 PBC 0.9131 0.9699 1.3005
00600 PID 1.9693 1.9788 2.0549
. GenClust++| GenClust-H | GenClust-F|  AGCUK GAGR SVS 0.8911 0.9001 0.9867
UKM 2.1653 2.2752 2.2631
COSEC (higher the better) wQ 0.8652 1.8070 2.2953
Yeast 1.5079 1.5944 1.8663
PBRHD 1.5394 1.3724 3.2410
Fig. 2. Average COSEC of the techniques for 12 datasets, the larger the MGT 1.2072 1.2582 1.3624
better. CKRKP 2.2968 2.4741 2.5821
CMC 1.0246 1.0246 1.0262
CA 0.2751 1.2177 1.8548
HM 1.5609 1.6587 2.0809

average COSEC value among all techniques over 12 datasets. MR 0.3903 22616 0.6967
Figure |3| shows that GENCLUST++ also achieves the best TTT 0.6650 0.7220 07318
average XB Index among all techniques. Note that for every
dataset, we run every technique 10 times and the figures show
the average of all datasets and runs.

Now, we present experimental result on all 18 datasets in-
cluding those having categorical attributes. We exclude GAGR  Figure [ shows the overall average of DB Index values over
and AGCUK as they require datasets having no categorical all 18 datasets. Similarly, we also present the overall average
attributes and compare GENCLUST++ with GENCLUST-H for COSEC and XB Index values over all 18 datasets in
and GENCLUST-F (Rahman & Tslam| [2014) (see Table [ll). Figure [5] and Figure [6} respectively. The figures show that
In 17 out of 18 datasets GENCLUST++ achieves the best the proposed GENCLUST++ method clearly outperforms the
average DB Index results — from 10 runs on each dataset. existing techniques.
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Fig. 4. Average DB Index of the techniques for 18 datasets
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Fig. 5. Average COSEC of the techniques for 18 datasets

4.4 Statistical Significance Analysis

The results presented so far are strong evidence that our
proposed GENCLUST++ outperforms other techniques in the
large majority of the datasets. Nevertheless, we now carry
out a non-parametric sign test to evaluate
the statistical significance of the improvements achieved by
GENCLUST++ over the published techniques. The right tailed
sign test is carried out for the significance level a = 0.05
meaning 95% significance level. Figure[7] presents the sign test
results of GENCLUST++ on 12 numerical datasets in terms
of three evaluation metrics/criteria: COSEC, XB Index and
DB Index. The first four bars (for each evaluation metric)

Average XB Index on 18 datasets

0.6000

0.5500

0.5000

0.4500

0.4000

0.3500

0.3000

GenClust++ GenClust-H GenClust-F

XB Index (lowerthe better)

Fig. 6. Average XB Index of the techniques for 18 datasets

T1=GenClust++ vs GenClust-H
T2=GenClust++ vs GenClust-F
T3=GenClust++ vs AGCUK
T4=GenClust++ vs GAGR
z=zref
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Fig. 7. Sign test of GENCLUST++ on the first 12 datasets.
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Fig. 8. Sign test of GENCLUST++ on all the 18 datasets

present the z—values (test statistic values) for GENCLUST++
performance against the performance of each of four (4)
published techniques. The fifth bar presents the z-ref value. If
a z—value is greater than the z-ref value, then it indicates that
the observed superior performances of GENCLUST++ against
the corresponding published existing technique is statistically
significant. These shows that the observed results of a better
COSEC, XB Index and DB Index for GENCLUST++ against
each of the other 4 published techniques is a statistical signifi-
cant finding across the board. In summary, Figure [7]shows that,
on numerical data sets, GENCLUST++ achieves significantly
better results than all four existing techniques in terms of all
three evaluation metric/criteria. Figure [§] shows that the results
obtained by GENCLUST++ are significantly better than the
results obtained by GENCLUST-H and GENCLUST-F over all
18 datasets and all 3 evaluation criteria.

4.5 Empirical Analysis of Various Components of GEN-
CLUST++

We now evaluate the effectiveness of various proposed
components of GENCLUST++, by comparing the results of
GENCLUST++ with the results obtained by GENCLUST++
without a particular component. For example, at first we exam-
ine the effectiveness of the Component 3}, the Initial Population
To do so, we replace Component [3] in GENCLUST++ with a
simpler component for the initial population selection. The
replacement first generates 90 chromosomes. The number of
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GenClust++ vs GenClust++ without Initial Population
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Fig. 9. DB Index of GENCLUST++ vs GENCLUST++ without Initial Popu-
lation on LD dataset
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Fig. 10. DB Index of GENCLUST++ vs GENCLUST++ without Initial
Population on MM dataset

genes in each chromosome is randomly selected between 2
and \/@, where |R| is the number of records in a dataset
R. A gene in a chromosome is a randomly chosen record,
from the dataset R. It then applies a probabilistic approach
same as the one used in GENCLUST++ in order to choose 30
chromosomes out of these 90 chromosomes for the final initial
population.

All other steps/components remain exactly same as the
components of GENCLUST++. The technique with the pseudo
component is called “GENCLUST++ without Initial Population
(GENCLUST++ WolIP)”. Figure [9] and Figure [I0] show the
average DB Index of 10 runs of GENCLUST++ and GEN-
CLUST++ WoIP on the LD and MM datasets. Clearly GEN-
CLUST++ achieves better results than GENCLUST++ WOolP,
indicating the usefulness of the initial population component.

We now examine the usefulness of the MK-MEANS at
the end of 60 generations. So we slot out the MK-MEANS
component from GENCLUST++ and call it “GENCLUST++
without MK-MEANS (GENCLUST++ WoK)”. Figure [IT] and
Figure present the average DB Index of 10 runs on the
LD and MM datasets, respectively. Clearly, GENCLUST++
performs better DB Index than GENCLUST++ WoK on both
datasets, indicating the usefulness of MK-MEANS.

Another important component of GENCLUST++ is the prob-
abilistic cloning with MK-MEANS where we aim to improve
the overall health of an entire population so that we can get

GenClust++ vs GenClust++ without K-Means
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1
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0.6
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GenClust++ GenClust++WoK

DB Index (lowerthe better)

Fig. 11. DB Index of GENCLUST++ vs GENCLUST++ without MK-MEANS
on LD dataset
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Fig. 12. DB Index of GENCLUST++ vs GENCLUST++ without MK-MEANS
on MM dataset

effective results from the crossover, mutation and other opera-
tions. We simply remove the probabilistic cloning component;
such variant is named “GENCLUST++ WoPC”. Figure [13] and
Figure [14] indicate the usefulness of the probabilistic cloning
component in achieving better clustering results as evidenced
from the average DB Index of 10 runs on two datasets.
Figure [I3] shows the average fitness of the best chromo-
somes over 18 datasets for every iteration of GENCLUST++
and GENCLUST-H. We can see that both techniques progress
similarly up to the 10th iteration. From the 10th iteration GEN-

GenClust++ vs GenClust++without Probabilistic Cloningand KMeans
1.5

GenClust++ GenClust++WoPC

DB Index (lowerthe better)

Fig. 13. DB Index of GENCLUST++ vs GENCLUST++ without Probabilistic
Cloning and K-MEANS on the GI dataset
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Fig. 14. DB Index of GENCLUST++ vs GENCLUST++ without Probabilistic
Cloning and K-MEANS on SVS dataset
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Fig. 15. Average fitness vs iteration of GENCLUST++ and GENCLUST-H
over the 18 datasets

CLUST++ makes massive improvement compared to GEN-
CLUST. This is also very indicative of the usefulness of the
probabilistic cloning and MK-MEANS in the 10th iteration.

5. CONCLUSION

This paper has provided a very effective blend of the
hill-climbing optimization of K-MEANS with the exploratory
nature of genetic algorithms. The evidence of the experimental
evaluation shows that GENCLUST++ provides solutions of
higher quality with equivalent computational resources. More-
over, our analysis of significance shows that these results are
statisticly meaningful and that the components that constitute
GENCLUST++ contribute to the observed performance in
obtaining clusterings of higher quality.

Nevertheless, we see some potential for improvement. The
introduction of an elitism from generation 10 that ranks the
chromosomes of the previous generation against the new
generation just to take the top performers is potentially a very
abrupt change from an exploratory phase to a exploitation
phase. The change is visible in Figure [I3] as the separation
point between the two curves. Future work would investigate
smoothening this change, in a fashion similar to the tempera-
ture parameters in simulated annealing. That is, we introduce
the contrast between new population and previous population
from the first generation, but with a high preference to the new
population. With each generation, such preference diminishes

until we reach the situation where chromosomes of the new
generation must compete in equal circumstances (by rank of
fitness value) with chromosomes of the previous generation.
We believe this could potentially see a new curve in Figure[I5]
taking off much earlier, and potentially reaching even higher
at a minimal overhead.
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