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Abstract. In this research, we propose a variant of the firefly algorithm (FA) for classifier ensemble reduction. It 

incorporates both accelerated attractiveness and evading strategies to overcome the premature convergence problem 

of the original FA model. The attractiveness strategy takes not only the neighbouring but also global best solutions 

into account, in order to guide the firefly swarm to reach the optimal regions with fast convergence while the 

evading action employs both neighbouring and global worst solutions to drive the search out of gloomy regions. The 

proposed algorithm is subsequently used to conduct discriminant base classifier selection for generating optimized 

ensemble classifiers without compromising classification accuracy. Evaluated with standard, shifted, and composite 

test functions, as well as the Black-Box Optimization Benchmarking test suite and several high dimensional UCI 

data sets, the empirical results indicate that, based on statistical tests, the proposed FA model outperforms other 

state-of-the-art FA variants and classical metaheuristic search methods in solving diverse complex unimodal and 

multimodal optimization and ensemble reduction problems. Moreover, the resulting ensemble classifiers show 

superior performance in comparison with those of the original, full-sized ensemble models. 

 

Keywords: Ensemble reduction, classification, and firefly algorithm. 

I. INTRODUCTION 

Ensemble methods have been widely used for improving classification performance. There are many well-known 

ensemble construction techniques, such as bagging and boosting (Han et al., 2011). However, base classifier 

redundancy is still a challenging research problem, which has received much research attention in the area of 

computational intelligence. On the other hand, because of the superior search capabilities of evolutionary 

algorithms, they have been widely used for solving diverse optimization problems. Many state-of-the-art swarm 

intelligence algorithms are available in the literature for feature optimization and dimensionality reduction, e.g. see 

Jothi and Inbarani (2016). Motivated by the success of metaheuristic optimization, we aim to employ evolutionary 

algorithms for discriminant base model selection and to construct optimized classifier ensembles without 

compromising classification accuracy. 
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In this research, we propose a modified firefly algorithm (FA) for classifier ensemble reduction. It integrates two 

new search mechanisms, i.e. an accelerated attractiveness behaviour and an evading action, to mitigate premature 

convergence of the original FA model. The proposed attractiveness operation employs not only the neighbouring but 

also global promising solutions to guide the search process, while the evading action is advised by both local and 

global worst solutions to lead the search out of gloomy regions. These two new search mechanisms work 

cooperatively to overcome stagnation, and reach global optimality with fast convergence. The proposed algorithm is 

useful for identifying discriminant base classifiers to realize ensemble reduction, and obtaining the best trade-off 

between classification accuracy and ensemble complexity. Evaluated with standard, shifted, and composite test 

functions, Black-Box Optimization Benchmarking (BBOB) testbeds (Hansen et al., 2010a; 2010b; 2012) and high 

dimensional UCI data sets (Bache and Lichman, 2013), the proposed algorithm outperforms other state-of-the-art 

FA variants, BBOB optimizers, and several classical search methods, significantly, in solving diverse challenging 

unimodal and multimodal optimization and ensemble reduction problems. The resulting classifier ensembles also 

achieve competitive performance in comparison with those of the full-sized, unreduced original ensembles. 

 

The paper is organized as follows. Section 2 discusses diverse ensemble techniques and swarm intelligence-based 

optimization methods. We introduce the proposed algorithm with the new attractiveness and evading search 

behaviours in Section 3. Section 4 presents the evaluation of the proposed algorithm and other metaheuristic search 

methods using standard and complex benchmark functions and high dimensional data sets for classifier ensemble 

reduction. Section 5 draws the conclusions and suggests a number of areas for further research.   

2. RELATED WORK 

In this section, we introduce state-of-the-art ensemble classification techniques and diverse evolutionary 

metaheuristic search methods.  

 

2.1 Ensemble Classification Techniques 
There are many state-of-the-art ensemble methodologies proposed in recent years. Galar et al. (2012) conducted a 

comprehensive review of ensemble techniques for solving the class imbalance problem. Their studies indicated the 

efficiency of integrating random under-sampling techniques with bagging and boosting ensembles for classification 

of imbalanced data sets. Their work emphasized the positive synergy between sampling techniques and bagging 

ensemble learning. An ordering-based ensemble pruning technique was also proposed in their recent work (Galar et 

al., 2016) to better tackle imbalanced classification problems. Diao et al. (2014) proposed harmony search based 

ensemble reduction. They employed bagging and random subspaces for base classifier pool generation. Since 

bagging uses randomly selected diverse subsets of training instances to build the base models, and the random 

subspaces method uses randomly selected subsets of attributes for base classifier generation, the base models 

produced by these two methods showed great diversity. Evaluated with several UCI benchmark data sets, their 

model achieved impressive accuracy and outperformed ensemble classifiers using the full-sized or any randomly 

selected base models. Farid et al. (2013) proposed an adaptive ensemble model for data stream classification with 

concept drifting. They employed three base decision tree classifiers for ensemble construction. The weakest base 

classifier in the ensemble was updated automatically by a stand-by, newly generated base decision tree learner with 

the knowledge of the updated class information, in order to represent the most recent concepts in the incoming data 

streams. Evaluated with UCI benchmark data sets, their model achieved great efficiency for concept-drifting data 

stream classification. Zhang et al. (2015) developed adaptive ensemble classifiers for facial expression recognition 

and facial action intensity estimation. After extracting the initial dynamic motion-based facial features, the minimal-

redundancy-maximal-relevance criterion (mRMR) was used to identify discriminative facial features for subsequent 

intensity estimation of facial action units. A set of ensemble classifiers was integrated with a distance-based 

clustering algorithm to identify six basic emotions as well as new unseen novel emotion classes. The complementary 

neural network was used as the base learner in their work, which possessed the capability of providing uncertainty 

measure for classification of each instance. The base classifiers and clustering algorithm worked collaboratively to 

inform the arrival of novel emotion classes. Evaluated with the Bosphorus facial expression database and with 

online real user testing, it achieved impressive performance for expression recognition and novel class detection. 

 

Sun et al. (2016) proposed a model known as Class-Based ensemble for Class Evolution (CBCE) to deal with class 

evolution and concept drifting in data stream mining. Their proposed method generated a base learner for each class. 

Similarly, it adjusted to the class evolution by constantly updating the base learners to reflect the latest concepts in 



 

 

the data stream. Moreover, their work addressed a side-effect of class evolution, i.e. the class imbalance problem, by 

employing an under-sampling method for the base learners. Their model showed superiority over other existing 

methods for class evolution adaptation. Guan et al. (2015) proposed an ensemble classification method for covariate-

invariant gait recognition. They first employed the random subspaces method to generate the base classifiers. They 

also employed local enhancing and hybrid decision-level fusion to identify more discriminant features and eliminate 

inefficient base classifiers, respectively. Importantly, their work claimed that feature subsets randomly generated by 

the random subspaces method were less discriminant, because its feature selection process was conducted in a 

random manner without using class label information, therefore causing a low recognition accuracy rate with an 

expensive computational cost. As such, their work employed two local enhancing supervised learning methods, i.e. 

two-dimensional linear discriminant analysis (LDA) and IDR/QR, to address the above problems and identify more 

discriminant features. A majority voting strategy was used to generate the final classification result based on the 

outputs of the base models. Huang et al. (2016) proposed a deep Convolutional Neural Network (CNN) based 

ensemble classifier for image retrieval. Both AlexNet and Network in Network (NIN) were deployed to extract the 

initial image features. Subsequently, weighted average feature vectors based on the outputs of both AlexNet and 

NIN were generated. Evaluated with CIFAR-10 and CIFAR-100 databases, the proposed aggregate ensemble model 

outperformed single CNN for image classification and retrieval tasks. Liew et al. (2016) constructed an ensemble 

reduction method by using the Genetic Algorithm (GA) and a Bayesian Information Criterion fitness evaluation 

mechanism. Fuzzy extreme learning machines were used as the base learners. Evaluated with the database for 

Emotion Analysis using Physiological Signals, their model achieved the best trade-off between classification 

accuracy and ensemble complexity. Sołtys et al. (2015) utilized ensemble models such as bagging and random 

forests for uplift modeling, whereas Pietruczuk et al. (2017) proposed two theorems for determining the optimal 

ensemble size for data stream classification based on both classification accuracy and memory requirements. 

 

2.2 FA and Modified FA Models 
Swarm intelligence-based algorithms have been extensively studied for diverse optimization problems. As one of the 

more recently proposed swarm intelligence-based metaheuristic search methods, FA shows natural search capability 

of dealing with multimodal optimization problems as compared with other algorithms such as GA and Particle 

Swarm Optimization (PSO) (Yang, 2009). FA employs the following principles to perform the search process. 

Firstly, each firefly has a light intensity which denotes the solution quality. Secondly, fireflies with lower light 

intensities are attracted to neighbouring fireflies with higher light intensities regardless of their sex. Finally, the 

attractiveness decreases as the distance between two fireflies increases (Yang, 2009). A Levy-flight Firefly 

Algorithm (LFA) has also been proposed by Yang (2010). Instead of using Gaussian distribution, LFA implements 

Levy flights as random walk to overcome local optima traps. 

 

In LFA, the attractiveness behaviour defined in Equation (1) is used to guide a firefly with lower light intensity to 

move towards the brighter ones in the neighbourhood.  

 

𝑥𝑖 =  𝑥𝑖 +  𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗 − 𝑥𝑖) + 𝛼 sign [rand −
1

2
] ⊕ Levy                                          (1) 

 

where 𝑥𝑖 and 𝑥𝑗 denote the positions of fireflies i and j, respectively, and 𝛾 is the fixed light absorption coefficient. 

Note that 𝛽0 represents the initial attractiveness measure when 𝑟 = 0. A Levy distribution is used as random walk 

with 𝛼 as the randomized step parameter. Here, 𝑟𝑖𝑗  represents the Euclidean distance between fireflies i and j as 

defined in Equation (2). 

𝑟𝑖𝑗 =  ‖𝑥𝑖 − 𝑥𝑗‖ =  √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2𝑑
𝑘=1                                                       (2) 

 

where 𝑥𝑖,𝑘 represents the k-th dimension of position 𝑥𝑖 for the i-th firefly, and 𝑑 indicates the dimension of a given 

problem. 

 

A comprehensive review of FA was presented in Fister et al. (2013), where many modified or hybrid FA models 

were described. Besides that, an elitist strategy with the generation of m-uniform random vectors was used to 

improve the random movement of the global best solution in Tilahun and Ong (2012). Gaussian and Levy 

distributions were used as popular strategies for random walks in modified FA models (Yang, 2009; Fister et al., 

2013; Chou and Ngo, 2017). Since the variation of light intensity, and the attraction and randomization parameters 

play important roles in affecting the performance of FA, chaotic maps are utilized for formulating these parameters 



 

 

in modified FA models to enhance performance. For instance, the randomization parameter and light absorption 

coefficient were adjusted by chaotic maps in Coelho et al. (2011), while 12 different chaotic maps were explored for 

tuning the attraction and light absorption coefficients in Gandomi et al. (2013). The findings in Gandomi et al. 

(2013) indicated that the modified FA models using Gauss and Sinusoidal maps as the attractiveness and light 

absorption coefficients, respectively, achieved the best performance for solving unimodal and multimodal 

benchmark functions. Many meta-heuristic or learning/search mechanisms, such as GA, PSO, DE, Ant-Lion 

Optimization (ALO), memetic algorithm, cellular learning automata and neural networks, have been hybridized with 

FA to increase search diversity (Fister et al., 2013). These modified and hybrid FA methods have been used widely 

to solve continuous, combinatorial, constrained, multi-objective and dynamic optimization problems. Fister Jr. et al. 

(2015) conducted a comprehensive review of chaos-based FA models. It included theoretical introduction of several 

popular chaotic maps, including Logistic, Gauss, Kent, Sine and Iterative maps. These maps have been extensively 

used to enhance and adjust several key parameters of FA, which showed great efficiency in solving global and 

engineering optimization problems. Yang (2009) explored the effectiveness of FA in dealing with multimodal 

optimization problems. Evaluated with several popular multimodal benchmarks, FA showed great superiority over 

PSO and GA. 

 

A number of FA variants have also been proposed in recent years to overcome the local optimum traps of the 

original FA model. These variants are used for solving dimensionality reduction, optimal parameter selection, 

combinatorial and dynamic optimization problems. As an example, Baykasoğlu and Ozsoydan (2014) proposed an 

FA variant, which incorporated partial random restarts and an adaptive move procedure, to deal with dynamic 

multidimensional knapsack problems. Specifically, besides the original attractiveness factor, a probability-based 

mechanism was formulated, which was based on the iteration counter of the algorithm and frequency in dynamic 

environment to control the movement of a firefly. Their proposed FA variant also employed a modified 

attractiveness parameter for position updating. The model was extended in Baykasoğlu and Ozsoydan (2015) to deal 

with constrained non-linear design optimization problems. The extended model also employed an adaptive 

attractiveness coefficient to achieve a higher intensification capability. Both randomization and incumbent local 

search mechanisms along with corresponding control parameters were used to overcome local optima traps and 

enhance the global best solution, respectively. A probabilistic combination of three chaotic maps, i.e. Sinusoidal, 

Logistic and Tent maps, was used to further improve performance. Their model showed great superiority in tackling 

diverse engineering design problems. Chou and Ngo (2017) developed another modified FA model for solving 

multidimensional structural design optimization problems. Their model employed the Logistic map and the 

Gauss/mouse maps for population initialization and fine-tuning of the attractiveness coefficient, respectively. An 

adaptive inertia weight and Lévy flight were used for the position updating mechanism to increase search diversity. 

Wang et al. (2017) proposed an FA model with neighbourhood attraction, known as NaFA. In NaFA, each firefly 

was purely attracted to brighter fireflies in a pre-defined neighbourhood, instead of the whole population, to reduce 

computational complexity. A hybrid firefly differential evolution (HFDE) model was developed by Dash et al. 

(2017). HFDE combined improved DE (IDE) with FA to increase global exploration capabilities of IDE. In HFDE, 

IDE employed an adaptive weighting factor, as opposed to a fixed one in conventional DE, to overcome local 

optima. The best three individuals identified by IDE were subsequently used to generate offspring using FA 

movements. These offspring were used to replace the three worst solutions in the swarm if they had better fitness 

scores. The empirical results indicated that HFDE benefited from both DE and FA search mechanisms, and 

outperformed other optimal design methods. 

 

Jothi and Inbarani (2016) proposed a hybrid supervised feature selection method, known as Tolerance Rough Set 

Firefly based Quick Reduct (TRSFFQR), by combining the Tolerance Rough Set (TRS) with FA for brain tumour 

image classification. The shape, intensity and texture features in real-value were firstly extracted from segmented 

MRI images. Then, the proposed TRSFFQR model was applied to identify the most significant feature subsets for 

tumour classification. In comparison with Artificial Bee Colony (ABC), Cuckoo Search (CS), Supervised Tolerance 

Rough Set-PSO based Relative Reduct (STRSPSO-RR) and Supervised Tolerance Rough Set-PSO based Quick 

Reduct (STRSPSO-QR), the proposed algorithm showed significant performance improvements. Kazem et al. 

(2013) proposed a stock market price forecasting model by integrating chaotic maps with FA for Support Vector 

Regression (SVR) hyper-parameter selection. Their work re-constructed the phase space dynamics using a delay 

coordinate embedding method. Then, FA integrated with chaos theory, known as the chaotic FA (CFA) model, was 

used to fine-tune SVR hyper-parameters. The proposed model achieved impressive performance enhancement in 

comparison with those of chaotic GA-based SVR, FA-based SVR and neural networks (NN), based on several 

challenging stock market prediction data sets. Su et al. (2017) proposed a hyperspectral image classification system 



 

 

using FA-based band selection and optimal parameter identification for an extreme learning machine. FA was 

employed not only to identify an optimal subset of bands and reduce the network complexity, but also to identify the 

optimal parameter settings such as the regularization coefficient, Gaussian kernel and the hidden number of neurons. 

Their model outperformed PSO-based and other band selection methods. A hybrid FA model was developed by 

Zhang et al. (2016a) by integrating FA with Differential Evolution (DE) for solving diverse unimodal and 

multimodal optimization problems. Their model combined the exploration (i.e. diversification) capability of FA and 

the exploitation (i.e. intensification) capability of DE to guide the search process. The proposed algorithm divided 

the overall population into two sub-swarms, and FA and DE were used to lead the search in each sub-swarm, 

respectively. The sub-swarms were merged subsequently in each iteration with the global best solution identified. 

Tested with several unimodal and multimodal benchmark functions, their FA variant outperformed FA, DE and 

PSO. Long et al. (2015) developed rough sets based feature optimization and an interval type-2 fuzzy logic system 

(IT2FLS) for heart disease detection. In their work, FA and rough sets were used to perform feature optimization in 

high dimensional disease data. Alweshah and Abdullah (2015) proposed two modified FA models, i.e. SFA and 

LSFA, where simulated annealing (SA) was used to enhance the global best solutions obtained by FA and LFA, 

respectively. The two FA variants were used to improve the performance of a probabilistic neural network by 

adjusting its weights. Evaluated with several real-life benchmark data sets, LSFA outperformed SFA and the 

original FA model. Krawczyk (2015) proposed an FA-based ensemble reduction technique for one-class 

classification problems. FA was used as a clustering method to group fireflies into different clusters. The brightest 

firefly among each cluster was selected as an ensemble member to represent its group, therefore reducing the size of 

the base models. It also employed the diversity measurement as the distance measurement between the fireflies. 

Subsequently the weight of each selected representative classifier was generated by averaging the intensities of all 

fireflies in the corresponding cluster. A weighted majority voting method was used to determine the final 

classification output. There are three major differences between the work in Krawczyk (2015) and our proposed 

research, as follows. (1) The model in Krawczyk (2015) focuses on solving one-class problems while our proposed 

model tackles both binary and multi-class problems; (2) instead of using clustering-based pruning strategies where 

each firefly represents one base classifier as in Krawczyk (2015), our research is motivated by feature selection 

methods where each firefly represents all the base models with each element/dimension denoting a classifier; (3) 

except for a new distance calculation strategy, the model in Krawczyk (2015) employs the original FA attraction 

operation where the search is purely led by the neighbouring brighter fireflies. When this attraction-based search 

action stagnates, there is no mechanism in the model proposed by Krawczyk (2015) to drive the search out of local 

optima. On the contrary, two new search operations, i.e. attraction and evading mechanisms, are introduced in our 

research. These two search mechanisms not only employ both local and global promising or worst signals to guide 

the search process, but also work in a collaborative manner to overcome stagnation and mitigate premature 

convergence of the original FA model.  

 
FA variants have been adopted to solve other real-life optimization problems. A moth-firefly algorithm was 

developed by Zhang et al. (2016b) for dimensionality reduction in facial expression classification, whereas 

Srivatsava et al. (2013) employed FA for optimal test path generation in software testing. A discrete FA (DFA) 

model was proposed by Sayadi et al. (2013) for solving discrete optimization problems. Xu and Liu (2013) proposed 

a multi-population FA (MFA) model for correlated data routing in underwater wireless sensor networks. Three types 

of fireflies were introduced, i.e. searching, listening, and updating fireflies, to improve adaptability of building, 

selecting, and optimizing routing paths. The searching fireflies identified a routing path from the source node to the 

sink. The listening fireflies collected information of mobile data stored in the searching fireflies to advise the routing 

path. The updating fireflies updated the light intensity of nodes along the routing path. MFA was also used to 

remove redundant information when merging the correlated data packets to improve efficiency. It outperformed 

existing protocols significantly. Ozsoydan and Baykasoglu (2015) proposed another multi-population FA with 

chaotic maps to solve dynamic optimization problems. An explorer swarm was used for the search of existing peaks, 

while colony swarms were generated to conduct local exploitation of the detected peaks. An exclusion strategy was 

proposed to remove non-contributing sub-populations by comparing the distance between a pair of the best solutions 

from any two sub-swarms with a threshold value. In order to increase swarm diversity, Chebyshev, ICMIC, Tent and 

Logistic maps were used for generating explorer populations, respectively. Their model showed impressive 

performance especially when dealing with complex instances for the moving peaks benchmark problem. Zhou et al. 

(2014) proposed a multi-population discrete FA model incorporated with the k-opt algorithm for solving traveling 

salesman problem. Variants for other metaheuristic search methods, such as PSO, have also been proposed. As an 

example, an enhanced leader PSO (ELPSO) was proposed in Jordehi (2015), which employed a series of mutation 

strategies to improve the global best solution identified by PSO. A micro GA embedded PSO model was developed 



 

 

in Mistry et al. (2016) for discriminative facial feature selection and expression recognition. It incorporated a micro 

GA motivated small-population secondary swarm, a modified velocity updating strategy, and a sub-dimension based 

search mechanism to mitigate premature convergence of the original PSO algorithm. 

3. THE PROPOSED FA VARIANT 

In this research, we propose a modified FA model for classifier ensemble reduction. It mitigates the premature 

convergence problem of the original FA model by embedding two new search strategies, i.e. accelerated 

attractiveness and evading operations. The attractiveness behaviour is guided by both neighbouring and global 

promising solutions to reach local and global optimality with fast convergence, while the enemy evading action is 

advised by the neighbouring and global worst solutions to avoid gloomy search regions. We introduce these two 

new search mechanisms in detail, as follows. 

 

FA possesses an original attractiveness behaviour, as in Equation (1), which is guided purely by the neighbouring 

promising solutions to move the current firefly with a lower light intensity towards brighter ones in the 

neighbourhood. In comparison with this original attractiveness movement, the newly proposed attractiveness 

operation takes not only brighter fireflies in the neighbourhood but also the current global best solution, 𝑔𝑏𝑒𝑠𝑡 , into 

account for position updating. This accelerated attractiveness behaviour is defined in Equation (3). 

 

𝑥𝑖 =  𝑥𝑖 +  𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗 − 𝑥𝑖) + 𝛼′𝜀 (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝛼′sign[rand −
1

2
] ⊕ Levy 

=  𝑥𝑖(1 − 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

) + 𝑥𝑗  𝛽0𝑒−𝛾𝑟𝑖𝑗
2

 + 𝛼′𝜀 (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝛼′sign[rand −
1

2
] ⊕ Levy               (3) 

                                                                                                                          

where 𝛼′ is an adaptive parameter defined in Equation (4), and 𝜀 is a randomly generated vector with each element 

in the range of [0, 1]. 

𝛼′ =  𝛼′ × (
10−4

0.9
)

1

𝑛𝐺𝑒𝑛
                                                                     (4) 

 

where 𝑛𝐺𝑒𝑛 denotes the maximum number of iterations and 𝛼′ is initialized to 0.5 according to Yang (2009). This 

strategy is motivated by a MATLAB version of the original FA model by Yang (2009). In this way, 𝛼′ is tuned 

throughout generations. It starts with a larger value to increase diversity of the solution vectors, and decreases to a 

smaller value in subsequent iterations to enable fine-tuning of the solution vectors. This strategy is not included in 

the original FA model, but employed in our proposed algorithm to accelerate convergence. Owing to the fact that 

position updating of each firefly is conducted by using both neighbouring and global optimal solutions 

simultaneously, this new search mechanism enables the fireflies to reach the optimal regions more efficiently with 

fast convergence.  

 

In addition to the abovementioned attractiveness behaviour, we propose an evading search mechanism defined in 

Equation (5). This evading movement is activated when the neighbouring fireflies have lower fitness values than 

that of the current firefly. It leads the current firefly i to move away from both the neighbouring firefly j with a lower 

light intensity and the current global worst solution, 𝑔𝑤𝑜𝑟𝑠𝑡 , simultaneously.  

 

𝑥𝑖 =  𝑥𝑖 (1 − 𝛽0
′ 𝑒−𝛾𝑟𝑖𝑗

2

) − 𝑥𝑗𝛽0
′ 𝑒−𝛾𝑟𝑖𝑗

2

− 𝛼′𝜀 (𝑔𝑤𝑜𝑟𝑠𝑡 − 𝑥𝑖) −  𝛼′sign[rand −
1

2
] ⊕ Levy           (5) 

 

where 𝛼′ is the adaptive parameter defined in Equation (4) and 𝛽0
′  represents the evading coefficient, 0 ≤ 𝛽0

′ ≤ 1, to 

tune the effects of the evading action from the neighbouring worst solutions. In this research, we assign 𝛽0
′=0.2 

based on trial and errors in a series of experiments. 

 

As mentioned earlier, the search process of the original FA model is based on the sole dominating attractiveness 

search action to move the current firefly i towards a brighter neighbouring firefly j. There is no search mechanism to 

deal with the situation when the current firefly i is brighter than the neighbouring firefly j. In the original FA model, 

the brightest firefly in the neighbourhood tends to merely take a random walk action. The proposed evading 

behaviour goes beyond the limitations of the search behaviours of the original FA model, and guides the current 

promising firefly i to move away from both local and global gloomy search regions, in order to diversify the search 



 

 

and accelerate convergence. 

 

Furthermore, the proposed attractiveness and evading operations work cooperatively to accelerate the search process 

and reduce the probability of premature convergence. These two newly proposed search strategies enable the swarm 

to explore wider and more distinctive search regions in comparison with those of the original FA model owing to the 

diversified position updating mechanisms. Therefore, the proposed FA model has better capability of finding global 

optimum solutions and escaping from local optima traps. These proposed search mechanisms also enable each 

firefly to follow multiple local and global promising solutions to enhance the natural multimodal search capabilities 

of the original FA model. The empirical results indicate that it shows great efficiency and robustness in dealing with 

diverse unimodal and multimodal optimization problems. In comparison with other FA variants and classical search 

methods, it shows superior discriminating capabilities over other methods for discriminant base model selection. 

The proposed algorithm is illustrated in Algorithm 1. 

 

Algorithm 1: Pseudo-Code of the Proposed FA Model 

1. Start 

2. Initialize a population of fireflies randomly; 

3. Set the light absorption coefficient and other search parameters; 

4.  

5. While (the stopping criterion is not satisfied)// until it finds the optimal solution or the 

maximum number of iterations is reached. 

6. { 

7. Evaluate the population and update the light intensity; 

8. Rank the fireflies and find the current global best and worst solutions, i.e. 𝑔𝑏𝑒𝑠𝑡  and 

and 𝑔𝑤𝑜𝑟𝑠𝑡, respectively; 

9. For i = 1 to n do //external loop 

10.      {     

11.              For j = 1 to n do  //internal loop  

12.             {   

13.                If (𝐼𝑗 > 𝐼𝑖) 

14.                { 

15.                  //Using the attractiveness operation to guide the search 

16. Move firefly i towards firefly j and the global best solution, 𝑔𝑏𝑒𝑠𝑡 , using 

Equation (3); 

17.                 } 

18.               Else 

19.                {  

20.  //Using the evading action to guide the search 

21. Move firefly i away from firefly j and the global worst solution, 𝑔𝑤𝑜𝑟𝑠𝑡,  

using Equation (5);                         

22.                } 

23.               End If 

24.              } End For 

25.        } End For 

26. }End While 

27. Output the most optimal solution(s); 

28. End 

 

As indicated in Algorithm 1, after initializing the swarm, the fitness of each firefly is evaluated using the objective 

function. Subsequently, the fireflies are ranked based on their fitness values with the global best and worst solutions 

identified. For each current firefly i, when the neighbouring firefly j has a better fitness than that of the current 

firefly i, the newly proposed attractiveness movement defined in Equation (3) is used to guide firefly i to move 

towards both the promising neighbouring firefly j, and the current global best solution, 𝑔𝑏𝑒𝑠𝑡, simultaneously. On the 

other hand, when the neighbouring firefly j is less optimal than the current firefly i, the evading behaviour defined in 

Equation (5) is activated to move the current firefly i away not only from the neighbouring worse solution j, but also 

from the current global worst solution, 𝑔𝑤𝑜𝑟𝑠𝑡. Both proposed attractiveness and evading behaviours work in a 

collaborative manner to avoid local optimum traps and move towards the global optima. 

 



 

 

The objective function in Equation (6) is used to evaluate the fitness of each solution (i.e. each set of recommended 

base models) for ensemble generation, which is widely employed for feature selection and dimensionality reduction 

(Mistry et al., 2016; Zhang et al., 2016b). This fitness evaluation considers two criteria, i.e. classification accuracy 

and the number of selected base classifiers, as follows.  

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑥 = 𝑤𝑎 ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥 + 𝑤𝑏 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙𝑠𝑥)−1                              (6) 

 

where 𝑤𝑎 and 𝑤𝑏  denote the weights for classification accuracy and the number of selected base models, 

respectively, and 𝑤𝑎 +  𝑤𝑏 = 1. Since classification accuracy is generally more important than the number of 

selected base models, 𝑤𝑎 is higher than 𝑤𝑏 . The termination criteria are as follows, i.e. either (1) the maximum 

number of iterations is reached, or (2) the optimal solution is found. An evaluation is conducted to assess efficiency 

of the proposed FA model and other state-of-the-art and classical search methods using diverse benchmark test 

functions and high dimensional data sets. Detailed evaluation and analysis of the results are provided in Section 4. 

4. EVALUATION 

To evaluate the proposed FA variant, we have implemented a number of state-of-the-art FA and PSO variants and 

conventional search methods for performance comparison. Firstly, we employ mathematical benchmark functions 

and BBOB testbeds to evaluate the efficiency and robustness of the proposed FA model for solving diverse 

unimodal and multimodal optimization problems. Secondly, several UCI benchmark and other medical image data 

sets are used for evaluation of ensemble reduction and aggregation. These test data sets are selected because their 

samples are large in size and high in dimension. Since the proposed FA model and other search algorithms are 

stochastic methods, a benchmark of 30 runs has been conducted to evaluate each test function and each test data set. 

 

4.1 Evaluation Using Standard Benchmark Functions 
Firstly, we employ 10 standard benchmark functions for evaluation. These test functions have been widely used for 

the evaluation of swarm intelligence-based algorithms (Jordehi, 2015). They are: Ackley, Dixon-Price, Griewank, 

Levy, Rastrigin, Rotated Hyper-Ellipsoid, Rosenbrock, Sphere, Sum of Different Powers, and Zakharov. The 

detailed descriptions of these test functions are available in (Jordehi, 2015). Moreover, these functions represent 

diverse unimodal and multimodal optimization problems. The Dixon-Price, Rotated Hyper-Ellipsoid, Rosenbrock, 

Sphere, Sum of Different Powers and Zakharov functions have single global minima, while others such as Ackley, 

Griewank, Levy, and Rastrigin contain multiple global minima. The optimization task is to find the global minima 

(i.e. zero) in the landscapes defined by the test functions. The FA variants implemented for performance comparison 

include Opposition and Dimensional based modified FA (ODFA) (Verma et al., 2016), CFA (Kazem et al., 2013), 

LSFA (Alweshah and Abdullah, 2015), SFA (Alweshah and Abdullah, 2015), NaFA (Wang et al., 2017), and HFDE 

(Dash et al., 2017). The classical search methods included for comparison are FA, SA, Bat Swarm Optimization 

(BSO), CS, PSO, Dragonfly Algorithm (DA) (Mirjalili, 2016a) and ALO (Mirjalili, 2015a).  

 

The following settings, i.e. dimension=50 and population size=20, have been used for experimental studies. The 

classical search methods, CFA, NaFA and the proposed FA model, employ the following number of function 

evaluations, i.e. 20 (population size) × 100 (maximum number of generations) = 2000. Other FA variants, i.e. LSFA, 

SFA, ODFA and HFDE, utilize comparatively higher numbers of function evaluations because of their internal 

search mechanisms. The number of function evaluations for LSFA and SFA is the sum of the cost for both LFA/FA 

and SA, i.e. 20 (population size) × 100 (maximum number of generations) + 20 (maximum trials of SA) × 100 

(maximum number of generations) = 4000. ODFA employs a dimensional approach to retrieve the global best 

solution and has the following number of function evaluations, i.e. 20 (population size) × 100 (maximum number of 

generations) × 50 (dimension) = 100000. The number of function evaluations for HFDE is the sum of the cost for 

both DE (i.e. the fitness evaluation for both parent and offspring populations) and FA, i.e. (2 × 20 (population size) 

+ 3 offspring generated using FA) × 100 (maximum number of generations) = 4300. For each test function, we 

conduct 30 runs using each method. The mean, minimum, maximum and standard deviation values for each test 

method are tabulated in Table 1. The results in bold indicate the best performances across all methods. 

 

The parameters of each algorithm for this and subsequent experiments are set as follows. According to Yang (2009; 

2010), the FA model employs the following setting to balance between computational efficiency and performance, 

i.e. initial attractiveness=1.0, randomization parameter=0.5, absorption coefficient=1.0, and Levy’s index=1.5. 



 

 

According to the empirical studies in Yang (2008), the SA parameters that achieve the best trade-off between local 

exploitation and global exploration are as follows: cooling factor=0.95, initial temperature=1.0, and finial stopping 

temperature=1e-10. These parameters of FA and SA have been used for the experimental settings of LSFA and 

SFA. NaFA and HFDE also employ the abovementioned setting of FA. In addition, NaFA utilizes a neighbourhood 

size of 3 (as recommended in Wang et al. (2017)) while HFDE uses a new coefficient of 1.8 for weighting factor 

calculation (as recommended in Dash et al. (2017)). We have also conducted a number of trials to confirm the 

efficiency of these parameter settings of NaFA and HFDE for diverse optimization tasks. Other FA variants, i.e. 

ODFA, CFA and the proposed FA model, also utilize the abovementioned settings of FA for subsequent 

experimental studies with an extra evading coefficient=0.2 for the proposed FA model. 
 

The following optimal settings recommended by theoretical studies and empirical evaluations (Yang, 2008) have 

been used for the GA, i.e. crossover probability=0.6, and mutation probability=0.05. In accordance with Yang 

(2008), PSO employs the following parameter settings: maximum velocity=0.6, inertia weight=0.5, and acceleration 

constants c1=c2=1.5.  Note that the same PSO settings have been utilized in ELPSO (Jordehi, 2015). DA employs the 

following parameter settings: separation factor=0.1, alignment factor=0.1, cohesion factor=0.7, food factor=1, 

enemy factor=1, and inertia weight=0.9 – m × ((0.9-0.4)/maxi_iterations), where m and maxi_iterations represent the 

current and maximum iteration numbers, respectively (Mirjalili, 2016a). ALO provided by Mirjalili (2015a) uses 

adaptive parameters associated with the number of iterations without any additional parameters required. Finally, CS 

uses the discovery rate of alien eggs/solutions=0.25, while BSO employs 0.5 for both loudness parameter and pulse 

rate (Yang, 2008). 

Table 1 Evaluation results for 10 benchmark functions with dimension=50 
 

  Prop. FA NaFA HFDE ODFA SFA LSFA CFA FA SA BSO CS PSO DA ALO 

Ackley mean 6.57E-03 1.23E+01 1.29E+01 1.68E+01 9.31E+00 1.91E+01 1.86E+01 8.04E+00 1.20E+01 1.84E+01 1.64E+01 1.44E+01 1.95E+01 1.90E+01 

min 5.62E-03 1.13E+01 1.12E+01 1.47E+01 6.27E+00 1.75E+01 1.81E+01 5.49E+00 3.57E+00 1.75E+01 1.44E+01 1.24E+01 1.53E+01 1.90E+01 

max 7.29E-03 1.45E+01 1.46E+01 1.80E+01 1.18E+01 2.00E+01 1.92E+01 1.03E+01 2.02E+01 1.94E+01 1.73E+01 1.59E+01 1.99E+01 1.90E+01 

std 4.33E-04 7.79E-01 9.21E-01 8.91E-01 1.43E+00 8.63E-01 2.24E-01 1.41E+00 7.42E+00 5.72E-01 6.33E-01 9.50E-01 8.52E-01 1.45E-14 

Dixon-Price mean 9.97E-01 1.25E+04 2.49E+03 1.84E+06 3.43E+00 3.67E+04 3.82E+06 4.12E+03 4.19E+06 1.13E+06 7.37E+04 5.69E+03 1.71E+04 6.09E+06 

min 9.95E-01 5.21E+03 4.06E+02 7.67E+05 6.69E-01 1.10E+04 2.05E+06 1.22E+03 2.92E+06 3.55E+05 2.28E+04 1.39E+03 7.45E+01 4.33E+06 

max 9.98E-01 2.38E+04 1.01E+04 3.34E+06 4.55E+01 8.06E+04 4.88E+06 1.38E+04 5.21E+06 4.06E+06 2.28E+05 1.93E+04 1.93E+05 8.19E+06 

std 7.41E-04 5.19E+03 2.05E+03 6.35E+05 8.78E+00 1.84E+04 6.39E+05 2.80E+03 5.81E+05 7.07E+05 3.92E+04 3.97E+03 3.99E+04 1.08E+06 

Griewank mean 2.61E-03 3.43E+01 2.00E+01 5.76E+02 1.21E+01 1.13E+03 8.25E+02 1.08E+01 9.27E+02 4.21E+02 1.08E+02 2.57E+01 2.93E+01 1.14E+03 

min 1.71E-03 1.35E+01 8.52E+00 3.56E+02 3.43E+00 9.00E+02 6.95E+02 3.10E+00 7.62E+02 2.41E+02 6.40E+01 1.20E+01 1.45E+00 9.40E+02 

max 4.08E-03 4.88E+01 5.15E+01 7.48E+02 2.64E+01 1.27E+03 9.44E+02 2.17E+01 1.08E+03 6.44E+02 1.41E+02 4.67E+01 8.64E+01 1.32E+03 

std 5.85E-04 9.36E+00 9.07E+00 1.11E+02 5.86E+00 9.23E+01 6.04E+01 4.81E+00 6.47E+01 1.18E+02 1.91E+01 7.77E+00 2.58E+01 9.49E+01 

Levy mean 5.07E+00 2.12E+02 2.17E+02 5.40E+02 1.04E+02 5.56E+02 1.75E+03 1.16E+02 1.89E+03 1.31E+03 7.40E+02 2.45E+02 8.05E+02 2.68E+03 

min 5.07E+00 7.93E+01 1.07E+02 2.73E+02 1.53E+01 3.87E+02 1.37E+03 5.56E+01 1.58E+03 6.35E+02 5.92E+02 1.17E+02 2.70E+02 1.89E+03 

max 5.07E+00 4.36E+02 5.79E+02 8.82E+02 2.71E+02 9.67E+02 2.05E+03 3.41E+02 2.14E+03 2.43E+03 9.92E+02 4.71E+02 1.75E+03 3.37E+03 

std 6.15E-04 7.04E+01 9.56E+01 1.81E+02 5.02E+01 1.27E+02 1.67E+02 5.49E+01 1.55E+02 3.56E+02 1.08E+02 6.95E+01 3.47E+02 3.99E+02 

Rastrigin mean 1.37E-03 2.46E+02 2.47E+02 4.74E+02 2.78E+02 3.68E+02 6.69E+02 2.75E+02 6.87E+02 4.83E+02 4.25E+02 1.83E+02 3.19E+02 7.99E+02 

min 9.66E-04 1.75E+02 1.27E+02 3.05E+02 1.92E+02 2.47E+02 5.98E+02 1.98E+02 5.20E+02 3.24E+02 3.73E+02 1.31E+02 1.50E+02 7.41E+02 

max 1.67E-03 3.62E+02 4.53E+02 6.00E+02 4.02E+02 4.70E+02 7.14E+02 3.56E+02 7.46E+02 5.99E+02 4.69E+02 2.38E+02 5.09E+02 8.74E+02 

std 1.53E-04 3.96E+01 1.20E+02 6.53E+01 5.31E+01 4.40E+01 2.89E+01 3.72E+01 4.14E+01 5.94E+01 1.95E+01 2.84E+01 8.71E+01 3.26E+01 

Rotated  

Hyper-Ellipsoid 
mean 2.55E-02 3.75E+04 1.80E+04 7.63E+05 7.07E+03 9.73E+05 9.10E+05 1.69E+04 1.04E+06 4.98E+05 1.21E+05 2.77E+04 3.56E+04 1.39E+06 

min 1.83E-02 1.34E+04 7.72E+03 4.68E+05 7.58E+02 7.96E+05 7.51E+05 7.12E+03 9.39E+05 2.35E+05 7.82E+04 1.26E+04 7.50E+01 1.17E+06 

max 3.30E-02 7.37E+04 3.24E+04 1.07E+06 1.58E+04 1.19E+06 1.11E+06 3.43E+04 1.17E+06 1.02E+06 1.88E+05 5.67E+04 1.10E+05 1.62E+06 

std 3.80E-03 1.28E+04 7.68E+03 1.24E+05 4.06E+03 8.57E+04 8.73E+04 6.36E+03 6.41E+04 1.79E+05 2.64E+04 1.19E+04 2.80E+04 1.14E+05 

Rosenbrock mean 4.90E+01 6.51E+10 1.36E+10 4.54E+05 5.11E+01 1.45E+04 1.16E+06 5.82E+03 2.07E+06 9.47E+05 1.49E+05 1.91E+04 1.81E+05 3.74E+06 

min 4.90E+01 7.48E+09 2.23E+09 8.20E+04 7.07E-02 7.28E+02 8.37E+05 1.20E+03 8.89E+02 4.35E+05 7.00E+04 1.72E+03 4.58E+04 2.63E+06 

max 4.90E+01 1.91E+11 3.31E+10 1.02E+06 1.48E+02 3.52E+04 1.41E+06 1.53E+04 2.84E+06 1.81E+06 2.82E+05 7.61E+04 5.54E+05 4.41E+06 

std 4.90E-03 4.41E+10 9.57E+09 2.04E+05 4.43E+01 9.91E+03 1.33E+05 3.47E+03 6.15E+05 3.79E+05 4.47E+04 2.21E+04 1.31E+05 5.05E+05 

Sphere mean 6.59E-06 9.04E+00 4.97E+00 2.03E+02 6.72E-04 6.10E-02 2.43E+02 4.36E+00 2.70E+02 9.98E+01 3.19E+01 7.39E+00 6.60E+00 3.45E+02 

min 5.14E-06 3.00E+00 1.60E+00 1.28E+02 3.46E-04 1.40E-03 2.08E+02 1.76E+00 2.49E+02 4.73E+01 2.13E+01 3.27E+00 6.34E-01 2.80E+02 

max 8.13E-06 1.72E+01 1.18E+01 2.62E+02 1.09E-03 4.87E-01 2.71E+02 8.90E+00 3.04E+02 1.76E+02 4.11E+01 1.61E+01 1.87E+01 4.06E+02 

std 8.31E-07 3.54E+00 2.52E+00 3.69E+01 1.75E-04 1.04E-01 1.64E+01 1.60E+00 1.48E+01 3.56E+01 4.91E+00 2.75E+00 5.28E+00 2.78E+01 

Sum of Different  

Powers  
mean 9.81E-11 5.58E-06 1.25E-05 2.03E+02 6.28E-07 1.37E-06 1.03E+00 1.62E-05 4.76E-06 5.59E-03 7.41E-04 1.40E-04 7.36E-04 1.24E+00 

min 3.54E-14 1.00E-07 6.68E-08 1.28E+02 1.33E-07 4.22E-07 1.97E-01 5.94E-07 1.73E-07 1.01E-05 2.24E-05 4.79E-06 2.04E-07 6.71E-01 

max 7.06E-10 1.55E-05 1.58E-04 2.62E+02 2.19E-06 3.88E-06 1.56E+00 9.41E-05 1.36E-05 3.18E-02 5.09E-03 6.31E-04 7.99E-03 2.06E+00 

std 1.88E-10 4.60E-06 2.83E-05 3.69E+01 4.22E-07 7.44E-07 4.14E-01 2.18E-05 3.32E-06 8.22E-03 9.60E-04 1.38E-04 1.73E-03 3.26E-01 

Zakharov mean 2.85E-03 3.90E+02 4.37E+02 6.14E+02 5.00E+02 9.26E+02 9.42E+02 3.68E+02 1.17E+03 8.81E+02 6.43E+02 3.98E+02 6.24E+02 1.25E+03 

min 2.37E-03 2.87E+02 2.97E+02 3.86E+02 2.12E+02 6.79E+02 8.59E+02 2.82E+02 1.02E+03 6.56E+02 5.80E+02 2.50E+02 3.45E+02 1.21E+03 

max 3.56E-03 5.62E+02 7.10E+02 8.11E+02 6.41E+02 1.12E+03 1.01E+03 4.76E+02 1.28E+03 1.09E+03 7.32E+02 6.10E+02 8.00E+02 1.25E+03 

std 2.87E-04 5.40E+01 1.31E+02 1.05E+02 8.09E+01 1.09E+02 3.94E+01 5.33E+01 6.42E+01 1.12E+02 4.09E+01 6.13E+01 1.13E+02 7.82E+00 

 

As illustrated in Table 1, the proposed FA model achieves the best mean global minima (very small values close to 

zero) and outperforms other state-of-the-art FA variants and conventional search methods, significantly, for all 10 

test functions. Overall, the empirical results indicate that the proposed FA variant shows superiority in solving 

diverse unimodal and multimodal optimization problems over other search methods. We also employ the Wilcoxon 



 

 

rank sum test (Derrac et al., 2011) to indicate the significance level of the proposed model. This two sided non-

parametric statistical test is used to determine if two solutions have equal medians. A p-value is generated by the test 

to indicate the rejection of the null hypothesis of equal medians, or otherwise, at the default 5% significance level. 

As such, an algorithm is significantly better than another if the p-value is lower than 0.05. The statistical test results 

for all 10 standard benchmark functions are provided in Table 2. All the p-values are lower than 0.05, which 

indicates that the proposed model outperforms other methods, statistically, for all the test functions. 

 

Table 2 The p-values from the Wilcoxon rank sum test for 10 standard test functions with dimension=50 

 
Functions NaFA HFDE ODFA SFA LSFA CFA FA SA BSO CS PSO DA ALO 

Ackley 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.62E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.21E-12 
Dixon-Price 3.02E-11 3.02E-11 3.02E-11 3.99E-04 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
Griewank 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 8.48E-09 3.02E-11 
Levy 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
Rastrigin 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
Rotated Hyper-Ellipsoid 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
Rosenbrock 3.02E-11 3.02E-11 3.02E-11 2.71E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.01E-11 
Sphere 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 
Sum of Different Powers 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.20E-10 3.02E-11 
Zakharov 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.21E-12 

 

4.2 Evaluation Using Shifted and Composite Benchmark Functions 
To further ascertain efficiency of the proposed FA model, a set of 18 shifted and composite benchmark functions is 

employed for evaluation. These benchmark functions are popular testbeds (Mirjalili, 2015a; 2015b) and have been 

commonly used for evaluation of swarm intelligence-based algorithms, which include Moth-Flame (Mirjalili, 

2015b), ALO (Mirjalili, 2015a), Sine Cosine (Mirjalili, 2016b), and Whale Optimization (Mirjalili and Lewis, 2016) 

algorithms. These benchmark functions include 7 unimodal (F1-F7), 5 multimodal (F8-F12), and 6 complex 

composite functions (F13-F18) as defined in Tables A.1-A.3 in Appendix. Specifically, the unimodal and 

multimodal test functions are shifted to increase the difficulty level of these benchmark functions. The composite 

functions are taken from the CEC 2005 test suite (Mirjalili, 2015a; 2015b; 2016b), which represent the combination 

of diverse rotated, shifted, and biased unimodal and multimodal test functions. These composite functions contain a 

large number of local optima with irregularity and represent diverse challenging landscapes, and they are popular 

testbeds for benchmarking the performance of different optimization methods (Mirjalili, 2015a; 2015b; 2016b). 

 

We have utilized the following settings in our experiments, i.e. dimension=30 or 50, and population size=20. The 

classical search methods, CFA, NaFA and the proposed FA model employ the following number of function 

evaluations, i.e. 20 (population size) × 500 (maximum number of generations) = 10000. Again, other FA variants, 

i.e. LSFA, SFA, ODFA and HFDE, utilize comparatively higher numbers of function evaluations. As an example, 

LSFA and SFA employ the following number of function evaluations, i.e. 20 (population size) × 500 (maximum 

number of generations) + 20 (maximum trials of SA) × 500 (maximum number of generations) = 20000. The 

number of function evaluations for ODFA is 20 (population size) × 500 (maximum number of generations) × 30 or 

50 (dimension) = 300000 or 500000. The number of function evaluations for HFDE is (2 × 20 (population size) + 3 

offspring generated using FA) × 500 (maximum number of generations) = 21500. A total of 30 trials have been 

conducted for each algorithm for each test function. The detailed results are provided in Tables 3-4. The best results 

for each function are presented in bold. As indicated in Tables 3-4, our proposed FA model outperforms other FA 

variants and classical search methods for nearly all test functions for dimensions 30 and 50, except for functions 6, 

11 and 12, where our algorithm achieves similar distributions or marginally lower than some of the baseline results. 

Specifically, SFA, FA and NaFA achieve the best results for functions 6, 11 and 12, respectively, in dimension 30, 

while SFA performs the best for functions 6 and 12 with ODFA showing the best performance for function 11 in 

dimension 50. The Wilcoxon rank sum test is conducted to further indicate the significance level of the proposed 

algorithm. Tables 5-6 show the p-values of the statistical rank sum test for dimensions 30 and 50, respectively. The 

p-values lower than 0.05 are marked in red.  

 

Table 3 The evaluation results for 18 shifted and composite functions with dimension=30 

 
    Prop. FA NaFA HFDE LSFA SFA ODFA CFA FA SA BSO CS PSO DA ALO 

F1 mean 1.10E-03 2.26E-03 1.97E+00 5.74E+04 1.32E-03 1.01E+01 3.85E+04 1.20E-02 5.07E+04 2.65E+04 9.99E+00 3.95E+01 7.19E+02 7.21E+04 

min 7.73E-04 7.93E-04 1.97E+00 4.51E+04 9.50E-04 1.11E-06 2.84E+04 4.96E-03 3.94E+04 1.45E+04 3.28E+00 7.33E-01 0.00E+00 5.95E+04 

max 1.40E-03 3.63E-03 1.97E+00 6.95E+04 2.04E-03 1.38E+02 4.38E+04 1.85E-02 6.19E+04 4.26E+04 2.06E+01 2.61E+02 4.75E+03 7.91E+04 



 

 

std 1.47E-04 6.71E-04 1.58E-15 5.63E+03 2.40E-04 2.65E+01 4.00E+03 3.38E-03 5.57E+03 9.44E+03 5.28E+00 6.48E+01 1.16E+03 5.03E+03 

F2 mean 1.47E-02 1.24E-01 1.02E+01 3.72E+01 6.00E-02 1.15E+00 7.06E+05 4.71E-01 8.94E+08 1.25E+06 5.59E+00 1.35E+01 1.41E+01 4.67E+13 

min 1.21E-02 2.26E-02 1.50E-02 2.59E+01 3.09E-02 6.65E-05 2.51E+02 1.83E-01 9.44E+05 5.39E+01 1.53E+00 4.59E+00 0.00E+00 1.10E+08 

max 1.65E-02 6.68E-01 3.78E+01 5.22E+01 5.12E-01 7.52E+00 5.02E+06 7.95E-01 7.22E+09 3.69E+07 1.58E+01 2.80E+01 3.40E+01 1.01E+15 

std 1.13E-03 1.51E-01 1.05E+01 6.17E+00 9.06E-02 1.96E+00 1.38E+06 1.56E-01 1.73E+09 6.73E+06 3.64E+00 5.80E+00 1.00E+01 1.83E+14 

F3 mean 2.99E-03 4.83E+03 5.48E+03 1.02E+05 3.08E+03 2.05E+02 5.41E+04 3.96E+03 7.30E+04 7.73E+04 1.54E+03 3.11E+03 1.21E+04 1.66E+05 

min 9.48E-04 2.74E+03 3.39E+02 3.78E+04 1.38E+03 6.79E-03 3.88E+04 1.84E+03 5.63E+04 1.67E+04 7.21E+02 7.41E+02 3.30E+01 7.79E+04 

max 6.03E-03 7.78E+03 2.13E+04 1.96E+05 5.63E+03 1.28E+03 6.83E+04 7.11E+03 8.82E+04 1.70E+05 2.70E+03 8.06E+03 3.11E+04 3.01E+05 

std 1.31E-03 1.51E+03 5.52E+03 4.20E+04 1.01E+03 3.25E+02 6.84E+03 1.33E+03 7.82E+03 3.61E+04 4.93E+02 2.32E+03 8.33E+03 5.94E+04 

F4 mean 1.44E-02 1.03E+00 1.42E+01 8.55E+01 6.20E-02 8.53E-01 8.96E+01 1.08E-01 7.79E+01 6.28E+01 1.45E+01 1.84E+01 3.11E+01 8.74E+01 

min 1.21E-02 5.07E-02 2.77E-02 8.12E+01 2.78E-02 1.41E-03 7.46E+01 6.82E-02 6.94E+01 3.81E+01 1.01E+01 9.78E+00 7.97E+00 7.19E+01 

max 1.68E-02 3.90E+00 4.24E+01 8.98E+01 1.54E-01 6.90E+00 9.65E+01 2.09E-01 8.53E+01 8.64E+01 2.26E+01 2.86E+01 6.00E+01 9.30E+01 

std 1.21E-03 1.05E+00 1.17E+01 2.18E+00 3.03E-02 1.69E+00 5.87E+00 2.90E-02 3.26E+00 1.26E+01 3.20E+00 4.43E+00 1.45E+01 5.91E+00 

F5 mean 2.90E+01 3.18E+02 2.53E+05 8.63E+07 2.04E+02 1.80E+03 9.90E+07 3.11E+02 1.55E+08 3.37E+07 8.56E+02 3.56E+03 1.52E+06 2.70E+08 

min 2.89E+01 2.60E+01 2.89E+01 3.21E+07 2.11E+01 2.37E-07 4.89E+07 2.72E+01 9.23E+07 3.75E+06 1.00E+02 8.93E+01 1.14E+04 2.06E+08 

max 2.90E+01 2.18E+03 1.71E+06 1.17E+08 1.30E+03 5.39E+04 1.32E+08 2.46E+03 2.01E+08 9.90E+07 2.67E+03 9.05E+04 8.05E+06 3.52E+08 

std 1.22E-02 5.75E+02 4.31E+05 1.91E+07 3.35E+02 9.83E+03 1.92E+07 5.79E+02 2.46E+07 2.08E+07 5.99E+02 1.64E+04 1.91E+06 4.10E+07 

F6 mean 3.80E-01 2.20E-03 6.96E+02 5.79E+04 8.69E-04 1.98E+01 3.90E+04 1.29E-02 5.35E+04 2.34E+04 9.73E+00 4.36E+01 7.17E+02 7.13E+04 

min 1.18E-01 1.19E-03 7.44E-02 4.45E+04 4.55E-04 1.93E-04 2.62E+04 3.34E-03 4.55E+04 1.23E+04 4.52E+00 8.33E-01 3.58E+00 5.70E+04 

max 7.87E-01 3.67E-03 4.67E+03 7.78E+04 1.15E-03 2.96E+02 4.44E+04 2.36E-02 5.91E+04 4.18E+04 2.15E+01 2.69E+02 2.61E+03 8.51E+04 

std 1.67E-01 5.53E-04 1.16E+03 6.60E+03 1.74E-04 6.23E+01 4.49E+03 4.50E-03 3.59E+03 8.09E+03 4.18E+00 6.51E+01 7.03E+02 7.32E+03 

F7 mean 4.05E-02 9.24E-02 4.77E-02 3.68E+00 4.50E-02 1.21E-01 4.31E+01 8.03E-02 6.82E+01 1.77E+01 1.45E-01 7.91E-01 4.94E-01 1.37E+02 

min 3.97E-03 3.19E-02 3.57E-03 2.70E+00 1.19E-03 2.48E-03 2.71E+01 3.01E-02 3.18E+01 3.74E+00 3.56E-02 2.67E-01 1.61E-02 8.73E+01 

max 9.08E-02 2.30E-01 1.31E-01 4.97E+00 1.51E-01 5.09E-01 6.58E+01 2.30E-01 9.95E+01 4.60E+01 3.40E-01 1.63E+00 3.87E+00 1.69E+02 

std 2.74E-02 4.95E-02 3.44E-02 6.04E-01 3.90E-02 1.11E-01 9.82E+00 4.06E-02 1.41E+01 9.74E+00 6.63E-02 3.48E-01 8.27E-01 2.19E+01 

F8 mean 6.00E-04 5.11E+01 1.23E+02 2.06E+02 1.28E+02 1.43E+00 3.34E+02 4.12E+01 3.75E+02 1.14E+02 9.85E+01 6.69E+01 1.47E+02 4.51E+02 

min 2.93E-04 2.79E+01 3.08E+01 1.31E+02 7.06E+01 1.47E-10 3.01E+02 2.11E+01 3.00E+02 4.58E+01 6.60E+01 4.09E+01 6.58E+01 3.72E+02 

max 7.70E-04 9.35E+01 2.60E+02 2.84E+02 1.93E+02 3.37E+01 3.61E+02 6.88E+01 4.14E+02 2.26E+02 1.22E+02 9.37E+01 2.55E+02 5.11E+02 

std 1.08E-04 1.67E+01 9.71E+01 3.63E+01 2.96E+01 6.14E+00 1.62E+01 1.24E+01 2.45E+01 4.29E+01 1.31E+01 1.51E+01 5.81E+01 3.15E+01 

F9 mean 8.12E-03 8.62E+01 4.92E+00 2.00E+01 1.58E+00 4.68E-01 1.96E+01 5.06E-02 2.01E+01 1.72E+01 5.65E+00 9.78E+00 1.95E+01 2.00E+01 

min 6.56E-03 4.58E+01 4.44E-03 2.00E+01 9.89E-03 4.00E-05 1.89E+01 2.41E-02 1.90E+01 1.53E+01 3.87E+00 5.07E+00 1.89E+01 2.00E+01 

max 9.27E-03 8.76E+01 1.36E+01 2.00E+01 2.96E+00 3.29E+00 2.00E+01 7.67E-02 2.05E+01 1.86E+01 1.10E+01 1.35E+01 2.00E+01 2.00E+01 

std 6.81E-04 7.63E+00 4.06E+00 7.23E-15 1.05E+00 6.52E-01 2.80E-01 1.42E-02 2.73E-01 7.29E-01 1.83E+00 1.94E+00 1.83E-01 7.23E-15 

F10 mean 1.83E-03 5.85E-03 6.05E-03 1.92E-03 2.22E-03 5.77E-01 3.47E+02 7.86E-03 4.58E+02 2.33E+02 1.09E+00 2.08E+00 8.91E+00 6.53E+02 

min 8.13E-04 1.95E-03 6.05E-03 1.37E-03 1.44E-04 4.86E-04 2.47E+02 4.89E-03 3.33E+02 1.43E+02 1.01E+00 1.17E+00 0.00E+00 5.04E+02 

max 3.44E-03 1.60E-02 6.05E-03 2.47E-03 1.52E-02 2.31E+00 4.00E+02 1.24E-02 5.25E+02 4.51E+02 1.24E+00 5.28E+00 7.16E+01 7.49E+02 

std 5.13E-04 4.17E-03 0.00E+00 2.98E-04 4.71E-03 5.38E-01 3.64E+01 1.60E-03 4.42E+01 6.88E+01 5.28E-02 1.13E+00 1.36E+01 5.97E+01 

F11 mean 5.61E-02 2.24E-02 4.97E+03 2.62E+08 6.93E-03 3.13E-01 1.74E+08 4.76E-04 3.01E+08 4.35E+07 4.54E+00 1.44E+01 6.93E+05 6.45E+08 

min 1.68E-02 1.40E-05 1.09E-02 1.02E+08 1.04E-05 2.62E-08 3.88E+07 8.37E-05 1.01E+08 2.90E+06 1.45E+00 5.25E+00 8.57E+00 3.27E+08 

max 9.82E-02 5.57E-01 8.25E+04 4.25E+08 1.04E-01 8.17E+00 2.70E+08 1.67E-03 4.53E+08 1.50E+08 8.40E+00 2.48E+01 1.20E+07 8.92E+08 

std 2.38E-02 1.03E-01 1.84E+04 7.60E+07 2.63E-02 1.49E+00 5.41E+07 3.60E-04 7.87E+07 4.21E+07 1.44E+00 5.50E+00 2.33E+06 1.47E+08 

F12 mean 8.74E-01 6.42E-04 5.44E+05 6.10E+08 8.24E-03 1.79E+00 3.94E+08 3.25E-03 6.47E+08 1.47E+08 4.79E+01 4.45E+01 3.28E+06 1.17E+09 

min 4.44E-01 1.12E-04 2.27E-02 2.28E+08 9.30E-05 1.37E-06 1.64E+08 4.68E-04 2.64E+08 1.41E+07 3.42E+00 3.18E+01 1.79E+02 5.24E+08 

max 1.53E+00 1.12E-02 1.36E+07 1.00E+09 4.07E-02 3.54E+01 5.64E+08 1.51E-02 8.78E+08 7.21E+08 9.55E+02 6.58E+01 2.20E+07 1.79E+09 

std 2.81E-01 2.00E-03 2.49E+06 1.67E+08 1.11E-02 6.50E+00 9.39E+07 2.59E-03 1.49E+08 1.37E+08 1.72E+02 7.99E+00 5.52E+06 3.03E+08 

F13 mean 7.73E-06 1.87E-05 7.72E+00 1.22E-02 1.29E-04 7.58E-02 2.47E+02 5.42E-03 3.39E+02 9.37E+01 6.44E-02 6.44E-01 6.71E+00 4.76E+02 

min 4.89E-06 1.31E-05 2.42E-06 1.39E-03 4.27E-05 1.48E-12 1.16E+02 5.48E-04 2.39E+02 4.69E+01 1.41E-02 1.15E-01 0.00E+00 3.12E+02 

max 1.06E-05 3.32E-05 3.74E+01 9.84E-02 2.97E-04 1.79E+00 3.00E+02 2.47E-02 4.07E+02 1.91E+02 1.90E-01 1.73E+00 2.32E+01 5.62E+02 

std 1.35E-06 3.98E-06 1.10E+01 2.37E-02 5.01E-05 3.26E-01 3.41E+01 4.76E-03 3.66E+01 3.88E+01 3.78E-02 4.62E-01 6.72E+00 6.04E+01 

F14 mean 1.59E-03 1.82E-01 2.24E+01 4.59E+01 2.10E+00 4.07E+00 2.77E+02 4.06E+00 3.71E+02 1.18E+02 1.36E+01 1.41E+01 2.49E+01 4.97E+02 

min 1.16E-03 1.31E-02 1.47E-03 7.07E+00 8.06E-03 1.11E-08 2.17E+02 1.17E+00 2.96E+02 4.96E+01 4.04E+00 1.34E+00 0.00E+00 4.16E+02 

max 2.23E-03 6.98E-01 5.75E+01 9.07E+01 1.02E+01 2.29E+01 3.22E+02 8.62E+00 4.26E+02 2.53E+02 2.11E+01 2.66E+01 5.19E+01 6.02E+02 

std 2.98E-04 1.78E-01 2.16E+01 2.17E+01 2.33E+00 7.21E+00 2.85E+01 1.59E+00 3.23E+01 4.37E+01 3.85E+00 8.32E+00 1.52E+01 4.85E+01 

F15 mean 2.54E-04 4.24E-01 2.46E+02 1.09E+02 4.19E-01 3.55E-01 1.71E+03 1.84E+00 1.74E+03 1.34E+03 1.00E+01 2.06E+01 1.35E+02 1.76E+03 

min 1.45E-04 1.40E-03 1.33E-04 1.18E-02 1.91E-03 7.61E-10 1.68E+03 6.83E-01 1.72E+03 9.68E+02 1.62E+00 5.56E-01 0.00E+00 1.74E+03 

max 3.56E-04 1.25E+01 1.18E+03 9.28E+02 1.25E+01 4.76E+00 1.73E+03 4.38E+00 1.75E+03 1.70E+03 3.51E+01 1.60E+02 6.22E+02 1.78E+03 

std 4.41E-05 2.27E+00 3.42E+02 2.52E+02 2.27E+00 9.91E-01 1.43E+01 8.63E-01 5.76E+00 2.29E+02 8.21E+00 3.47E+01 1.56E+02 7.45E+00 

F16 mean 8.45E-01 5.98E+00 2.94E+02 9.58E+02 1.08E+02 2.35E+01 8.53E+02 3.40E+01 9.30E+02 7.58E+02 2.01E+02 4.38E+02 2.97E+02 1.02E+03 

min 7.41E-01 1.20E+00 7.25E-01 8.08E+02 4.13E-01 1.36E-02 8.02E+02 1.11E+01 8.63E+02 6.13E+02 8.68E+01 3.17E+02 0.00E+00 9.12E+02 

max 9.26E-01 4.16E+01 5.79E+02 1.05E+03 2.66E+02 1.36E+02 8.86E+02 5.66E+01 9.94E+02 9.71E+02 3.41E+02 5.50E+02 5.35E+02 1.12E+03 

std 4.81E-02 8.94E+00 2.06E+02 5.28E+01 8.90E+01 3.59E+01 2.39E+01 1.40E+01 2.91E+01 9.00E+01 7.70E+01 5.21E+01 1.60E+02 4.70E+01 

F17 mean 8.46E-01 1.63E+01 1.38E+02 8.32E+02 9.50E+01 1.54E+01 7.14E+02 5.18E+01 7.86E+02 5.93E+02 8.83E+01 2.78E+02 1.63E+02 8.77E+02 

min 7.49E-01 1.22E+00 8.07E-01 7.49E+02 3.03E+01 1.10E-03 6.42E+02 3.35E+01 7.20E+02 4.67E+02 5.92E+01 2.13E+02 0.00E+00 7.57E+02 

max 9.62E-01 4.38E+01 4.24E+02 8.92E+02 1.32E+02 8.58E+01 7.44E+02 6.92E+01 8.34E+02 7.35E+02 1.22E+02 3.84E+02 3.76E+02 9.58E+02 

std 5.24E-02 1.51E+01 1.45E+02 4.04E+01 2.16E+01 2.45E+01 2.43E+01 8.43E+00 2.46E+01 6.48E+01 1.57E+01 4.63E+01 1.11E+02 4.13E+01 

F18 mean 1.42E+01 2.08E+02 4.56E+02 9.06E+02 6.22E+02 5.71E+01 1.00E+03 2.71E+02 1.06E+03 8.87E+02 5.32E+02 6.21E+02 4.73E+02 1.15E+03 

min 1.27E+01 1.62E+02 1.72E+02 7.93E+02 3.90E+02 2.69E-01 9.53E+02 2.22E+02 1.01E+03 7.56E+02 4.45E+02 5.03E+02 0.00E+00 1.08E+03 

max 1.57E+01 2.69E+02 7.09E+02 9.84E+02 8.40E+02 2.25E+02 1.04E+03 3.22E+02 1.11E+03 1.09E+03 6.22E+02 7.32E+02 8.22E+02 1.20E+03 

std 8.00E-01 2.29E+01 1.79E+02 4.25E+01 1.19E+02 7.49E+01 2.22E+01 2.47E+01 2.06E+01 7.65E+01 3.73E+01 6.01E+01 2.08E+02 2.88E+01 

 

Table 4 The evaluation results for 18 shifted and composite functions with dimension=50 

 
    Prop. FA NaFA HFDE LSFA SFA ODFA CFA FA SA BSO CS PSO DA ALO 

F1 mean 2.22E-03 1.19E-02 2.11E+03 1.17E+05 2.49E-03 3.65E+00 8.28E+04 6.38E-02 1.03E+05 4.75E+04 2.87E+02 6.80E+02 3.04E+03 1.31E+05 

min 1.79E-03 7.57E-03 2.33E-03 9.63E+04 1.75E-03 2.17E-04 6.70E+04 3.29E-02 8.68E+04 2.83E+04 1.28E+02 1.01E+02 2.99E+00 1.10E+05 

max 2.62E-03 1.76E-02 1.30E+04 1.29E+05 3.54E-03 3.54E+01 9.31E+04 1.05E-01 1.15E+05 8.40E+04 6.00E+02 1.95E+03 1.47E+04 1.49E+05 

std 2.16E-04 2.48E-03 3.67E+03 8.18E+03 4.66E-04 7.34E+00 6.82E+03 1.74E-02 7.06E+03 1.37E+04 1.02E+02 4.92E+02 3.56E+03 9.43E+03 

F2 mean 2.56E-02 7.14E+00 1.52E+01 1.07E+02 5.69E+00 8.95E-01 2.20E+13 1.91E+00 7.92E+17 3.82E+09 8.67E+09 4.42E+01 3.63E+01 1.61E+24 

min 2.19E-02 7.54E-01 2.72E-01 9.08E+01 1.11E-01 7.84E-05 1.24E+08 8.69E-01 1.97E+14 9.07E+01 1.39E+02 2.23E+01 1.13E+00 5.60E+17 



 

 

max 2.90E-02 2.48E+01 8.52E+01 1.22E+02 2.79E+01 1.36E+01 2.12E+14 4.62E+00 9.33E+18 7.80E+10 1.00E+10 8.96E+01 8.46E+01 3.29E+25 

std 1.80E-03 5.99E+00 2.31E+01 9.87E+00 6.54E+00 2.52E+00 4.64E+13 1.04E+00 1.78E+18 1.53E+10 3.46E+09 1.62E+01 2.27E+01 6.15E+24 

F3 mean 9.31E-03 2.05E+04 1.66E+04 2.64E+05 1.79E+04 2.64E+03 1.43E+05 1.89E+04 1.87E+05 2.11E+05 8.86E+03 1.36E+04 3.83E+04 4.61E+05 

min 2.67E-03 1.30E+04 3.17E+03 1.26E+05 1.17E+04 6.43E-02 7.12E+04 1.47E+04 1.29E+05 5.75E+04 6.09E+03 4.41E+03 9.65E+03 2.00E+05 

max 2.40E-02 3.18E+04 4.93E+04 4.47E+05 3.05E+04 3.60E+04 1.89E+05 2.51E+04 2.27E+05 7.37E+05 1.20E+04 3.87E+04 1.23E+05 7.87E+05 

std 4.92E-03 4.86E+03 1.24E+04 9.20E+04 4.78E+03 7.14E+03 2.39E+04 2.79E+03 2.63E+04 1.41E+05 1.48E+03 7.47E+03 2.28E+04 1.42E+05 

F4 mean 1.75E-02 1.40E+01 2.09E+01 9.07E+01 8.46E+00 3.38E-01 9.87E+01 9.61E+00 8.61E+01 6.73E+01 2.31E+01 3.29E+01 4.23E+01 9.31E+01 

min 1.45E-02 6.75E+00 7.36E+00 8.53E+01 1.59E+00 1.42E-04 9.87E+01 2.42E+00 8.24E+01 5.04E+01 1.43E+01 2.35E+01 1.49E+01 8.36E+01 

max 2.05E-02 2.50E+01 4.33E+01 9.55E+01 1.59E+01 1.72E+00 9.87E+01 1.87E+01 9.14E+01 8.57E+01 3.23E+01 6.52E+01 6.68E+01 9.61E+01 

std 1.26E-03 4.02E+00 1.06E+01 2.55E+00 3.93E+00 5.02E-01 1.45E-14 4.23E+00 2.27E+00 8.93E+00 3.94E+00 9.23E+00 1.35E+01 2.61E+00 

F5 mean 4.90E+01 1.34E+03 5.89E+05 2.88E+08 1.72E+02 1.39E+04 2.69E+08 2.53E+02 3.71E+08 9.43E+07 6.32E+04 2.95E+04 7.69E+05 5.18E+08 

min 4.89E+01 4.56E+01 4.88E+01 2.12E+08 4.18E+01 4.21E-07 1.84E+08 4.96E+01 2.28E+08 2.35E+07 1.20E+04 1.49E+03 4.89E+01 3.40E+08 

max 4.90E+01 1.26E+04 8.13E+06 4.03E+08 1.04E+03 4.16E+05 3.49E+08 1.49E+03 4.61E+08 4.64E+08 1.63E+05 1.73E+05 3.36E+06 6.41E+08 

std 1.46E-02 2.96E+03 1.85E+06 4.30E+07 2.44E+02 7.60E+04 4.10E+07 3.54E+02 4.94E+07 8.72E+07 3.98E+04 3.65E+04 8.40E+05 7.55E+07 

F6 mean 2.41E+00 1.31E-02 2.66E+03 1.16E+05 2.57E-03 1.72E+02 8.37E+04 7.10E-02 1.03E+05 4.46E+04 3.01E+02 6.32E+02 2.48E+03 1.28E+05 

min 1.14E+00 8.18E-03 1.94E-01 9.37E+04 1.47E-03 1.11E-03 6.91E+04 4.21E-02 9.09E+04 2.29E+04 1.24E+02 1.00E+02 1.06E+01 1.09E+05 

max 3.56E+00 1.93E-02 1.30E+04 1.32E+05 4.00E-03 3.40E+03 9.46E+04 1.31E-01 1.13E+05 7.39E+04 6.21E+02 1.51E+03 1.20E+04 1.43E+05 

std 5.98E-01 3.45E-03 4.08E+03 1.14E+04 5.96E-04 6.74E+02 6.66E+03 1.96E-02 6.07E+03 1.20E+04 1.19E+02 3.93E+02 3.53E+03 8.58E+03 

F7 mean 4.26E-02 1.49E-01 5.64E-02 5.98E+00 8.84E-02 1.30E-01 2.09E+02 1.34E-01 2.75E+02 3.56E+01 6.70E-01 3.91E+00 1.53E+00 4.41E+02 

min 9.45E-04 6.14E-02 2.99E-03 4.07E+00 3.30E-02 1.37E-02 1.40E+02 6.41E-02 2.14E+02 1.11E+01 3.59E-01 1.56E+00 4.28E-02 3.27E+02 

max 2.06E-01 2.54E-01 1.31E-01 8.57E+00 1.42E-01 7.06E-01 2.53E+02 2.61E-01 3.30E+02 7.21E+01 1.29E+00 6.46E+00 1.17E+01 5.27E+02 

std 4.58E-02 4.86E-02 4.23E-02 9.28E-01 2.77E-02 1.34E-01 2.95E+01 4.91E-02 2.88E+01 1.58E+01 2.15E-01 1.19E+00 2.38E+00 5.33E+01 

F8 mean 1.11E-03 1.05E+02 2.93E+02 3.72E+02 2.12E+02 3.99E+00 6.37E+02 9.74E+01 7.02E+02 1.65E+02 2.02E+02 1.39E+02 3.20E+02 7.94E+02 

min 8.03E-04 6.58E+01 3.68E+01 3.04E+02 1.55E+02 5.95E-09 5.63E+02 6.36E+01 6.41E+02 9.39E+01 1.61E+02 7.51E+01 1.16E+02 6.84E+02 

max 1.33E-03 1.50E+02 4.67E+02 4.57E+02 2.95E+02 4.88E+01 6.76E+02 1.77E+02 7.42E+02 2.91E+02 2.82E+02 2.12E+02 4.62E+02 8.47E+02 

std 1.31E-04 1.91E+01 1.67E+02 4.23E+01 3.80E+01 1.11E+01 2.76E+01 2.46E+01 2.37E+01 4.73E+01 2.38E+01 2.86E+01 8.70E+01 3.97E+01 

F9 mean 8.63E-03 1.66E-01 4.69E+00 2.00E+01 7.44E-01 1.27E+00 2.02E+01 1.89E-01 2.05E+01 1.71E+01 9.45E+00 1.32E+01 1.96E+01 2.00E+01 

min 7.62E-03 2.20E-02 1.23E-02 2.00E+01 1.58E-02 1.81E-06 1.99E+01 1.18E-01 2.02E+01 1.49E+01 6.76E+00 1.10E+01 1.90E+01 2.00E+01 

max 9.57E-03 1.04E+00 1.51E+01 2.00E+01 2.95E+00 1.00E+01 2.04E+01 3.84E-01 2.07E+01 1.86E+01 1.27E+01 1.54E+01 2.00E+01 2.00E+01 

std 4.63E-04 2.97E-01 4.69E+00 7.23E-15 9.32E-01 2.19E+00 1.34E-01 6.16E-02 1.29E-01 9.43E-01 1.72E+00 1.18E+00 1.94E-01 7.23E-15 

F10 mean 2.19E-03 2.98E-02 1.76E+01 1.16E+03 8.16E-03 1.05E+00 7.60E+02 2.08E-02 9.21E+02 3.84E+02 3.88E+00 1.44E+01 1.83E+01 1.17E+03 

min 1.35E-03 8.84E-03 3.85E-03 9.81E+02 2.66E-03 8.98E-06 6.55E+02 1.07E-02 7.50E+02 2.03E+02 2.48E+00 3.34E+00 0.00E+00 9.47E+02 

max 3.03E-03 6.54E-02 1.11E+02 1.30E+03 2.17E-02 8.71E+00 8.49E+02 3.89E-02 1.03E+03 6.32E+02 8.99E+00 9.48E+01 1.08E+02 1.28E+03 

std 3.24E-04 1.39E-02 3.01E+01 9.00E+01 4.07E-03 1.57E+00 4.73E+01 6.49E-03 5.99E+01 1.15E+02 1.56E+00 1.69E+01 2.20E+01 7.94E+01 

F11 mean 1.20E-01 1.96E+00 3.98E+05 8.31E+08 3.18E-02 1.98E-02 6.13E+08 7.99E-02 7.99E+08 1.35E+08 3.29E+01 2.61E+01 5.42E+05 1.28E+09 

min 8.54E-02 4.08E-01 2.95E-02 5.97E+08 3.22E-05 1.47E-11 3.47E+08 5.97E-04 5.68E+08 4.67E+06 6.87E+00 1.13E+01 1.34E+01 7.12E+08 

max 1.67E-01 4.26E+00 4.73E+06 1.08E+09 2.62E-01 2.72E-01 8.47E+08 6.67E-01 9.80E+08 7.92E+08 5.63E+02 4.78E+01 5.88E+06 1.77E+09 

std 2.41E-02 1.27E+00 1.06E+06 1.37E+08 6.43E-02 6.29E-02 1.40E+08 1.64E-01 8.95E+07 1.72E+08 1.00E+02 9.13E+00 1.27E+06 2.28E+08 

F12 mean 2.41E+00 6.01E+00 1.50E+06 1.63E+09 3.69E-03 3.07E+00 1.27E+09 1.77E-02 1.59E+09 3.31E+08 1.23E+04 2.47E+02 4.35E+06 2.33E+09 

min 1.64E+00 2.24E-03 8.55E-02 1.16E+09 2.81E-04 2.69E-08 8.33E+08 6.05E-03 1.02E+09 7.74E+07 8.58E+01 5.58E+01 1.24E+02 1.87E+09 

max 3.09E+00 3.07E+01 1.33E+07 1.91E+09 2.15E-02 5.19E+01 1.57E+09 3.37E-02 1.82E+09 1.02E+09 6.75E+04 3.32E+03 2.67E+07 2.71E+09 

std 4.06E-01 7.97E+00 3.89E+06 1.97E+08 5.78E-03 1.06E+01 1.74E+08 6.92E-03 1.96E+08 2.34E+08 1.75E+04 5.96E+02 7.24E+06 2.21E+08 

F13 mean 8.76E-06 2.31E+01 4.94E+00 2.85E+01 7.25E-04 2.17E-01 3.35E+02 4.89E-02 4.14E+02 1.34E+02 1.34E+00 4.53E+00 9.46E+00 5.26E+02 

min 6.74E-06 1.36E+01 3.12E-05 1.46E+01 3.45E-04 2.44E-12 2.81E+02 2.71E-02 3.62E+02 6.05E+01 5.96E-01 4.16E-01 0.00E+00 3.99E+02 

max 1.04E-05 3.38E+01 4.39E+01 3.95E+01 1.06E-03 4.86E+00 3.71E+02 9.14E-02 4.54E+02 3.39E+02 2.80E+00 1.14E+01 3.78E+01 5.94E+02 

std 8.77E-07 5.15E+00 1.08E+01 6.52E+00 1.61E-04 8.93E-01 2.42E+01 1.56E-02 2.67E+01 5.73E+01 5.12E-01 2.57E+00 1.02E+01 4.88E+01 

F14 mean 1.18E-03 3.99E+01 1.90E+01 4.44E+01 2.33E-01 4.13E+00 3.46E+02 7.31E+00 4.25E+02 1.39E+02 1.69E+01 2.07E+01 2.41E+01 5.37E+02 

min 8.37E-04 2.97E+01 1.63E-01 3.13E+01 1.57E-02 1.58E-08 3.00E+02 4.22E+00 3.49E+02 8.35E+01 1.54E+01 1.69E+01 4.33E+00 4.53E+02 

max 1.44E-03 5.38E+01 6.46E+01 6.49E+01 9.18E-01 1.71E+01 3.77E+02 8.83E+00 4.67E+02 2.72E+02 1.83E+01 3.18E+01 4.30E+01 6.06E+02 

std 1.70E-04 6.92E+00 2.19E+01 6.92E+00 2.54E-01 5.75E+00 2.11E+01 1.06E+00 3.08E+01 4.83E+01 5.62E-01 3.09E+00 8.69E+00 3.38E+01 

F15 mean 2.85E-04 9.33E+00 2.60E+02 6.90E+02 1.30E-02 6.54E-01 1.60E+03 1.63E+01 1.62E+03 1.41E+03 4.37E+01 1.41E+02 2.70E+02 1.65E+03 

min 1.72E-04 1.07E+00 3.44E-01 2.36E+02 7.40E-03 1.65E-11 1.59E+03 5.30E+00 1.60E+03 9.55E+02 1.54E+01 4.09E+00 0.00E+00 1.63E+03 

max 3.85E-04 4.13E+01 1.17E+03 1.53E+03 1.87E-02 7.76E+00 1.61E+03 3.41E+01 1.63E+03 1.57E+03 9.59E+01 1.11E+03 9.99E+02 1.66E+03 

std 5.10E-05 8.92E+00 3.90E+02 2.83E+02 2.61E-03 1.75E+00 5.77E+00 6.54E+00 7.24E+00 1.59E+02 2.01E+01 2.16E+02 2.88E+02 8.97E+00 

F16 mean 8.90E-01 1.33E+02 2.69E+02 9.98E+02 2.42E+02 1.38E+01 9.13E+02 7.64E+01 9.85E+02 7.22E+02 3.64E+02 5.17E+02 3.29E+02 1.05E+03 

min 8.24E-01 1.77E+01 4.54E+00 9.13E+02 1.38E+02 8.06E-03 8.58E+02 4.64E+01 9.56E+02 6.11E+02 3.00E+02 4.44E+02 0.00E+00 9.66E+02 

max 9.71E-01 2.92E+02 5.92E+02 1.05E+03 3.76E+02 6.18E+01 9.49E+02 1.53E+02 1.02E+03 8.55E+02 4.22E+02 6.01E+02 5.85E+02 1.11E+03 

std 3.76E-02 7.68E+01 2.10E+02 3.45E+01 7.06E+01 2.00E+01 2.43E+01 2.69E+01 1.61E+01 5.29E+01 3.74E+01 4.07E+01 1.77E+02 3.62E+01 

F17 mean 8.81E-01 4.35E+01 1.33E+02 8.73E+02 1.06E+02 2.96E+01 7.75E+02 6.12E+01 8.31E+02 5.95E+02 1.64E+02 3.74E+02 2.36E+02 9.13E+02 

min 7.71E-01 2.97E+01 2.56E+01 8.05E+02 6.82E+01 7.16E-03 7.45E+02 3.79E+01 7.96E+02 4.74E+02 1.34E+02 3.28E+02 2.35E+01 8.41E+02 

max 9.79E-01 6.23E+01 4.55E+02 9.24E+02 1.56E+02 2.13E+02 8.12E+02 8.08E+01 8.65E+02 7.53E+02 1.97E+02 4.45E+02 3.98E+02 9.81E+02 

std 4.55E-02 8.33E+00 1.24E+02 3.28E+01 2.06E+01 4.76E+01 1.68E+01 9.04E+00 1.63E+01 6.38E+01 2.01E+01 3.64E+01 9.83E+01 3.55E+01 

F18 mean 1.47E+01 3.29E+02 5.52E+02 9.25E+02 7.61E+02 9.39E+01 1.06E+03 3.21E+02 1.10E+03 9.05E+02 6.17E+02 7.39E+02 4.60E+02 1.18E+03 

min 1.37E+01 2.35E+02 3.20E+02 8.56E+02 5.55E+02 1.46E-01 1.02E+03 2.71E+02 1.03E+03 8.05E+02 5.47E+02 6.62E+02 7.99E+01 1.12E+03 

max 1.65E+01 4.16E+02 8.01E+02 9.97E+02 8.87E+02 3.76E+02 1.08E+03 3.71E+02 1.14E+03 1.01E+03 6.89E+02 8.32E+02 8.56E+02 1.22E+03 

std 6.18E-01 4.38E+01 1.48E+02 3.20E+01 7.51E+01 1.10E+02 1.61E+01 2.54E+01 2.37E+01 4.87E+01 3.17E+01 4.66E+01 1.85E+02 2.50E+01 

 

Table 5 The p-Values of the Wilcoxon rank sum test for 18 test functions with dimension=30 

 
 NaFA HFDE LSFA SFA ODFA CFA FA SA BSO CS PSO DA ALO 

F1 1.07E-07 2.44E-09 3.02E-11 7.74E-06 5.57E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.06E-07 3.02E-11 

F2 3.02E-11 1.46E-10 3.02E-11 3.02E-11 7.73E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.57E-10 3.02E-11 

F3 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.34E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F4 1.10E-06 6.71E-05 9.46E-06 9.46E-06 3.55E-04 6.69E-05 6.71E-05 6.71E-05 6.71E-05 6.71E-05 6.71E-05 6.71E-05 6.71E-05 

F5 2.71E-02 8.48E-09 3.02E-11 3.79E-01 1.07E-07 3.02E-11 7.20E-05 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F6 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.99E-04 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F7 1.77E-03 4.29E-01 3.02E-11 5.49E-01 1.24E-03 3.02E-11 2.42E-02 3.02E-11 3.02E-11 1.47E-07 3.02E-11 1.68E-03 3.02E-11 

F8 3.02E-11 3.02E-11 3.02E-11 3.02E-11 7.55E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F9 3.69E-11 9.51E-06 1.21E-12 3.02E-11 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.31E-11 1.21E-12 



 

 

F10 2.87E-10 2.19E-08 3.02E-11 7.38E-10 8.89E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.57E-10 3.02E-11 

F11 1.11E-06 3.02E-11 3.02E-11 3.02E-11 5.57E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.57E-10 3.02E-11 3.02E-11 3.02E-11 

F12 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.11E-06 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F13 3.02E-11 1.06E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.06E-07 3.02E-11 

F14 3.02E-11 5.57E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.71E-05 3.02E-11 

F15 3.02E-11 1.31E-08 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 8.48E-09 3.02E-11 

F16 3.02E-11 6.52E-09 3.02E-11 2.71E-02 3.53E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.06E-07 3.02E-11 

F17 3.02E-11 2.67E-09 3.02E-11 3.02E-11 6.63E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 9.46E-06 3.02E-11 

F18 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.89E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.57E-10 3.02E-11 

 

Table 6 The p-Values of the Wilcoxon rank sum test for 18 test functions with dimension=50 
 

 NaFA HFDE LSFA SFA ODFA CFA FA SA BSO CS PSO DA ALO 

F1 3.02E-11 9.92E-11 3.02E-11 9.79E-05 1.11E-06 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F2 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.79E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.11E-12 3.02E-11 3.02E-11 3.02E-11 

F3 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F4 2.68E-04 4.28E-06 3.73E-07 3.73E-07 2.94E-08 7.74E-07 4.28E-06 4.28E-06 4.28E-06 4.28E-06 4.28E-06 4.28E-06 4.28E-06 

F5 9.51E-06 1.03E-06 3.02E-11 3.79E-01 7.48E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.62E-10 3.02E-11 

F6 3.02E-11 1.07E-07 3.02E-11 3.02E-11 6.77E-05 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.07E-07 3.02E-11 

F7 8.15E-11 9.94E-01 3.02E-11 1.87E-05 1.32E-04 3.02E-11 2.19E-08 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.16E-10 3.02E-11 

F8 3.02E-11 3.02E-11 3.02E-11 3.02E-11 9.75E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F9 3.02E-11 3.02E-11 1.21E-12 3.02E-11 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 2.83E-11 1.21E-12 

F10 3.02E-11 3.02E-11 3.02E-11 3.69E-11 1.29E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 8.48E-09 3.02E-11 

F11 7.73E-02 6.77E-05 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F12 1.07E-07 3.02E-11 3.02E-11 3.02E-11 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F13 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.57E-10 3.02E-11 

F14 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F15 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.06E-07 3.02E-11 

F16 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.63E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.06E-07 3.02E-11 

F17 3.02E-11 3.02E-11 3.02E-11 3.02E-11 7.96E-03 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

F18 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.95E-03 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

 

As indicated in Table 5, the p-values are lower than 0.05 for nearly all the test functions with dimension 30, which 

indicate that our proposed algorithm achieves statistically significant improvements over other methods. The 

exceptions are functions 5 and 7, where the proposed algorithm shows similar results as compared with those of 

SFA, and functions 2, 8, and 17-18, where our algorithm has similar results as compared with those of ODFA. In 

addition, HFDE shows similar result distributions as compared with those of the proposed model for function 7. The 

proposed algorithm outperforms other FA variants and classical search methods significantly in other test cases. A 

similar observation is obtained for test functions with dimension 50. As illustrated in Table 6, the majority of the p-

values are lower than 0.05. The proposed FA model shows similar results as compared with those of NaFA, HFDE, 

SFA and ODFA, for function 11, function 7, function 5, and functions 2, 5, 8, and 16, respectively. The proposed 

model shows statistically significant performance improvements over other FA variants and classical methods in all 

other test cases. Among the baseline methods, ODFA and SFA perform the best. These two methods as well as 

LSFA also employ an extra number of function evaluations for identification or further improvement of the global 

best solution in each iteration (Verma et al., 2016; Alweshah and Abdullah, 2015). Comparing with our proposed 

model, HFDE (Dash et al., 2017) also employs a higher number of function evaluations to increase global 

exploration by integrating DE with FA.  

 

Overall, our algorithm shows impressive capability of dealing with the shifted and composite benchmark functions 

in dimensions 30 and 50. The empirical results indicate that our results are statistically better than those of other 

methods in most of the test cases. 

 

4.3 Evaluation of Different Proposed Strategies 
To identify how each strategy contributes to the overall performance of the proposed FA model, a number of 

additional experiments have been conducted using either solely the newly added evading mechanism or attraction 

mechanism. Specifically, we evaluate the version of FA + the proposed attraction behaviour guided by both local 

and global optimal solutions, and the version of  FA + the proposed evading action advised by both local and global 

worst solutions, respectively. Both the 10 standard test functions with dimension 50 and the number of function 

evaluations of 2000, and the 18 shifted and composite benchmarks with dimensions 30 and 50 and the number of 

function evaluations of 10000, have been used for evaluation. The detailed results are provided in Tables 7-8. The 

results obtained using each strategy are compared against those obtained by the full version of the proposed FA 

model with both attraction and evading mechanisms, as well as the original FA model. The best performances are 

marked in bold cases. 

 



 

 

Table 7 Comparison of different proposed strategies using the 10 standard test functions with dimension=50 

 
  Full 

version 

Evading 

only 

Attraction 

only 

FA 

Ackley Mean 6.57E-03 6.66E-03 8.93E+00 9.13E+00 

 Min 5.46E-03 5.15E-03 6.27E+00 6.60E+00 

 Max 7.01E-03 7.20E-03 1.09E+01 1.14E+01 

 Std 3.39E-04 3.96E-04 1.44E+00 1.08E+00 

Dixon Mean 9.97E-01 9.97E-01 3.54E+03 3.09E+03 

 Min 9.96E-01 9.95E-01 6.92E+02 9.37E+02 

 Max 9.99E-01 9.99E-01 9.10E+03 6.34E+03 

 Std 7.45E-04 7.92E-04 1.79E+03 1.23E+03 

Griewank Mean 2.55E-03 2.56E-03 1.47E+01 1.20E+01 

 Min 1.65E-03 2.02E-03 4.02E+00 3.76E+00 

 Max 3.50E-03 3.29E-03 3.70E+01 3.00E+01 

 Std 4.59E-04 3.47E-04 7.87E+00 6.36E+00 

Levy Mean 5.07E+00 5.07E+00 1.12E+02 1.15E+02 

 Min 5.07E+00 5.07E+00 6.56E+01 5.26E+01 

 Max 5.07E+00 5.08E+00 1.90E+02 3.08E+02 

 Std 6.98E-04 9.04E-04 3.28E+01 5.54E+01 

Rastrigin Mean 1.37E-03 1.30E-03 2.84E+02 2.76E+02 

 Min 9.07E-04 1.06E-03 2.35E+02 1.82E+02 

 Max 1.59E-03 1.64E-03 3.89E+02 4.12E+02 

 Std 1.70E-04 1.52E-04 3.83E+01 5.00E+01 

Rotated Hyper-Ellipsoid Mean 2.75E-02 2.53E-02 1.89E+04 1.70E+04 

 Min 1.74E-02 1.79E-02 8.46E+03 4.99E+03 

 Max 3.50E-02 3.08E-02 3.16E+04 3.49E+04 

 Std 4.56E-03 3.59E-03 6.44E+03 8.79E+03 

Rosenbrock Mean 4.90E+01 4.90E+01 8.85E+03 8.23E+03 

 Min 4.90E+01 4.90E+01 1.72E+03 1.68E+03 

 Max 4.90E+01 4.90E+01 3.09E+04 2.02E+04 

 Std 4.65E-03 3.09E-03 6.07E+03 5.10E+03 

Sphere Mean 6.76E-06 6.78E-06 5.71E+00 4.48E+00 

 Min 4.91E-06 4.40E-06 1.81E+00 1.67E+00 

 Max 9.06E-06 8.47E-06 1.43E+01 1.39E+01 

 Std 1.03E-06 9.20E-07 2.90E+00 2.47E+00 

Sum of Different Powers Mean 6.42E-11 1.29E-10 1.81E-05 1.94E-05 

 Min 9.38E-14 8.29E-13 7.49E-07 1.14E-06 

 Max 3.70E-10 6.66E-10 7.27E-05 5.38E-05 

 Std 1.06E-10 1.88E-10 1.60E-05 1.53E-05 

Zakharov Mean 2.77E-03 2.97E-03 3.73E+02 3.63E+02 

 Min 1.91E-03 1.96E-03 2.97E+02 2.77E+02 

 Max 3.47E-03 3.54E-03 5.18E+02 4.60E+02 

 Std 4.14E-04 3.29E-04 5.38E+01 5.06E+01 

 

Table 8 Comparison of different proposed strategies using the shifted and composite test functions with dimensions 

30 and 50 

 
  30D 50D 

  Full version Evading 

only 

Attraction 

only 

FA Full version Evading  

only 

Attraction  

only 

FA 

F1 mean 1.10E-03 1.14E-03 1.36E-02 1.20E-02 2.22E-03 2.15E-03 7.33E-02 6.38E-02 

min 7.73E-04 6.93E-04 5.39E-03 4.96E-03 1.79E-03 1.67E-03 3.64E-02 3.29E-02 

max 1.40E-03 1.65E-03 3.10E-02 1.85E-02 2.62E-03 2.54E-03 1.13E-01 1.05E-01 

std 1.47E-04 2.07E-04 5.76E-03 3.38E-03 2.16E-04 2.28E-04 2.00E-02 1.74E-02 

F2 mean 1.47E-02 1.45E-02 4.19E-01 4.71E-01 2.56E-02 2.58E-02 1.88E+00 1.91E+00 

min 1.21E-02 1.17E-02 1.51E-01 1.83E-01 2.19E-02 2.31E-02 8.57E-01 8.69E-01 

max 1.65E-02 1.73E-02 5.98E-01 7.95E-01 2.90E-02 2.90E-02 4.61E+00 4.62E+00 

std 1.13E-03 1.35E-03 1.02E-01 1.56E-01 1.80E-03 1.30E-03 9.68E-01 1.04E+00 

F3 mean 2.99E-03 3.40E-03 3.81E+03 3.96E+03 9.31E-03 9.86E-03 1.74E+04 1.89E+04 

min 9.48E-04 1.63E-03 1.73E+03 1.84E+03 2.67E-03 4.91E-03 1.12E+04 1.47E+04 

max 6.03E-03 6.04E-03 7.18E+03 7.11E+03 2.40E-02 2.37E-02 2.39E+04 2.51E+04 

std 1.31E-03 1.19E-03 1.45E+03 1.33E+03 4.92E-03 4.55E-03 3.41E+03 2.79E+03 

F4 mean 1.44E-02 1.29E-02 1.21E-01 1.08E-01 1.75E-02 1.78E-02 1.04E+01 9.61E+00 

min 1.21E-02 1.08E-02 7.42E-02 6.82E-02 1.45E-02 1.57E-02 2.14E+00 2.42E+00 

max 1.68E-02 1.43E-02 3.57E-01 2.09E-01 2.05E-02 2.03E-02 2.93E+01 1.87E+01 

std 1.21E-03 9.50E-04 5.00E-02 2.90E-02 1.26E-03 1.43E-03 6.89E+00 4.23E+00 

F5 mean 2.90E+01 2.90E+01 1.70E+02 3.11E+02 4.90E+01 4.90E+01 4.29E+02 2.53E+02 

min 2.89E+01 2.89E+01 2.65E+01 2.72E+01 4.89E+01 4.89E+01 5.03E+01 4.96E+01 

max 2.90E+01 2.90E+01 6.57E+02 2.46E+03 4.90E+01 4.90E+01 2.25E+03 1.49E+03 

std 1.22E-02 9.56E-03 1.70E+02 5.79E+02 1.46E-02 1.44E-02 6.56E+02 3.54E+02 

F6 mean 3.80E-01 1.55E+00 1.41E-02 1.29E-02 2.41E+00 1.24E+01 6.64E-02 7.10E-02 

min 1.18E-01 5.37E-01 5.50E-03 3.34E-03 1.14E+00 1.23E+01 2.87E-02 4.21E-02 

max 7.87E-01 2.36E+00 2.57E-02 2.36E-02 3.56E+00 1.24E+01 1.23E-01 1.31E-01 

std 1.67E-01 4.51E-01 4.79E-03 4.50E-03 5.98E-01 2.24E-02 1.98E-02 1.96E-02 



 

 

F7 mean 4.05E-02 5.33E-02 9.04E-02 8.03E-02 4.26E-02 4.90E-02 1.08E-01 1.34E-01 

min 3.97E-03 9.09E-04 1.99E-02 3.01E-02 9.45E-04 5.99E-05 6.17E-02 6.41E-02 

max 9.08E-02 1.83E-01 2.84E-01 2.30E-01 2.06E-01 2.56E-01 1.86E-01 2.61E-01 

std 2.74E-02 4.40E-02 6.81E-02 4.06E-02 4.58E-02 5.90E-02 3.79E-02 4.91E-02 

F8 mean 6.00E-04 6.04E-04 4.21E+01 4.12E+01 1.11E-03 1.14E-03 1.09E+02 9.74E+01 

min 2.93E-04 4.27E-04 1.62E+01 2.11E+01 8.03E-04 8.55E-04 6.41E+01 6.36E+01 

max 7.70E-04 7.69E-04 9.99E+01 6.88E+01 1.33E-03 1.33E-03 1.67E+02 1.77E+02 

std 1.08E-04 7.82E-05 1.62E+01 1.24E+01 1.31E-04 1.29E-04 2.17E+01 2.46E+01 

F9 mean 8.12E-03 8.26E-03 6.47E-02 5.06E-02 8.63E-03 8.64E-03 2.24E-01 1.89E-01 

min 6.56E-03 6.52E-03 3.25E-02 2.41E-02 7.62E-03 7.49E-03 1.03E-01 1.18E-01 

max 9.27E-03 9.02E-03 3.20E-01 7.67E-02 9.57E-03 9.43E-03 5.42E-01 3.84E-01 

std 6.81E-04 5.89E-04 5.07E-02 1.42E-02 4.63E-04 4.38E-04 1.09E-01 6.16E-02 

F10 mean 1.83E-03 1.94E-03 7.84E-03 7.86E-03 2.19E-03 2.30E-03 2.21E-02 2.08E-02 

min 8.13E-04 1.11E-03 2.56E-03 4.89E-03 1.35E-03 1.38E-03 9.81E-03 1.07E-02 

max 3.44E-03 2.67E-03 3.21E-02 1.24E-02 3.03E-03 3.04E-03 3.93E-02 3.89E-02 

std 5.13E-04 3.62E-04 5.47E-03 1.60E-03 3.24E-04 4.18E-04 5.98E-03 6.49E-03 

F11 mean 5.61E-02 8.43E-01 4.44E-04 4.76E-04 1.20E-01 1.20E-01 7.49E-02 7.99E-02 

min 1.68E-02 7.54E-01 1.34E-04 8.37E-05 8.54E-02 6.89E-02 7.94E-04 5.97E-04 

max 9.82E-02 9.34E-01 1.37E-03 1.67E-03 1.67E-01 1.95E-01 1.80E+00 6.67E-01 

std 2.38E-02 5.91E-02 2.95E-04 3.60E-04 2.41E-02 3.66E-02 3.29E-01 1.64E-01 

F12 mean 8.74E-01 9.42E-01 3.38E-03 3.25E-03 2.41E+00 2.62E+00 1.36E-02 1.77E-02 

min 4.44E-01 3.27E-01 9.96E-04 4.68E-04 1.64E+00 1.79E+00 3.43E-03 6.05E-03 

max 1.53E+00 1.57E+00 1.41E-02 1.51E-02 3.09E+00 3.72E+00 2.72E-02 3.37E-02 

std 2.81E-01 2.07E-01 2.94E-03 2.59E-03 4.06E-01 5.83E-01 5.21E-03 6.92E-03 

F13 mean 7.73E-06 7.64E-06 6.08E-03 5.42E-03 8.76E-06 8.42E-06 4.81E-02 4.89E-02 

min 4.89E-06 5.48E-06 1.87E-04 5.48E-04 6.74E-06 5.43E-06 2.06E-02 2.71E-02 

max 1.06E-05 9.25E-06 1.59E-02 2.47E-02 1.04E-05 1.02E-05 9.15E-02 9.14E-02 

std 1.35E-06 1.08E-06 4.54E-03 4.76E-03 8.77E-07 1.04E-06 1.51E-02 1.56E-02 

F14 mean 1.59E-03 1.53E-03 3.84E+00 4.06E+00 1.18E-03 1.21E-03 7.44E+00 7.31E+00 

min 1.16E-03 8.67E-04 1.41E+00 1.17E+00 8.37E-04 6.94E-04 5.03E+00 4.22E+00 

max 2.23E-03 2.22E-03 6.85E+00 8.62E+00 1.44E-03 1.53E-03 1.02E+01 8.83E+00 

std 2.98E-04 3.28E-04 1.46E+00 1.59E+00 1.70E-04 2.04E-04 1.53E+00 1.06E+00 

F15 mean 2.54E-04 2.52E-04 2.26E+00 1.84E+00 2.85E-04 2.78E-04 1.45E+01 1.63E+01 

min 1.45E-04 1.19E-04 3.01E-01 6.83E-01 1.72E-04 1.75E-04 6.43E+00 5.30E+00 

max 3.56E-04 3.74E-04 1.30E+01 4.38E+00 3.85E-04 3.70E-04 3.59E+01 3.41E+01 

std 4.41E-05 6.66E-05 3.05E+00 8.63E-01 5.10E-05 5.23E-05 7.23E+00 6.54E+00 

F16 mean 8.45E-01 8.49E-01 3.47E+01 3.40E+01 8.90E-01 8.91E-01 7.50E+01 7.64E+01 

min 7.41E-01 7.18E-01 1.51E+01 1.11E+01 8.24E-01 8.22E-01 4.71E+01 4.64E+01 

max 9.26E-01 9.72E-01 7.95E+01 5.66E+01 9.71E-01 9.48E-01 1.56E+02 1.53E+02 

std 4.81E-02 6.07E-02 1.51E+01 1.40E+01 3.76E-02 3.71E-02 2.51E+01 2.69E+01 

F17 mean 8.46E-01 8.54E-01 5.31E+01 5.18E+01 8.81E-01 8.92E-01 6.28E+01 6.12E+01 

min 7.49E-01 7.41E-01 2.20E+01 3.35E+01 7.71E-01 8.13E-01 5.05E+01 3.79E+01 

max 9.62E-01 9.83E-01 8.01E+01 6.92E+01 9.79E-01 9.50E-01 7.14E+01 8.08E+01 

std 5.24E-02 5.83E-02 1.36E+01 8.43E+00 4.55E-02 4.32E-02 5.45E+00 9.04E+00 

F18 mean 1.42E+01 1.40E+01 2.66E+02 2.71E+02 1.47E+01 1.49E+01 3.22E+02 3.21E+02 

min 1.27E+01 1.16E+01 2.08E+02 2.22E+02 1.37E+01 1.34E+01 2.78E+02 2.71E+02 

max 1.57E+01 1.54E+01 3.34E+02 3.22E+02 1.65E+01 1.59E+01 3.85E+02 3.71E+02 

std 8.00E-01 8.88E-01 2.55E+01 2.47E+01 6.18E-01 6.97E-01 2.52E+01 2.54E+01 

 
As indicated in Tables 7-8, the evading strategy contributes to the superior performance of the proposed FA model.  

As can be observed, the results from the version of FA + the evading strategy are very close as compared with those 

from the full version of the proposed FA model with both strategies. The attraction mechanism and the original FA 

model show great achievements in solving shifted functions 6, 11 and 12 for both dimensions 30 and 50, and 

outperform the evading strategy for these benchmark functions. Although, in most of the cases, purely using the 

proposed attraction mechanism shows similar performances as compared with those of the original FA model, when 

combined with the evading strategy, it boosts the performance of the full version of the proposed FA model slightly 

in comparison with those obtained using the evading mechanism only in the evaluation of some standard and 

complex benchmark functions. 

 

In short, the empirical results indicate the efficiency of the proposed evading and attraction mechanisms in 

comparison with the original FA model. In addition to taking the neighbouring worst solutions into account, the 

evading strategy employs the global worst solution identified from each iteration as another primary signal to advise 

the search process, and enable the swarm to move away from unpromising search regions effectively, therefore 

accelerating convergence. Furthermore, both the attraction and evading mechanisms work in a cooperative manner 

in the proposed FA model to mitigate premature convergence suffered by the original FA model. As an example, 

when there is no brighter firefly in the neighbourhood, the original FA model becomes stagnant. In the proposed FA 

model, when the attraction action stagnates, the evading movement employs the local and global worst signals to 

divert the search towards optimal regions, in order to avoid stagnation. On the other hand, when the evading action 



 

 

shows limited improvements, the attraction behaviour is able to lead the search by following local and global 

optimal signals to drive the search out of local optima. Therefore, the full version of the proposed FA model with 

both strategies and the version of FA + the evading mechanism achieve more superior performances than those 

using solely the attraction action and the original FA model. 

 

4.4 Evaluation Using the Black-Box Optimization Benchmarking Test Suite 
Another evaluation using the well-known BBOB benchmark test suite has been conducted. We mainly focus on the 

noisy BBOB cases which represent diverse challenging optimization problems. The MATLAB code in the COCO 

(COmparing Continuous Optimizers) platform is used, which provides benchmark function testbeds and 

experimental templates that depict sound comparisons of global optimizers (Hansen et al., 2012). The COCO 

platform has been used for BBOB competitions associated with the GECCO and CEC special sessions. In our 

experiments, the maximum number of function evaluations per function is set to 80000D (slightly lower than 105D) 

for the proposed algorithm, where D is the dimension. Therefore, the iteration number and the population size fulfil 

the following condition, i.e. maximum iterations × population size ≈ 80000D. No parameter tuning is conducted for 

the proposed algorithm. We evaluate the noisy BBOB benchmark problems with dimension settings of 2, 3, 5, 10, 

and 20, because the full results from these settings are available for performance comparison across 2009-2017 

BBOB competitions. 

 

In the first comparison study, a total of 11 state-of-the-art algorithms have been selected for comparison. These 

methods are selected because they demonstrate impressive performance for solving noisy BBOB problems, and are 

top performers for BBOB 2009, 2010 and 2012 competitions. Some of them employ a slightly higher number of 

function evaluations, i.e. 105D, than that of the proposed algorithm. In other cases, higher or lower numbers of 

function evaluations per function, i.e. 106D or 104D, are applied. The selected methods include the best 2009 

optimizer (provided automatically by the COCO platform) (Hansen et al., 2010a), Separable Natural Evolution 

Strategies (SNES) (Schaul, 2012a), Exponential NES (xNES) (Schaul, 2012b), xNES with Adaptation Sampling 

(xNESas) (Schaul, 2012c), Differential Ant-Stigmergy Algorithm (DASA) (Korošec and Šilc, 2009), Simultaneous 

Perturbation Stochastic Approximation (SPSA) (Finck and Beyer, 2010), PSO hybridized with Estimation of 

Distribution Algorithm (EDA) (EDA-PSO) (El-Abd and Kamel, 2009a), PSO with adaptive bounds (PSO_Bounds) 

(El-Abd and Kamel, 2009b), PSO incorporated with DE (DE-PSO) (García-Nieto et al., 2009), BayEDAcG 

(Gallagher, 2009) and the Pure-Random-Search algorithm (RANDOMSEARCH) (Auger and Ros, 2009). 

 

Among the selected methods, the best 2009 optimizer outperforms all other methods for BBOB 2009 competition.  

To date, it still is the best optimizer in tackling all problem dimensions for the BBOB test functions (Hansen et al., 

2010a). SNES, xNES and xNESas are variants of the Natural Evolution Strategies (NES). xNES employs a search 

distribution parameterized by a mean vector and a full covariance matrix. On the other hand, xNESas applies 

Adaptation Sampling for fine-tuning its learning rates, in order to accelerate convergence (Schaul 2012b; 2012c). 

According to Schaul (2012b; 2012c), xNES and xNESas are the most appropriate NES variants for tackling noisy, 

non-separable BBOB problems with small dimensions. In addition, SNES scales linearly with the problem 

dimension with fast convergence, and is regarded as the most appropriate NES variant for noisy, large separable 

BBOB problems (Schaul 2012a). PSO variants, i.e. PSO_Bounds (El-Abd and Kamel, 2009b), EDA-PSO (El-Abd 

and Kamel, 2009a), DE-PSO (García-Nieto et al., 2009), and other methods such as DASA (Korošec and Šilc, 2009) 

and BayEDAcG (Gallagher, 2009) embed diverse search strategies to overcome local optima traps and show 

competitive performance in tackling BBOB problems. Overall, owing to their impressive performances for solving 

BBOB test functions with moderate and severe noise levels, the abovementioned methods are selected for 

comparison in this research. 

 

In addition to the 11 methods, we include additional 10 optimizers in the second study, in order to conduct a wider 

comparison between the proposed algorithm and other methods in the BBOB community. The majority of these 10 

additional methods use a different number of function evaluations, e.g. 106D, 107D or 104D, as compared with that 

of the proposed FA model. Although in some cases, they are not directly comparable, the results from these methods 

serve as general performance indicators for solving BBOB problems. These 10 methods are: Adapted Maximum-

Likelihood Gaussian Model Iterated Density-Estimation Evolutionary Algorithm (AMaLGaM) (Bosman et al., 

2009), Age-Layered Population Structure (ALPS) (Hornby, 2009), Variable Neighbourhood Search (VNS) (García-

Martínez and Lozano, 2009), an independent-restart implementation of covariance matrix adaptation (CMA) 

combined with the simple (1+1) selection scheme (CMA-ES) (Auger and Hansen, 2009), stable noisy optimization 

by branch and fit (SNOBFIT) (Huyer and Neumaier, 2009a), a modified multistart clustering global optimization 



 

 

method (GLOBAL) (Pal et al., 2012), NEW Unconstrained Optimization Algorithm (NEWUOA) (Ros, 2010), 

NEWUOA with a maximum number of interpolation points (full-NEWUOA) (Ros, 2010), multilevel coordinate 

search (MCS) (Huyer and Neumaier, 2009b), and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Ros, 

2009). Among the 10 methods, ALPS, AMaLGaM and VNS show impressive performances with comparatively 

higher numbers of function evaluations. ALPS (Hornby, 2009) splits the population into multiple layers using a 

novel measure of age. Newly generated random individuals are inserted into the bottom layer regularly to overcome 

premature convergence. AMaLGaM (Bosman et al., 2009) embeds both the strategy for scaling up the covariance 

matrix and the mechanism for anticipating the mean shift, in an attempt to overcome stagnation and accelerate 

convergence. It outperforms its incremental-learning variant in solving noisy BBOB problems. VNS (García-

Martínez and Lozano, 2009) incorporates three evolutionary algorithms designed for generating a good starting 

point, exploiting local information, and enhancing local search diversity, respectively. It shows great superiority 

over other state-of-the-art methods in solving noisy BBOB problems.   

  

The noisy BBOB test suite has a total of 30 functions, which include 6 unimodal functions with moderate noise 

(f101-f106), 15 functions with severe noise (f107-f121), and 9 highly multimodal functions with severe noise (f122-

f130) (Hansen et al., 2010b). Each function has 15 instances. The functions with moderate noise include Sphere and 

Rosenbrock with moderate Gaussian, uniform, and seldom Cauchy noise, while the functions with severe noise 

include Sphere, Rosenbrock, Step ellipsoid, Ellipsoid, and Different Powers with Gaussian, uniform and seldom 

Cauchy noise. The highly multimodal functions with severe noise include Schaffer’s F7, Composite Griewank-

Rosenbrock and Gallagher’s Gaussian Peaks 101-me with Gaussian, uniform and seldom Cauchy noise. Figure 1 

(automatically generated by the COCO platform) illustrates the empirical cumulative distribution of runtime of each 

algorithm on all functions f101–f130 and one subgroup (i.e. the severe noisy multimodal subgroup) in dimension 2, 

for comparison using 11 and 21 selected methods, respectively. Each target precision value, ∆𝑓𝑡, of 

 {101.8, 101.6, 101.4, … , 10−8}, is employed for evaluation, which is denoted as ∆𝑓𝑡 ∈ ]102, 10−8].  
 

Overall, Figure 1 represents the proportion of problems solved within a given budget in dimension 2. The x axis 

represents a given budget, i.e. a given number of function evaluations divided by the dimension, while the y axis 

denotes the proportion of the problems where the target precision value is achieved within the given budget (Hansen 

et al., 2010a). Crosses are used to mark the maximum number of function evaluations from a specific algorithm. In 

Figure 1, the results of the best 2009 optimizer (provided by the COCO platform automatically) are used as the 

baseline reference, while the results from other methods are provided by the respective authors as extracted from the 

BBOB website. In Figure 1, the top two diagrams indicate the performance comparison for all 30 test functions and 

the subgroup of 9 highly multimodal functions with severe noise using 11 selected methods, respectively, while the 

bottom two diagrams represent the same comparisons using 21 selected methods. 

 

The results extracted from the BBOB website indicate that a diverse number of function evaluations have been 

applied to different methods. In the first study, we employ several related methods which have a similar number of 

function evaluations per function as that of the proposed algorithm.  EDA-PSO, PSO_Bounds, and SPSA employ a 

slightly higher maximum number of function evaluations, i.e. 105D, than that of the proposed algorithm. To indicate 

the efficiency of the proposed FA model, the results from several methods with larger numbers of function 

evaluations have also been selected, e.g. DASA and RANDOMSEARCH with the maximum of 106D number of 

function evaluations per function. xNES and xNESas use the maximum of 105D (or slightly lower) number of 

function evaluations for dimensions 2 and 3, but  higher numbers of function evaluations between 105D and 106D 

for dimensions 5, 10 and 20. Other selected methods such as DE-PSO, SNES and BayEDAcG employ the maximum 

of 104D number of function evaluations. 

 

For the additional 10 methods, VNS uses 107D as the maximum number of function evaluations while AMaLGaM 

and ALPS employ 106D number of function evaluations per function. NEWUOA, full-NEWUOA, MCS and CMA-

ES set the maximum number of function evaluations to 104D with the rest of the methods applying smaller numbers 

of function evaluations. 

 

As indicated in Figure 1 (c), in a general  context of comparison based on  all  30 test functions, AMaLGaM, VNS 

and ALPS show the best performance, but with comparatively higher numbers of function evaluations, i.e. 106D, 

107D, and (slightly over) 106D, respectively. Other methods such as xNES, xNESas, PSO_Bounds, EDA-PSO and 

the proposed algorithm show comparable performance with 105D or 80000D number of function evaluations. As 

indicated in Figure 1 (a), xNES, xNESas, EDA-PSO and the proposed algorithm solve a larger proportion of 



 

 

problems than that of PSO_Bounds within 80000D number of function evaluations. With a higher number of 

function evaluations, PSO_Bounds achieves more competitive performance than those from xNES, xNESas, and 

EDA-PSO. The proposed algorithm also outperforms SPSA, DASA and RANDOMSEARCH, although these 

methods use a higher number of function evaluations of 105D or 106D. 

 

Overall, as indicated in Figure 1 (a) and (c), the proposed algorithm solves a similar proportion of problems as 

compared with those of other state-of-the-art methods such as xNES, xNESas, and EDA-PSO, and outperforms at 

least the following methods, i.e. DASA, RANDOMSEARCH, and SPSA, in dimension 2, with a similar or lower 

number of function evaluations as those of xNES, xNESas, EDA-PSO, and SPSA, and a significantly lower number 

of function evaluations than those of DASA and RANDOMSEARCH. Note that no parameter tuning is applied to 

the proposed algorithm. 

 

Figure 1 (b) and (d) show the performance from 11 and 21 selected algorithms pertaining to highly multimodal 

functions with severe noise in dimension 2, respectively. As indicated in Figure 1 (d), the proposed algorithm shows 

great efficiency in solving such noisy multimodal functions. Within the budget of 80000D number of function 

evaluations (indicated by the pink cross), it shows comparable performance as compared with those of xNES, DE-

PSO and EDA-PSO, and solves a larger proportion of problems than at least those of PSO_Bounds, xNESas, 

DASA, RANDOMSEARCH and SPSA.  

 

                                        all functions (a)                                                      severe noise multimodal (b) 

                                                       
                                       

                                        all functions  (c)                                                   severe noise multimodal (d) 

                                                     
 

Figure 1 Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by 

dimension (FEvals/DIM) for 51 targets with target precision in 10[−8..2] for all functions and one subgroup in 2-D. 



 

 

The “best 2009” line corresponds to the best aRT observed during BBOB 2009 for each selected target (the top two 

diagrams present the results from 11 selected methods and the bottom diagrams present the results from 21 selected 

methods) 

 

The empirical results also indicate the proposed algorithm shows improvements in comparison with other state-of-

the-art methods for higher dimensions. Figure 2 shows the empirical cumulative distribution of runtime of each 

algorithm on all functions and one subgroup (i.e. the severe noisy multimodal subgroup) in dimension 3, in 

comparison with 11 and 21 related methods, respectively. As indicated in Figure 2 (a) and (c), for all 30 functions, 

the proposed algorithm solves a comparatively larger proportion of problems than at least those of the state-of-the-

art methods such as PSO_Bounds, EDA-PSO, DASA, RANDOMSEARCH and SPSA, with a comparatively lower 

budget. As shown in Figure 2 (b) and (d), the proposed FA model shows great efficiency in solving the 9 

multimodal functions with severe noise, and outperforms at least xNESas, EDA-PSO, RANDOMSEARCH, DASA, 

and SPSA, by employing similar or lower numbers of function evaluations.  

 

                                    all functions (a)                                                        severe noise multimodal (b) 

 
                                 all functions (c)                                                            severe noise multimodal (d) 

  
 

Figure 2 Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by 

dimension (FEvals/DIM) for 51 targets with target precision in 10[−8..2] for all functions and one subgroup in 3-D. 

The “best 2009” line corresponds to the best aRT observed during BBOB 2009 for each selected target (the top two 

diagrams present the result from 11 selected methods and the bottom diagrams present the results from 21selected 

methods) 

 

In dimensions 5, 10 and 20, the problems become even more challenging and all algorithms demonstrate drastic 

performance degradation, with AMaLGaM, xNESas and xNES performing the best with comparatively higher 

numbers of function evaluations (106D and over 105D). The NES variant, SNES, also shows impressive scalability 



 

 

with 104D number of function evaluations. In addition, xNESas and xNES have increased the number of function 

evaluations for these three dimensions (i.e. over 105D). The top two diagrams in Figure 3 show the detailed 

empirical cumulative distributions of runtime of each algorithm on all functions and the subgroup of unimodal 

functions with severe noise, in dimensions 5, with respect to the 21 selected methods, while the bottom two 

diagrams show similar distributions on all functions in dimensions 10 and 20. Besides the performances obtained 

using 80000D number of function evaluations, we provide the performances of the proposed algorithm with a 

slightly higher number of function evaluations, i.e. 105D, for these three dimensions. As shown in Figure 3 (a), (c) 

and (d), the proposed algorithm achieves similar performances under both numbers of function evaluations for 

dimensions 5, 10 and 20. It is able to outperform at least PSO_Bounds, DASA, RANDOMSEARCH and SPSA for 

these three dimensions, consistently, with a budget of 80000D function evaluations. Besides that, our algorithm 

shows impressive capability of dealing with the 15 functions with severe noise, as illustrated in Figure 3(b), and 

outperforms at least PSO_Bounds, EDA-PSO, DASA, RANDOMSEARCH, and SPSA in dimension 5, with 

80000D number of function evaluations, i.e., similar or lower numbers of function evaluations than those of other 

methods. A similar observation is also obtained for dimension 20 in solving functions with severe noise with a 

comparatively lower budget, i.e. 80000D. On top of this, with 105D number of functions evaluations, the proposed 

algorithm outperforms at least EDA-PSO, PSO_Bounds, DASA, RANDOMSEARCH, and SPSA consistently for 

the three dimensions.  

 

all functions – 5-D (a)                                                        severe noise – 5-D (b) 

 
all functions – 10-D (c)                                                        all functions – 20-D (d) 

 
 

Figure 3 Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by 

dimension (FEvals/DIM) for 51 targets with target precision in 10[−8..2] for all functions in 5-D, 10-D and 20-D, and 

one subgroup in 5-D, in comparison with the 21 selected methods. The “best 2009” line corresponds to the best aRT 

observed during BBOB 2009 for each selected target. (Prop. FA 1 and Prop. FA 2 denote the proposed algorithm 

with 105D and 80000D numbers of function evaluations, respectively.) 



 

 

 

Overall, the empirical results indicate that the proposed algorithm is among the top performers, and shows 

impressive performance for tackling noisy BBOB benchmark problems. In comparison with other state-of-the-art 

methods (such as EDA-PSO, PSO_Bounds, DASA, etc), it shows comparable or better results for evaluation of 

especially the 15 unimodal and 9 highly multimodal functions with severe noise in nearly all five test dimensions 

with similar or lower numbers of function evaluations. 

 

4.5 Ensemble Reduction Evaluation 
For ensemble reduction, we use three high dimensional data sets from the UCI machine learning repository and one 

medical image data set for evaluation. Since LSFA tends to outperform SFA for many real-life optimization 

problems (Alweshah and Abdullah, 2015), we employ LSFA together with NaFA, HFDE and CFA as the FA 

variants for ensemble reduction evaluation. Other advanced and conventional search methods, i.e. ELPSO (Jordehi, 

2015), PSO, GA and FA, have also been selected owing to their efficiency and robustness in dealing with diverse 

dimensionality reduction and feature optimization problems (Jordehi, 2015; Jothi and Inbarani, 2016, Mistry et al., 

2016; Yang, 2008; Zhang et al., 2016b). Table 9 shows the detailed information of the employed data sets. 

Specifically, the first three data sets in Table 9 are taken from the UCI machine learning repository, while the last 

skin lesion image data set is obtained from the Dermofit Image Library (Ballerini et al., 2013). The SVM with 

Radial Basis Function (RBF) kernel is used as the sole base classifier in this study. Moreover, we compare ensemble 

models generated by all search methods, with the original full-sized, unreduced ensembles as well as single base 

classifiers in each experiment. 

 

4.5.1 Base Classifier Pool Generation 
First of all, we introduce base classifier pool generation for ensemble reduction evaluation. Since different feature 

subsets of the training data provide different representations of the same problem and, typically, may lead to 

different classification outcomes (Christoudias et al., 2008; Diao et al., 2014), we use different feature subsets to 

generate diverse base models for each test data set in this research. Although many developments (Diao et al., 2014; 

Guan et al., 2015) employ the random subspaces method for feature subset selection in base model generation, its 

feature selection process is conducted randomly without an objective evaluation of the selected feature subsets using 

the class label information. Therefore, such randomly selected feature subsets tend to be less discriminant, resulting 

in low recognition accuracy rates with high computational costs (Guan et al., 2015; Ho, 1998). Instead of using 

randomly selected feature subsets, in this research, a wrapper PSO-based feature selection method integrated with 

the SVM classifier is used to identify diverse optimal discriminative feature subsets for each data set in base 

classifier pool generation.  

Table 9 Data sets used for ensemble reduction evaluation 

 
Data sets Features Instances Classes 

sonar (UCI M.L. repository) 60 208 2 

ozone (UCI M.L. repository) 72 324 2 

libras (UCI M.L. repository) 90 360 15 

skin lesion image data set (The Dermofit Image Library) 98 1300 2 

 

This PSO-based feature selection process is initialized with a population of particles. Each particle has N 

dimensions, where N is the number of features for each test data set. The feature selection process is guided by the 

abovementioned fitness function defined in Equation (6). Specifically, each particle represents one selected feature 

subset, and is evaluated by the fitness function during the search process. The global best solution identified by PSO, 

which represents the most optimal feature subset, is used as the output. Multiple trials of the PSO-based feature 

selection process are conducted in order to generate multiple feature subsets for base classifier pool generation. 

Different experimental settings of PSO-based feature selection are also used to generate base models with diversity. 

Overall, we conduct 30 and 50 trials of the feature selection process to obtain 30 and 50 optimal feature subsets, 

respectively. Since these feature subsets are obtained by using the fitness evaluation of the metaheuristic search 

process, they lead to reasonable variations in classification accuracy. Therefore, in this research, we construct 30 and 

50 base models, respectively, using the above two sets of generated optimal feature subsets for ensemble reduction 

evaluation.  

 

In this research, the RBF-based SVM is used as the base classifier. To achieve the optimal classification accuracy 

rate of each base classifier, we use a grid search to identify optimal parameter settings during the training stage. 



 

 

Since the combination of the following parameters, i.e. the soft-margin constant, C, the kernel parameter, gamma, 

and the epsilon, has great impact on the performance of each base classifier, the ranges of [2-5 – 215], [2-10 – 25], and 

[2-8 – 2-1] are used to search for the optimal parameter settings, respectively. A 10-fold cross validation is used to 

guide the best parameter search, and avoid overfitting. The optimal parameter setting that leads to the best 

classification accuracy score for a training data set is subsequently used for evaluation of the corresponding test data 

set. The weighted majority voting method is used to generate the final classification result of each identified 

ensemble based on the outputs of each base model. 

 

4.5.2 Evaluation Results for Ensemble Reduction 
To evaluate the ensemble reduction problem, a series of experiments with diverse numbers of iterations have been 

conducted. Since the number of base models is small, a large number of iterations tend to reduce the ensemble size 

drastically (e.g. evaluated with 30 base models, FA selects an average number of 1.8 base classifiers over 30 runs, 

when 100 iterations are applied). To strike the best trade-off between classification accuracy and ensemble size, we 

employ 30 as the maximum number of iterations. Therefore, the following experimental settings are applied to each 

method, i.e. population size=30, and dimension=30 or 50 (representing 30 or 50 base models). The classical search 

methods, CFA, NaFA and the proposed FA model, employ the following number of function evaluations, i.e. 30 

(population size) × 30 (maximum number of generations) = 900. Again, LSFA, HFDE and ELPSO utilize 

comparatively higher numbers of function evaluations. For instance, LSFA uses the following number of function 

evaluations, i.e. 30 (population size) × 30 (maximum number of generations) + 20 (maximum trials of SA) × 30 

(maximum number of generations) = 1500. The number of function evaluations for HFDE is (2 × 30 (population 

size) + 3 offspring generated using FA) × 30 (maximum number of generations) = 1890. The number of function 

evaluations for ELPSO is (30 (population size) + 5 (trials for the improvement of the global best solution)) × 30 

(maximum number of generations) = 1050. The most optimal solution identified by each search method is the 

recommended base model selection for ensemble generation. 

 

Table 10 Evaluation results for the sonar data set using 30 and 50 base models, respectively 
 

sonar  Methods Selected average 

number of base models 

SVM-based Ensemble 

(10-fold) 30 runs 

SVM-based Ensemble 

(hold-out) 30 runs 

30 base models FA 5.33 0.8572 0.8471 

PSO 7.57 0.8578 0.8431 

GA 20.20 0.8635 0.8554 

ELPSO 7.53 0.8588 0.8451 

LSFA  5.47 0.8593 0.8451  

CFA 4.80 0.8481 0.8407 
NaFA 5.37 0.8417 0.8328 

HFDE 5 0.8381 0.8382 

Prop. FA 6.87 0.8914 0.8824 

Full size 30 0.8833 0.8824 

Base model 1 0.7765 0.7775 
50 base models FA 11.13 0.8466 0.8387 

PSO 15.17 0.8499 0.8363 

GA 32.83 0.8566 0.8471 

ELPSO 14.73 0.8497 0.8353 

LSFA 10.87 0.8518 0.8382 

CFA 9.87 0.8460 0.8319 

NaFA 11.2 0.8435 0.8328 

HFDE 9 0.8690 0.8676 

Prop. FA 13.93 0.8926 0.8828 

Full size 50 0.8524 0.8529 

Base model 1 0.7721 0.7726 

 

As shown in Table 9, the following three benchmark data sets from the UCI machine learning repository (Bache and 

Lichman, 2013) are employed for ensemble reduction evaluation, i.e. sonar, ozone, and libras. The sonar data set has 

208 instances with two classes. Each instance is represented by a 60-dimension feature vector. We employ 140 and 

68 samples for training and test, respectively. Both training and test data sets have balanced class samples. Based on 

a training set of 140 samples, PSO-based feature selection is conducted to generate two sets of 30 and 50 optimal 

feature subsets to build 30 and 50 base models, respectively. These base classifiers are used for ensemble reduction 

evaluation. Table 10 shows the detailed comparison results between the proposed algorithm and other search 

methods for ensemble optimization using a test set of 68 instances. To have a fair comparison, a total of 30 trials are 



 

 

conducted for each method for ensemble generation, and the average accuracy rates of 30 ensembles generated by 

each method are used for comparison. The accuracy rates of the original full-sized ensemble and the mean accuracy 

rates of all base models are also provided for comparison. Note that the mean accuracy rates of all base models are 

calculated by averaging the results of all 30 or 50 base classifiers. They are used to indicate the average performance 

of a single SVM classifier. 

 

Note the above comparison is conducted based on the average classification accuracy obtained from 30 runs for each 

test method. In other words, for each trial, one ensemble classifier is constructed based on the base model selection 

result from each algorithm. This base model selection process is performed 30 times to generate the corresponding 

30 ensembles for each method. The average accuracy rates of these 30 ensembles are used for comparison. As 

indicated in Table 10, for evaluation of 30 base models, using 10-fold cross validation, the ensembles constructed by 

the proposed FA model achieve the best average accuracy score of 89.14% over 30 runs, and outperform those 

generated by FA, PSO, GA, ELPSO, LSFA, CFA, NaFA and HFDE by 3.42%, 3.36%, 2.79%, 3.26%, 3.21%, 

4.33%, 4.97% and 5.33% respectively. When evaluated using hold-out validation, the ensemble classifiers built by 

the proposed algorithm have the best average accuracy score of 88.24% over 30 runs, which outperform FA, PSO, 

GA, ELPSO, LSFA, CFA, NaFA and HFDE by 3.53%, 3.93%, 2.7%, 3.73%, 3.73%, 4.17%, 4.96% and 4.42% 

respectively. Our generated ensembles have the same or even slightly higher mean accuracy rates than those 

obtained using the full-sized, unreduced ensemble classifier integrating all 30 base models for hold-out and 10-fold 

cross validation tests, respectively.  

 

For evaluation using 50 base models, the ensemble classifiers generated by our algorithm have the highest mean 

accuracy score of 89.26% over 30 runs for 10-fold cross validation. It outperforms FA, PSO, GA, ELPSO, LSFA, 

CFA, NaFA and HFDE by 4.6%, 4.27%, 3.6%, 4.29%, 4.08%, 4.66%, 4.91% and 2.36% respectively. The models 

produced by the proposed FA model also obtain the best average result score of 88.28% using the hold-out 

validation test, which outperform those generated by FA, PSO, GA, ELPSO, LSFA, CFA, NaFA and HFDE by 

4.41%, 4.65%, 3.57%, 4.75%, 4.46%, 5.09%, 5% and 1.52% respectively, over 30 runs. The average performances 

of our recommended ensembles also outperform those of the full-sized ensemble embedding all 50 base models by 

4.02% and 2.99% for 10-fold and hold-out validation tests, respectively. The empirical results also indicate that the 

ensembles constructed by the proposed FA model achieve the best trade-off between classification accuracy and 

ensemble size in comparison with those produced by other search methods. The proposed algorithm reduces the 

ensemble size, while maintaining or improving classification accuracy simultaneously. 

 

Table 11 Evaluation results for the ozone data set using 30 and 50 base models, respectively 
 

ozone  Methods Selected average number 

of base models 

SVM-based Ensemble 

(10-fold) 30 runs 

SVM-based Ensemble 

(hold-out) 30 runs 

30 base models FA 5.23 0.8466 0.8452 

PSO 6.90 0.8594 0.8540 

GA 24.70 0.8620 0.8532 

ELPSO 6.93 0.8656 0.8595 

LSFA 5.43 0.8598 0.8575 

CFA 4.03 0.8492 0.8452 

NaFA 5.17 0.8524 0.8496 

HFDE 4 0.8444 0.8452 

Prop. FA 6.7 0.8758 0.8742 

Full size 30 0.8583 0.8452 

Base model 1 0.8301 0.8302 

50 base models FA 11.33 0.8569 0.8500 

PSO 14.57 0.8580 0.8504 

GA 32.93 0.8594 0.8520 

ELPSO 14.97 0.8570 0.8484 

LSFA 11.60 0.8569 0.8544 

CFA 10.37 0.8515 0.8389 

NaFA 11.37 0.8535 0.8512 

HFDE 10 0.8583 0.8452 

Prop. FA 14.17 0.8791 0.8750 

Full size 50 0.8597 0.8571 

Base model 1 0.8278 0.8273 

 

Another data set, i.e. ozone, from the UCI machine learning repository (Bache and Lichman, 2013) is also used for 

evaluation. The ozone data set has 324 instances with two classes. Each instance is represented by a 72-dimension 



 

 

vector. We use 280 and 84 instances for training and test, respectively. A balanced number of instances for both 

classes are used in the training and test sets. PSO-based feature selection is used to identify 30 and 50 optimal 

feature subsets using the training set to construct 30 and 50 base classifiers, respectively. The test set is used to 

evaluate the efficiency of the identified ensemble models recommended by each algorithm. A total of 30 runs are 

conducted for each method for ensemble reduction, and the average accuracy rates of the constructed ensembles 

over 30 runs are used for comparison. The detailed evaluation results for the ozone data set are provided in Table 11. 

 

As illustrated in Table 11, when 30 base models are used for ensemble member selection, the ensemble classifiers 

produced by the proposed FA model achieve the highest average accuracy score of 87.58% using 10-fold cross 

validation over 30 runs, which outperforms those of the models generated by FA, PSO, GA, ELPSO, LSFA, CFA, 

NaFA and HFDE by 2.92%, 1.64%, 1.38%, 1.02%, 1.6%, 2.66%, 2.34% and 3.14% respectively. Using hold-out 

validation, the proposed algorithm obtains the best average classification result of 87.42% over 30 runs for ensemble 

construction, and outperforms FA, PSO, GA, ELPSO, LSFA, CFA, NaFA and HFDE by 2.9%, 2.02%, 2.1%, 

1.47%, 1.67%, 2.9%, 2.46% and 2.9% respectively. The ensemble classifiers built by the proposed algorithm also 

outperform the unreduced, full-sized ensemble model by 1.75% and 2.9% on average for the 10-fold and hold-out 

validation tests, respectively. 

 

When evaluated using 50 base models, the ensemble classifiers constructed by our algorithm achieve the best 

classification accuracy scores of 87.91% and 87.50% for the 10-fold and hold-out validation tests, respectively, over 

30 trials. Using 10-fold cross validation, our ensembles outperform those from FA, PSO, GA, ELPSO, LSFA, and 

CFA, NaFA and HFDE by 2.22%, 2.11%, 1.97%, 2.21%, 2.22%, 2.76%, 2.56% and 2.08% respectively, whereas 

using the hold-out validation, our recommended models outperform those built by FA, PSO, GA, ELPSO, LSFA, 

CFA, NaFA and HFDE by 2.5%, 2.46%, 2.3%, 2.66%, 2.06%, 3.61%, 2.38% and 2.98% respectively, over 30 runs. 

The constructed ensemble models also outperform the original unreduced ensemble classifier using all 50 base SVM 

classifiers by 1.94% and 1.79%, on average, for the 10-fold and hold-out validation tests, respectively. 

 

The libras data set from UCI machine learning repository (Bache and Lichman, 2013) is also employed for 

evaluation. It has 360 samples from 15 classes, with 24 instances in each class. Each instance has 90 dimensions. 

We employ the first 5 classes for evaluation. We use two distinctive sets of 84 samples from seven classes 

(including the 5 reported classes and another two classes as noise data) for training and test, respectively. Both 

training and test sets contain balanced class samples. Moreover, for each class, PSO-based feature optimization is 

conducted to identify two sets of optimal feature subsets, i.e. 30 and 50, for producing 30 and 50 base models, 

respectively. A total of 30 runs are conducted for each method in each experimental setting. Table 12 shows the 

detailed evaluation results. 

 

As illustrated in Table 12, for evaluation of each class, the proposed FA-based ensemble reduction classifiers 

outperform those generated by other search methods, as well as the majority of the corresponding full-sized 

ensemble classifiers and single base classifiers, significantly. The classification results indicate the efficiency of the 

proposed FA model for striking the best trade-off between classification accuracy and ensemble size among all 

methods.  

 

To further ascertain the efficiency of our algorithm, another medical image data set, i.e. the Edinburgh Research and 

Innovation (Dermofit) skin lesion data set (Ballerini et al., 2013), is used for evaluation. It includes 1300 

dermoscopic skin lesion images with 850 benign and 450 melanoma cases. The feature extraction process of our 

previous research (Tan et al., 2016) is used to extract shape, colour, size, and lesion-edge features. Overall, each 

image is represented by a 98-dimension feature vector. In this research, we employ 660 and 98 images for training 

and test, respectively. PSO-based feature selection is also used to generate 30 and 50 base models, respectively. A 

total of 30 runs are conducted for evaluation of each method in ensemble generation. The detailed average accuracy 

rates over 30 runs for each method for the two experimental settings are illustrated in Table 13. 

 

Table 12 Evaluation results for the libras data set using 30 and 50 base models, respectively 
 

libras Methods Selected average number 

of base models 

SVM-based Ensemble (10-

fold) 30 runs 

SVM-based Ensemble 

(hold out) 30 runs 

Class 1 30 base models FA 5.03 0.9131 0.9107 
PSO 7.77 0.9146 0.9131 
GA 20.47 0.9175 0.9167 



 

 

ELPSO 7.63 0.9135 0.9127 
LSFA  5.00 0.9099 0.9083 
CFA 4.53 0.9108 0.9095 

NaFA 5.37 0.9038 0.9008 

HFDE 4 0.9056 0.9048 
Prop. FA 7.37 0.9370 0.9258 
Full size 30 0.9042 0.9047 

Base model 1 0.8583 0.8571 
50 base models FA 10.03 0.9096 0.9075 

PSO 15.37 0.9126 0.9107 
GA 32.80 0.9155 0.9119 

ELPSO 15.13 0.9122 0.9095 
LSFA 11.97 0.9124 0.9095 
CFA 10.77 0.9108 0.9099 

NaFA 11.07 0.9026 0.9016 
HFDE 11 0.8944 0.8929 

Prop. FA 14.27 0.9350 0.9235 
Full size 50 0.9069 0.9047 

Base model 1 0.8583 0.8571 
Class 2 30 base models FA 4.43 0.8594 0.8583 

PSO 7.37 0.8591 0.8571 
GA 20.40 0.8583 0.8571 

ELPSO 7.50 0.8587 0.8575 
LSFA 5.87 0.8599 0.8583 
CFA 4.27 0.8587 0.8575 

NaFA 5.37 0.8615 0.8603 
HFDE 4 0.8583 0.8571 

Prop. FA 7.13 0.8809 0.8790 
Full size 30 0.8805 0.8809 

Base model 1 0.8583 0.8571 
50 base models FA 10.03 0.8591 0.8571 

PSO 15.37 0.8583 0.8571 
GA 32.80 0.8583 0.8591 

ELPSO 15.13 0.8591 0.8575 
LSFA 11.77 0.8683 0.8609 
CFA 10.57 0.8607 0.8595 

NaFA 11.07 0.8624 0.8611 
HFDE 11 0.8583 0.8571 

Prop. FA 14.60 0.8911 0.8897 
Full size 50 0.8904 0.8809 

Base model 1 0.8583 0.8571 
Class 3 30 base models FA 5.20 0.9430 0.9409 

PSO 7.37 0.9393 0.9385 
GA 20.10 0.9406 0.9393 

ELPSO 7.23 0.9384 0.9377 
LSFA 4.87 0.9383 0.9365 
CFA 5.07 0.9434 0.9421 

NaFA 5.37 0.9431 0.9417 
HFDE 4 0.9403 0.9405 

Prop. FA 7.03 0.9656 0.9643 
Full size 30 0.9417 0.9405 

Base model 1 0.8733 0.8722 
50 base models FA 10.03 0.9396 0.9381 

PSO 15.37 0.9402 0.9389 
GA 32.80 0.9405 0.9397 

ELPSO 15.13 0.9405 0.9401 
LSFA 11.77 0.9387 0.9377 
CFA 10.57 0.9390 0.9385 

NaFA 11.07 0.9390 0.9373 
HFDE 11 0.9417 0.9405 

Prop. FA 14.60 0.9710 0.9679 
Full size 30 0.9417 0.9405 

Base model 1 0.8738 0.8729 
Class 4 30 base models FA 5.20 0.8952 0.8944 

PSO 7.37 0.8938 0.8929 
GA 20.10 0.8935 0.8929 

ELPSO 7.23 0.8949 0.8937 
LSFA 5.87 0.8965 0.8952 
CFA 5.33 0.9000 0.8976 



 

 

NaFA 5.37 0.8938 0.8921 
HFDE 4 0.8931 0.8929 

Prop. FA 6.63 0.9250 0.9218 
Full size 30 0.8958 0.8929 

Base model 1 0.8603 0.8591 
50 base models FA 10.03 0.8961 0.8952 

PSO 15.37 0.8959 0.8952 
GA 32.80 0.8934 0.8929 

ELPSO 15.13 0.8952 0.8937 
LSFA 11.77 0.9006 0.8960 
CFA 10.57 0.8963 0.8944 

NaFA 11.07 0.8942 0.8921 
HFDE 11 0.8958 0.8929 

Prop. FA 14.20 0.9305 0.9302 
Full size 50 0.8958 0.8929 

Base model 1 0.8632 0.8621 
Class 5 30 base models FA 5.20 0.9594 0.9583 

PSO 7.37 0.9614 0.9607 
GA 20.10 0.9619 0.9611 

ELPSO 7.23 0.9605 0.9595 
LSFA 5.87 0.9627 0.9615 
CFA 5.07 0.9602 0.9599 

NaFA 5.03 0.9628 0.9619 
HFDE 4 0.9653 0.9643 

Prop. FA 7.37 0.9985 0.9976 
Full size 30 0.9639 0.9643 

Base model 1 0.9069 0.9064 
50 base models FA 10.03 0.9602 0.9587 

PSO 15.37 0.9598 0.9575 
GA 32.80 0.9612 0.9595 

ELPSO 15.13 0.9602 0.9591 
LSFA 11.77 0.9596 0.9596 
CFA 10.57 0.9582 0.9571 

NaFA 11.07 0.9612 0.9583 
HFDE 11 0.9667 0.9643 

Prop. FA 14.27 1.0000 0.9992 
Full size 50 0.9639 0.9643 

Base model 1 0.8990 0.8983 

 

   Table 13 Evaluation results for the skin lesion image data set using 30 and 50 base models, respectively 

 
skin lesion Methods Selected average number of 

base models 

SVM-based Ensemble (10-

fold) 30 runs 

SVM-based Ensemble 

(hold-out) 30 runs 

30 base models FA 5.07 0.8743 0.8711 

PSO 7.5 0.8785 0.8738 

GA 20.27 0.8854 0.8789 

ELPSO 7.47 0.8741 0.8694 

LSFA 5.73 0.8828 0.8789 

CFA 5.20 0.8825 0.8782 

NaFA 5.47 0.8806 0.8776 
HFDE 6 0.8778 0.8776 

Prop. FA 7.37 0.9199 0.9167 

Full size 30 0.8878 0.8878 

Base model 1 0.8656 0.8657 
50 base models FA 11.43 0.8977 0.8932 

PSO 14.80 0.9026 0.8973 

GA 32.43 0.9031 0.8986 

ELPSO 14.93 0.9093 0.9061 

LSFA 11.23 0.9032 0.8956 

CFA 10.27 0.9037 0.8986 

NaFA 11.83 0.9057 0.9007 
HFDE 10 0.8978 0.8980 

Prop. FA 14.57 0.9337 0.9313 

Full size 50 0.9078 0.9082 

Base model 1 0.8749 0.8747 

 

 



 

 

Table 14 The p-values of the Wilcoxon rank sum test for all test data sets 

 
Data sets Settings FA PSO GA ELPSO LSFA CFA NaFA HFDE 

sonar 30 base models, 10-fold 1.09E-06 3.03E-06 3.38E-09 5.04E-06 1.42E-08 4.43E-07 1.67E-10 1.16E-12 

 30 base models, holdout 3.24E-07 6.27E-08 1.55E-08 6.33E-08 1.10E-07 3.10E-06 2.15E-10 9.50E-13 

 50 base models, 10-fold 2.65E-10 1.34E-08 6.12E-11 3.30E-10 4.80E-09 9.04E-10 2.30E-10 3.31E-11 

 50 base models, holdout 1.07E-08 7.39E-09 7.06E-08 3.17E-09 4.78E-09 1.55E-08 3.62E-09 3.53E-05 

ozone 30 base models, 10-fold 4.58E-10 2.33E-07 1.70E-06 5.53E-03 4.36E-08 6.17E-08 1.54E-08 1.21E-12 

 30 base models, holdout 7.98E-09 1.77E-06 1.42E-08 3.33E-04 5.20E-07 1.88E-09 7.07E-08 1.12E-12 

 50 base models, 10-fold 1.52E-07 7.36E-07 4.28E-06 2.17E-05 9.53E-08 1.08E-05 1.88E-08 7.38E-10 

 50 base models, holdout 5.53E-10 2.19E-08 2.17E-06 2.05E-07 2.69E-08 2.67E-07 4.75E-08 9.91E-13 

libras (Class 1) 30 base models, 10-fold 2.43E-07 8.93E-07 5.89E-06 1.08E-07 1.09E-07 1.52E-08 1.83E-09 4.48E-12 

 30 base models, holdout 1.33E-03 3.85E-03 5.48E-02 1.67E-03 1.61E-04 1.15E-04 2.20E-09 1.13E-10 

 50 base models, 10-fold 1.56E-09 2.76E-08 2.19E-07 1.46E-08 1.33E-08 1.63E-09 2.60E-11 1.20E-12 

 50 base models, holdout 6.62E-06 3.82E-04 1.39E-03 8.51E-05 8.51E-05 1.44E-04 5.06E-09 1.06E-12 

libras (Class 2) 30 base models, 10-fold 3.43E-11 2.63E-11 4.27E-12 8.98E-12 1.32E-10 8.98E-12 2.88E-09 4.27E-12 

 30 base models, holdout 1.21E-11 7.60E-13 7.60E-13 2.03E-12 1.21E-11 2.03E-12 4.50E-10 7.60E-13 

 50 base models, 10-fold 1.88E-12 9.49E-13 9.49E-13 1.87E-12 9.49E-13 1.36E-12 9.96E-12 9.49E-13 

 50 base models, holdout 5.26E-13 5.26E-13 5.26E-13 7.63E-13 5.26E-13 7.63E-13 9.26E-12 9.49E-13 

libras (Class 3) 30 base models, 10-fold 3.35E-06 5.35E-09 1.87E-08 9.66E-09 1.11E-08 9.15E-06 1.39E-05 5.66E-11 

 30 base models, holdout 1.90E-07 1.09E-10 3.03E-11 3.23E-10 3.28E-10 3.81E-07 1.12E-06 1.50E-11 

 50 base models, 10-fold 4.56E-09 4.76E-09 3.16E-09 2.46E-09 1.29E-09 2.74E-09 1.41E-09 7.59E-09 

 50 base models, holdout 3.36E-10 2.99E-10 2.41E-10 2.07E-10 3.39E-10 3.21E-10 9.17E-10 1.73E-10 

libras (Class 4) 30 base models, 10-fold 4.87E-11 2.08E-11 2.11E-11 4.89E-11 9.18E-11 1.29E-09 2.38E-11 1.17E-12 

 30 base models, holdout 9.84E-12 7.22E-13 7.22E-13 2.78E-12 3.24E-11 7.84E-10 5.05E-12 7.22E-13 

 50 base models, 10-fold 2.06E-11 2.03E-11 1.91E-11 2.00E-11 2.32E-11 2.44E-11 2.12E-11 1.10E-12 

 50 base models, holdout 1.28E-12 1.28E-12 4.59E-13 6.69E-13 1.69E-12 9.42E-13 9.42E-13 4.59E-13 

libras (Class 5) 30 base models, 10-fold 2.84E-12 2.84E-12 2.33E-12 2.79E-12 2.82E-12 2.87E-12 2.96E-12 6.14E-14 

 30 base models, holdout 1.83E-12 1.33E-12 7.11E-13 1.17E-12 2.38E-12 2.70E-12 9.05E-12 6.12E-14 

 50 base models, 10-fold 9.61E-13 1.11E-12 9.16E-13 1.08E-12 1.03E-12 1.10E-12 1.05E-12 1.69E-14 

 50 base models, holdout 7.92E-13 6.50E-13 6.09E-13 7.92E-13 6.09E-13 6.09E-13 6.84E-13 2.71E-14 

skin lesion 30 base models, 10-fold 9.79E-10 5.14E-10 3.45E-10 1.06E-10 2.41E-07 2.88E-08 5.06E-09 1.19E-12 

 30 base models, holdout 1.20E-09 5.02E-10 2.35E-10 1.02E-10 7.39E-08 3.48E-08 9.55E-09 1.08E-12 

 50 base models, 10-fold 2.19E-08 8.22E-08 1.29E-10 3.42E-06 5.00E-10 3.13E-09 9.61E-05 1.17E-12 

 50 base models, holdout 1.93E-09 6.28E-09 3.29E-11 2.30E-07 6.51E-11 1.36E-09 9.05E-06 1.03E-12 

 

As illustrated in Table 13, using 30 base classifiers, our ensemble classifiers outperform those produced by FA, 

PSO, GA, ELPSO, LSFA, CFA, NaFA and HFDE by 4.56%, 4.14%, 3.45%, 4.58%, 3.71%, 3.74%, 3.93% and 

4.21% on average over 30 runs for 10-fold cross validation and by 4.56%, 4.29%, 3.78%, 4.73%, 3.78%, 3.85%, 

3.91% and 3.91% for hold-out validation. The results are better than those from the full-sized ensemble classifier 

integrating 30 base models by 3.21% and 2.89% for cross and hold-out validation tests, respectively. Using 50 base 

models, our ensemble classifiers outperform those produced by FA, PSO, GA, ELPSO, LSFA, CFA, NaFA and 

HFDE by 3.6%, 3.11%, 3.06%, 2.44%, 3.05%, 3%, 2.8% and 3.59% on average over 30 runs for 10-fold cross 

validation, and by 3.81%, 3.4%, 3.27%, 2.52%, 3.57%, 3.27%, 3.06% and 3.33% for hold-out validation. The results 

are better than those from the full-sized ensemble classifier combining 50 base models by 2.59% and 2.31% for 

cross and hold-out validation tests, respectively. 

 

Statistical tests have been conducted to evaluate the significance level of the proposed algorithm for ensemble 

reduction based on the UCI and skin lesion data sets. The results of the Wilcoxon rank sum test are shown in Table 

14. As indicated in Table 14, the p-values are smaller than 0.05 for nearly all test cases of all data sets, which 

indicate that our algorithm shows significant superiority over other methods, statistically. 

 

Since the base classifiers built by using different feature subsets represent different scenarios of the same problem, 

maintaining too many base models may cause redundancy and overlapping in scenarios, whereas removing too 

many base classifiers may lose crucial distinctive scenarios of the original problem and result in performance 

reduction. The internal mechanisms of each search method determine the best trade-off between classification 

accuracy and the number of selected base models. The empirical results indicate that the proposed algorithm 

achieves the best trade-off between these two criteria over other methods. NaFA, HFDE, LSFA, CFA and FA show 

discriminative capabilities of ensemble member selection, and tend to generate the smallest ensemble sizes, 

however, at the expense of reduced classification accuracy owing to losing complementary information of the base 

models to some extent. On the contrary, GA shows competitive classification performance across data sets, 

however, at the expense of larger ensemble sizes with high complexity. The generated models are more likely to 

possess a high level of redundant information. ELPSO and PSO generate similar ensemble sizes as compared with 

those produced by the proposed algorithm. However, the proposed FA model shows more competitive capability of 



 

 

discriminative base model selection, and produces better classification accuracy rates than those of PSO and 

ELPSO. 

 
                                                     (a)                                                                                                      (b) 

Figure 4 Average convergence curves of 30 experimental runs for (a) sonar and (b) ozone data sets with 30 and 50 

base models respectively 

 

We have also compared the convergence rates of different methods using the training samples of each data set. 

Figure 4 (a) and (b) show the convergence curves of the sonar and ozone data sets with 30 and 50 base models, 

respectively. The average convergence performance over 30 runs for each method is used to generate the plots for 

each data set shown in Figure 4.  

 

As shown in Figure 4, for both sonar and ozone data sets with 30 and 50 base models respectively, LSFA and FA 

show fast convergence performance in early iterations. NaFA, CFA, and the proposed FA model depict radical 

improvements in subsequent iterations. HFDE, PSO, ELPSO, and GA show no significant improvements for the 

convergence rates during the lift-time of the training process. A similar observation is also obtained for the 

convergence performance of other data sets with 30 and 50 base models for ensemble reduction.   

 

4.5.3 Discussion on Different Search Methods 
A theoretical comparison of the internal search mechanisms between the proposed algorithm and other FA and PSO 

variants is presented, as follows. CFA (Kazem et al., 2013) employs chaotic accelerated population initialization and 

attractiveness behaviour to guide the search process. ODFA (Verma et al., 2016) utilizes a dimensional approach to 

retrieve 𝑔𝑏𝑒𝑠𝑡 . Instead of using brighter fireflies from the whole population, NaFA (Wang et al., 2017) uses those in 

a pre-defined smaller neighbourhood to guide the attractiveness action. Nevertheless, the mechanism of finding the 

global best solutions in the above three FA models fully relies on the single attractiveness operation. When this 

action fails to achieve an optimal solution, or is trapped in local optima, there is no alternative search strategy to lead 

the search out of stagnation. Similarly, although LSFA (Alweshah and Abdullah, 2015) incorporates SA to improve 

the global best solution identified by LFA, the main operator of SA performs randomized movements. Such 

randomized operations possess limited exploitation capabilities, with a considerably slow convergence rate. ELPSO 

(Jordehi, 2015) employs Gaussian, Cauchy, opposition and DE based mutation operators to improve the global best 

solution identified by PSO in each iteration. However, the search of global optimality is guided purely by a single 

swarm leader without consideration of multiple promising solutions in the neighbourhood, and it is more likely to be 

trapped in local optima. HFDE (Dash et al., 2017) incorporates FA to further improve the global search capabilities 

of IDE. In HFDE, although the FA movement is used to improve three top solutions identified by IDE, the search 

process largely relies on the mutation and crossover operations of IDE. In comparison with FA and other FA 

variants, the global search capability of HFDE is comparatively limited, especially when the search space is large. 

Moreover, the mutation operator of HFDE mainly employs the global best solution for offspring generation. 

Therefore, the search process is more likely to be trapped in local optima in comparison with those guided by 

multiple neighbouring optimal solutions.  

 



 

 

The proposed FA model employs two newly introduced attractiveness and evading search behaviours to mitigate 

premature convergence and explore wider and more distinctive search regions. Therefore, it has better capability of 

finding global optima and escaping from local optimum traps. In particular, the attractiveness search operation is 

guided by both local and global best solutions to reduce the probability of falling into local optima. When the 

attractiveness behaviour stagnates, the evading operation enables the fireflies to move to other optimal regions and 

to drive the search out of stagnation, and vice versa. The attractiveness and evading actions work in a collaborative 

manner to lead the search towards global optimality. Overall, both proposed search mechanisms account for the 

superiority of the proposed algorithm in discriminant base model selection. 

 

Moreover, for evaluation of the standard functions, shifted and composite test suite, and the ensemble reduction 

problems using UCI data sets, the proposed algorithm has the same number of function evaluations as those of the 

original FA, SA, PSO, BSO, CS, DA, ALO, CFA, and NaFA models, i.e. (population size)×(maximum number of 

generations). As an example, in each iteration of SA, there is only one function evaluation for the current solution, 

therefore we have increased the iteration number to (population size)×(maximum number of generations), in order to 

have a fair comparison. Other FA and PSO variants, such as LSFA, SFA, ODFA, HFDE and ELPSO, have used 

higher numbers of function evaluations.  

 

LSFA (Alweshah and Abdullah, 2015) employed SA to further improve the global best solution obtained by LFA in 

each iteration, therefore the number of function evaluations for LSFA is the sum of the evaluations conducted for 

both LFA and SA, i.e. (population size)×(maximum number of generations) + (maximum trials of SA)×(maximum 

number of generations). A similar scenario applies to SFA (Alweshah and Abdullah, 2015), where the global best 

solution of FA is further enhanced by SA. The number of function evaluations for SFA is the sum of the cost for 

both FA and SA, i.e. (population size)×(maximum number of generations) + (maximum trials of SA)×(maximum 

number of generations). ODFA (Verma et al., 2016) employs a dimensional approach to retrieve 𝑔𝑏𝑒𝑠𝑡  by 

identifying the best solution in each dimension among all the population members in each generation. Therefore, the 

number of function evaluations for ODFA is dimension × population size × maximum number of generations. 

ELPSO (Jordehi, 2015) employs a five-stage strategy to improve the global best solution in each iteration, therefore 

it has a slightly higher number of function evaluations, i.e. (population size + 5)×(maximum number of generations). 

Since HFDE (Dash et al., 2017) integrates DE with FA, the number of function evaluations of HFDE is the sum of 

the cost for both DE (i.e. the fitness evaluation for both parent and offspring populations) and FA, i.e. (2×population 

size + 3 offspring generated using FA)×(maximum number of generations). 

 

Overall, the proposed algorithm has the same number of function evaluations and similar computational efficiency 

as those of the original FA model and other classical search methods. Other FA and PSO variants, such as HFDE, 

ODFA, LSFA, SFA, and ELPSO, have comparatively larger numbers of function evaluations, therefore higher 

computational costs as compared with those of the proposed algorithm. 

5. CONCLUSIONS 

In this research, we have proposed a modified FA model which incorporates two newly proposed attractiveness and 

evading search mechanisms to address the limitations of the original search behaviours of FA. Both search strategies 

work cooperatively to mitigate the premature convergence of the original FA model. The attractiveness movement 

not only uses the neighbouring but also global best solutions to guide the search process, while the evading 

operation leads the swarm to avoid unpromising search regions. Based on a series of standard, shifted, and 

composite test functions, BBOB testbeds and several high dimensional data sets, the proposed algorithm shows great 

capability of not only solving diverse challenging complex unimodal and multimodal benchmark problems, but also 

identifying discriminant base models for ensemble reduction. Moreover, evaluated with the sonar, ozone, libras and 

skin lesion data sets, the resulting classifier ensembles generated by the proposed algorithm outperform those 

produced by other search methods, as well as the corresponding full-sized ensemble classifiers and single base 

classifiers, significantly. 

 

In further work, we aim to further improve the proposed search mechanisms by incorporating a micro GA-based  

secondary swarm, chaos-based parameter tuning, and mutation-based population diversification for performance 

enhancement  (Neoh et al., 2015; Mistry et al., 2016; Srisukkham et al., 2017). Other adaptive parameter tuning 

strategies and hybrid evading actions will also be studied to further improve the robustness of the proposed 

algorithm. In addition, other base classifier pool generation techniques will also be used to further evaluate the 



 

 

proposed algorithm. We also aim to extend the proposed algorithm to deal with data stream classification with 

concept drifting and hyper-parameter selection for deep neural networks (Kinghorn et al., 2017a; 2017b). Besides 

that, multi-objective fitness evaluation will be employed for ensemble reduction. 

APPENDIX 

Table A.1 Unimodal benchmark functions 
 

Function Range Shift position fmin 

𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 
[-100,100] [-30, -30,…, -30] 0 

𝑓2(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

+ ∏|𝑥𝑖|

𝑛

𝑖=1

 
[-10,10] [-3, -3,…, -3] 0 

𝑓3(𝑥) = ∑ (∑ 𝑥𝑗

𝑖

𝑗−1

)

2
𝑛

𝑖=1

 

[-100,100] [-30, -30,…, -30] 0 

𝑓4(𝑥) = max
𝑖

{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} [-100,100] [-30, -30,…, -30] 0 

𝑓5(𝑥) =  ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 
[-30,30] [-15, -15,…, -15] 0 

𝑓6(𝑥) = ∑([𝑥𝑖 + 0.5])2

𝑛

𝑖=1

 
[-100,100] [-750,…, -750] 0 

𝑓7 = ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1

+ random[0,1] 
[-1.28,1.28] [-0.25,…, -0.25] 0 

 

Table A.2 Multimodal benchmark functions 

 

 

Table A.3 Composite benchmark functions 

 
Function Range fmin 

𝑓13(𝐶𝐹1): 
𝑓1, 𝑓2, 𝑓3, … , 𝑓10 = Sphere Function 

[-5,5] 0 

Function Range Shift position fmin 

𝑓8(𝑥) = ∑[𝑥𝑖
2 − 10cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 
[-5.12,5.12] [-2, -2,…, -2] 0 

𝑓9(𝑥) = −20exp (−0.2√
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

) − exp (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20 + 𝑒   

[-32,32]  0 

𝑓10(𝑥) =
1

4000
∑ 𝑥𝑖

2

𝑛

𝑖=1

− ∏ cos (
𝑥𝑖

√𝑖

𝑛

𝑖=1

) + 1 
[-600,600] [-400,…, -400] 0 

𝑓11(𝑥) =
𝜋

𝑛
{10sin(𝜋𝑦1) + ∑(𝑦𝑖 − 1)2[1 + 10sin2(𝜋𝑦𝑖+1)]

𝑛−1

𝑖=1

+ (𝑦𝑛 − 1)2} + ∑ 𝑢(𝑥𝑖 , 10, 100, 4)

𝑛

𝑖=1

 

                        𝑦𝑖 = 1 +
𝑥𝑖+1

4
 

𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚                 𝑥𝑖 > 𝑎
0                      − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚          𝑥𝑖 < −𝑎
 

[-50,50] [-30, -30,…, -30] 0 

𝑓12(𝑥) = 0.1 {sin2(3𝜋𝑥1)

+ ∑(𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + sin2(2𝜋𝑥𝑛)]}

+ ∑ 𝑢(𝑥𝑖 , 5, 100, 4)

𝑛

𝑖=1

 

[-50,50] [-100,…, -100] 0 



 

 

[𝛿1, 𝛿2, 𝛿3, … , 𝛿10] = [1,1,1, … ,1] 
[𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [5 100⁄ , 5 100⁄ , 5 100⁄ , … , 5 100⁄ ] 
 

𝑓14(𝐶𝐹2):  
𝑓1, 𝑓2, 𝑓3, … , 𝑓10 = Griewank′s Function 

[𝛿1, 𝛿2, 𝛿3, … , 𝛿10] = [1,1,1, … ,1] 
[𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [5 100⁄ , 5 100⁄ , 5 100⁄ , … , 5 100⁄ ] 
 

[-5,5] 0 

𝑓15(𝐶𝐹3):  
𝑓1, 𝑓2, 𝑓3, … , 𝑓10 = Griewank′s Function 

[𝛿1, 𝛿2, 𝛿3, … , 𝛿10] = [1,1,1, … ,1] 
[𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [1,1,1, … ,1] 
 

[-5,5] 0 

𝑓16(𝐶𝐹4):  
𝑓1, 𝑓2 = Ackley′s Function 

𝑓3, 𝑓4 = Rastrigin′s Function 

𝑓5, 𝑓6 = Weierstrass Function 

𝑓7, 𝑓8 = Griewank′s Function 

𝑓9, 𝑓10 = Sphere Function 

[𝛿1, 𝛿2, 𝛿3, … , 𝛿10] = [1,1,1, … ,1] 
[𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [5 32⁄ , 5 32⁄ , 1, 1, 5 0.5⁄ , 5 0.5⁄ , 5 100⁄ , 5 100⁄ , 5 100⁄ , 5 100⁄ ] 
 

[-5,5] 0 

𝑓17(𝐶𝐹5):  
𝑓1, 𝑓2 = Rastrigin′s Function 

𝑓3, 𝑓4 = Weierstrass Function 

𝑓5, 𝑓6 = Griewank′s Function 

𝑓7, 𝑓8 = Ackley′s Function 

𝑓9, 𝑓10 = Sphere Function 

[𝛿1, 𝛿2, 𝛿3, … , 𝛿10] = [1,1,1, … ,1] 
[𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [1 5⁄ , 1 5⁄ , 5 0.5⁄ , 5 0.5⁄ , 5 100⁄ , 5 100⁄ , 5 32⁄ , 5 32⁄ , 5 100⁄ , 5 100⁄ ] 
 

[-5,5] 0 

𝑓18(𝐶𝐹6):  
𝑓1, 𝑓2 = Rastrigin′s Function 

𝑓3, 𝑓4 = Weierstrass Function 

𝑓5, 𝑓6 = Griewank′s Function 

𝑓7, 𝑓8 = Ackley′s Function 

𝑓9, 𝑓10 = Sphere Function 

[𝛿1, 𝛿2, 𝛿3, … , 𝛿10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] 
[𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [0.1 ∗ 1 5⁄ , 0.2 ∗ 1 5⁄ , 0.3 ∗  5 0.5⁄ , 0.4 ∗ 5 0.5⁄ , 0.5 ∗ 5 100⁄ , 0.6 ∗ 5 100⁄ , 0.7

∗ 5 32⁄ , 0.8 ∗ 5 32⁄ , 0.9 ∗ 5 100⁄ , 1 ∗ 5 100⁄ ] 
 

[-5,5] 0 
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