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Abstract

Given a classification task, an approach to improve accuracy relies on the use

of abstaining classifiers. These classifiers are trained to reject observations for

which predicted values are not reliable enough: these rejected observations

belong to an abstaining area in the feature space. Two equivalent methods

exist to theoretically compute the optimal abstaining area for a given classifi-

cation problem. The first one is based on the posterior probability computed

by the model and the other is based on the derivative of the ROC function of

the model. Although the second method has proved to give the best results,

in small-sample settings such as the one found in omics data, the estimation

of posterior probabilities and derivative of ROC curve are both lacking of

precision leading to far from optimal abstaining areas. As a consequence

none of the two methods bring the expected improvements in accuracy. We

propose five alternative algorithms to compute the abstaining area adapted
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to small-sample problems. The idea of these algorithms is to compute an

accurate and robust estimation of the ROC curve and its derivatives. These

estimation are mainly based on the assumption that the distribution of the

output of the classfier for each class is normal or mixture of normal distri-

butions. These distributions are estimated by a kernel density estimator or

Bayesian semiparametric estimator. Another method works on the approxi-

mation of the convex hull of the ROC curve. Once the derivative of the ROC

curve are estimated, the optimal abstaining area can be directly computed.

The performance of our algorithms are directly related to their capacity to

compute an accurate estimation of the ROC curve. A sensitivity analysis

of our methods to the dataset size and rejection cost has been done on a

set of experiments. We show that our methods improve the performances of

the abstaining classifiers on several real datasets and for different learning

algorithms.

Keywords: Supervised learning, reject option, small-sample setting,

Abstaining classifier, ROC curve estimation

1. Introduction

In many domains, more and more data are produced because of recent

technological advances and the increasing capabilities of modern computers

to analyze and mine these data. One of the most interesting exploitations

of these data is the construction of predictive classifiers [14]. For example,

in genetic and molecular medicine, gene expression profiles are used to dif-
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ferentiate different types of tumors with different outcomes and thus assist

the physician in the selection of more suitable therapeutic treatment [26]. A

huge number of different methods from pattern recognition or machine learn-

ing have been developed and applied on various domains. Even when these

methods produce classifiers with a good accuracy, they are often still insuffi-

ciently accurate to be used routinely. For example, a diagnostic or a choice

of therapeutic strategy must be based on a very high confidence classifier;

an error of the predictive model may lead to tragic consequences. An avenue

for improving this confidence is to use abstaining classifiers [21] also called

reject classifiers [25] or selective classifiers [6]. Unlike classical classifiers that

provide a predicted class for each test example, only a subset of the examples

is assigned to a class. The abstaining classifiers define an abstaining area re-

grouping the examples whose confidence in the predicted class is low, these

examples are rejected, i.e. no class is assigned to them [3, 24, 22, 4, 10, 19].

This type of classifier has thus a higher accuracy than the classic classifier at

the expense of a positive rejection rate. As a consequence, there is a trade-

off between accuracy and rejection rate to control [13]. In other words, the

higher the classifier accuracy, the higher the rejection rate.

Chow has introduced the notion of abstaining classifier and his definition

of the abstaining area is based on the exact posterior probabilities of each

example [3]. For a given cost of rejection of an example, one can compute

the optimal abstaining area. In practical cases, the exact posterior prob-

abilities are not available since the class distribution is unknown. Chow’s

4



ACCEPTED MANUSCRIPT

rule must thus be used with an estimation of the posterior probabilities. To

drop the necessity to rely on the exact posterior probabilities, Tortorella has

proposed a method where the abstaining area is computed in selecting two

points on the Receiver operating characteristic ROC curve [8] describing the

performance of the classification model [24]. The two points are identified

by their tangent on the ROC curve computed from the cost of rejection and

type of error. As with Chow’s rule, if one knows precisely the exact ROC

curve, the resulting abstaining area is optimal. The problem is that on real

data, one does not have the exact ROC curve either. The computation of

the derivative is therefore done on the convex hull of the empirical ROC

curve. Santos-Pereira proved that both the Chow’s rule and ROC rule are

equivalent in theory [23]. In practice, both rules do not lead to the optimal

abstaining area since the exact posterior probabilities and the ROC curve

are both unknown. As they thus rely on estimations, they compute therefore

an approximation of the optimal abstaining area. Several studies have shown

that, on real data, the ROC rule gives better performance than Chow’s rules

[17, 28]. The important point is that all of these studies have been done on

datasets containing a large set of examples (several hundred or thousands).

However in many domains the datasets contain few examples, for example

in genomics studies where the acquisition cost of the data is expensive, the

datasets contain generally less than 100 examples. In small sample data, the

empirical ROC curve has to be constructed with only some tens of examples.

As a consequence, the ROC convex hull curve is defined by a very limited
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number of points and different tangent values. Figure 1 illustrates this fact

on a concrete task, the bold line represents the exact ROC curve, the gray

line is the empirical ROC curve computed from 40 examples and its convex

hull curve is the black line. The ROC convex hull is defined by only four

points and takes only three different values of the tangent. This means that

only five different non-trivial abstaining areas are possible from this con-

vex hull curve: {(P1, P2), (P1, P3), (P2, P3), (P2, P4), (P3, P4)}. From the

exact ROC curve, we can define an infinite number of different abstaining ar-

eas. This example illustrates the limitation of the ROC rule in small sample

data. In this paper, we propose some adaptations of the ROC rule for the

small sample problem. We present five methods to approximate the ROC

curve and its derivative in order to compute a reject area and improve the

performance of the classifier. These methods are easy to implement and us-

able with any classification method. Our experiments show that we improve

significantly the performance of the classifier on real data compared to the

ROC and Chow’s rules.

2. Abstaining Classifiers

2.1. Definition

We consider a classification problem with two classes: positive P and

negative N . Let’s a training set of m examples T = {(x1, y1), ..., (xm, ym)}

(xi ∈ Rd, yi ∈ {P,N}) and a classifier rule Ψ. The classifier output ω(x) is

a continuous value of an example x. In fixing a threshold α on this output
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Figure 1: Exact ROC curve (bold line) and empirical ROC curve (gray line) and empirical
ROC curve convex hull (black line).

Table 1: Cost matrix of the classification problem.

actual
P N

Predicted P λPP λNP

class N λPN λNN

R λR λR

we define a classic classifier Ψα that assigns one of the two classes to each

example. In fixing two thresholds {αN , αP}, we define an abstaining classifier

that rejects some examples and assigns the others to one of the two classes.

Ψαn,αp
(x) =





N if ω(x) ≤ αN

R if αN < ω(x) < αP

P if ω(x) ≥ αP
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with the constraint αN ≤ αP . R represents the rejection of the example x.

Figure 2 shows the distribution of the two classes on the classifier output.

The two thresholds αN and αP divide the classifier output into three deci-

sion regions ({N,P,R}). The performance of the classifier depends on the

following values: the rate of true negative (TNR), true positive (TPR), false

negative (FNR), false positive (FPR), positive rejection (RPR), negative re-

jection (RNR) and the prior probabilities of the two classes πP and πN . For

each of the classification type a cost is defined, they are represented by the

cost matrix as in table 2.1. The performance of a classifier is measured by

its expected loss:

L(ΨαN ,αP
) = πP [λPPTPR + λNPFNR + λRRPR]

+πN [λNNTNR + λPNFPR + λRRNR]

The objective is to find the thresholds αN and αP minimizing the expected

loss of the classifier.

2.2. Chow’s rule

With Chow’s rule [3], we considered that the posterior probability of the

positive class is given ω(x) = p(P |x). We define the three loss functions LN ,

LR and LP that represent the expected loss that is obtained in assigning an

example x to respectively the class N , R or P .

From this formulation we solve the following equations :
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Figure 2: Distribution of the classes on the classifier output:

 LP (x) = LR(x) ⇔ λPPp(P |x) + λNPp(N |x) = λR

⇔ λPPp(P |x) + λNP (1 − p(P |x)) = λR ⇔ p(P |x) =
λR − λNP

λPP − λNP

 LN(x) = LR(x) ⇔ λPNp(P |x) + λNNp(N |x) = λR

⇔ λPNp(P |x) + λNN(1 − p(P |x)) = λR ⇔ p(P |x) =
λR − λNN

λPN − λNN

We obtain the optimal decision thresholds :
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α∗
P =

λR − λNP

λPP − λNP

α∗
N =

λR − λNN

λPN − λNN

(1)

It is interesting to note that if the classifier output is the likelihood ratio

lr(x) = p(x|P )
p(x|N)

then the optimal decision thresholds are the following:

lr(x)∗P =
λR − λNP

λPP − λR

πN

πP

lr(x)∗N =
λR − λNN

λPN − λR

πN

πP

These decisions threshold are equal to the optimal ROC curve derivative

found in the ROC rule as we will see in the next section. This illustrates the

theoretical results stating that Chow’s rule and ROC rule are equivalent.

In theory the abstaining area defined by these two thresholds is optimal.

In practice since the exact posterior probabilities are unknown, we have to

rely on their estimations, we therefore obtain an approximation of the ab-

staining rejection area.

2.3. Optimal ROC based abstaining area

An alternative to Chow’s rule is to compute the optimal rejection area

from the ROC curve. The expected loss of an abstaining classifier can be
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expressed by the following form:

L(ΨαN ,αP
) =

πP [λPPTPRαP
+ λPNFNRαN

+ λR(FNRαP
− FNRαN

)]

+ πN [λNPFPRαP
+ λNNTNRαN

+ λR(FPRαN
− FPRαP

)]

where TPRαP
is the true positive rate obtained by the no-abstaining classi-

fier ΨαP
. The values (FNRαP

−FNRαN
) and (FPRαN

−FPRαP
) represent

the rejection rate of respectively positive and negative class. On real data, we

do not have the true values of TPR, TNR, FPR, FNR, πP , πN they have to

be estimated empirically from an independent finite validation set of exam-

ples: T̂PR = TP
NP

, T̂NR = TN
NN

, F̂PR = FP
NN

, F̂NR = FN
NP

, π̂P = NP

NP+NN
, π̂N =

NN

NP+NN
where TP, TN, FP, FN are the number of examples in the differ-

ent types of classification computed on the validation set. We compute an

approximation of the expected loss function:

L̂(ΨαN ,αP
) =

π̂P

[
λPP T̂PRαP

+ λPN
̂FNRαN

+ λR( ̂FNRαP
− ̂FNRαN

)
]

+ π̂N

[
λNP F̂PRαP

+ λNN
̂TNRαN

+ λR(F̂PRαN
− F̂PRαP

)
]

(2)

The ROC curve is a function that links the true positive rate to the false

positive rate TP
NP

= fROC(FP
NN

). In including the definition to the previous
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formulas, we can express L̂(ΨαN ,αP
) only in function of FPαP

and FPαN
.

L̂(ΨαN ,αP
) = π̂P [(λPP − λR)fROC(F̂PRαP

) + (λR − λPN)fROC(F̂PRαN
) + λPN ]

+ π̂N [(λNP − λR)F̂PRαP
+ (λR − λNN)F̂PRαN

+ λNN ]

In solving the equations
∂L̂(ΨαN ,αP

)

∂ ̂FPRαN

= 0 and
∂L̂(ΨαN ,αP

)

∂ ̂FPRαP

= 0 the conditions

to reach the minimum of the loss function are given by the derivatives of the

ROC function :

f ′
ROC

(
F̂PRαN

)
=

NN(λR − λNN)

NP (λPN − λR)

f ′
ROC

(
F̂PRαP

)
=

NN(λR − λNP )

NP (λPP − λR)

(3)

fROC is a function strictly increasing and concave, a given value of deriva-

tive corresponds to an unique point on the ROC curve. Since each point on

the ROC curve (FPRα, TPRα) is associated to a decision threshold, we can

obtain the rejection area from the two previous derivatives.

3. Computing the abstaining area

We present here six methods to compute the abstaining area in a real

condition. The first one is the implementation of the ROC rule given by Tor-

torella [25], the others are the new methods that we proposed. The methods

presented in section 3.2, 3.3, 3.4 and 3.5 are based on an approximation of

the ROC curve. A lot of ROC approximation methods has been proposed, a

taxonomy of the existing methods can be found in [15, 9]. Our methods use
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respectively the Gaussian kernel approximation (3.2), Bayesian semiparamet-

ric estimator (3.3), binormal model (3.4) and Bezier curve from the convex

hull of the ROC points. The last method is an empirical and exhaustive

search of the best rejection area.

3.1. The ROC rule

In practice, generally only one dataset T is available to construct the

classifier. We, therefore, have to split this dataset into a training set Tr

and a validation set Tv. The training set is used to learn the model that

returns the value of the classifier output ω(x) for any example x. The

validation set is used to compute the ROC curve of the model and de-

fine the abstaining area. The ROC curve is defined by a set of v points

UROC =
{(

FPRi

TPRi

)
; 1 ≤ i ≤ v

}
and a decision threshold is associated to each

of these points. The ROC convex hull is the minimum convex set dominat-

ing all points of the ROC curves, the set of points defining the ROC convex

hull UROCCH =
{(

FPRj

TPRj

)
; 1 ≤ j ≤ w

}
is a subset of UROC . Computing the

abstaining area consists in identifying the two points of the ROC convex hull

whose tangents are the closest from the target derivative defined by equa-

tion (2). These two points are associated to the two decision thresholds that

will define the abstaining area. As mentioned in the introduction, the ROC

convex hull is a piecewise linear curve and takes a finite number of different

tangents. It is not a unique tangent but a range of tangents that is associated

to each point of the ROC convex hull. The point
(
FPRj

TPRj

)
will be selected for

13
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any target derivative contained in the interval
[
TPRj−TPRj−1

FPRj−FPRj−1
;
TPRj+1−TPRj

FPRj+1−FPRj

]
.

Recall that this method is possible only if the tangent ranges for each point

are disjoint. This is the case since it has been proved that the convex hull of

the ROC curve is concave (i.e. the area below the curve is convex) [27].

3.2. ROC approximation by Gaussian kernel density estimator (roc.kernel)

To avoid the problem of finite number tangents, we propose to approxi-

mate the ROC curve by a kernel density estimator from RROC . Kernel esti-

mators are known to be simple with good theoretical and practical properties

for the ROC curve estimation [16].

The ROC curve can be formulated as :

̂fROC(t) = 1 − FP (F−1
N (1 − t)) (4)

with t ∈ [0, 1] where F−1
N (1 − t) = infx ∈ R|F (x) ≥ 1 − t . FP and FN

represent the distributions of respectively the positive and negative class on

the classifier outout ω. We have therefore TPRα = 1 − FP (α) and FPRα =

1 − FN(α). Since the true distributions FP and FN are unknown, they are

estimated by a Gaussian kernel estimator:

F̂P (α) =
1

NP

NP∑

i=1

Φ

(
α− w

(P )
i

hP

)
= 1 − T̂PRα

F̂N(α) =
1

NN

NN∑

i=1

Φ

(
α− w

(N)
i

hN

)
= 1 − F̂PRα

(5)
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where (ω
(P )
1 , ..., ω

(P )
NP

) and (ω
(N)
1 , ..., ω

(N)
NN

) are the classifier output of re-

spectively the positive and negative examples. hP and hN are the bandwidths

of the Gaussian kernel for each class. The bandwidths are computed using

the Altman ans Leger’s approach [1]. From the formulas (5), the TPRα and

FPRα are computed for a large value range of α : {α1, ..., αK}. This set of

ROC points {(TPRαi
,FPRαi

)} gives an estimation of the ROC curve. Each

value of αi is associated to a derivative of the ROC curve by :

̂f
′

ROC(FPRαi) =
̂TPRαi+1

− ̂TPRαi−1

̂FPRαi+1
− ̂FPRαi−1

The rejection area is formed by the two values of α with the corresponding

derivative value closest to the target ROC curve derivative defined in (3).

3.3. ROC approximation by Bayesian semiparametric estimator (roc.bayesian)

Bayesian modeling has been applied successfully to ROC curve approxi-

mation. The Bayesian semi-parametric ROC analysis, proposed by Erkanli

[7], is one of the most popular approximation methods. The classifier output

of positive examples is represented by a mixture of normal distributions.

ω
(P )
K,θK

∼ N(µK , σ
2
K)

where K is the number of components and θK = (µK , σ
2
K) are the parameters

of the distributions. Let a set of classifier output values from positive exam-

ples {w
(P )
1 , ..., w

(P )
NP

}, the posterior predictive density of the future output of
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a positive example given the past outputs can be approximated by :

fN(ω(P )|ω
(P )
1 , ..., ω

(P )
NP

=
1

NP

NP∑

i=1

K∑

k=1

η
(i)
k f(ω|θ

(i)
k )

where f(ω|θ
(i)
k ) is the normal density. η1, ..., ηK are the probabilities of

the components, they are computed from Beta distributions. All details

about the computation of these densities and the choice of the number of

components can be found in the original paper [7]. Having approximated

the posterior predictive density f(ω(P )|ω
(P )
1 , ..., ω

(P )
NP

, it is then straightfor-

ward to obtain the cumulative distribution function FP (ω|ω
(P )
1 , ..., ω

(P )
NP

) =
∫ ω

− inf
fN(ω|ω

(P )
1 , ..., ω

(P )
NP

dω. The true positive rate is therefore

T̂PRα = 1 − FP (ω|ω
(P )
1 , ..., ω

(P )
NP

) (6)

With the same procedure, we compute the false positive rate in estimating the

posterior predictive density of negative examples fN(ω|ω
(N)
1 , ..., ω

(N)
NN

. From

the formulas (6), the TPRα and FPRα are computed for a large value range

of α : {α1, ..., αK}. This set of ROC points {(TPRαi
,FPRαi

)} gives an

estimation of the ROC curve. Each value of αi is associated to a derivative

of the ROC curve by :

̂f
′

ROC(FPRαi) =
̂TPRαi+1

− ̂TPRαi−1

̂FPRαi+1
− ̂FPRαi−1
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The rejection area is formed by the two values of α with the corresponding

derivative value closest to the target ROC curve derivative defined in (3).

3.4. ROC approximation by binormal models (roc.binorm)

In ROC curve approximation, a usual approach is to use a binormal

model [5, 12] considering that the probability distribution of the two classes

on the classifier output is Gaussian. This model implies that the positive

and negative class follow respectively the normal distribution N(µP , σP
2)

and N(µN , σN
2). The estimation of the ROC curve is defined by:

̂fROC(t) = Φ(a + bΦ−1(t))

where Φ is the cumulative distribution function of the normal distribution, a

and b are the parameters of the model estimated from the data : a = µP−µN

σP

and b = σN

σP
. The true and false positive rate can be estimated by T̂PRt =

Φ(a−bt) and F̂PRt = Φ(−t). This classic binormal model gives good results

in most of the cases, but if it is used on data with only a few examples

or poorly distributed, we may obtain a ’hooked’ ROC curve that has non-

monotonic slope. It may even lead to ”degenerate” ROC curve with a zigzag

shape. This may be very problematic for the derivative ROC estimation

and rejection area computation. To deal with this problem, Metz et al.

have proposed a proper version of the binormal model which is based on a

monotonic transformation of the likelihood ratio. The proper binormal model

is very similar to the classic binormal model when no ”hook” or ”degeneracy”
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is present. All details of the ROC estimation by the proper binormal model

can be found in [18]. From the ROC curve estimation we obtain a set of

ROC points {(TPRαi
,FPRαi

)} that will be used to construct the rejection

area with he same procedure explained in the end of section 3.2.

3.5. ROC approximation by Bezier curves (rocch.approx)

In this method, the ROC curve is approximated from its convex hull.

The ROC convex hull curve is formed by the set of points UROCCH =
{(

FPRj

TPRj

)
; 1 ≤ j ≤ w

}
. We construct a Bezier curve of degree w − 1 from

this set of points to approximate the ROC curve. The bezier curves have no

parameters and are adapted to small set of points. The TPR and FPR are

estimated by parametric curves for t ∈ [0, 1] as:

̂TPR(t) =
w∑

i=0

(
w

i

)
(1 − t)w−1tiTPRi

F̂PR(t) =
w∑

i=0

(
w

i

)
(1 − t)w−1tiFPRi

We point out that the points of the ROC convex hull UROCCH have the

following characteristics: 0 ≤ FPRi < FPRj ≤ 1 and 0 ≤ TPRi < TPRj ≤

1 for all i < j. The Bezier curve constructed from this set of points will have

18
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the following properties:

0 ≤ ̂FPR(t1) < ̂FPR(t2) ≤ 1 ∀ t1 < t2

0 ≤ ̂TPR(t1) < ̂TPR(t2) ≤ 1 ∀ t1 < t2

̂TPR(t1)

̂FPR(t1)
>

̂TPR(t2)

̂FPR(t2)
∀ t1 < t2

The two first properties show that the estimated ROC curve is defined in

[0, 1] → [0, 1] and is increasing. The third property says that it is concave.

Once the approximation is performed, we identify the false positive rate

FPR∗ corresponding to the target derivative FPR∗ given in the equation (3).

Since it is likely that FPR∗ does not correspond to a point of UROCCH , we find

the two points containing FPR∗ i.e. we find i∗ such that FPRi∗ ≤ FPR∗ ≤

FPRi∗+1. The decision thresholds is given by α∗ = κFPRi∗+(1−κ)FPRi∗+1

with κ =
TPRi∗+1−TPR∗

TPRi∗+1−TPRi∗
.

3.6. ROC-curve exhaustive search (exhaustive)

The exhaustive search is not based on the theoretical consideration pre-

sented in the previous section. It is an ad hoc method where a large number

of different abstaining areas is evaluated and the best one is returned. The

following algorithm describes the method:

The performance of all abstaining areas are estimated by loss(Ψ(αN ,αP ))

which represents the expected loss (formulas (2)) of the classifier estimated

on the validation test. δ is a parameter to fix that controls the number and
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size of the tested abstaining areas. The number of tested abstaining areas

is
∑1/δ

i=0(
1
δ
− i) and their sizes are in {kδ|k ∈ [1, 1

δ
]}. If δ is too high, few

different abstaining areas will be tested and it is unlikely that we obtain an

abstaining area close to the optimal one. The computing time depends on

the number of tester abstaining area determined by δ. There is, therefore, a

trade-off between the performance and the computing time in choosing δ. In

our experiments we set δ = 0.001.

4. Results and Discussion

We have performed a set of experiments on both artificial and real datasets

in order to empirically investigate the behavior of the five approaches we have

introduced above and compared their performances to the state-of-the-art

methods.

4.1. Accuracy of the ROC derivative estimation

The artificial datasets are based on Gaussian distributions in dimension

10. We change the notation for more clarity. The positive class follows the

distribution N(1, I) and negative class N(−1, I) where 1 is a vector of size

10 containing only 1s, µ is drawn from a uniform distribution U [0.5, 1.5] and

I is the identity matrix. In each experiment, 100 iterations have been done.

The computation of the abstaining area is based on the approximation

of the ROC derivative. Figure 3 shows the precision of this approxima-

tion. In using a Gaussian artificial dataset, we can compute the exact ROC
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curve and its derivative. In using the ROC derivative methods described int

he section 3, we approximate the derivative for each value of false positive

rate. The derivative approximation has been computed from a validation

set of 60 examples with the ROC curve estimation used in the methods

roc.kernel, roc.bayesian, roc.binormal and rooch. The full gray curve shows

the logarithm of the derivative the real ROC curve. The derivative of the

ROC convex hull is a piecewise constant curve. Derivative approximation

by roc.kernel, roc.bayesian, roc.binorm or rocch.approx is much closer from

the exact derivative than the ROC convex hull. The ROCCH approximation

curve is very smooth because it is based on Bezier curve. It is inaccurate

on the extremities of the graph. Note that it is rare that the decision values

of the abstaining area are defined by extreme values of FPR, so the preci-

sion of derivative approximation is less important at the extreme of figure 3.

Other simulations with different artificial data have been made and lead to

the same conclusions. These results show that our approximation methods

produce more accurate derivative that the ROC convex hull curve.

4.2. Impact of the validation set size

In another experiment based on artificial Gaussian dataset, the impact

of the validation set on the performance of the final classifier is investigated.

A training set, a validation set and a test set of size respectively 100, Nvalid,

10000 are generated. Nvalid varies from 20 to 500. The training set is used to

learn the model, the validation set to compute the abstaining area and the
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Figure 3: Precision of the ROC derivative approximation. The gray line gives the true
derivative of the ROC curve in function on the false positive rate. The other lines represent
the approximations of the derivative given by the different methods.

test set to compute the performance of the classifier. Figure 4 gives the loss

of the classifier in function of the size of the validation set. For all methods,

the loss is decreasing with the number of validation examples. The ROC

rule has a much higher loss than other methods for small validation set (i.e.

Nvalid < 100). For small validation set the ROC convex hull curve contains

few points, so the number possible abstaining area is very small, it is unlikely

that one of this abstaining area is close to the optimal one. When the number

of validation examples increases, the approximation of the ROC derivative

becomes accurate for all methods and their performances are similar. The
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performance of the exhaustive search does not depend on the ROC derivative

approximation but on the estimation of the expected loss on the validation

set. The larger the validation set, the more accurate the loss estimation and

the abstaining area. If we plot the loss in function on the training set size, we

will obtain the same kind of graphic than in figure 4. The loss is decreasing

with the number of training examples. The performance of an abstaining

classifier thus depends on both the training and the validation set. On real

data, we do not have a training and a validation set, but only one dataset.

We have to split this dataset into a training and a validation set. For the

next experiments, we split the original data into a training and a validation

set of the same size.

4.3. Impact of the cost of rejection

The abstaining area computation depends on the cost of rejecting an ex-

ample λR. In this experiment, we check if the comparison of the different

methods is robust to the value of λR. We compute the loss of all methods

in function of the value of λR on the different datasets and different error

costs for each datasets. We show in this section a representative example

of the results obtained on this set of experiments. This example is on the

Alon dataset, the cost of good classification is 0 (λPP = λNN = 0), the cost

of error is 1 (λPN = λNP = 1). We remind that the truly important mag-

nitude is the relative value of the cost of a given type of classification with

respect to the cost of the remaining classifications. Here we fix the cost of
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Figure 4: The loss of an abstaining classifier in function of the size of the validation set.

λPN , λNP , λPP , λNN and we vary the rejection cost λR in order to vary the

ration of the rejection cost on the error cost. The expected loss is estimated

by a 10-times 10-fold cross-validation. Although the cross-validation presents

some problems in small sample data, it is still one of the best available esti-

mation method [11]. At each cross-validation iteration, 1/10 of the examples

are selected to form the test set. The subset of examples not selected for the

test, is split into a training and a validation set of equal size. A t-test based
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feature selection is applied on the training set in order to reduce the data to

the 100 most discriminant genes. The model is fitted on the training set and

the abstaining area is computed on the validation set. Note that all these

steps are included in the cross-validation procedure in order to avoid the

problem of estimation bias [2]. The used classification rules are the linear

discriminant analysis (LDA), random forest (given 500 trees) and support

vector machine with linear kernel (given C = 1).

Figure 5 gives the loss in function on the value of the cost of rejection λR.

For all methods, the loss is increasing with the value of λR, that makes sense

because the cost are not normalized, when the cost of rejection increase, the

cost of error is still constant, so the overall cost increases. Note that if we

want to compare classifiers with different costs, we have to normalize the

costs such that
∑

i λi = 1. At λR = 0.7 all methods, except the Chow’s

rule, give the same loss because the rejection cost is so high that no example

is rejected, this corresponds to the performance of classic classifier with no

abstaining area. The Chow’s rule gives different results because it does not

need a validation set, all examples are used for the learning of the model. At

λR = 0 (not shown on figure) all examples are rejected the expected loss of

all classifiers is therefore 0. These two points are trivial; the range of interest

is between them. We see that the ranking of the methods is rather stable

and does not depend on the λR. The choice of λR depends totally on the

context of the classification problem, it should be defined in interaction with

the biologists and physicians. In the next experiments, we have fixed the
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Figure 5: Performance of the abstaining classifier depending on the cost of rejection and
the method used.

rejection cost at λR = 0.3.

4.4. Results on real data

We made an empirical comparison of the performance of the different

methods on real small sample datasets. Medical decision based on genomics

data is one of the main application of reject classification in small-sample

settings. For the experiments, we choose eight microarray datasets covering

a wide range of size and dimensionality. The choice of the cost of false positive

and negative depends on the context. Alon (Colon cancer), Singh (prostate

cancer) and Gordon (lung cancer) datasets are related to the problem of
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cancer detection. The consequence of the non-detection of an actual cancer

is more dramatic than the false cancer detection. Thus the cost of false

positive is considered higher than that of false negative. In Golub (leukemia),

Alizadeh (leukemia), Batthacharjee (lung cancer) and West (breast cancer)

the objective is to identify the type of cancer. All these types of cancer have

a priori the same seriousness. Thus for these tasks, the cost of false positive

and negative have been considered equal. In VandeVijer (breast cancer) the

task is to predict the outcome of cancer (be it good or poor), in both cases

an error of prognostic (FP or FN) may lead to wrong therapeutic decisions

whose consequences are difficult to a priori order like in the task of cancer

detection. The cost of false positive and negative are therefore equal. The

cost of good classification is fixed to λPP = λNN = 0 and cost of rejection

to λR = 0.3. The value assigned to λR = 0.3 is a relative value that must

be considered in comparison with the value λPN = λNP = 1 assigned to the

cost of the errors and to the value λPP = λNN = 0 assigned to the cost of

the correct classifications. The characteristics of all datasets are presented

in Table 2. The loss of each abstaining classifier is estimated by a 10-times

10-fold cross-validation procedure as explained in section 4.3.

Table 4.4 gives the expected loss for all methods. We see that, in almost

all cases, the performance of reject classifiers is much better than the non-

reject classifiers. Unlike the conclusion of several papers [17, 28], the Chow’s

rule gives better performance than ROC rule in small sample data. Chow’s

rule outperforms ROC rule in 18 experiments out of 24. In some experiments,
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Table 2: Characteristics of the eight real datasets.
Dataset #examples #features λPN λNP class P class N
Gordon 181 1626 2 1 healthy tumor
Alon 62 2000 2 1 healthy tumor
Singh 77 798 2 1 healthy tumor
Golub 72 7129 1 1 AML ALL

Alizadeh 42 1095 1 1 DLBCL1 DLBCL2
Batthacharjee 203 12600 1 1 adenocarcinoma other types

West 49 7129 1 1 ER+ ER-
Van de Vijver 295 7129 1 1 good poor

Table 3: Expected loss of the abstaining classifiers depending on the different methods on
the eight real datasets. The best performances are in bold. A double line separates our five
proposed methods roc kernel, roc bayesian, roc binorm, rocch approach and exhaustive

Method Golub Alizadeh Gordon Alon Singh Van de Vijver Bhattacharjee West
Support Vector Machine

No rejection 0.210 0.233 0.080 0.321 0.224 0.365 0.141 0.297
Chow’s rule 0.161 0.145 0.047 0.265 0.154 0.298 0.095 0.165
roc rule 0.152 0.196 0.071 0.274 0.174 0.301 0.111 0.232

roc kernel 0.133 0.117 0.011 0.255 0.140 0.312 0.089 0.156

roc bayesian 0.142 0.117 0.015 0.249 0.152 0.300 0.084 0.161
roc binorm 0.140 0.152 0.017 0.269 0.167 0.307 0.096 0.168
rocch approx 0.142 0.158 0.022 0.263 0.163 0.296 0.094 0.161
exhaustive 0.117 0.112 0.017 0.275 0.137 0.297 0.091 0.167

Linear Discriminant Analysis

No rejection 0.201 0.211 0.092 0.367 0.311 0.362 0.154 0.264
Chow’s rule 0.164 0.193 0.051 0.300 0.227 0.351 0.097 0.183
roc rule 0.150 0.260 0.078 0.256 0.224 0.317 0.117 0.255

roc kernel 0.144 0.162 0.035 0.251 0.220 0.301 0.084 0.162

roc bayesian 0.139 0.178 0.035 0.267 0.205 0.294 0.081 0.178
roc binorm 0.144 0.150 0.040 0.283 0.199 0.305 0.089 0.170
rocch approx 0.131 0.209 0.041 0.257 0.203 0.301 0.091 0.200
exhaustive 0.135 0.178 0.047 0.245 0.196 0.306 0.093 0.163

Random Forest

No rejection 0.250 0.245 0.029 0.314 0.250 0.303 0.132 0.192
Chow’s rule 0.169 0.207 0.016 0.239 0.152 0.262 0.076 0.162
roc rule 0.261 0.221 0.015 0.261 0.154 0.261 0.091 0.201

roc kernel 0.148 0.133 0.011 0.238 0.153 0.263 0.061 0.128

roc bayesian 0.141 0.148 0.012 0.234 0.147 0.274 0.070 0.145
roc.binorm 0.159 0.155 0.014 0.260 0.144 0.271 0.071 0.161
rocch approx 0.179 0.179 0.015 0.245 0.148 0.259 0.069 0.150
exhaustive 0.151 0.143 0.014 0.258 0.132 0.261 0.066 0.149

the ROC rule gives an expected loss much higher than the other methods,

for example in West dataset with LDA, Alizadeh dataset with SVM or Golub
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Table 4: P-values of the Wilcoxon signed-rank test where the alternative hypothesis is the
methods gives better results than the Chow’s rule and ROC rule.

Chow rule ROC rule

Method SVM LDA RF SVM LDA RF

roc kernel 0.078 0.008 0.06 0.039 0.008 0.023
roc bayesian 0.025 0.008 0.08 0.008 0.023 0.039
roc binorm 0.679 0.004 0.230 0.011 0.019 0.025
rocch approx 0.181 0.070 0.156 0.004 0.008 0.011
exhaustive 0.055 0.004 0.055 0.008 0.007 0.011

dataset with random forest. this kind of failure of the ROC rule occurs when

both very few points from the ROC convex hull (3 or 4 points) and the shape

of ROC convex hull is very different from the shape of the true ROC curve,

as illustrated in figure 1. An important result coming out of this table is

that our five methods give much better performances than the two state-of-

the-art methods whatever the dataset or the classification rules. Roc.kernel,

roc.bayesian, roc.binorm, rocch.approx and exhaustive outperforms Chow’s

rule and ROC rule in all experiments. Roc.kernel gives the best results in

6 experiments, roc.bayesian in 5 experiments, roc.binorm in 1 experiment,

rocch.approx in 4 experiments and exhaustive in 8 experiments. According to

the table 4.4 our methods improve the performance of the state of the art by

30% in average. For the VandeVijver dataset the difference of performance

between the state of the art and our methods is very small, the reason comes

from the number of examples. This dataset contains 295 examples, the state

of the art methods becomes good with this number of examples, as shown the

figure 4. A Wilcoxon signed-rank test is performed to check the significance
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of the improvement of our methods compared to the Chow’s rule and ROC

rule for each classifier. The alternative hypothesis is that our method gives

better performance than state-of-the-art methods on all datasets. Table 4.4

gives the p-value of these statistical tests for each classification method. The

p-value of the tests against Chow’s rule are higher than against ROC rule,

however in all case our methods are significantly better than the state-of-the-

art. The only exception is Roc binorm against Chow’s rule for SVM. There is

no criterion to choose the best method among these three for a given dataset

or classification rule. It only depends on the precision of the distribution

of the classes on the validation set. However, we can give the following

practical recommendation: once a model has been fitted on the training set,

plot the ROC curve and its convex hull curve from the validation set. If

the ROC curve and its convex hull are very different, it is likely that the

approximation of the derivative will be inaccurate. In this case, it is safer

to use an exhaustive search. In the opposite case, it is better to use the

approximation of ROC or ROCCH derivative. A noticeable drawback of the

exhaustive search is its computing time, which is much higher than the other

ones.

5. Conclusion

Abstaining classifiers are important extensions of the classic classifiers

supporting the significant improvement of accuracy and reliability of predic-

tions. The optimal abstaining area can theoretically be computed by two
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methods: the Chow’s rule based on the computation of the posterior prob-

abilities and the ROC rule based on the derivative of the ROC curve. The

literature shows that these two methods are equivalent in theory but that

the ROC rule seems to give better performance in practice. In this paper, we

show that in small sample problems the ROC convex hull is formed from very

few points leading to a very small number of possible abstaining areas. The

constructed abstaining area is often far from the optimal one. We have pro-

posed in this paper five new methods of abstaining area construction adapted

to small sample problem. Our methods (excepted the exhaustive method)

are theoretically equivalent to both Chow and Roc rule. The differences be-

tween our methods and the state of the art are related to the ROC curve

estimation. Our results show that our methods give a better approximation

that both the ROC rule and Chow’s rule. Our methods are adapted to small

sample problem since with small validation set we obtain much better perfor-

mances that the ROC rule. Our results are robust with respect to the cost of

rejection. On eight real datasets and three classification rules, we show that

our methods give better performance that both Chow’s rule and ROC rule.

Finally, the proposed methods are easy to implement and can be used with

any domain of application or classification rule. In summary, the strength of

our methods is clearly to address the high-dimensional problem where N¡¡p

and especially when the number of observations N is small. Theirs weakness

is that whenever the sample is large enough its gain may be not significant.

They should improve the reliability of the classifiers for real world small sam-
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ple applications that are increasingly available in bioinformatics and medical

applications.

Even when state of the art machine learning methods produce classifiers

that have good generalization accuracy, they are often difficult to be used

in routine by clinician. In effect, for clinician it is often difficult to decide

how confident they can be in the classifier predictions. As claimed by Pepe

[20] ”new clinical classifiers lag far behind the well established standards

that exist for evaluating new clinical treatments. Indeed, a diagnostic or a

choice of therapeutic strategy must be based on a very high confidence clas-

sifier; an error of the predictive model may lead to tragic consequences. In

other words if a classical classifier is used in a hospital cancer department

to identify the lymphoblastic from the myelogenous leukemia of patients suf-

fering from acute leukemia there is no consensus on the accuracy threshold

that is considered to be reliable. If a classifier gives a probability 60% for

lymphoblastic and 40% for myelogenous for a given patient; although, the

probability of myelogenous is the highest, it is unlikely that a clinician will

have confidence in the classifier assignment to the highest confidence predic-

tion i.e. here lymphoblastic) to the patients cancer. This is especially true

in medicine where observations available for learning are scarce and costly.

On the contrary an abstaining classifier will reject the patient because in this

case no reliable diagnosis can be done. This implies that clinician may have

much higher confidence in predictions when the patient is not rejected.

In future work we will use classifiers with reject option for the construc-
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tion of cascade of classifiers in order to reduce the acquisition cost. The

acquisition cost is what you pay to obtain the variables of an example. It

can be money, time, memory, or any other non-infinite resource. In most

prediction problems, some examples are easier to predict than others. They

can be predicted in using fewer variables i.e. with a lower acquisition cost. A

set of abstaining classifiers with different acquisition cost could be combined

into a cascade in increasing acquisition cost. To compute a prediction, the

example is sent to the first abstaining classifier. If the first classifier rejects

the example, then it is sent to the second classifier of the cascade that has

a higher acquisition cost than the first classifier. This principle is repeated

until the last classifier using all variables. The key problem of this model is

the simultaneous computation of the abstaining area of all classifiers of the

cascade.
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