

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/122887

Villa Juliá, MF.; Vallada Regalado, E.; Fanjul Peyró, L. (2018). Heuristic algorithms for the
unrelated parallel machine scheduling problem with one scarce additional resource. Expert
Systems with Applications. 93:28-38. https://doi.org/10.1016/j.eswa.2017.09.054

http://doi.org/10.1016/j.eswa.2017.09.054

Elsevier

Heuristic algorithms for the unrelated parallel machine
scheduling problem with one scarce additional resource

Fulgencia Villa, Eva Vallada, Luis Fanjul-Peyro
Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,

Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B.
Universitat Politècnica de València, Camino de Vera s/n, 46021, València, Spain.

Email: mfuvilju@eio.upv.es, evallada@eio.upv.es, lfpeyro@hotmail.com

Abstract
In this paper, we study the unrelated parallel machine scheduling problem

with one scarce additional resource to minimise the maximum completion
time of the jobs or makespan. Several heuristics are proposed following two
strategies: the first one is based on the consideration of the resource constraint
during the whole solution construction process. The second one starts from
several assignment rules without considering the resource constraint, and
repairs the non feasible assignments in order to obtain a feasible solution.
Several computation experiments are carried out over an extensive benchmark.
A comparative evaluation against previously proposed mathematical models
and matheuristics (combination of mathematical models and heuristics) is
carried out. From the results, we can conclude that our methods outperform
the existing ones, and the second strategy performs better, especially for large
instances.
Keywords: Parallel machine problem, Scheduling, Additional Resources,
Heuristics, Makespan.

1. Introduction and problem definition

In the unrelated parallel machine scheduling problem (UPM), a set of n
jobs has to be processed on exactly one machine out of a set of m machines.
In this variant of the problem, processing times of the jobs differ according to
the machine the job is assigned to. This problem has been extensively studied
in the literature over recent decades (Fanjul-Peyro and Ruiz (2010), Fanjul-
Peyro and Ruiz (2011), Vallada and Ruiz (2011), Rodriguez et al. (2013) and

Preprint submitted to Expert Systems with Applications September 14, 2017

Arroyo and Leung (2017), among others). However, machines should not
be considered as the only resource in a real manufacturing environment. In
this case, a job needs, in addition to a machine, an amount of one or more
additional resources. These additional resources (human resources, tools, etc.)
are limited, so it is necessary to consider them when the jobs are assigned to
the machines. Moreover, the amount of resources a job needs differs according
to the machine it is assigned to. This extension to a more realistic problem
is needed in a competitive world, where the objective of the companies is to
increase their profit. Therefore, this approach to the problem is the unrelated
parallel machine scheduling problem with additional resources (UPMR), which
has been the focus of far fewer studies in the research community. Regarding
the optimisation objective, the most studied in the scheduling literature is the
minimisation of the maximum completion of the jobs, known as makespan
(Cmax). In the UPM problem, there is only an assignment problem, since
the sequence inside each machine does not affect the makespan. However, in
the UPMR the problem consists of finding the best assignment of n jobs to
m machines, and at the same time, the best sequence for each machine so
that at any time the resource constraint is satisfied. In this paper, several
heuristic methods are proposed for the UPMR problem with one renewable
additional resource with the objective of minimising the makespan. The
additional resource is considered as: renewable, since after a job is processed
the resource is again available; discrete, the amount of resource needed by a
job is a positive integer; processing, the resource is needed just during the
processing of the job. Both, processing times and resource consumption of
the jobs are different depending on the machine the job is assigned to. This
consideration is especially important in real manufacturing environments
since different machines are used at the same time. The processing time or
resource consumption of a job is expected to be different on an old machine
from that on a new one.

In a formal way, the problem consists of scheduling a set of n jobs (indexed
by j) on one machine of a set of m machines (indexed by i). Moreover, one
additional resource is considered. The following assumptions are considered:
each job is processed by exactly one machine, each machine can process one
job at a time, preemption of jobs is not allowed and each job needs an amount
of the additional resource during its entire process. A solution or sequence
for this problem consists of a list of jobs for each machine. The order of the
jobs on the list represents the processing order on the machine. Note that
a solution or sequence implies the computation of the starting and finishing

2

times of each job on the machines. Depending on the resource availability,
idle times might be necessary in order to obtain a feasible solution. The
following notation is introduced:
· pij: processing time of job j on machine i.
· rij: resource consumption of job j on machine i.
· Machi: list of jobs assigned to machine i and processed following the
order of the list.
· Ji[l]: job in position l of machine i.
· Rmax: maximum availability of resource.
· Rt: remaining units of resource at time t.
· RD0: total resource demand at time 0.
· ri[0]: resource consumption of the job in position 0 on machine i.
· Ci: completion time of machine i.
· Cmax: maximum completion time, max{C1, C2, · · · , Ci}.
· imax: machine with the maximum completion time or makespan (Cmax).
The main contribution of this paper is that the proposed heuristics can

efficiently solve instances of different sizes, especially large ones, something
that, at present, does not exist in the literature. The described problem is
solved, in this paper, by two different approaches. The first one is based on
ordering the jobs to construct a solution taking into account the resource
constraint during the process. The second approach is based on assigning
jobs to machines without considering the resource constraint and applying
a repair mechanism in case the assignment is not feasible with respect the
resource.

The rest of the paper is organised as follows: In Section 2, an overview
of the literature is presented. Sections 3 and 4 are focused on the proposed
heuristic methods. In Section 5 computational results are provided. Finally,
in Section 6 some conclusions and future research are given.

2. Literature review

The unrelated parallel machine scheduling problem, or very similar varia-
tions, has been widely considered over recent decades. Some recent results
can be found in Zeidi and MohammadHosseini (2015) and Chen (2015). A
review of parallel machine scheduling problems can be found in Kravchenko
and Werner (2011). According to Lenstra et al. (1977), this problem is NP-
hard even for the simplest version with two identical parallel machines. The

3

consideration of additional resources has been studied significantly less. One
of the first works is Garey and Johnson (1975), where the authors examine the
complexity of identical parallel machine scheduling problems with additional
resources. The conclusion was that the problem is NP-complete even with
only one additional resource. A classification of the complexity of scheduling
problems subject to resource constraints can be found in Błażewicz et al.
(1983). In Błażewicz et al. (1987), the identical parallel machine scheduling
problem with one additional resource is studied with the objective of minimis-
ing the total flow time. The authors showed that the problem is NP-hard in
the strong sense, even with only 2 machines and one type of resource. Also
for the identical machines case, Ventura and Daecheol (2000) studied one
additional resource so that jobs need one or zero units with an objective
related to due dates. A more recent work with the same one/zero assumption
is Zheng and Wang (2016). Several works can be found for dynamic versions
of the problem where the processing times of the jobs depend on the number
of resources assigned (Grigoriev et al. (2005), Grigoriev et al. (2007), Kellerer
(2008), Yin et al. (2014), Hsu and Yang (2014) and Hsieh et al. (2015)).
The additional resource constraint is an important consideration from a real
industrial environment point of view. Some works related to manufacturing
systems can be found in Edis and Ozkarahan (2012), Bitar et al. (2016) and
Ventura and D. (2003). More recently, in Edis and Ozkarahan (2011) and
Edis and Oguz (2012), mathematical models for different variations of the
problem are proposed. In Edis et al. (2013) a classification and a summary of
solution methods for parallel machine scheduling problems with additional
resources are provided. However, most of the papers study a simplification of
the problem: a fixed amount of resource for each machine during the whole
production horizon (Daniels et al. (1999), Ruiz-Torres et al. (2007)), resource
consumption of a job independent of the machine (Bitar et al. (2016)) or the
resource consumption of a job is one or zero units (Ventura and D. (2003),
Zheng and Wang (2016)). As a result, heuristic methods for the general
problem where both processing times and resource consumption of the jobs
are different according to the machine to which jobs are assigned, have not
been proposed yet in the literature. A recent study, where an adaptation of
the model presented in Edis and Oguz (2012) is given, together with other
different MILP mathematical models and matheuristics methods for the more
general problem studied in this paper, can be found in Fanjul-Peyro et al.
(2017). A matheuristic is a combination of a mathematical model with a
heuristic, some variables of the model are fixed according to the solution

4

provided by a heuristic method. Therefore, a matheuristic can not guarantee
the optimal solution. Matheuristics have been gaining more attention the
last years. Some examples related to scheduling problems are Croce et al.
(2014) and Billaut et al. (2015). Therefore, the objective of this paper is to
propose efficient (in terms of CPU time) and effective (in terms of quality of
the solution) heuristic methods for the general problem, so that they are able
to solve much larger instances than the methods presented in Fanjul-Peyro
et al. (2017), where only small and medium instances are considered.

3. Heuristics based on resources

This first approach consists of three phases: job ordering, construction of
the solution and improvement of the solution. During the last two phases the
resource constraint is considered, that is, total resource consumption at any
time must be lower than or equal to Rmax.

3.1. Ordering of the jobs
In this phase the jobs are ordered without considering resource constraint

according to one of these rules:

- Based on processing time (Rule P): for each job, the lowest k values
(k = 1, 2, 3) of its processing times (pij) are added up and jobs are
ordered in non increasing order according to this sum. A different
version where jobs are ordered in non decreasing order according to the
sum is also proposed.

- Based on resource consumption (Rule R): similar to Rule P , but using
rij instead of pij.

- Based on machines (Rule M): on each machine, jobs are ordered in
non decreasing order of pij. For each machine a group with the k first
jobs is considered (k = 1, 2, 3). A hypothetical or virtual sequence is
constructed and the group of k jobs with the hypothetical minimum
completion time is included in the ordered list of jobs. Previous hy-
pothetical completion times are considered during the whole process
when a new group of k jobs are considered. A different version using
rij instead of pij is also proposed. More details are given later following
an example.

5

Regarding ties, several mechanisms are proposed in order to break them.
In Figure 1, a summary of the rules and how the ties are broken is shown.
Therefore, for Rules P and R, on a first level, two order options are considered.
On a second level, two mechanisms for breaking ties and on the third level,
two ways for the final order. That is 8 variants for each rule. Rule M is very
similar, two order options are considered (non decreasing order of pij and non
decreasing order of rij). The second and third level are the same as Rules P
and R. Therefore, there are 8 variants for Rule M as well.

������ ���

	������

��
���������
� ����� ��� �����

	��	�
����
��	� ��
�� ���

��
��
������
� ����� ��� �����

	��	�
����
��	� ��
�� ���

���

���

������� �����

������ �����

������� �����

������ �����

���

���

������� �����

������ �����

������� �����

������ �����

��� ���������������� ��������

Figure 1: Outline for Rules P , R and M .

The following example illustrates a small instance.

Example 3.1. Consider the following instance of a UPMR with two ma-
chines (m = 2), six jobs (n = 6), ten units of a scarce resource (Rmax = 10)
and the following processing times and resource needs:

(pij) =
(

1 2 4 3 3 1
3 1 4 4 1 2

)
; (rij) =

(
2 6 4 7 1 5
8 6 3 3 2 1

)

If we apply Rule P (non increasing order, k = 2), the result can be found
in Table 1. In the last row, the addition of the first k (k = 2) values for each
job are computed. The final sorted list of the jobs is provided by ordering in
non increasing order of this addition, that is, {J3, J4, J1, J5, J2, J6}. There
are two ties to be broken: between jobs J1 and J5 and between jobs J2 and
J6. In this case, following Figure 1, ties are broken according to highest value

6

of rij . In more detail, between jobs J1 and J5 the highest rij is computed as
max{r11, r21, r15, r25} = r21 = 8. Then, J1 is ordered before J5. The same
procedure is applied between J2 and J6.

In the same Table 1, results for Rule R (non increasing order, k = 2) can
be found. Ties are broken in the same way as the previous example and the
final sorted list is {J2, J1, J4, J3, J6, J5}.

Regarding Rule M (non decreasing order of pij, k = 1), the final sorted
list is obtained according to a hypothetical sequence for the machines. Then,
a hypothetical sequence of jobs for each machine is computed. Following the
same Example 3.1, the first step is to order jobs on each machine in non
decreasing order of pij, then machine Mach1 = {J1, J6, J2, J4, J5, J3} and
machine Mach2 = {J2, J5, J6, J1, J3, J4}. The first job of each machine
is considered (k = 1), in this case J1 and J2. A hypothetical sequence is
computed and the job with the minimum completion time is included in the
final sorted list. Specifically, if J1 is assigned to machine 1, then C1 = 1 and
if J2 is assigned to machine 2, then C2 = 1. In this case ties are broken
according to the maximum value of pij, that is, max{p11, p21, p12, p22} = p21
= 3. Then J1 is selected to be included on the final sorted list. Therefore,
the new order list for each machine is Mach1 = {J6, J2, J4, J5, J3} and
machine Mach2 = {J2, J5, J6, J3, J4} and J6 and J2 are the next jobs to
be considered. Note that to compute the hypothetical sequence, jobs already
sequenced (J1 on machine 1 in this case) are considered in order to obtain
the completion times of the machines. Then, C1 = p11 + p16 = 1 + 1 = 2 and
C2 = p22 = 1. In this case, there is no tie, then J2 is included in the final
sorted list. Following the same procedure for all jobs, the final sorted list is
{J1, J2, J5, J6, J4, J3}.

Table 1: Ordering rules example.

Rule P (k = 2) Rule R (k = 2)
J1 J2 J3 J4 J5 J6 J1 J2 J3 J4 J5 J6
1 1 4 3 1 1 2 6 3 3 1 1
3 2 4 4 3 2 8 6 4 7 2 5

Sum 4 3 8 7 4 3 Sum 10 12 7 10 3 6

3.2. Construction of the solution
Once the jobs are ordered, a constructive procedure is applied to obtain

a feasible solution considering the resource constraint. Two constructive
procedures are proposed, denoted as NEHres and SWA respectively.

7

• Construction based on NEH (NEHres). This is based on the well known
heuristic proposed by Nawaz et al. (1983), considered to be the best
one for the flowshop scheduling problem and successfully used for the
parallel machine problem (Vallada and Ruiz (2011)). Every job from
the ordered list is selected and inserted into all possible positions of each
machine. The job is finally located in the position where the makespan
is minimum. The resource constraint is considered for every insertion of
the jobs. Note that the worst case computational complexity is, as in
the original NEH, O(n3m). Following with the example 3.1, we consider
the final sorted list provided by Rule M ({J1, J2, J5, J6, J4, J3}). The
first job to be considered is job J1 has to be inserted in the first position
of all the machines, two in this case. The job is finally placed on the
machine resulting in the minimum Cmax, machine 1 in this case. Now,
C1 = 1, C2 = 0 and Cmax = 1. Then, job J2 is selected and has to
be inserted in all possible positions: before job J1 on machine 1, after
job J1 on machine 1 and on machine 2. Note that in all cases, the
resource constraint is satisfied. Finally, job J2 is placed on machine
2, since the Cmax is minimum in this way. Now, C1 = 1, C2 = 1 and
Cmax = 1. Following this procedure with the remaining jobs, the final
solution (list of jobs for each machine representing the processing order
on the machine) is Mach1 = {J6, J1, J4} and Mach2 = {J5, J2, J3}.
The Cmax value is C2 = 6.

• Construction with swapping (SWA). In this case jobs are selected
from the ordered list and placed in the last position of each machine
considering the resource constraint. The job is finally located in the
machine with the minimum Ci after the job placement. After the
insertion, a swap can be carried out which consists of interchanging the
last job inserted with all the last jobs already placed on the remaining
machines. In order to decide if the swap movement is finally carried
out, two strategies are considered: the movement is accepted if the
completion time of both machines is decreased (strict swap) or the
movement is accepted if the sum of both completion times after the
movement is lower than before (global swap). In addition, the method
without swapping movements is also considered (no swap). In this
case, the worst case computational complexity is O(n2m). Following
with the example 3.1, we consider the final sorted list provided by Rule
M ({J1, J2, J5, J6, J4, J3}). The first job to be considered is job J1

8

has to be inserted in the last position of all machines (first position in
this case since the machines are empty). The job is finally placed on
the machine resulting in the minimum Cmax, machine 1 in this case.
Now, C1 = 1, C2 = 0 and Cmax = 1. Then, job J2 is selected and has
to be inserted on the last position of both machines: after job J1 on
machine 1 and on machine 2. Finally, job J2 is placed on machine 2,
since the Cmax is the minimum. Now, C1 = 1, C2 = 1 and Cmax = 1.
Following this procedure with the remaining jobs, the final solution
is Mach1 = {J1, J6, J4} and Mach2 = {J2, J5, J3}. The Cmax value
is C2 = 6. After each insertion, swap movements can be carried out,
interchanging the last job of each machine with the last jobs of the
remaining machines. In this case, none of the interchanging movements
are accepted, since conditions for strict swap or global swap are not
satisfied.

3.3. Improvement of the solution
Once a complete and feasible solution is obtained a local search procedure

is applied. The improvement method consists of interchanging all the jobs
from the machine with the maximum completion time or Cmax with all the
jobs on the other machines. After testing all combinations, the movement
with the best Cmax is carried out if it is lower than the original one. Every
time a movement is made the procedure starts from the beginning (local
search until local optima).

In Algorithm 1 a general description of the algorithm can be found. The
local search is not applied in the same way since there are more combinations
for the SWA algorithm than the NEHres. Moreover, the SWA construction
method includes a small local search. Then, for the SWA algorithm, local
search is applied to the best solution obtained at the end of the process, once
per each ordering rule. However, for the NEHres method a local search is
applied for every combination.

4. Heuristics based on assignment

In this section five multi-pass heuristics are proposed. In this case resource
constraint is not considered during the whole process, so it is very likely to
obtain non feasible solutions. All the heuristics have a common constructive
phase but a different local search (LS). The common constructive phase starts

9

Algorithm 1: Heuristics based on resources.
1 for r = P,R,M do
2 for k = 1, ..., 3 do
3 for tie = 1, ..., 8 do
4 order := Rule(r,k,tie);
5 if SWA is selected as constructor then
6 for sw = 1, ..., 3(1:=No swap; 2:=strict; 3:=global) do
7 SWA(sw,order) and Update the best solution;

8 else
9 NEHres(order);

10 Interchange Local Search and Update the best solution

11 if SWA is selected then
12 Interchange Local Search and Update best solution

from an assignment (A) provided by a rule and, depending on the local search
applied, a different multi-pass heuristic is obtained.

In Algorithm 2 the general pseudocode of the multi-pass heuristics is shown
(S denotes a feasible sequence or solution, considering resource constraint).
Algorithm 2 is repeated for all assignment rules and the best solution provided
by each multi-pass is later compared.

4.1. Construction of the solution
The first step of the constructive phase is the application of the assignment

rules, which do not consider resource constraints, so it is very likely to obtain
a non feasible solution. The following rules, based on both processing times
and resource consumption of the jobs are applied:

- Rule 1: each job j is assigned to the machine i with the minimum pij.
Ties are broken by minimum rij.

- Rule 2: each job j is assigned to the machine i with the minimum rij.
Ties are broken by minimum pij.

- Rule 3: each job j is assigned to the machine i with the minimum
pij · rij. Ties are broken by minimum pij.

10

Algorithm 2:Multi-pass heuristics based on assignment:general scheme.
1 for a = 1, ..., 8 (For each Assignment Rule) do
2 A:=Assignment Rule a;
3 Check Feasibility(A);
4 if Feasible(A) then
5 S := A;
6 LS(S) considering resources
7 else
8 S:=Repairing Mechanism(A)
9 LS(S) without considering resources (except for multi-pass 1);

10 Update S∗ := Best Solution

- Rule 4: the average consumption value is computed D = (Rmax/m).
For each job j, the set of machines so that resource consumption of the
job is not greater than D is determined and denoted as MDj. Job is
assigned to the minimum processing time machine from MDj . Ties are
broken by minimum rij. If MDj is empty, the job is assigned to the
minimum rij machine. Ties are broken by minimum pij.

- Rule 5: all jobs are tentatively assigned to all machines. On each
machine, jobs are ordered in non decreasing order of their processing
times. Ties are not initially considered. The job is finally assigned to
the machine in which the position of the job is the lowest. Ties for the
final assignment are broken by minimum pij.

- Rule 6: similar to Rule 5, but jobs are ordered in non decreasing order
of resource consumption. Ties are broken by minimum rij.

- Rule 7: similar to Rule 5, but jobs are ordered in non decreasing order
of pij · rij. Ties are broken by minimum rij.

- Rule 8: a combination of the previous rules based on the algorithm
proposed in Alvarez-Valdes et al. (2015) for the parallel machine problem
minimising earliness and tardiness. In this case, seven assignments for
each machine are available from the previous rules. For each machine
the assignment with the minimum completion time is selected. Note
that it is very likely to find missing or repeated jobs since a different
rule can be selected for each machine. Repeated jobs are assigned to the
machine i with the minimum resource consumption. Ties are broken

11

by minimum Ci. Missing jobs are assigned to the machine i with the
minimum Ci.

None of the rules is dominated by the rest, all of them collaborate to the
results obtained by the multi-pass heuristics.

Following the Example 3.1, in Table 2 the final assignments using Rules 1
to 4 are shown, as well as completion times (Ci) for each machine.

Rule Machine 1 C1 Machine 2 C2

Rule 1 (min pij) {J1,J4,J6} 5 {J2,J3,J5} 6
Rule 2 (min rij) {J1,J5} 4 {J2,J3,J4,J6} 11
Rule 3 (min pij · rij) {J1} 1 {J2,J3,J4,J5,J6} 12
Rule 4 (≤ Rmax/m) {J1,J6} 2 {J2,J3,J4,J5} 10

Table 2: Assignment of the jobs using Rules 1 to 4.

Rule 5 requires some intermediate steps: all jobs are sorted into non de-
creasing order of pij for each machine, that is,Mach1 = {J1, J6, J2, J4, J5, J3}
and Mach2 = {J2, J5, J6, J1, J3, J4}. Each job is finally placed on the ma-
chine where the position of the job is the lowest. For example, Job 1 is
assigned to machine 1. Rules 6 and 7 are similar but jobs are sorted using
the rules explained above. In Table 3, the final assignments for Rules 5 to 7
are shown.

Rule Machine 1 C1 Machine 2 C2

Rule 5 (non decr. pij) {J1,J4,J6} 5 {J2,J3,J5} 6
Rule 6 (non decr. rij) {J1,J2,J5} 6 {J3,J4,J6} 10
Rule 7 (non decr. pij · rij) {J1} 1 {J2,J3,J4,J5,J6} 12

Table 3: Assignment of the jobs using Rules 5 to 7.

Rule 8 is a combination of the seven previous ones. In this case, for each
machine, the assignment so that the completion time of the machine is the
lowest is selected. That is, for machine 1, Rule 3 or Rule 7 assignment is
chosen (C1 = 1). Regarding machine 2, assignment from Rule 1 is selected
(C2 = 6). Then, Mach1 = {J1} and Mach2 = {J2, J3, J5}. The missing
jobs (J4, J6) are allocated to the machine i with the minimum Ci. So, the
final assignment for each machine is Mach1 = {J1, J4, J6} with C1 = 5 and
Mach2 = {J2, J3, J5} with C2 = 6.

12

4.1.1. Check feasibility
Now we check if a given assignment obtained by the previous rules satisfies

the resource constraint. Resource Demand is computed at time t = 0 (RD0)
after ordering jobs on each machine in non increasing order of rij (Algorithm
3).

Algorithm 3: Check Feasibility.
1 for i = 1, ...,m do
2 Order Machi in non increasing order of rij;
3 Compute RD0 as the total demand of resources at t = 0;
4 if RD0 ≤ Rmax then
5 S := A

6 else
7 S:=Repair Mechanism(A)

The same Example 3.1 is used to illustrate the feasibility procedure.
Assignment from Rule 2 is selected in order to check the feasibility: Mach1 =
{J1, J5}, Mach2 = {J2, J3, J4, J6}. In this case jobs are already ordered in
non increasing order of rij . Once the jobs are sorted, the resource consumption
of every first job of each machine is added. Resource Demand at time t = 0
is computed as RD0 = r11 + r22 = 2 + 6 = 8. Therefore, as Rmax = 10,
RD0 < Rmax and the assignment is feasible. We can state that if the first job
(maximum rij) of every machine can be processed at the same time, then the
rest of the sequence is also feasible.

4.1.2. Repairing mechanism
The objective of this procedure is to obtain a feasible solution S, from a

given unfeasible assignment A. A new set of jobs denoted as Pending Jobs
(PJ) is created. The idea is to move jobs from A to PJ until the partial
assignment of A is feasible.

Using Example 3.1, the assignment from Rule 1 is selected in order to check
the feasibility: Mach1 = {J1, J4, J6}, Mach2 = {J2, J3, J5}. In this case,
jobs are not ordered in non increasing order of rij, so the ordered assignment
is Mach1 = {J4, J6, J1}, Mach2 = {J2, J3, J5}. Resource Demand at time
t = 0 is computed as RD0 = r11 + r22 = 7 + 6 = 13. Since RD0 > Rmax, the
assignment is not feasible and the repairing mechanism is applied. The job

13

placed in first position with the maximum resource consumption is selected
to be removed from the assignment. This job is placed in the Pending Jobs
set. If there is more than one job with maximum resource consumption,
the one placed on the machine with the largest completion time (Ci) is
chosen. The process is repeated until RD0 ≤ Rmax. In our example, the
first job selected to be moved from the assignment to the Pending Jobs set
is job J4. In this case, r14 = 7 and r22 = 6, so J4 is removed. The partial
assignment is Mach1 = {J6, J1}, Mach2 = {J2, J3, J5} and PJ = {J4}.
Now, RD0 = r16 + r22 = 5 + 6 = 11, so the solution is still unfeasible
and job J2 is selected to be part of the PJ set. The partial assignment is
Mach1 = {J6, J1}, Mach2 = {J3, J5} and PJ = {J4, J2} and it is feasible
(RD0 = r16 + r23 = 5 + 3 = 8). Note that every time a job is moved from the
assignment to the PJ set, all jobs are shifted left.
At this point there is, on one hand, a partially feasible assignment and on
the other hand a Pending Jobs set to be placed in the sequence satisfying
the resource constraint. In Algorithm 4, pseudocode to schedule the Pending
Jobs is given. Note that index i∗ refers to the machine where the job j
was originally assigned. First, we try to schedule the Pending Jobs at the
beginning of the machine where they were assigned if there are enough
resources. Otherwise, Pending Jobs are assigned at the end of a machine
following two strategies: at the end of the machine where the job was originally
assigned and at the end of the machine so that the completion time of the
job (Cj) is the minimum. In both cases the resource constraint must be
satisfied and the solution with the minimum makespan value is finally selected.
Once a pending job is scheduled a swap operation is carried out with the
previous job, if there are no idle times on the machine and the resource
consumption of the previous job is lower than the resource consumption of
the pending job scheduled. The swapping operation is carried out as many
times as possible, that is, a swap between the scheduled pending job and the
previous one is carried out while the sequence after swapping is still feasible.

14

Algorithm 4: Repair mechanism: Pending Jobs scheduling.
1 for j = 1, ..., |PJ | do
2 if R0 + ri∗[0] ≥ ri∗j then
3 S := S ∪ j;
4 Order Mach∗i in non increasing order of resource consumption;
5 PJ := PJ − j;
6 Update R0;

7 Order PJ in non decreasing order of rij;
8 S ′ := S;
9 for j = 1, ..., |PJ | do

10 S : = Schedule job j in S at the end of the machine where it was
originally assigned (earliest time satisfying resource constraint);

11 while resource constraint is satisfied do
12 Swap the scheduled job with the previous one;
13 S ′ : = Schedule job j in S ′ at the end of the machine where the

completion time of the job is the minimum (earliest time satisfying
resource constraint);

14 while resource constraint is satisfied do
15 Swap the scheduled job with the previous one;

16 S∗ := Select schedule with the lowest Cmax(S, S ′);
Following with Example 3.1, PJ = {J4, J2}. Recall that Mach1 =

{J6, J1}, and Mach2 = {J3, J5}. Algorithm 4 is applied to the current
solution. First, we try to schedule job J4 at the beginning of machine 1.
At time 0, the total consumption is r16 + r23, that is 5 + 3 = 8. Then,
R0 = 10 − 8 = 2 (available resources at time 0). The first step consists of
trying to introduce Pending Jobs at the beginning if there are enough resources.
Job J4 needs 7 resource units on machine 1 (where it was originally assigned),
therefore we have to check if there are enough resources at time 0 to sequence
job J4 at the beginning of machine 1. If the available units of resource at
time 0 (R0) plus the resource consumption of the first job already scheduled
on the machine is equal to or greater than the resource consumption of the
pending job, it means that the pending job can be scheduled at the beginning
of the machine. In this case, R0 = 2 and the resource consumption of the first
job already scheduled on machine 1 is r16 = 5. The resource consumption
of the pending job J4 on machine 1 is r14 = 7. Then, R0 + r16 = 2 + 5 = 7

15

and r14 = 7. Therefore, pending job J4 can be scheduled at the beginning
of machine 1. So Mach1 = {J4, J6, J1}, Mach2 = {J3, J5} and PJ = {J2}.
Job J2 can not be scheduled at the beginning. Job J2 is sequenced at the
end following the two strategies explained before: in the first one, the job is
assigned to the machine where it was originally assigned, and in the second,
the job is assigned to the machine resulting in the minimum Ci. So, in the first
case, job J2 is assigned at the end of machine 2, then Mach1 = {J4, J6, J1},
Mach2 = {J3, J5, J2} and Cmax = 6. In this case, it is possible to swap
job J2 with the previous job J5, since there are no idle times, the resource
constraint is satisfied and the resource consumption of job J5 is lower than the
resource consumption of job J2. No more swaps involving job J2 are allowed
since the resource constraint is not satisfied. Swapping the jobs allows for
more available resources at the end of the machine in order to sequence new
Pending Jobs. For the second strategy, J2 is sequenced in machine 2 as well.
Then, the final solution is Mach1 = {J4, J6, J1}, Mach2 = {J3, J2, J5} and
Cmax = 6. Note that there are no idle times in the solution to this example.

4.2. Local search
Local search methods are widely applied to parallel machine scheduling

problems in order to improve solutions obtained by constructive procedures
(see Fanjul-Peyro and Ruiz (2010), Fanjul-Peyro and Ruiz (2011), Vallada and
Ruiz (2011) and Rodriguez et al. (2013), among others). Once the assignment
A is transformed into a feasible solution S, a local search procedure is applied.
Depending on the multi-pass heuristic, a local search is applied in a different
way. In all cases, a local search is first applied to the machine resulting with
the maximum completion time (makespan machine) and then to all machines,
including again the makespan machine. More details about local search
procedures are given in following subsections. Note that all local searches are
applied consecutively and in the end, if there is at least one movement, the
local search process starts again. The general structure for the local search is
the following:

1. Insertion of jobs from the Cmax machine(s).
2. Insertion of all jobs into all machines.
3. Swap of jobs from the Cmax machine(s).
4. Swap of all jobs to all machines.

16

4.2.1. Local search considering resources
This local search is only applied if the original assignment A is already

feasible, that is, there are no Pending Jobs. In this case, it is possible to
apply a fast local search based on both insertion and swap neighbourhoods.
In Algorithm 5 and Algorithm 6 pseudocodes for the local search considering
resources are shown. Line 8 (Algorithm 5) and Line 10 (Algorithm 6) ensure
the feasibility of the solution after an insertion/swap movement. In both
cases, a local search is applied until the makespan value can not be improved.

Algorithm 5: Insertion considering resources (Cmax machine).
1 for i = 1, ...,m do
2 if Ci = Cmax then
3 Order Machi in non increasing order of processing times on

machine i;
4 for j = 1, ..., |Machi| do
5 Mj := list of machines sorted by non decreasing pij;
6 for k = 1, ..., |Mj| do
7 if k 6= i then
8 if R0 + rk[0] ≥ rkj then
9 Insert job j in machine k if Ck + pkj < Cmax;

10 Order Machk in non increasing order of rkj;
11 Update R0, Ck, Cmax;
12 break (all For loops);

After the local search based on insertion neighbourhood for the Cmax
machine, the same local search is also applied for all machines in a similar
way to Algorithm 5 but without checking condition in Line 2. After the
insertion neighbourhood, a local search based on swap neighbourhood is
also applied as before, first to the Cmax machine (Algorithm 6) and later
to all machines. In both cases, the local search is applied while there is an
improvement. Moreover, for both, insertion/swap considering Cmax machine,
first improvement strategy is applied. However, when the insertion/swap is
applied to all machines, best improvement strategy is carried out.

17

Algorithm 6: Swap considering resources (Cmax machine).
1 imax := First machine so that its completion time is equal to Cmax;
2 Order Machimax in non increasing order of processing times;
3 for j = 1, ..., |Machimax | do
4 MCi

:= List of machines sorted by non decreasing order of Ci;
5 for k = 1, ..., |MCi

| do
6 Order Machk in non decreasing order of processing times on

machine imax;
7 for l = 1, ..., |Machk| do
8 NewCmax := Cmax after swapping jobs j and l;
9 if NewCmax < Cmax then

10 if rimax[0] ≥ ri∗l and rk[0] ≥ rkj then
11 Swap jobs j and l; Update imax, Ck, Cmax;
12 Order Machk and Machimax in non increasing order

of resource consumption;
13 break (all For loops);

4.2.2. Local search without considering resources
The previous local search is only applied when there are no Pending Jobs

in the original assignment, that is, the assignment is also a feasible solution.
If the original assignment is not feasible, a different local search also based
on insertion and swap neighbourhood is applied after applying the repair
mechanism (Algorithm 4) to the assignment. In this local search, movements
do not consider the resource constraint, that is, Lines 8 and 10 are not checked
in Algorithms 5 and 6 respectively. In this way, the local search procedure
is faster and several movements can be carried out using substantially less
CPU time than when considering the resource constraint all along. In this
local search, only the assignment is used, that is, if there are idle times due
to the resource constraint, these idle times are removed and the schedule is
compact. A feasible solution S is transformed into a non feasible assignment
A. Then, two strategies can be used:

1. Intensive local search: every time a movement is carried out in a
neighbourhood, the assignment is repaired to obtain a feasible solution
following Algorithm 3.

18

2. Non intensive local search: according to the structure explained at
the beginning of Section 4.2, Algorithm 3 is applied to the best solution
obtained at the end of each type of local search. In this case, additional
conditions are checked before carrying out a movement, in order to avoid
implementing as much as possible, the repair mechanism. Specifically,
for the insertion neighbourhood from Cmax machine, movements are
applied only if the resource consumption of the job in the new machine
is not greater than the original resource consumption of the job. When
swapping jobs from the Cmax machine, if the total consumption of the
swapped jobs after the movement is lower than the initial consumption
of the same jobs, the movement is applied.

4.3. Multi-pass heuristics
Each multi-pass proposed heuristic consists of a combination of the ele-

ments explained above. Each multi-pass is run for each assignment rule, so
at the end of each multi-pass method, 8 solutions are available and the best
one is selected. More specifically, the following combinations are considered:

• Multi-pass 1 (M1): After the constructive phase, the local search con-
sidering resources is applied only if the initial assignment is feasible.

• Multi-pass 2 (M2): After M1, every solution is improved by applying
the non intensive local search.

• Multi-pass 3 (M3): After M2, every solution is improved by applying a
procedure in order to unbalance the makespan machine. Local search
procedures can be exhausted, machines are too balanced and it is not
possible to improve the makespan by inserting/swapping jobs. Balance
means that all Ci are very similar and it is not possible to improve
the solution. A procedure to unbalace the makespan machine introduc-
ing diversification is carried out. The unbalance approach consists of
different steps:

1. Obtain the assignment A from the sequence S (eliminate idle times
from S).

2. Pending Jobs construction.
3. Insert Pending Jobs in the makespan machine (imax).
4. Improve the current solution by means of the non intensive local

search.

19

If there are no Pending Jobs to insert in machine imax, the unbalanced
procedure inserts a job j in machine imax if this machine is the best one
from the processing time (pimaxj) or resource consumption (rimaxj) point
of view, j = 1, ..., n.

• Multi-pass 4 (M4): This method is run in order to obtain two separate
solutions: on the one hand, the solution provided by M3. On the other
hand, the solution provided by M1 which is improved by the intensive
local search. At the end of the process, two solutions are obtained and
the best one is selected.

• Multi-pass 5 (M5): After M3, every solution is improved by applying
the intensive local search.

Note that the worst case computational complexity is the same for all
cases, O(n2m).

5. Computational Results

In this section, comprehensive computational results on a benchmark
originally proposed by Fanjul-Peyro et al. (2017) are given. The proposed
benchmark consists of three sets of small, medium and large instances. Re-
garding the size of the instances, the following values are considered: small set,
n = {8, 12, 16}, m = {2, 4, 6}; medium set, n = {20, 25, 30}, m = {2, 4, 6};
large set, n = {50, 150, 250, 350}, m = {10, 20, 30}. For each combination
of number of jobs and number of machines, there are five sets according to
processing times and resource consumption generation. Specifically, for pro-
cessing times, uniform and correlated distributions are considered (U(1, 100),
U(10, 100), U(100, 200), Correlated Jobs, Correlated Machines). Regarding
resource consumptions, two sets are generated: 1) following a uniform distribu-
tion (U(1, 9)) and 2) correlated values (the highest processing time, the highest
resource consumption). Finally, the total number of the resource is computed
as Rmax = 5 ·m. All the details about the benchmark generation can be found
in Fanjul-Peyro et al. (2017). There are five replicates for each combination,
therefore in total there are 450 small instances, 450 medium instances and
600 large instances. All of them are available at http://soa.iti.es, as well
as the generator to reproduce exactly the same benchmark. All methods
have been run on a computational cluster formed by 30 blade servers. Each
server contains two Intel XEON E5420 processors running at 2.5 GHz and

20

http://soa.iti.es

16 GBytes of RAM memory. The specific tests are performed on virtual
machines running on this cluster. Each one runs a Microsoft Windows 7 64
bit operating system and has one single virtual processor and 2 GBytes of
RAM. Therefore, the instances are randomly distributed to virtual machines
in order to speed-up the experiments. The platform used for the codes is
Microsoft Visual Studio 2013 and the methods were coded in C# under the
same .NET Framework (4.6.1).

Regarding the effectiveness measure, the Relative Percentage Deviation
(RPD) is computed for each instance according to the following expression:

Relative Percentage Deviation(RPD) = Heusol −Bestsol

Bestsol

· 100, (1)

where Heusol is the solution obtained with a given proposed heuristic
and Bestsol is the best known solution for a given instance. For small and
medium instances Bestsol is a lower bound recently provided by Fanjul-Peyro
et al. (2017), where several matheuristic methods along with mathematical
models are proposed for the same problem. Specifically, the lower bound
is computed as the maximum value between the optimal solution or lower
bound provided by the mathematical models and the lower bound provided
by the mathematical models for the same problem without considering the
resource constraint. For large instances, Bestsol is the best known solution
obtained after all the experiments have been carried out throughout the paper.

Both heuristic approaches are tested. For the first one (Section 3), the best
combination for each constructive method (Section 3.2) is tested. Then, two
final heuristics are provided, denoted as SWA and NEHres. Regarding the
second approach (Section 4), the five multi-pass heuristics are tested (Section
4.3), denoted as M1, M2, M3, M4 and M5. Moreover, a simple adaptation
of the heuristic NEH proposed by Nawaz et al. (1983) is included in the
comparative evaluation and denoted as NEHst. This adaptation consists
of sorting the jobs into non increasing order of the sum of the pij, for each
job j on all machines. Then, jobs are selected in this order and inserted on
the machine so that the makespan value is the minimum with the resource
constraint being considered throughout the entire insertion process. Note
that the order of the jobs is completely different from NEHres.

21

5.1. Small and medium instances
First, a comparative evaluation of all the proposed methods using small

and medium instances is carried out. Moreover, the best mathematical
model UPMR−P and the best matheuristic JMR−P presented by Fanjul-
Peyro et al. (2017) are also included, and here denoted as UPMR and
JMR respectively. In Tables 4 and 5, the Average Relative Percentage
Deviation for each n×m size group is shown for small and medium instances
respectively. All methods are tested under the same conditions and using
the same computational resources, being the same used in Fanjul-Peyro et al.
(2017). Multi-pass heuristics M4 and M5 and NEHres obtained the best
results. This is expected since these methods use local search procedures to
improve the solution. In order to check the results, an analysis of variance
(ANOVA) (Montgomery (2012)) is applied to validate if the differences in
the RPD values are statistically significant. We can see in Figure 2 the
means plot with LSD intervals (α=0.05), where it is shown that there are no
statistically significant differences (overlapped intervals) among M4, M5 and
NEHres, that is, on average the three methods perform similarly . For the
remaining methods, the mathematical model (UPMR) and the matheuristic
(JMR) perform well, similarly to M2 and M3 multi-pass heuristics. It is
clear that M1 heuristic and the standard adaptation of the NEH (NEHst)
perform the worst since they are the simplest methods. These results are
consistent regardless of the size of the instance and generation of processing
and resource consumption times. However, according to the average CPU
times needed by each method (Table 4), multi-pass heuristics are much more
efficient than the NEHres method. So, in conclusion, M4 and M5 multi-pass
heuristics perform similarly while using much less computation time. The
CPU time needed by the mathematical model (UPMR) and the matheuristic
was a maximum of 1 hour for each one, using IBM ILOG-CPLEX 12.6 to solve
the instances according to Fanjul-Peyro et al. (2017). Regarding the number
of optimal solutions, NEHres obtained 291 over 450 small instances, while
M4 and M5 got 267 and 257 respectively. Methods proposed by Fanjul-Peyro
et al. (2017) were able to optimally solve 261 small instances (UPMR) and
243 small instances (JMR). In more detail, the mathematical model UPMR
is able to optimally solve all 8 jobs instances (150 instances), 85 over 150
instances with 12 jobs and just 26 over 150 instances with 16 jobs. Regarding
the matheuristic JMR, it is able to solve 126 over 150 instances with 8 jobs,
86 over 150 instances with 12 jobs and just 31 over 150 instances with 16 jobs.
Therefore, both methods are especially sensitive to the size of the instance.

22

None of the heuristic methods can optimally solve all 8 jobs instances, but
their performance improves as the size of the instance increases.

Instance group UP MR JMR NEHst SW A NEHres M1 M2 M3 M4 M5

8× 2 0.00 0.00 2.50 1.11 0.25 3.61 1.10 1.04 0.10 0.24
8× 4 0.00 1.94 4.33 1.00 0.21 8.37 1.92 1.71 0.73 1.17
8× 6 0.00 1.88 4.71 0.24 0.19 2.81 2.10 2.04 1.06 0.96
12× 2 3.80 3.80 7.34 5.02 4.09 7.50 5.04 5.00 4.41 4.49
12× 4 1.89 3.20 7.46 3.43 1.75 11.11 4.22 3.87 2.62 2.91
12× 6 1.46 1.07 6.58 2.21 0.65 5.74 3.08 2.90 1.16 1.19
16× 2 8.10 8.10 12.50 11.26 8.61 13.04 9.55 9.41 8.50 8.58
16× 4 7.80 5.52 9.37 4.11 2.13 10.33 3.67 3.56 2.65 2.98
16× 6 8.92 6.19 7.92 2.68 1.01 8.30 3.82 3.27 1.59 1.79

Av.RP D 3.55 3.52 6.97 3.45 2.10 7.87 3.83 3.64 2.53 2.70

Av.Time 2208.34 1969.92 4.84 62.59 115.26 2.64 7.97 16.44 44.9 35.22

Table 4: Average Relative Percentage Deviation (RPD) and Average CPU Time in mil-
liseconds for small instances (in seconds for UPMR and JMR).

R
el

at
iv

e
P

er
ce

nt
ag

e
D

ev
ia

tio
n

(R
P

D
)

JMR M1 M2 M3 M4 M5NEHresNEHst SWAUPMR

0

2

4

6

8

10

Figure 2: Means Plot and LSD intervals at the 95% confidence level for the heuristic
methods (small instances)

Regarding medium instances, results are shown in Table 5 and the statis-
tical analysis in Figure 3. The picture is slightly different from that of small
instances. In the medium size case, the mathematical model (UPMR) and
the matheuristic (JMR) do not perform well since the size of the instance has
a large negative impact for these methods. Regarding the best methods, again

23

Instance group UP MR JMR NEHst SW A NEHres M1 M2 M3 M4 M5

20× 2 6.98 6.98 10.45 9.74 6.98 12.36 8.75 8.33 7.18 7.42
20× 4 13.91 10.93 8.14 4.56 2.48 9.50 3.86 2.96 2.48 2.33
20× 6 14.69 9.72 7.45 3.55 1.57 7.28 2.97 2.52 1.35 1.29
25× 2 13.21 13.21 12.80 12.60 10.15 14.38 11.02 10.88 9.95 9.99
25× 4 21.02 15.24 8.69 4.53 2.62 10.26 4.26 3.80 2.66 2.71
25× 6 25.00 19.39 8.62 4.11 2.05 7.93 3.14 2.58 2.09 2.12
30× 2 15.25 15.25 8.36 8.02 5.30 10.64 6.50 6.37 5.40 5.57
30× 4 28.26 21.52 7.53 3.70 1.88 8.64 2.42 2.26 1.28 1.41
30× 6 61.24 30.27 10.24 5.23 2.89 10.14 3.45 2.49 1.89 1.59

Av.RP D 22.17 15.84 9.14 6.23 3.99 10.12 5.15 4.69 3.81 3.83

Av.Time 3600 3600 45.97 371.08 1458.53 6.13 26.18 51.34 196.50 146.56

Table 5: Average Relative Percentage Deviation (RPD) and Average CPU Time in mil-
liseconds for medium instances (in seconds for UPMR and JMR).

R
el

at
iv

e
P

er
ce

nt
ag

e
D

ev
ia

ti
on

(R
P

D
)

0

4

8

12

16

20

24

JMR M1 M2 M3 M4 M5NEHresNEHst SWAUPMR

Figure 3: Means Plot and LSD intervals at the 95% confidence level for the heuristic
methods (medium instances)

24

M4, M5 and NEHres demonstrate the best performance without statistically
significant differences. In conclusion, the three methods are statistically
similar but multi-pass heuristics (M4 and M5) need much less computational
effort (Table 5). Again these results are consistent regardless of the size of
the instance and generation of processing and resource consumption times.
If we focus our attention on the number of optimal solutions obtained by
each method, M4 and M5 are able to obtain 143 and 131 over 450 medium
instances respectively. NEHres is only able to get 44 optimal solutions. The
mathematical model (UPMR) and the matheuristic (JMR) can solve just 8
instances each one, far inferior to the best heuristic methods. Note that in this
case, optimal solutions for all medium size instances are not known, so the
number of optimal solutions obtained by the methods is a lower bound, that
is, at least they are able to optimally solve this amount of medium instances.
In conclusion, we can state that the bigger the size of the instance, the better
the performance is of the heuristics compared to UPMR and JMR.

5.2. Large instances
For large instances, NEHres is not tested since the computational time

needed is too long and the results are not competitive. Finally, the mathemat-
ical model (UPMR) and the matheuristic (JMR) are not considered since
they are not able to solve large instances. In Table 6, the results for the rest of
the methods are shown. Again, the M4 and M5 heuristics perform the best,
obtaining on average a smaller Relative Percentage Deviation than the rest of
the methods. According to Table 6, it seems that M5 works better than M4,
however if we apply an analysis of the variance (ANOVA) (Figure 4), both
methods are overlapped, so there are no statistically significant differences,
that is, M4 and M5, on average, are similar. If we pay attention to the CPU
times (Table 6), on average, M5 requires less computational effort than M4.
Therefore, M5 can be considered the best method if we take into account
both the quality of the solution and efficiency. For the remaining methods,
M1 and the SWA method do not work well. The effectiveness of the M2 and
M3 heuristics is not as good but both methods are much faster (less than 10
seconds on average) than M4 and M5. For large instances, optimal solutions
are not known for the problem considering the resource constraint. However,
it is possible to compare the solutions obtained by the heuristics against a
lower bound for the Unrelated Parallel Machine Scheduling Problem (UPM),
that is, without considering the resource. If the heuristic methods are able to
obtain the same optimal makespan value as that in the UPM case, it means

25

the solution is also optimal for the UPMR problem which takes resources
into consideration. The SWA method is able to obtain 22 optimal solutions.
Regarding multi-pass heuristics, 12, 24 and 30 optimal solutions are obtained
by M1, M2 and M3 respectively. Multi-pass M4 and M5, the best ones, are
able to optimally solve 50 and 51 large instances respectively. Note that the
same makespan values do not mean the same solution. Actually, it is very
likely that the optimal solution for the UPM problem is non feasible for the
UPMR one. Therefore, even if makespan values are similar and optimal for
UPM and UPMR, the sequence of the jobs for each machine has not to be
similar. Then, the proposed heuristic methods obtain the optimal solution for
UPMR after applying all the procedures explained above in order to obtain
a feasible solution.

Instance group SWA M1 M2 M3 M4 M5
50× 10 4.58 7.51 1.95 1.22 0.24 0.28
50× 20 3.59 4.66 2.05 1.73 0.92 0.51
50× 30 2.12 3.05 2.02 1.57 0.24 0.28
150× 10 5.37 6.19 1.00 0.74 0.35 0.08
150× 20 5.63 6.43 0.68 0.42 0.11 0.16
150× 30 4.98 7.04 1.18 0.71 0.35 0.18
250× 10 4.46 6.31 0.82 0.57 0.26 0.04
250× 20 5.50 5.63 0.65 0.35 0.20 0.01
250× 30 5.22 5.47 0.79 0.54 0.29 0.06
350× 10 4.29 5.41 0.75 0.57 0.19 0.04
350× 20 5.59 5.16 0.58 0.40 0.24 0.03
350× 30 5.17 4.69 0.50 0.35 0.14 0.01
Av.RPD 4.71 5.63 1.08 0.76 0.29 0.14
Av.Time (sec.) 46.3 1.60 5.25 9.84 184.93 102.25

Table 6: Average Relative Percentage Deviation (RPD) and Average CPU Time in seconds
for large instances.

6. Conclusions and future research

In this paper, the unrelated parallel machine scheduling problem with
additional resources is considered. Several heuristics are proposed following

26

R
el

at
iv

e
P

er
ce

n
ta

ge
D

ev
ia

tio
n

(R
P

D
)

M1 M2 M3 M4 M5SWA

-0.1

0.9

1.9

2.9

3.9

4.9

5.9

Figure 4: Means Plot and LSD intervals at the 95% confidence level for the heuristic
methods (large instances)

two different approaches: the first one considers the resource constraint during
the whole process while the second one works with non feasible solutions
as regards resources, applying a procedure to repair the solutions. Two
heuristics are tested according to the first approach based on resources and
five multi-pass heuristics are proposed according to the second one based
on assignment. An exhaustive comparative evaluation is carried out under
an extensive benchmark of small, medium and large instances. From the
results obtained, we can conclude that the heuristics from the first approach
together with multi-pass M4 and M5 from the second approach, demonstrate
the best performance in small and medium instances. In terms of efficiency,
heuristics from the second approach are far superior to those of the first one.
Regarding large instances, multi-pass heuristics M4 and M5 obtained the
best results, improving on all other tested methods. The main contribution
of the paper is that the proposed heuristics can efficiently solve instances of
different sizes, especially large instances, something that, at present, does
not exist in the literature. As a conclusion, we can state that the second
approach is more suitable than the first one, since the results obtained by
the multi-pass heuristics are equal to or better than those obtained by the

27

methods of the first approach whilst using much less CPU time. Moreover,
heuristics improve on the only methods proposed until now for the same
problem: the mathematical models and matheuristics presented by Fanjul-
Peyro et al. (2017), from the point of view of efficiency (small instances) and
effectiveness and efficiency (large and medium instances). Regarding future
research, considering the good performance of the proposed heuristics, the
authors are starting to work in metaheuristic methods. These methods could
start from the solutions provided by the heuristics presented in this paper,
with the objective of improving the results.

Acknowledgments

The authors are supported by the Spanish Ministry of Economy and Com-
petitiveness, under the projects “SCHEYARD - Optimization of Scheduling
Problems in Container Yards” (No. DPI2015-65895-R) and “OPTEMAC -
Optimización de Procesos en Terminales Marítimas de Contenedores” (No.
DPI2014-53665-P), all of them partially financed with FEDER funds. The
authors are also partially supported by the EU Horizon 2020 research and
innovation programme under grant agreement no. 731932 “Transforming
Transport: Big Data Value in Mobility and Logistics”. Interested readers can
download contents from http://soa.iti.es, like the instances used and a
software for generating further instances. Source codes are available upon
justified request from the authors.

References

Alvarez-Valdes, R., Tamarit, J. M., Villa, F., 2015. Minimizing weighted earliness-tardiness
on parallel machines using hybrid metaheuristics. Computers and Operations Research
54, 1–11.

Arroyo, J. E. C., Leung, J. Y.-T., 2017. Scheduling unrelated parallel batch processing ma-
chines with non-identical job sizes and unequal ready times. Computers and Operations
Research 78, 117–128.

Billaut, J.-C., Croce, F. D., Grosso, A., 2015. A single machine scheduling problem with
two-dimensional vector packing constraints. European Journal of Operational Research
243, 75–81.

Bitar, A., Dauzère-Pérès, S., Yugma, C., Roussel, R., 2016. A memetic algorithm to solve an
unrelated parallel machine scheduling problem with auxiliary resources in semiconductor
manufacturing. Journal of Scheduling 19, 367–376.

Błażewicz, J., Kubiak, W., Röck, H., Szwarcfiter, J., 1987. Minimizing Mean Flow-Time
with Parallel Processors and Resource Constraints. Acta Informatica 24, 513–524.

28

http://soa.iti.es

Błażewicz, J., Lenstra, J. K., Rinnooy Kan, A. H. G., 1983. Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics 5, 11–24.

Chen, J., 2015. Unrelated parallel-machine scheduling to minimize total weighted completion
time. Journal of Intelligent Manufacturing 26, 1099–1112.

Croce, F. D., Salassa, F., T’kindt, V., 2014. A hybrid heuristic approach for single machine
scheduling with release times. Computers & Operations Research 45, 7–11.

Daniels, R. L., Hua, S. Y., Webster, S., 1999. Heuristics for parallel-machine flexible
resource scheduling problems with unspecified job assignment. Computers and Operations
Research 26, 143–155.

Edis, E. B., Oguz, C., 2012. Parallel machine scheduling with flexible resources. Computers
and Industrial Engineering 63, 433–447.

Edis, E. B., Oguz, C., Ozkarahan, I., 2013. Parallel machine scheduling with additional
resources: Notation, classification, models and solution methods. European Journal of
Operational Research 230, 449–463.

Edis, E. B., Ozkarahan, I., 2011. A combined integer/constraint programming approach
to a resource-constrained parallel machine scheduling problem with machine eligibility
restrictions. Engineering Optimization 43, 135–157.

Edis, E. B., Ozkarahan, I., 2012. Solution approaches for a real-life resource constrained
parallel machine scheduling problem. International Journal of Advanced Manufacturing
Technology 9, 1141–1153.

Fanjul-Peyro, L., Perea, F., Ruiz, R., 2017. Models and matheuristics for the unrelated
parallel machine scheduling problem with additional resources. European Journal of
Operational Research 260, 482–493.

Fanjul-Peyro, L., Ruiz, R., 2010. Iterated greedy local search methods for unrelated parallel
machine scheduling. European Journal of Operational Research 207, 55–69.

Fanjul-Peyro, L., Ruiz, R., 2011. Size-reduction heuristics for the unrelated parallel machines
scheduling problem. Computers and Operations Research 38, 301–309.

Garey, M., Johnson, D., 1975. Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal on Computing 4, 397–411.

Grigoriev, A., Sviridenko, M., Uetz, M., 2005. Unrelated parallel machine scheduling with
resource dependent processing. In: Jünger, M., Kaibel, V. (Eds.), TIMES, Proceedings
of the 11th conference on integer programming and combinatorial optimization. Vol.
3509 of Lecture Notes in Computer Science. Springer, Berlin-Heidelberg, pp. 182–195.

Grigoriev, A., Sviridenko, M., Uetz, M., 2007. Machine scheduling with resource dependent
processing times. Mathematical Programming Series B 110, 209–228.

Hsieh, P. H., Yang, S. J., Yang, D. L., 2015. Decision support for unrelated parallel machine
scheduling with discrete controllable processing times. Applied Soft Computing 30,
475–483.

Hsu, Chou, J., Yang, D. L., 2014. Unrelated parallel-machine scheduling with position-
dependent deteriorating jobs and resource-dependent processing time. Optimization
Letters 8, 519–531.

Kellerer, H., 2008. An approximation algorithm for identical parallel machine scheduling
with resource dependent processing times. Operations Research Letters 36, 157–159.

Kravchenko, S., Werner, F., 2011. Parallel machine problems with equal processing times:
A survey. Journal of Scheduling 14, 435–444.

29

Lenstra, J. K., Rinnooy Kan, A. H. G., Brucker, P., 1977. Complexity of machine scheduling
problems. Annals of Discrete Mathematics 1, 343–362.

Montgomery, D. C., 2012. Design and Analysis of Experiments, eigth Edition. John Wiley
& Sons, New York.

Nawaz, M., Enscore, Jr, E. E., Ham, I., 1983. A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. OMEGA, The International Journal of Management
Science 11, 91–95.

Rodriguez, F. J., Lozano, M., Blum, C., García-Martínez, C., 2013. An iterated greedy
algorithm for the large-scale unrelated parallel machines scheduling problem. Computers
and Operations Research 40, 1829–1841.

Ruiz-Torres, A. J., López, F. J., Ho, J. C., 2007. Scheduling uniform parallel machines
subject to a secondary resource to minimize the number of tardy jobs. European Journal
of Operational Research 179, 302–315.

Vallada, E., Ruiz, R., 2011. A genetic algorithm for the unrelated parallel machine scheduling
problem with sequence dependent setup times. European Journal of Operational Research
211, 612–622.

Ventura, J. A., D., K., 2003. Parallel machine scheduling with earliness-tardiness penalties
and additional resource constraints. Computers and Operations Research 30, 1945–1958.

Ventura, J. A., Daecheol, K., 2000. Parallel machine scheduling about an unrestricted due
date and additional resource constraints. IIE Transactions 32, 147–153.

Yin, N., Kang, L., Sun, T. C., Yue, C., Wang, X. R., 2014. Unrelated parallel machines
scheduling with deteriorating jobs and resource dependent processing times. Applied
Mathematical Modelling 38, 4747–4755.

Zeidi, J., MohammadHosseini, S., 2015. Scheduling unrelated parallel machines with
sequence-dependent setup times. International Journal of Advanced Manufacturing
Technology 81, 1487–1496.

Zheng, X., Wang, L., 2016. A two-stage adaptive fruit fly optimization algorithm for
unrelated parallel machine scheduling problem with additional resource constraints.
Expert Systems with Applications 65, 28–39.

30

